1 /*
2 * linux/arch/arm/mm/flush.c
3 *
4 * Copyright (C) 1995-2002 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/highmem.h>
14
15 #include <asm/cacheflush.h>
16 #include <asm/cachetype.h>
17 #include <asm/highmem.h>
18 #include <asm/smp_plat.h>
19 #include <asm/tlbflush.h>
20
21 #include "mm.h"
22
23 #ifdef CONFIG_CPU_CACHE_VIPT
24
flush_pfn_alias(unsigned long pfn,unsigned long vaddr)25 static void flush_pfn_alias(unsigned long pfn, unsigned long vaddr)
26 {
27 unsigned long to = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
28 const int zero = 0;
29
30 set_top_pte(to, pfn_pte(pfn, PAGE_KERNEL));
31
32 asm( "mcrr p15, 0, %1, %0, c14\n"
33 " mcr p15, 0, %2, c7, c10, 4"
34 :
35 : "r" (to), "r" (to + PAGE_SIZE - L1_CACHE_BYTES), "r" (zero)
36 : "cc");
37 }
38
flush_icache_alias(unsigned long pfn,unsigned long vaddr,unsigned long len)39 static void flush_icache_alias(unsigned long pfn, unsigned long vaddr, unsigned long len)
40 {
41 unsigned long va = FLUSH_ALIAS_START + (CACHE_COLOUR(vaddr) << PAGE_SHIFT);
42 unsigned long offset = vaddr & (PAGE_SIZE - 1);
43 unsigned long to;
44
45 set_top_pte(va, pfn_pte(pfn, PAGE_KERNEL));
46 to = va + offset;
47 flush_icache_range(to, to + len);
48 }
49
flush_cache_mm(struct mm_struct * mm)50 void flush_cache_mm(struct mm_struct *mm)
51 {
52 if (cache_is_vivt()) {
53 vivt_flush_cache_mm(mm);
54 return;
55 }
56
57 if (cache_is_vipt_aliasing()) {
58 asm( "mcr p15, 0, %0, c7, c14, 0\n"
59 " mcr p15, 0, %0, c7, c10, 4"
60 :
61 : "r" (0)
62 : "cc");
63 }
64 }
65
flush_cache_range(struct vm_area_struct * vma,unsigned long start,unsigned long end)66 void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
67 {
68 if (cache_is_vivt()) {
69 vivt_flush_cache_range(vma, start, end);
70 return;
71 }
72
73 if (cache_is_vipt_aliasing()) {
74 asm( "mcr p15, 0, %0, c7, c14, 0\n"
75 " mcr p15, 0, %0, c7, c10, 4"
76 :
77 : "r" (0)
78 : "cc");
79 }
80
81 if (vma->vm_flags & VM_EXEC)
82 __flush_icache_all();
83 }
84
flush_cache_page(struct vm_area_struct * vma,unsigned long user_addr,unsigned long pfn)85 void flush_cache_page(struct vm_area_struct *vma, unsigned long user_addr, unsigned long pfn)
86 {
87 if (cache_is_vivt()) {
88 vivt_flush_cache_page(vma, user_addr, pfn);
89 return;
90 }
91
92 if (cache_is_vipt_aliasing()) {
93 flush_pfn_alias(pfn, user_addr);
94 __flush_icache_all();
95 }
96
97 if (vma->vm_flags & VM_EXEC && icache_is_vivt_asid_tagged())
98 __flush_icache_all();
99 }
100
101 #else
102 #define flush_pfn_alias(pfn,vaddr) do { } while (0)
103 #define flush_icache_alias(pfn,vaddr,len) do { } while (0)
104 #endif
105
flush_ptrace_access_other(void * args)106 static void flush_ptrace_access_other(void *args)
107 {
108 __flush_icache_all();
109 }
110
111 static
flush_ptrace_access(struct vm_area_struct * vma,struct page * page,unsigned long uaddr,void * kaddr,unsigned long len)112 void flush_ptrace_access(struct vm_area_struct *vma, struct page *page,
113 unsigned long uaddr, void *kaddr, unsigned long len)
114 {
115 if (cache_is_vivt()) {
116 if (cpumask_test_cpu(smp_processor_id(), mm_cpumask(vma->vm_mm))) {
117 unsigned long addr = (unsigned long)kaddr;
118 __cpuc_coherent_kern_range(addr, addr + len);
119 }
120 return;
121 }
122
123 if (cache_is_vipt_aliasing()) {
124 flush_pfn_alias(page_to_pfn(page), uaddr);
125 __flush_icache_all();
126 return;
127 }
128
129 /* VIPT non-aliasing D-cache */
130 if (vma->vm_flags & VM_EXEC) {
131 unsigned long addr = (unsigned long)kaddr;
132 if (icache_is_vipt_aliasing())
133 flush_icache_alias(page_to_pfn(page), uaddr, len);
134 else
135 __cpuc_coherent_kern_range(addr, addr + len);
136 if (cache_ops_need_broadcast())
137 smp_call_function(flush_ptrace_access_other,
138 NULL, 1);
139 }
140 }
141
142 /*
143 * Copy user data from/to a page which is mapped into a different
144 * processes address space. Really, we want to allow our "user
145 * space" model to handle this.
146 *
147 * Note that this code needs to run on the current CPU.
148 */
copy_to_user_page(struct vm_area_struct * vma,struct page * page,unsigned long uaddr,void * dst,const void * src,unsigned long len)149 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
150 unsigned long uaddr, void *dst, const void *src,
151 unsigned long len)
152 {
153 #ifdef CONFIG_SMP
154 preempt_disable();
155 #endif
156 memcpy(dst, src, len);
157 flush_ptrace_access(vma, page, uaddr, dst, len);
158 #ifdef CONFIG_SMP
159 preempt_enable();
160 #endif
161 }
162
__flush_dcache_page(struct address_space * mapping,struct page * page)163 void __flush_dcache_page(struct address_space *mapping, struct page *page)
164 {
165 /*
166 * Writeback any data associated with the kernel mapping of this
167 * page. This ensures that data in the physical page is mutually
168 * coherent with the kernels mapping.
169 */
170 if (!PageHighMem(page)) {
171 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
172 } else {
173 void *addr = kmap_high_get(page);
174 if (addr) {
175 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
176 kunmap_high(page);
177 } else if (cache_is_vipt()) {
178 /* unmapped pages might still be cached */
179 addr = kmap_atomic(page);
180 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
181 kunmap_atomic(addr);
182 }
183 }
184
185 /*
186 * If this is a page cache page, and we have an aliasing VIPT cache,
187 * we only need to do one flush - which would be at the relevant
188 * userspace colour, which is congruent with page->index.
189 */
190 if (mapping && cache_is_vipt_aliasing())
191 flush_pfn_alias(page_to_pfn(page),
192 page->index << PAGE_CACHE_SHIFT);
193 }
194
__flush_dcache_aliases(struct address_space * mapping,struct page * page)195 static void __flush_dcache_aliases(struct address_space *mapping, struct page *page)
196 {
197 struct mm_struct *mm = current->active_mm;
198 struct vm_area_struct *mpnt;
199 struct prio_tree_iter iter;
200 pgoff_t pgoff;
201
202 /*
203 * There are possible user space mappings of this page:
204 * - VIVT cache: we need to also write back and invalidate all user
205 * data in the current VM view associated with this page.
206 * - aliasing VIPT: we only need to find one mapping of this page.
207 */
208 pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
209
210 flush_dcache_mmap_lock(mapping);
211 vma_prio_tree_foreach(mpnt, &iter, &mapping->i_mmap, pgoff, pgoff) {
212 unsigned long offset;
213
214 /*
215 * If this VMA is not in our MM, we can ignore it.
216 */
217 if (mpnt->vm_mm != mm)
218 continue;
219 if (!(mpnt->vm_flags & VM_MAYSHARE))
220 continue;
221 offset = (pgoff - mpnt->vm_pgoff) << PAGE_SHIFT;
222 flush_cache_page(mpnt, mpnt->vm_start + offset, page_to_pfn(page));
223 }
224 flush_dcache_mmap_unlock(mapping);
225 }
226
227 #if __LINUX_ARM_ARCH__ >= 6
__sync_icache_dcache(pte_t pteval)228 void __sync_icache_dcache(pte_t pteval)
229 {
230 unsigned long pfn;
231 struct page *page;
232 struct address_space *mapping;
233
234 if (cache_is_vipt_nonaliasing() && !pte_exec(pteval))
235 /* only flush non-aliasing VIPT caches for exec mappings */
236 return;
237 pfn = pte_pfn(pteval);
238 if (!pfn_valid(pfn))
239 return;
240
241 page = pfn_to_page(pfn);
242 if (cache_is_vipt_aliasing())
243 mapping = page_mapping(page);
244 else
245 mapping = NULL;
246
247 if (!test_and_set_bit(PG_dcache_clean, &page->flags))
248 __flush_dcache_page(mapping, page);
249
250 if (pte_exec(pteval))
251 __flush_icache_all();
252 }
253 #endif
254
255 /*
256 * Ensure cache coherency between kernel mapping and userspace mapping
257 * of this page.
258 *
259 * We have three cases to consider:
260 * - VIPT non-aliasing cache: fully coherent so nothing required.
261 * - VIVT: fully aliasing, so we need to handle every alias in our
262 * current VM view.
263 * - VIPT aliasing: need to handle one alias in our current VM view.
264 *
265 * If we need to handle aliasing:
266 * If the page only exists in the page cache and there are no user
267 * space mappings, we can be lazy and remember that we may have dirty
268 * kernel cache lines for later. Otherwise, we assume we have
269 * aliasing mappings.
270 *
271 * Note that we disable the lazy flush for SMP configurations where
272 * the cache maintenance operations are not automatically broadcasted.
273 */
flush_dcache_page(struct page * page)274 void flush_dcache_page(struct page *page)
275 {
276 struct address_space *mapping;
277
278 /*
279 * The zero page is never written to, so never has any dirty
280 * cache lines, and therefore never needs to be flushed.
281 */
282 if (page == ZERO_PAGE(0))
283 return;
284
285 mapping = page_mapping(page);
286
287 if (!cache_ops_need_broadcast() &&
288 mapping && !mapping_mapped(mapping))
289 clear_bit(PG_dcache_clean, &page->flags);
290 else {
291 __flush_dcache_page(mapping, page);
292 if (mapping && cache_is_vivt())
293 __flush_dcache_aliases(mapping, page);
294 else if (mapping)
295 __flush_icache_all();
296 set_bit(PG_dcache_clean, &page->flags);
297 }
298 }
299 EXPORT_SYMBOL(flush_dcache_page);
300
301 /*
302 * Ensure cache coherency for the kernel mapping of this page. We can
303 * assume that the page is pinned via kmap.
304 *
305 * If the page only exists in the page cache and there are no user
306 * space mappings, this is a no-op since the page was already marked
307 * dirty at creation. Otherwise, we need to flush the dirty kernel
308 * cache lines directly.
309 */
flush_kernel_dcache_page(struct page * page)310 void flush_kernel_dcache_page(struct page *page)
311 {
312 if (cache_is_vivt() || cache_is_vipt_aliasing()) {
313 struct address_space *mapping;
314
315 mapping = page_mapping(page);
316
317 if (!mapping || mapping_mapped(mapping)) {
318 void *addr;
319
320 addr = page_address(page);
321 /*
322 * kmap_atomic() doesn't set the page virtual
323 * address for highmem pages, and
324 * kunmap_atomic() takes care of cache
325 * flushing already.
326 */
327 if (!IS_ENABLED(CONFIG_HIGHMEM) || addr)
328 __cpuc_flush_dcache_area(addr, PAGE_SIZE);
329 }
330 }
331 }
332 EXPORT_SYMBOL(flush_kernel_dcache_page);
333
334 /*
335 * Flush an anonymous page so that users of get_user_pages()
336 * can safely access the data. The expected sequence is:
337 *
338 * get_user_pages()
339 * -> flush_anon_page
340 * memcpy() to/from page
341 * if written to page, flush_dcache_page()
342 */
__flush_anon_page(struct vm_area_struct * vma,struct page * page,unsigned long vmaddr)343 void __flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
344 {
345 unsigned long pfn;
346
347 /* VIPT non-aliasing caches need do nothing */
348 if (cache_is_vipt_nonaliasing())
349 return;
350
351 /*
352 * Write back and invalidate userspace mapping.
353 */
354 pfn = page_to_pfn(page);
355 if (cache_is_vivt()) {
356 flush_cache_page(vma, vmaddr, pfn);
357 } else {
358 /*
359 * For aliasing VIPT, we can flush an alias of the
360 * userspace address only.
361 */
362 flush_pfn_alias(pfn, vmaddr);
363 __flush_icache_all();
364 }
365
366 /*
367 * Invalidate kernel mapping. No data should be contained
368 * in this mapping of the page. FIXME: this is overkill
369 * since we actually ask for a write-back and invalidate.
370 */
371 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
372 }
373