• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Kernel Probes (KProbes)
3  *  arch/mips/kernel/kprobes.c
4  *
5  *  Copyright 2006 Sony Corp.
6  *  Copyright 2010 Cavium Networks
7  *
8  *  Some portions copied from the powerpc version.
9  *
10  *   Copyright (C) IBM Corporation, 2002, 2004
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; version 2 of the License.
15  *
16  *  This program is distributed in the hope that it will be useful,
17  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  *  GNU General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License
22  *  along with this program; if not, write to the Free Software
23  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
24  */
25 
26 #include <linux/kprobes.h>
27 #include <linux/preempt.h>
28 #include <linux/uaccess.h>
29 #include <linux/kdebug.h>
30 #include <linux/slab.h>
31 
32 #include <asm/ptrace.h>
33 #include <asm/branch.h>
34 #include <asm/break.h>
35 #include <asm/inst.h>
36 
37 static const union mips_instruction breakpoint_insn = {
38 	.b_format = {
39 		.opcode = spec_op,
40 		.code = BRK_KPROBE_BP,
41 		.func = break_op
42 	}
43 };
44 
45 static const union mips_instruction breakpoint2_insn = {
46 	.b_format = {
47 		.opcode = spec_op,
48 		.code = BRK_KPROBE_SSTEPBP,
49 		.func = break_op
50 	}
51 };
52 
53 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
54 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
55 
insn_has_delayslot(union mips_instruction insn)56 static int __kprobes insn_has_delayslot(union mips_instruction insn)
57 {
58 	switch (insn.i_format.opcode) {
59 
60 		/*
61 		 * This group contains:
62 		 * jr and jalr are in r_format format.
63 		 */
64 	case spec_op:
65 		switch (insn.r_format.func) {
66 		case jr_op:
67 		case jalr_op:
68 			break;
69 		default:
70 			goto insn_ok;
71 		}
72 
73 		/*
74 		 * This group contains:
75 		 * bltz_op, bgez_op, bltzl_op, bgezl_op,
76 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op.
77 		 */
78 	case bcond_op:
79 
80 		/*
81 		 * These are unconditional and in j_format.
82 		 */
83 	case jal_op:
84 	case j_op:
85 
86 		/*
87 		 * These are conditional and in i_format.
88 		 */
89 	case beq_op:
90 	case beql_op:
91 	case bne_op:
92 	case bnel_op:
93 	case blez_op:
94 	case blezl_op:
95 	case bgtz_op:
96 	case bgtzl_op:
97 
98 		/*
99 		 * These are the FPA/cp1 branch instructions.
100 		 */
101 	case cop1_op:
102 
103 #ifdef CONFIG_CPU_CAVIUM_OCTEON
104 	case lwc2_op: /* This is bbit0 on Octeon */
105 	case ldc2_op: /* This is bbit032 on Octeon */
106 	case swc2_op: /* This is bbit1 on Octeon */
107 	case sdc2_op: /* This is bbit132 on Octeon */
108 #endif
109 		return 1;
110 	default:
111 		break;
112 	}
113 insn_ok:
114 	return 0;
115 }
116 
117 /*
118  * insn_has_ll_or_sc function checks whether instruction is ll or sc
119  * one; putting breakpoint on top of atomic ll/sc pair is bad idea;
120  * so we need to prevent it and refuse kprobes insertion for such
121  * instructions; cannot do much about breakpoint in the middle of
122  * ll/sc pair; it is upto user to avoid those places
123  */
insn_has_ll_or_sc(union mips_instruction insn)124 static int __kprobes insn_has_ll_or_sc(union mips_instruction insn)
125 {
126 	int ret = 0;
127 
128 	switch (insn.i_format.opcode) {
129 	case ll_op:
130 	case lld_op:
131 	case sc_op:
132 	case scd_op:
133 		ret = 1;
134 		break;
135 	default:
136 		break;
137 	}
138 	return ret;
139 }
140 
arch_prepare_kprobe(struct kprobe * p)141 int __kprobes arch_prepare_kprobe(struct kprobe *p)
142 {
143 	union mips_instruction insn;
144 	union mips_instruction prev_insn;
145 	int ret = 0;
146 
147 	insn = p->addr[0];
148 
149 	if (insn_has_ll_or_sc(insn)) {
150 		pr_notice("Kprobes for ll and sc instructions are not"
151 			  "supported\n");
152 		ret = -EINVAL;
153 		goto out;
154 	}
155 
156 	if ((probe_kernel_read(&prev_insn, p->addr - 1,
157 				sizeof(mips_instruction)) == 0) &&
158 				insn_has_delayslot(prev_insn)) {
159 		pr_notice("Kprobes for branch delayslot are not supported\n");
160 		ret = -EINVAL;
161 		goto out;
162 	}
163 
164 	/* insn: must be on special executable page on mips. */
165 	p->ainsn.insn = get_insn_slot();
166 	if (!p->ainsn.insn) {
167 		ret = -ENOMEM;
168 		goto out;
169 	}
170 
171 	/*
172 	 * In the kprobe->ainsn.insn[] array we store the original
173 	 * instruction at index zero and a break trap instruction at
174 	 * index one.
175 	 *
176 	 * On MIPS arch if the instruction at probed address is a
177 	 * branch instruction, we need to execute the instruction at
178 	 * Branch Delayslot (BD) at the time of probe hit. As MIPS also
179 	 * doesn't have single stepping support, the BD instruction can
180 	 * not be executed in-line and it would be executed on SSOL slot
181 	 * using a normal breakpoint instruction in the next slot.
182 	 * So, read the instruction and save it for later execution.
183 	 */
184 	if (insn_has_delayslot(insn))
185 		memcpy(&p->ainsn.insn[0], p->addr + 1, sizeof(kprobe_opcode_t));
186 	else
187 		memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t));
188 
189 	p->ainsn.insn[1] = breakpoint2_insn;
190 	p->opcode = *p->addr;
191 
192 out:
193 	return ret;
194 }
195 
arch_arm_kprobe(struct kprobe * p)196 void __kprobes arch_arm_kprobe(struct kprobe *p)
197 {
198 	*p->addr = breakpoint_insn;
199 	flush_insn_slot(p);
200 }
201 
arch_disarm_kprobe(struct kprobe * p)202 void __kprobes arch_disarm_kprobe(struct kprobe *p)
203 {
204 	*p->addr = p->opcode;
205 	flush_insn_slot(p);
206 }
207 
arch_remove_kprobe(struct kprobe * p)208 void __kprobes arch_remove_kprobe(struct kprobe *p)
209 {
210 	free_insn_slot(p->ainsn.insn, 0);
211 }
212 
save_previous_kprobe(struct kprobe_ctlblk * kcb)213 static void save_previous_kprobe(struct kprobe_ctlblk *kcb)
214 {
215 	kcb->prev_kprobe.kp = kprobe_running();
216 	kcb->prev_kprobe.status = kcb->kprobe_status;
217 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR;
218 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR;
219 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc;
220 }
221 
restore_previous_kprobe(struct kprobe_ctlblk * kcb)222 static void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
223 {
224 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
225 	kcb->kprobe_status = kcb->prev_kprobe.status;
226 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR;
227 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR;
228 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc;
229 }
230 
set_current_kprobe(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)231 static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
232 			       struct kprobe_ctlblk *kcb)
233 {
234 	__get_cpu_var(current_kprobe) = p;
235 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE);
236 	kcb->kprobe_saved_epc = regs->cp0_epc;
237 }
238 
239 /**
240  * evaluate_branch_instrucion -
241  *
242  * Evaluate the branch instruction at probed address during probe hit. The
243  * result of evaluation would be the updated epc. The insturction in delayslot
244  * would actually be single stepped using a normal breakpoint) on SSOL slot.
245  *
246  * The result is also saved in the kprobe control block for later use,
247  * in case we need to execute the delayslot instruction. The latter will be
248  * false for NOP instruction in dealyslot and the branch-likely instructions
249  * when the branch is taken. And for those cases we set a flag as
250  * SKIP_DELAYSLOT in the kprobe control block
251  */
evaluate_branch_instruction(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)252 static int evaluate_branch_instruction(struct kprobe *p, struct pt_regs *regs,
253 					struct kprobe_ctlblk *kcb)
254 {
255 	union mips_instruction insn = p->opcode;
256 	long epc;
257 	int ret = 0;
258 
259 	epc = regs->cp0_epc;
260 	if (epc & 3)
261 		goto unaligned;
262 
263 	if (p->ainsn.insn->word == 0)
264 		kcb->flags |= SKIP_DELAYSLOT;
265 	else
266 		kcb->flags &= ~SKIP_DELAYSLOT;
267 
268 	ret = __compute_return_epc_for_insn(regs, insn);
269 	if (ret < 0)
270 		return ret;
271 
272 	if (ret == BRANCH_LIKELY_TAKEN)
273 		kcb->flags |= SKIP_DELAYSLOT;
274 
275 	kcb->target_epc = regs->cp0_epc;
276 
277 	return 0;
278 
279 unaligned:
280 	pr_notice("%s: unaligned epc - sending SIGBUS.\n", current->comm);
281 	force_sig(SIGBUS, current);
282 	return -EFAULT;
283 
284 }
285 
prepare_singlestep(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)286 static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs,
287 						struct kprobe_ctlblk *kcb)
288 {
289 	int ret = 0;
290 
291 	regs->cp0_status &= ~ST0_IE;
292 
293 	/* single step inline if the instruction is a break */
294 	if (p->opcode.word == breakpoint_insn.word ||
295 	    p->opcode.word == breakpoint2_insn.word)
296 		regs->cp0_epc = (unsigned long)p->addr;
297 	else if (insn_has_delayslot(p->opcode)) {
298 		ret = evaluate_branch_instruction(p, regs, kcb);
299 		if (ret < 0) {
300 			pr_notice("Kprobes: Error in evaluating branch\n");
301 			return;
302 		}
303 	}
304 	regs->cp0_epc = (unsigned long)&p->ainsn.insn[0];
305 }
306 
307 /*
308  * Called after single-stepping.  p->addr is the address of the
309  * instruction whose first byte has been replaced by the "break 0"
310  * instruction.  To avoid the SMP problems that can occur when we
311  * temporarily put back the original opcode to single-step, we
312  * single-stepped a copy of the instruction.  The address of this
313  * copy is p->ainsn.insn.
314  *
315  * This function prepares to return from the post-single-step
316  * breakpoint trap. In case of branch instructions, the target
317  * epc to be restored.
318  */
resume_execution(struct kprobe * p,struct pt_regs * regs,struct kprobe_ctlblk * kcb)319 static void __kprobes resume_execution(struct kprobe *p,
320 				       struct pt_regs *regs,
321 				       struct kprobe_ctlblk *kcb)
322 {
323 	if (insn_has_delayslot(p->opcode))
324 		regs->cp0_epc = kcb->target_epc;
325 	else {
326 		unsigned long orig_epc = kcb->kprobe_saved_epc;
327 		regs->cp0_epc = orig_epc + 4;
328 	}
329 }
330 
kprobe_handler(struct pt_regs * regs)331 static int __kprobes kprobe_handler(struct pt_regs *regs)
332 {
333 	struct kprobe *p;
334 	int ret = 0;
335 	kprobe_opcode_t *addr;
336 	struct kprobe_ctlblk *kcb;
337 
338 	addr = (kprobe_opcode_t *) regs->cp0_epc;
339 
340 	/*
341 	 * We don't want to be preempted for the entire
342 	 * duration of kprobe processing
343 	 */
344 	preempt_disable();
345 	kcb = get_kprobe_ctlblk();
346 
347 	/* Check we're not actually recursing */
348 	if (kprobe_running()) {
349 		p = get_kprobe(addr);
350 		if (p) {
351 			if (kcb->kprobe_status == KPROBE_HIT_SS &&
352 			    p->ainsn.insn->word == breakpoint_insn.word) {
353 				regs->cp0_status &= ~ST0_IE;
354 				regs->cp0_status |= kcb->kprobe_saved_SR;
355 				goto no_kprobe;
356 			}
357 			/*
358 			 * We have reentered the kprobe_handler(), since
359 			 * another probe was hit while within the handler.
360 			 * We here save the original kprobes variables and
361 			 * just single step on the instruction of the new probe
362 			 * without calling any user handlers.
363 			 */
364 			save_previous_kprobe(kcb);
365 			set_current_kprobe(p, regs, kcb);
366 			kprobes_inc_nmissed_count(p);
367 			prepare_singlestep(p, regs, kcb);
368 			kcb->kprobe_status = KPROBE_REENTER;
369 			if (kcb->flags & SKIP_DELAYSLOT) {
370 				resume_execution(p, regs, kcb);
371 				restore_previous_kprobe(kcb);
372 				preempt_enable_no_resched();
373 			}
374 			return 1;
375 		} else {
376 			if (addr->word != breakpoint_insn.word) {
377 				/*
378 				 * The breakpoint instruction was removed by
379 				 * another cpu right after we hit, no further
380 				 * handling of this interrupt is appropriate
381 				 */
382 				ret = 1;
383 				goto no_kprobe;
384 			}
385 			p = __get_cpu_var(current_kprobe);
386 			if (p->break_handler && p->break_handler(p, regs))
387 				goto ss_probe;
388 		}
389 		goto no_kprobe;
390 	}
391 
392 	p = get_kprobe(addr);
393 	if (!p) {
394 		if (addr->word != breakpoint_insn.word) {
395 			/*
396 			 * The breakpoint instruction was removed right
397 			 * after we hit it.  Another cpu has removed
398 			 * either a probepoint or a debugger breakpoint
399 			 * at this address.  In either case, no further
400 			 * handling of this interrupt is appropriate.
401 			 */
402 			ret = 1;
403 		}
404 		/* Not one of ours: let kernel handle it */
405 		goto no_kprobe;
406 	}
407 
408 	set_current_kprobe(p, regs, kcb);
409 	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
410 
411 	if (p->pre_handler && p->pre_handler(p, regs)) {
412 		/* handler has already set things up, so skip ss setup */
413 		return 1;
414 	}
415 
416 ss_probe:
417 	prepare_singlestep(p, regs, kcb);
418 	if (kcb->flags & SKIP_DELAYSLOT) {
419 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
420 		if (p->post_handler)
421 			p->post_handler(p, regs, 0);
422 		resume_execution(p, regs, kcb);
423 		preempt_enable_no_resched();
424 	} else
425 		kcb->kprobe_status = KPROBE_HIT_SS;
426 
427 	return 1;
428 
429 no_kprobe:
430 	preempt_enable_no_resched();
431 	return ret;
432 
433 }
434 
post_kprobe_handler(struct pt_regs * regs)435 static inline int post_kprobe_handler(struct pt_regs *regs)
436 {
437 	struct kprobe *cur = kprobe_running();
438 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
439 
440 	if (!cur)
441 		return 0;
442 
443 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
444 		kcb->kprobe_status = KPROBE_HIT_SSDONE;
445 		cur->post_handler(cur, regs, 0);
446 	}
447 
448 	resume_execution(cur, regs, kcb);
449 
450 	regs->cp0_status |= kcb->kprobe_saved_SR;
451 
452 	/* Restore back the original saved kprobes variables and continue. */
453 	if (kcb->kprobe_status == KPROBE_REENTER) {
454 		restore_previous_kprobe(kcb);
455 		goto out;
456 	}
457 	reset_current_kprobe();
458 out:
459 	preempt_enable_no_resched();
460 
461 	return 1;
462 }
463 
kprobe_fault_handler(struct pt_regs * regs,int trapnr)464 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
465 {
466 	struct kprobe *cur = kprobe_running();
467 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
468 
469 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
470 		return 1;
471 
472 	if (kcb->kprobe_status & KPROBE_HIT_SS) {
473 		resume_execution(cur, regs, kcb);
474 		regs->cp0_status |= kcb->kprobe_old_SR;
475 
476 		reset_current_kprobe();
477 		preempt_enable_no_resched();
478 	}
479 	return 0;
480 }
481 
482 /*
483  * Wrapper routine for handling exceptions.
484  */
kprobe_exceptions_notify(struct notifier_block * self,unsigned long val,void * data)485 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
486 				       unsigned long val, void *data)
487 {
488 
489 	struct die_args *args = (struct die_args *)data;
490 	int ret = NOTIFY_DONE;
491 
492 	switch (val) {
493 	case DIE_BREAK:
494 		if (kprobe_handler(args->regs))
495 			ret = NOTIFY_STOP;
496 		break;
497 	case DIE_SSTEPBP:
498 		if (post_kprobe_handler(args->regs))
499 			ret = NOTIFY_STOP;
500 		break;
501 
502 	case DIE_PAGE_FAULT:
503 		/* kprobe_running() needs smp_processor_id() */
504 		preempt_disable();
505 
506 		if (kprobe_running()
507 		    && kprobe_fault_handler(args->regs, args->trapnr))
508 			ret = NOTIFY_STOP;
509 		preempt_enable();
510 		break;
511 	default:
512 		break;
513 	}
514 	return ret;
515 }
516 
setjmp_pre_handler(struct kprobe * p,struct pt_regs * regs)517 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
518 {
519 	struct jprobe *jp = container_of(p, struct jprobe, kp);
520 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
521 
522 	kcb->jprobe_saved_regs = *regs;
523 	kcb->jprobe_saved_sp = regs->regs[29];
524 
525 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp,
526 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
527 
528 	regs->cp0_epc = (unsigned long)(jp->entry);
529 
530 	return 1;
531 }
532 
533 /* Defined in the inline asm below. */
534 void jprobe_return_end(void);
535 
jprobe_return(void)536 void __kprobes jprobe_return(void)
537 {
538 	/* Assembler quirk necessitates this '0,code' business.  */
539 	asm volatile(
540 		"break 0,%0\n\t"
541 		".globl jprobe_return_end\n"
542 		"jprobe_return_end:\n"
543 		: : "n" (BRK_KPROBE_BP) : "memory");
544 }
545 
longjmp_break_handler(struct kprobe * p,struct pt_regs * regs)546 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
547 {
548 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
549 
550 	if (regs->cp0_epc >= (unsigned long)jprobe_return &&
551 	    regs->cp0_epc <= (unsigned long)jprobe_return_end) {
552 		*regs = kcb->jprobe_saved_regs;
553 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack,
554 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp));
555 		preempt_enable_no_resched();
556 
557 		return 1;
558 	}
559 	return 0;
560 }
561 
562 /*
563  * Function return probe trampoline:
564  *	- init_kprobes() establishes a probepoint here
565  *	- When the probed function returns, this probe causes the
566  *	  handlers to fire
567  */
kretprobe_trampoline_holder(void)568 static void __used kretprobe_trampoline_holder(void)
569 {
570 	asm volatile(
571 		".set push\n\t"
572 		/* Keep the assembler from reordering and placing JR here. */
573 		".set noreorder\n\t"
574 		"nop\n\t"
575 		".global kretprobe_trampoline\n"
576 		"kretprobe_trampoline:\n\t"
577 		"nop\n\t"
578 		".set pop"
579 		: : : "memory");
580 }
581 
582 void kretprobe_trampoline(void);
583 
arch_prepare_kretprobe(struct kretprobe_instance * ri,struct pt_regs * regs)584 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
585 				      struct pt_regs *regs)
586 {
587 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31];
588 
589 	/* Replace the return addr with trampoline addr */
590 	regs->regs[31] = (unsigned long)kretprobe_trampoline;
591 }
592 
593 /*
594  * Called when the probe at kretprobe trampoline is hit
595  */
trampoline_probe_handler(struct kprobe * p,struct pt_regs * regs)596 static int __kprobes trampoline_probe_handler(struct kprobe *p,
597 						struct pt_regs *regs)
598 {
599 	struct kretprobe_instance *ri = NULL;
600 	struct hlist_head *head, empty_rp;
601 	struct hlist_node *node, *tmp;
602 	unsigned long flags, orig_ret_address = 0;
603 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline;
604 
605 	INIT_HLIST_HEAD(&empty_rp);
606 	kretprobe_hash_lock(current, &head, &flags);
607 
608 	/*
609 	 * It is possible to have multiple instances associated with a given
610 	 * task either because an multiple functions in the call path
611 	 * have a return probe installed on them, and/or more than one return
612 	 * return probe was registered for a target function.
613 	 *
614 	 * We can handle this because:
615 	 *     - instances are always inserted at the head of the list
616 	 *     - when multiple return probes are registered for the same
617 	 *       function, the first instance's ret_addr will point to the
618 	 *       real return address, and all the rest will point to
619 	 *       kretprobe_trampoline
620 	 */
621 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
622 		if (ri->task != current)
623 			/* another task is sharing our hash bucket */
624 			continue;
625 
626 		if (ri->rp && ri->rp->handler)
627 			ri->rp->handler(ri, regs);
628 
629 		orig_ret_address = (unsigned long)ri->ret_addr;
630 		recycle_rp_inst(ri, &empty_rp);
631 
632 		if (orig_ret_address != trampoline_address)
633 			/*
634 			 * This is the real return address. Any other
635 			 * instances associated with this task are for
636 			 * other calls deeper on the call stack
637 			 */
638 			break;
639 	}
640 
641 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
642 	instruction_pointer(regs) = orig_ret_address;
643 
644 	reset_current_kprobe();
645 	kretprobe_hash_unlock(current, &flags);
646 	preempt_enable_no_resched();
647 
648 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
649 		hlist_del(&ri->hlist);
650 		kfree(ri);
651 	}
652 	/*
653 	 * By returning a non-zero value, we are telling
654 	 * kprobe_handler() that we don't want the post_handler
655 	 * to run (and have re-enabled preemption)
656 	 */
657 	return 1;
658 }
659 
arch_trampoline_kprobe(struct kprobe * p)660 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
661 {
662 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline)
663 		return 1;
664 
665 	return 0;
666 }
667 
668 static struct kprobe trampoline_p = {
669 	.addr = (kprobe_opcode_t *)kretprobe_trampoline,
670 	.pre_handler = trampoline_probe_handler
671 };
672 
arch_init_kprobes(void)673 int __init arch_init_kprobes(void)
674 {
675 	return register_kprobe(&trampoline_p);
676 }
677