• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * OpenRISC process.c
3  *
4  * Linux architectural port borrowing liberally from similar works of
5  * others.  All original copyrights apply as per the original source
6  * declaration.
7  *
8  * Modifications for the OpenRISC architecture:
9  * Copyright (C) 2003 Matjaz Breskvar <phoenix@bsemi.com>
10  * Copyright (C) 2010-2011 Jonas Bonn <jonas@southpole.se>
11  *
12  *      This program is free software; you can redistribute it and/or
13  *      modify it under the terms of the GNU General Public License
14  *      as published by the Free Software Foundation; either version
15  *      2 of the License, or (at your option) any later version.
16  *
17  * This file handles the architecture-dependent parts of process handling...
18  */
19 
20 #define __KERNEL_SYSCALLS__
21 #include <stdarg.h>
22 
23 #include <linux/errno.h>
24 #include <linux/sched.h>
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/mm.h>
28 #include <linux/stddef.h>
29 #include <linux/unistd.h>
30 #include <linux/ptrace.h>
31 #include <linux/slab.h>
32 #include <linux/elfcore.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/init_task.h>
36 #include <linux/mqueue.h>
37 #include <linux/fs.h>
38 
39 #include <asm/uaccess.h>
40 #include <asm/pgtable.h>
41 #include <asm/io.h>
42 #include <asm/processor.h>
43 #include <asm/spr_defs.h>
44 
45 #include <linux/smp.h>
46 
47 /*
48  * Pointer to Current thread info structure.
49  *
50  * Used at user space -> kernel transitions.
51  */
52 struct thread_info *current_thread_info_set[NR_CPUS] = { &init_thread_info, };
53 
machine_restart(void)54 void machine_restart(void)
55 {
56 	printk(KERN_INFO "*** MACHINE RESTART ***\n");
57 	__asm__("l.nop 1");
58 }
59 
60 /*
61  * Similar to machine_power_off, but don't shut off power.  Add code
62  * here to freeze the system for e.g. post-mortem debug purpose when
63  * possible.  This halt has nothing to do with the idle halt.
64  */
machine_halt(void)65 void machine_halt(void)
66 {
67 	printk(KERN_INFO "*** MACHINE HALT ***\n");
68 	__asm__("l.nop 1");
69 }
70 
71 /* If or when software power-off is implemented, add code here.  */
machine_power_off(void)72 void machine_power_off(void)
73 {
74 	printk(KERN_INFO "*** MACHINE POWER OFF ***\n");
75 	__asm__("l.nop 1");
76 }
77 
78 void (*pm_power_off) (void) = machine_power_off;
79 
80 /*
81  * When a process does an "exec", machine state like FPU and debug
82  * registers need to be reset.  This is a hook function for that.
83  * Currently we don't have any such state to reset, so this is empty.
84  */
flush_thread(void)85 void flush_thread(void)
86 {
87 }
88 
show_regs(struct pt_regs * regs)89 void show_regs(struct pt_regs *regs)
90 {
91 	extern void show_registers(struct pt_regs *regs);
92 
93 	/* __PHX__ cleanup this mess */
94 	show_registers(regs);
95 }
96 
thread_saved_pc(struct task_struct * t)97 unsigned long thread_saved_pc(struct task_struct *t)
98 {
99 	return (unsigned long)user_regs(t->stack)->pc;
100 }
101 
release_thread(struct task_struct * dead_task)102 void release_thread(struct task_struct *dead_task)
103 {
104 }
105 
106 /*
107  * Copy the thread-specific (arch specific) info from the current
108  * process to the new one p
109  */
110 extern asmlinkage void ret_from_fork(void);
111 
112 int
copy_thread(unsigned long clone_flags,unsigned long usp,unsigned long unused,struct task_struct * p,struct pt_regs * regs)113 copy_thread(unsigned long clone_flags, unsigned long usp,
114 	    unsigned long unused, struct task_struct *p, struct pt_regs *regs)
115 {
116 	struct pt_regs *childregs;
117 	struct pt_regs *kregs;
118 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
119 	struct thread_info *ti;
120 	unsigned long top_of_kernel_stack;
121 
122 	top_of_kernel_stack = sp;
123 
124 	p->set_child_tid = p->clear_child_tid = NULL;
125 
126 	/* Copy registers */
127 	/* redzone */
128 	sp -= STACK_FRAME_OVERHEAD;
129 	sp -= sizeof(struct pt_regs);
130 	childregs = (struct pt_regs *)sp;
131 
132 	/* Copy parent registers */
133 	*childregs = *regs;
134 
135 	if ((childregs->sr & SPR_SR_SM) == 1) {
136 		/* for kernel thread, set `current_thread_info'
137 		 * and stackptr in new task
138 		 */
139 		childregs->sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
140 		childregs->gpr[10] = (unsigned long)task_thread_info(p);
141 	} else {
142 		childregs->sp = usp;
143 	}
144 
145 	childregs->gpr[11] = 0;	/* Result from fork() */
146 
147 	/*
148 	 * The way this works is that at some point in the future
149 	 * some task will call _switch to switch to the new task.
150 	 * That will pop off the stack frame created below and start
151 	 * the new task running at ret_from_fork.  The new task will
152 	 * do some house keeping and then return from the fork or clone
153 	 * system call, using the stack frame created above.
154 	 */
155 	/* redzone */
156 	sp -= STACK_FRAME_OVERHEAD;
157 	sp -= sizeof(struct pt_regs);
158 	kregs = (struct pt_regs *)sp;
159 
160 	ti = task_thread_info(p);
161 	ti->ksp = sp;
162 
163 	/* kregs->sp must store the location of the 'pre-switch' kernel stack
164 	 * pointer... for a newly forked process, this is simply the top of
165 	 * the kernel stack.
166 	 */
167 	kregs->sp = top_of_kernel_stack;
168 	kregs->gpr[3] = (unsigned long)current;	/* arg to schedule_tail */
169 	kregs->gpr[10] = (unsigned long)task_thread_info(p);
170 	kregs->gpr[9] = (unsigned long)ret_from_fork;
171 
172 	return 0;
173 }
174 
175 /*
176  * Set up a thread for executing a new program
177  */
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)178 void start_thread(struct pt_regs *regs, unsigned long pc, unsigned long sp)
179 {
180 	unsigned long sr = regs->sr & ~SPR_SR_SM;
181 
182 	set_fs(USER_DS);
183 	memset(regs->gpr, 0, sizeof(regs->gpr));
184 
185 	regs->pc = pc;
186 	regs->sr = sr;
187 	regs->sp = sp;
188 
189 /*	printk("start thread, ksp = %lx\n", current_thread_info()->ksp);*/
190 }
191 
192 /* Fill in the fpu structure for a core dump.  */
dump_fpu(struct pt_regs * regs,elf_fpregset_t * fpu)193 int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpu)
194 {
195 	/* TODO */
196 	return 0;
197 }
198 
199 extern struct thread_info *_switch(struct thread_info *old_ti,
200 				   struct thread_info *new_ti);
201 
__switch_to(struct task_struct * old,struct task_struct * new)202 struct task_struct *__switch_to(struct task_struct *old,
203 				struct task_struct *new)
204 {
205 	struct task_struct *last;
206 	struct thread_info *new_ti, *old_ti;
207 	unsigned long flags;
208 
209 	local_irq_save(flags);
210 
211 	/* current_set is an array of saved current pointers
212 	 * (one for each cpu). we need them at user->kernel transition,
213 	 * while we save them at kernel->user transition
214 	 */
215 	new_ti = new->stack;
216 	old_ti = old->stack;
217 
218 	current_thread_info_set[smp_processor_id()] = new_ti;
219 	last = (_switch(old_ti, new_ti))->task;
220 
221 	local_irq_restore(flags);
222 
223 	return last;
224 }
225 
226 /*
227  * Write out registers in core dump format, as defined by the
228  * struct user_regs_struct
229  */
dump_elf_thread(elf_greg_t * dest,struct pt_regs * regs)230 void dump_elf_thread(elf_greg_t *dest, struct pt_regs* regs)
231 {
232 	dest[0] = 0; /* r0 */
233 	memcpy(dest+1, regs->gpr+1, 31*sizeof(unsigned long));
234 	dest[32] = regs->pc;
235 	dest[33] = regs->sr;
236 	dest[34] = 0;
237 	dest[35] = 0;
238 }
239 
240 extern void _kernel_thread_helper(void);
241 
kernel_thread_helper(int (* fn)(void *),void * arg)242 void __noreturn kernel_thread_helper(int (*fn) (void *), void *arg)
243 {
244 	do_exit(fn(arg));
245 }
246 
247 /*
248  * Create a kernel thread.
249  */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)250 int kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
251 {
252 	struct pt_regs regs;
253 
254 	memset(&regs, 0, sizeof(regs));
255 
256 	regs.gpr[20] = (unsigned long)fn;
257 	regs.gpr[22] = (unsigned long)arg;
258 	regs.sr = mfspr(SPR_SR);
259 	regs.pc = (unsigned long)_kernel_thread_helper;
260 
261 	return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
262 		       0, &regs, 0, NULL, NULL);
263 }
264 
265 /*
266  * sys_execve() executes a new program.
267  */
_sys_execve(const char __user * name,const char __user * const __user * argv,const char __user * const __user * envp,struct pt_regs * regs)268 asmlinkage long _sys_execve(const char __user *name,
269 			    const char __user * const __user *argv,
270 			    const char __user * const __user *envp,
271 			    struct pt_regs *regs)
272 {
273 	int error;
274 	char *filename;
275 
276 	filename = getname(name);
277 	error = PTR_ERR(filename);
278 
279 	if (IS_ERR(filename))
280 		goto out;
281 
282 	error = do_execve(filename, argv, envp, regs);
283 	putname(filename);
284 
285 out:
286 	return error;
287 }
288 
get_wchan(struct task_struct * p)289 unsigned long get_wchan(struct task_struct *p)
290 {
291 	/* TODO */
292 
293 	return 0;
294 }
295 
kernel_execve(const char * filename,char * const argv[],char * const envp[])296 int kernel_execve(const char *filename, char *const argv[], char *const envp[])
297 {
298 	register long __res asm("r11") = __NR_execve;
299 	register long __a asm("r3") = (long)(filename);
300 	register long __b asm("r4") = (long)(argv);
301 	register long __c asm("r5") = (long)(envp);
302 	__asm__ volatile ("l.sys 1"
303 			  : "=r" (__res), "=r"(__a), "=r"(__b), "=r"(__c)
304 			  : "0"(__res), "1"(__a), "2"(__b), "3"(__c)
305 			  : "r6", "r7", "r8", "r12", "r13", "r15",
306 			    "r17", "r19", "r21", "r23", "r25", "r27",
307 			    "r29", "r31");
308 	__asm__ volatile ("l.nop");
309 	return __res;
310 }
311