• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  arch/s390/lib/div64.c
3  *
4  *  __div64_32 implementation for 31 bit.
5  *
6  *    Copyright (C) IBM Corp. 2006
7  *    Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
8  */
9 
10 #include <linux/types.h>
11 #include <linux/module.h>
12 
13 #ifdef CONFIG_MARCH_G5
14 
15 /*
16  * Function to divide an unsigned 64 bit integer by an unsigned
17  * 31 bit integer using signed 64/32 bit division.
18  */
__div64_31(uint64_t * n,uint32_t base)19 static uint32_t __div64_31(uint64_t *n, uint32_t base)
20 {
21 	register uint32_t reg2 asm("2");
22 	register uint32_t reg3 asm("3");
23 	uint32_t *words = (uint32_t *) n;
24 	uint32_t tmp;
25 
26 	/* Special case base==1, remainder = 0, quotient = n */
27 	if (base == 1)
28 		return 0;
29 	/*
30 	 * Special case base==0 will cause a fixed point divide exception
31 	 * on the dr instruction and may not happen anyway. For the
32 	 * following calculation we can assume base > 1. The first
33 	 * signed 64 / 32 bit division with an upper half of 0 will
34 	 * give the correct upper half of the 64 bit quotient.
35 	 */
36 	reg2 = 0UL;
37 	reg3 = words[0];
38 	asm volatile(
39 		"	dr	%0,%2\n"
40 		: "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" );
41 	words[0] = reg3;
42 	reg3 = words[1];
43 	/*
44 	 * To get the lower half of the 64 bit quotient and the 32 bit
45 	 * remainder we have to use a little trick. Since we only have
46 	 * a signed division the quotient can get too big. To avoid this
47 	 * the 64 bit dividend is halved, then the signed division will
48 	 * work. Afterwards the quotient and the remainder are doubled.
49 	 * If the last bit of the dividend has been one the remainder
50 	 * is increased by one then checked against the base. If the
51 	 * remainder has overflown subtract base and increase the
52 	 * quotient. Simple, no ?
53 	 */
54 	asm volatile(
55 		"	nr	%2,%1\n"
56 		"	srdl	%0,1\n"
57 		"	dr	%0,%3\n"
58 		"	alr	%0,%0\n"
59 		"	alr	%1,%1\n"
60 		"	alr	%0,%2\n"
61 		"	clr	%0,%3\n"
62 		"	jl	0f\n"
63 		"	slr	%0,%3\n"
64 		"	ahi	%1,1\n"
65 		"0:\n"
66 		: "+d" (reg2), "+d" (reg3), "=d" (tmp)
67 		: "d" (base), "2" (1UL) : "cc" );
68 	words[1] = reg3;
69 	return reg2;
70 }
71 
72 /*
73  * Function to divide an unsigned 64 bit integer by an unsigned
74  * 32 bit integer using the unsigned 64/31 bit division.
75  */
__div64_32(uint64_t * n,uint32_t base)76 uint32_t __div64_32(uint64_t *n, uint32_t base)
77 {
78 	uint32_t r;
79 
80 	/*
81 	 * If the most significant bit of base is set, divide n by
82 	 * (base/2). That allows to use 64/31 bit division and gives a
83 	 * good approximation of the result: n = (base/2)*q + r. The
84 	 * result needs to be corrected with two simple transformations.
85 	 * If base is already < 2^31-1 __div64_31 can be used directly.
86 	 */
87 	r = __div64_31(n, ((signed) base < 0) ? (base/2) : base);
88 	if ((signed) base < 0) {
89 		uint64_t q = *n;
90 		/*
91 		 * First transformation:
92 		 * n = (base/2)*q + r
93 		 *   = ((base/2)*2)*(q/2) + ((q&1) ? (base/2) : 0) + r
94 		 * Since r < (base/2), r + (base/2) < base.
95 		 * With q1 = (q/2) and r1 = r + ((q&1) ? (base/2) : 0)
96 		 * n = ((base/2)*2)*q1 + r1 with r1 < base.
97 		 */
98 		if (q & 1)
99 			r += base/2;
100 		q >>= 1;
101 		/*
102 		 * Second transformation. ((base/2)*2) could have lost the
103 		 * last bit.
104 		 * n = ((base/2)*2)*q1 + r1
105 		 *   = base*q1 - ((base&1) ? q1 : 0) + r1
106 		 */
107 		if (base & 1) {
108 			int64_t rx = r - q;
109 			/*
110 			 * base is >= 2^31. The worst case for the while
111 			 * loop is n=2^64-1 base=2^31+1. That gives a
112 			 * maximum for q=(2^64-1)/2^31 = 0x1ffffffff. Since
113 			 * base >= 2^31 the loop is finished after a maximum
114 			 * of three iterations.
115 			 */
116 			while (rx < 0) {
117 				rx += base;
118 				q--;
119 			}
120 			r = rx;
121 		}
122 		*n = q;
123 	}
124 	return r;
125 }
126 
127 #else /* MARCH_G5 */
128 
__div64_32(uint64_t * n,uint32_t base)129 uint32_t __div64_32(uint64_t *n, uint32_t base)
130 {
131 	register uint32_t reg2 asm("2");
132 	register uint32_t reg3 asm("3");
133 	uint32_t *words = (uint32_t *) n;
134 
135 	reg2 = 0UL;
136 	reg3 = words[0];
137 	asm volatile(
138 		"	dlr	%0,%2\n"
139 		: "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" );
140 	words[0] = reg3;
141 	reg3 = words[1];
142 	asm volatile(
143 		"	dlr	%0,%2\n"
144 		: "+d" (reg2), "+d" (reg3) : "d" (base) : "cc" );
145 	words[1] = reg3;
146 	return reg2;
147 }
148 
149 #endif /* MARCH_G5 */
150