1 /*
2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation, version 2.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11 * NON INFRINGEMENT. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/module.h>
16 #include <linux/seq_file.h>
17 #include <linux/interrupt.h>
18 #include <linux/irq.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/uaccess.h>
21 #include <hv/drv_pcie_rc_intf.h>
22 #include <arch/spr_def.h>
23 #include <asm/traps.h>
24
25 /* Bit-flag stored in irq_desc->chip_data to indicate HW-cleared irqs. */
26 #define IS_HW_CLEARED 1
27
28 /*
29 * The set of interrupts we enable for arch_local_irq_enable().
30 * This is initialized to have just a single interrupt that the kernel
31 * doesn't actually use as a sentinel. During kernel init,
32 * interrupts are added as the kernel gets prepared to support them.
33 * NOTE: we could probably initialize them all statically up front.
34 */
35 DEFINE_PER_CPU(unsigned long long, interrupts_enabled_mask) =
36 INITIAL_INTERRUPTS_ENABLED;
37 EXPORT_PER_CPU_SYMBOL(interrupts_enabled_mask);
38
39 /* Define per-tile device interrupt statistics state. */
40 DEFINE_PER_CPU(irq_cpustat_t, irq_stat) ____cacheline_internodealigned_in_smp;
41 EXPORT_PER_CPU_SYMBOL(irq_stat);
42
43 /*
44 * Define per-tile irq disable mask; the hardware/HV only has a single
45 * mask that we use to implement both masking and disabling.
46 */
47 static DEFINE_PER_CPU(unsigned long, irq_disable_mask)
48 ____cacheline_internodealigned_in_smp;
49
50 /*
51 * Per-tile IRQ nesting depth. Used to make sure we enable newly
52 * enabled IRQs before exiting the outermost interrupt.
53 */
54 static DEFINE_PER_CPU(int, irq_depth);
55
56 /* State for allocating IRQs on Gx. */
57 #if CHIP_HAS_IPI()
58 static unsigned long available_irqs = ~(1UL << IRQ_RESCHEDULE);
59 static DEFINE_SPINLOCK(available_irqs_lock);
60 #endif
61
62 #if CHIP_HAS_IPI()
63 /* Use SPRs to manipulate device interrupts. */
64 #define mask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_SET_K, irq_mask)
65 #define unmask_irqs(irq_mask) __insn_mtspr(SPR_IPI_MASK_RESET_K, irq_mask)
66 #define clear_irqs(irq_mask) __insn_mtspr(SPR_IPI_EVENT_RESET_K, irq_mask)
67 #else
68 /* Use HV to manipulate device interrupts. */
69 #define mask_irqs(irq_mask) hv_disable_intr(irq_mask)
70 #define unmask_irqs(irq_mask) hv_enable_intr(irq_mask)
71 #define clear_irqs(irq_mask) hv_clear_intr(irq_mask)
72 #endif
73
74 /*
75 * The interrupt handling path, implemented in terms of HV interrupt
76 * emulation on TILE64 and TILEPro, and IPI hardware on TILE-Gx.
77 */
tile_dev_intr(struct pt_regs * regs,int intnum)78 void tile_dev_intr(struct pt_regs *regs, int intnum)
79 {
80 int depth = __get_cpu_var(irq_depth)++;
81 unsigned long original_irqs;
82 unsigned long remaining_irqs;
83 struct pt_regs *old_regs;
84
85 #if CHIP_HAS_IPI()
86 /*
87 * Pending interrupts are listed in an SPR. We might be
88 * nested, so be sure to only handle irqs that weren't already
89 * masked by a previous interrupt. Then, mask out the ones
90 * we're going to handle.
91 */
92 unsigned long masked = __insn_mfspr(SPR_IPI_MASK_K);
93 original_irqs = __insn_mfspr(SPR_IPI_EVENT_K) & ~masked;
94 __insn_mtspr(SPR_IPI_MASK_SET_K, original_irqs);
95 #else
96 /*
97 * Hypervisor performs the equivalent of the Gx code above and
98 * then puts the pending interrupt mask into a system save reg
99 * for us to find.
100 */
101 original_irqs = __insn_mfspr(SPR_SYSTEM_SAVE_K_3);
102 #endif
103 remaining_irqs = original_irqs;
104
105 /* Track time spent here in an interrupt context. */
106 old_regs = set_irq_regs(regs);
107 irq_enter();
108
109 #ifdef CONFIG_DEBUG_STACKOVERFLOW
110 /* Debugging check for stack overflow: less than 1/8th stack free? */
111 {
112 long sp = stack_pointer - (long) current_thread_info();
113 if (unlikely(sp < (sizeof(struct thread_info) + STACK_WARN))) {
114 pr_emerg("tile_dev_intr: "
115 "stack overflow: %ld\n",
116 sp - sizeof(struct thread_info));
117 dump_stack();
118 }
119 }
120 #endif
121 while (remaining_irqs) {
122 unsigned long irq = __ffs(remaining_irqs);
123 remaining_irqs &= ~(1UL << irq);
124
125 /* Count device irqs; Linux IPIs are counted elsewhere. */
126 if (irq != IRQ_RESCHEDULE)
127 __get_cpu_var(irq_stat).irq_dev_intr_count++;
128
129 generic_handle_irq(irq);
130 }
131
132 /*
133 * If we weren't nested, turn on all enabled interrupts,
134 * including any that were reenabled during interrupt
135 * handling.
136 */
137 if (depth == 0)
138 unmask_irqs(~__get_cpu_var(irq_disable_mask));
139
140 __get_cpu_var(irq_depth)--;
141
142 /*
143 * Track time spent against the current process again and
144 * process any softirqs if they are waiting.
145 */
146 irq_exit();
147 set_irq_regs(old_regs);
148 }
149
150
151 /*
152 * Remove an irq from the disabled mask. If we're in an interrupt
153 * context, defer enabling the HW interrupt until we leave.
154 */
tile_irq_chip_enable(struct irq_data * d)155 static void tile_irq_chip_enable(struct irq_data *d)
156 {
157 get_cpu_var(irq_disable_mask) &= ~(1UL << d->irq);
158 if (__get_cpu_var(irq_depth) == 0)
159 unmask_irqs(1UL << d->irq);
160 put_cpu_var(irq_disable_mask);
161 }
162
163 /*
164 * Add an irq to the disabled mask. We disable the HW interrupt
165 * immediately so that there's no possibility of it firing. If we're
166 * in an interrupt context, the return path is careful to avoid
167 * unmasking a newly disabled interrupt.
168 */
tile_irq_chip_disable(struct irq_data * d)169 static void tile_irq_chip_disable(struct irq_data *d)
170 {
171 get_cpu_var(irq_disable_mask) |= (1UL << d->irq);
172 mask_irqs(1UL << d->irq);
173 put_cpu_var(irq_disable_mask);
174 }
175
176 /* Mask an interrupt. */
tile_irq_chip_mask(struct irq_data * d)177 static void tile_irq_chip_mask(struct irq_data *d)
178 {
179 mask_irqs(1UL << d->irq);
180 }
181
182 /* Unmask an interrupt. */
tile_irq_chip_unmask(struct irq_data * d)183 static void tile_irq_chip_unmask(struct irq_data *d)
184 {
185 unmask_irqs(1UL << d->irq);
186 }
187
188 /*
189 * Clear an interrupt before processing it so that any new assertions
190 * will trigger another irq.
191 */
tile_irq_chip_ack(struct irq_data * d)192 static void tile_irq_chip_ack(struct irq_data *d)
193 {
194 if ((unsigned long)irq_data_get_irq_chip_data(d) != IS_HW_CLEARED)
195 clear_irqs(1UL << d->irq);
196 }
197
198 /*
199 * For per-cpu interrupts, we need to avoid unmasking any interrupts
200 * that we disabled via disable_percpu_irq().
201 */
tile_irq_chip_eoi(struct irq_data * d)202 static void tile_irq_chip_eoi(struct irq_data *d)
203 {
204 if (!(__get_cpu_var(irq_disable_mask) & (1UL << d->irq)))
205 unmask_irqs(1UL << d->irq);
206 }
207
208 static struct irq_chip tile_irq_chip = {
209 .name = "tile_irq_chip",
210 .irq_enable = tile_irq_chip_enable,
211 .irq_disable = tile_irq_chip_disable,
212 .irq_ack = tile_irq_chip_ack,
213 .irq_eoi = tile_irq_chip_eoi,
214 .irq_mask = tile_irq_chip_mask,
215 .irq_unmask = tile_irq_chip_unmask,
216 };
217
init_IRQ(void)218 void __init init_IRQ(void)
219 {
220 ipi_init();
221 }
222
setup_irq_regs(void)223 void __cpuinit setup_irq_regs(void)
224 {
225 /* Enable interrupt delivery. */
226 unmask_irqs(~0UL);
227 #if CHIP_HAS_IPI()
228 arch_local_irq_unmask(INT_IPI_K);
229 #endif
230 }
231
tile_irq_activate(unsigned int irq,int tile_irq_type)232 void tile_irq_activate(unsigned int irq, int tile_irq_type)
233 {
234 /*
235 * We use handle_level_irq() by default because the pending
236 * interrupt vector (whether modeled by the HV on TILE64 and
237 * TILEPro or implemented in hardware on TILE-Gx) has
238 * level-style semantics for each bit. An interrupt fires
239 * whenever a bit is high, not just at edges.
240 */
241 irq_flow_handler_t handle = handle_level_irq;
242 if (tile_irq_type == TILE_IRQ_PERCPU)
243 handle = handle_percpu_irq;
244 irq_set_chip_and_handler(irq, &tile_irq_chip, handle);
245
246 /*
247 * Flag interrupts that are hardware-cleared so that ack()
248 * won't clear them.
249 */
250 if (tile_irq_type == TILE_IRQ_HW_CLEAR)
251 irq_set_chip_data(irq, (void *)IS_HW_CLEARED);
252 }
253 EXPORT_SYMBOL(tile_irq_activate);
254
255
ack_bad_irq(unsigned int irq)256 void ack_bad_irq(unsigned int irq)
257 {
258 pr_err("unexpected IRQ trap at vector %02x\n", irq);
259 }
260
261 /*
262 * Generic, controller-independent functions:
263 */
264
265 #if CHIP_HAS_IPI()
create_irq(void)266 int create_irq(void)
267 {
268 unsigned long flags;
269 int result;
270
271 spin_lock_irqsave(&available_irqs_lock, flags);
272 if (available_irqs == 0)
273 result = -ENOMEM;
274 else {
275 result = __ffs(available_irqs);
276 available_irqs &= ~(1UL << result);
277 dynamic_irq_init(result);
278 }
279 spin_unlock_irqrestore(&available_irqs_lock, flags);
280
281 return result;
282 }
283 EXPORT_SYMBOL(create_irq);
284
destroy_irq(unsigned int irq)285 void destroy_irq(unsigned int irq)
286 {
287 unsigned long flags;
288
289 spin_lock_irqsave(&available_irqs_lock, flags);
290 available_irqs |= (1UL << irq);
291 dynamic_irq_cleanup(irq);
292 spin_unlock_irqrestore(&available_irqs_lock, flags);
293 }
294 EXPORT_SYMBOL(destroy_irq);
295 #endif
296