• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/vmalloc.h>
18 #include <linux/export.h>
19 #include <asm/tlbflush.h>
20 #include <asm/homecache.h>
21 
22 /* Generic DMA mapping functions: */
23 
24 /*
25  * Allocate what Linux calls "coherent" memory, which for us just
26  * means uncached.
27  */
dma_alloc_coherent(struct device * dev,size_t size,dma_addr_t * dma_handle,gfp_t gfp)28 void *dma_alloc_coherent(struct device *dev,
29 			 size_t size,
30 			 dma_addr_t *dma_handle,
31 			 gfp_t gfp)
32 {
33 	u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
34 	int node = dev_to_node(dev);
35 	int order = get_order(size);
36 	struct page *pg;
37 	dma_addr_t addr;
38 
39 	gfp |= __GFP_ZERO;
40 
41 	/*
42 	 * By forcing NUMA node 0 for 32-bit masks we ensure that the
43 	 * high 32 bits of the resulting PA will be zero.  If the mask
44 	 * size is, e.g., 24, we may still not be able to guarantee a
45 	 * suitable memory address, in which case we will return NULL.
46 	 * But such devices are uncommon.
47 	 */
48 	if (dma_mask <= DMA_BIT_MASK(32))
49 		node = 0;
50 
51 	pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
52 	if (pg == NULL)
53 		return NULL;
54 
55 	addr = page_to_phys(pg);
56 	if (addr + size > dma_mask) {
57 		homecache_free_pages(addr, order);
58 		return NULL;
59 	}
60 
61 	*dma_handle = addr;
62 	return page_address(pg);
63 }
64 EXPORT_SYMBOL(dma_alloc_coherent);
65 
66 /*
67  * Free memory that was allocated with dma_alloc_coherent.
68  */
dma_free_coherent(struct device * dev,size_t size,void * vaddr,dma_addr_t dma_handle)69 void dma_free_coherent(struct device *dev, size_t size,
70 		  void *vaddr, dma_addr_t dma_handle)
71 {
72 	homecache_free_pages((unsigned long)vaddr, get_order(size));
73 }
74 EXPORT_SYMBOL(dma_free_coherent);
75 
76 /*
77  * The map routines "map" the specified address range for DMA
78  * accesses.  The memory belongs to the device after this call is
79  * issued, until it is unmapped with dma_unmap_single.
80  *
81  * We don't need to do any mapping, we just flush the address range
82  * out of the cache and return a DMA address.
83  *
84  * The unmap routines do whatever is necessary before the processor
85  * accesses the memory again, and must be called before the driver
86  * touches the memory.  We can get away with a cache invalidate if we
87  * can count on nothing having been touched.
88  */
89 
90 /* Flush a PA range from cache page by page. */
__dma_map_pa_range(dma_addr_t dma_addr,size_t size)91 static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
92 {
93 	struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
94 	size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
95 
96 	while ((ssize_t)size > 0) {
97 		/* Flush the page. */
98 		homecache_flush_cache(page++, 0);
99 
100 		/* Figure out if we need to continue on the next page. */
101 		size -= bytesleft;
102 		bytesleft = PAGE_SIZE;
103 	}
104 }
105 
106 /*
107  * dma_map_single can be passed any memory address, and there appear
108  * to be no alignment constraints.
109  *
110  * There is a chance that the start of the buffer will share a cache
111  * line with some other data that has been touched in the meantime.
112  */
dma_map_single(struct device * dev,void * ptr,size_t size,enum dma_data_direction direction)113 dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
114 	       enum dma_data_direction direction)
115 {
116 	dma_addr_t dma_addr = __pa(ptr);
117 
118 	BUG_ON(!valid_dma_direction(direction));
119 	WARN_ON(size == 0);
120 
121 	__dma_map_pa_range(dma_addr, size);
122 
123 	return dma_addr;
124 }
125 EXPORT_SYMBOL(dma_map_single);
126 
dma_unmap_single(struct device * dev,dma_addr_t dma_addr,size_t size,enum dma_data_direction direction)127 void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
128 		 enum dma_data_direction direction)
129 {
130 	BUG_ON(!valid_dma_direction(direction));
131 }
132 EXPORT_SYMBOL(dma_unmap_single);
133 
dma_map_sg(struct device * dev,struct scatterlist * sglist,int nents,enum dma_data_direction direction)134 int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
135 	   enum dma_data_direction direction)
136 {
137 	struct scatterlist *sg;
138 	int i;
139 
140 	BUG_ON(!valid_dma_direction(direction));
141 
142 	WARN_ON(nents == 0 || sglist->length == 0);
143 
144 	for_each_sg(sglist, sg, nents, i) {
145 		sg->dma_address = sg_phys(sg);
146 		__dma_map_pa_range(sg->dma_address, sg->length);
147 	}
148 
149 	return nents;
150 }
151 EXPORT_SYMBOL(dma_map_sg);
152 
dma_unmap_sg(struct device * dev,struct scatterlist * sg,int nhwentries,enum dma_data_direction direction)153 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
154 	     enum dma_data_direction direction)
155 {
156 	BUG_ON(!valid_dma_direction(direction));
157 }
158 EXPORT_SYMBOL(dma_unmap_sg);
159 
dma_map_page(struct device * dev,struct page * page,unsigned long offset,size_t size,enum dma_data_direction direction)160 dma_addr_t dma_map_page(struct device *dev, struct page *page,
161 			unsigned long offset, size_t size,
162 			enum dma_data_direction direction)
163 {
164 	BUG_ON(!valid_dma_direction(direction));
165 
166 	BUG_ON(offset + size > PAGE_SIZE);
167 	homecache_flush_cache(page, 0);
168 
169 	return page_to_pa(page) + offset;
170 }
171 EXPORT_SYMBOL(dma_map_page);
172 
dma_unmap_page(struct device * dev,dma_addr_t dma_address,size_t size,enum dma_data_direction direction)173 void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
174 	       enum dma_data_direction direction)
175 {
176 	BUG_ON(!valid_dma_direction(direction));
177 }
178 EXPORT_SYMBOL(dma_unmap_page);
179 
dma_sync_single_for_cpu(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)180 void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
181 			     size_t size, enum dma_data_direction direction)
182 {
183 	BUG_ON(!valid_dma_direction(direction));
184 }
185 EXPORT_SYMBOL(dma_sync_single_for_cpu);
186 
dma_sync_single_for_device(struct device * dev,dma_addr_t dma_handle,size_t size,enum dma_data_direction direction)187 void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
188 				size_t size, enum dma_data_direction direction)
189 {
190 	unsigned long start = PFN_DOWN(dma_handle);
191 	unsigned long end = PFN_DOWN(dma_handle + size - 1);
192 	unsigned long i;
193 
194 	BUG_ON(!valid_dma_direction(direction));
195 	for (i = start; i <= end; ++i)
196 		homecache_flush_cache(pfn_to_page(i), 0);
197 }
198 EXPORT_SYMBOL(dma_sync_single_for_device);
199 
dma_sync_sg_for_cpu(struct device * dev,struct scatterlist * sg,int nelems,enum dma_data_direction direction)200 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
201 		    enum dma_data_direction direction)
202 {
203 	BUG_ON(!valid_dma_direction(direction));
204 	WARN_ON(nelems == 0 || sg[0].length == 0);
205 }
206 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
207 
208 /*
209  * Flush and invalidate cache for scatterlist.
210  */
dma_sync_sg_for_device(struct device * dev,struct scatterlist * sglist,int nelems,enum dma_data_direction direction)211 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
212 			    int nelems, enum dma_data_direction direction)
213 {
214 	struct scatterlist *sg;
215 	int i;
216 
217 	BUG_ON(!valid_dma_direction(direction));
218 	WARN_ON(nelems == 0 || sglist->length == 0);
219 
220 	for_each_sg(sglist, sg, nelems, i) {
221 		dma_sync_single_for_device(dev, sg->dma_address,
222 					   sg_dma_len(sg), direction);
223 	}
224 }
225 EXPORT_SYMBOL(dma_sync_sg_for_device);
226 
dma_sync_single_range_for_cpu(struct device * dev,dma_addr_t dma_handle,unsigned long offset,size_t size,enum dma_data_direction direction)227 void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
228 				   unsigned long offset, size_t size,
229 				   enum dma_data_direction direction)
230 {
231 	dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
232 }
233 EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
234 
dma_sync_single_range_for_device(struct device * dev,dma_addr_t dma_handle,unsigned long offset,size_t size,enum dma_data_direction direction)235 void dma_sync_single_range_for_device(struct device *dev,
236 				      dma_addr_t dma_handle,
237 				      unsigned long offset, size_t size,
238 				      enum dma_data_direction direction)
239 {
240 	dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
241 }
242 EXPORT_SYMBOL(dma_sync_single_range_for_device);
243 
244 /*
245  * dma_alloc_noncoherent() returns non-cacheable memory, so there's no
246  * need to do any flushing here.
247  */
dma_cache_sync(struct device * dev,void * vaddr,size_t size,enum dma_data_direction direction)248 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
249 		    enum dma_data_direction direction)
250 {
251 }
252 EXPORT_SYMBOL(dma_cache_sync);
253