• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  *   This program is free software; you can redistribute it and/or
5  *   modify it under the terms of the GNU General Public License
6  *   as published by the Free Software Foundation, version 2.
7  *
8  *   This program is distributed in the hope that it will be useful, but
9  *   WITHOUT ANY WARRANTY; without even the implied warranty of
10  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  *   NON INFRINGEMENT.  See the GNU General Public License for
12  *   more details.
13  */
14 
15 #include <linux/highmem.h>
16 #include <linux/module.h>
17 #include <linux/pagemap.h>
18 #include <asm/homecache.h>
19 
20 #define kmap_get_pte(vaddr) \
21 	pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), (vaddr)),\
22 		(vaddr)), (vaddr))
23 
24 
kmap(struct page * page)25 void *kmap(struct page *page)
26 {
27 	void *kva;
28 	unsigned long flags;
29 	pte_t *ptep;
30 
31 	might_sleep();
32 	if (!PageHighMem(page))
33 		return page_address(page);
34 	kva = kmap_high(page);
35 
36 	/*
37 	 * Rewrite the PTE under the lock.  This ensures that the page
38 	 * is not currently migrating.
39 	 */
40 	ptep = kmap_get_pte((unsigned long)kva);
41 	flags = homecache_kpte_lock();
42 	set_pte_at(&init_mm, kva, ptep, mk_pte(page, page_to_kpgprot(page)));
43 	homecache_kpte_unlock(flags);
44 
45 	return kva;
46 }
47 EXPORT_SYMBOL(kmap);
48 
kunmap(struct page * page)49 void kunmap(struct page *page)
50 {
51 	if (in_interrupt())
52 		BUG();
53 	if (!PageHighMem(page))
54 		return;
55 	kunmap_high(page);
56 }
57 EXPORT_SYMBOL(kunmap);
58 
59 /*
60  * Describe a single atomic mapping of a page on a given cpu at a
61  * given address, and allow it to be linked into a list.
62  */
63 struct atomic_mapped_page {
64 	struct list_head list;
65 	struct page *page;
66 	int cpu;
67 	unsigned long va;
68 };
69 
70 static spinlock_t amp_lock = __SPIN_LOCK_UNLOCKED(&amp_lock);
71 static struct list_head amp_list = LIST_HEAD_INIT(amp_list);
72 
73 /*
74  * Combining this structure with a per-cpu declaration lets us give
75  * each cpu an atomic_mapped_page structure per type.
76  */
77 struct kmap_amps {
78 	struct atomic_mapped_page per_type[KM_TYPE_NR];
79 };
80 static DEFINE_PER_CPU(struct kmap_amps, amps);
81 
82 /*
83  * Add a page and va, on this cpu, to the list of kmap_atomic pages,
84  * and write the new pte to memory.  Writing the new PTE under the
85  * lock guarantees that it is either on the list before migration starts
86  * (if we won the race), or set_pte() sets the migrating bit in the PTE
87  * (if we lost the race).  And doing it under the lock guarantees
88  * that when kmap_atomic_fix_one_pte() comes along, it finds a valid
89  * PTE in memory, iff the mapping is still on the amp_list.
90  *
91  * Finally, doing it under the lock lets us safely examine the page
92  * to see if it is immutable or not, for the generic kmap_atomic() case.
93  * If we examine it earlier we are exposed to a race where it looks
94  * writable earlier, but becomes immutable before we write the PTE.
95  */
kmap_atomic_register(struct page * page,enum km_type type,unsigned long va,pte_t * ptep,pte_t pteval)96 static void kmap_atomic_register(struct page *page, enum km_type type,
97 				 unsigned long va, pte_t *ptep, pte_t pteval)
98 {
99 	unsigned long flags;
100 	struct atomic_mapped_page *amp;
101 
102 	flags = homecache_kpte_lock();
103 	spin_lock(&amp_lock);
104 
105 	/* With interrupts disabled, now fill in the per-cpu info. */
106 	amp = &__get_cpu_var(amps).per_type[type];
107 	amp->page = page;
108 	amp->cpu = smp_processor_id();
109 	amp->va = va;
110 
111 	/* For generic kmap_atomic(), choose the PTE writability now. */
112 	if (!pte_read(pteval))
113 		pteval = mk_pte(page, page_to_kpgprot(page));
114 
115 	list_add(&amp->list, &amp_list);
116 	set_pte(ptep, pteval);
117 	arch_flush_lazy_mmu_mode();
118 
119 	spin_unlock(&amp_lock);
120 	homecache_kpte_unlock(flags);
121 }
122 
123 /*
124  * Remove a page and va, on this cpu, from the list of kmap_atomic pages.
125  * Linear-time search, but we count on the lists being short.
126  * We don't need to adjust the PTE under the lock (as opposed to the
127  * kmap_atomic_register() case), since we're just unconditionally
128  * zeroing the PTE after it's off the list.
129  */
kmap_atomic_unregister(struct page * page,unsigned long va)130 static void kmap_atomic_unregister(struct page *page, unsigned long va)
131 {
132 	unsigned long flags;
133 	struct atomic_mapped_page *amp;
134 	int cpu = smp_processor_id();
135 	spin_lock_irqsave(&amp_lock, flags);
136 	list_for_each_entry(amp, &amp_list, list) {
137 		if (amp->page == page && amp->cpu == cpu && amp->va == va)
138 			break;
139 	}
140 	BUG_ON(&amp->list == &amp_list);
141 	list_del(&amp->list);
142 	spin_unlock_irqrestore(&amp_lock, flags);
143 }
144 
145 /* Helper routine for kmap_atomic_fix_kpte(), below. */
kmap_atomic_fix_one_kpte(struct atomic_mapped_page * amp,int finished)146 static void kmap_atomic_fix_one_kpte(struct atomic_mapped_page *amp,
147 				     int finished)
148 {
149 	pte_t *ptep = kmap_get_pte(amp->va);
150 	if (!finished) {
151 		set_pte(ptep, pte_mkmigrate(*ptep));
152 		flush_remote(0, 0, NULL, amp->va, PAGE_SIZE, PAGE_SIZE,
153 			     cpumask_of(amp->cpu), NULL, 0);
154 	} else {
155 		/*
156 		 * Rewrite a default kernel PTE for this page.
157 		 * We rely on the fact that set_pte() writes the
158 		 * present+migrating bits last.
159 		 */
160 		pte_t pte = mk_pte(amp->page, page_to_kpgprot(amp->page));
161 		set_pte(ptep, pte);
162 	}
163 }
164 
165 /*
166  * This routine is a helper function for homecache_fix_kpte(); see
167  * its comments for more information on the "finished" argument here.
168  *
169  * Note that we hold the lock while doing the remote flushes, which
170  * will stall any unrelated cpus trying to do kmap_atomic operations.
171  * We could just update the PTEs under the lock, and save away copies
172  * of the structs (or just the va+cpu), then flush them after we
173  * release the lock, but it seems easier just to do it all under the lock.
174  */
kmap_atomic_fix_kpte(struct page * page,int finished)175 void kmap_atomic_fix_kpte(struct page *page, int finished)
176 {
177 	struct atomic_mapped_page *amp;
178 	unsigned long flags;
179 	spin_lock_irqsave(&amp_lock, flags);
180 	list_for_each_entry(amp, &amp_list, list) {
181 		if (amp->page == page)
182 			kmap_atomic_fix_one_kpte(amp, finished);
183 	}
184 	spin_unlock_irqrestore(&amp_lock, flags);
185 }
186 
187 /*
188  * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap
189  * because the kmap code must perform a global TLB invalidation when
190  * the kmap pool wraps.
191  *
192  * Note that they may be slower than on x86 (etc.) because unlike on
193  * those platforms, we do have to take a global lock to map and unmap
194  * pages on Tile (see above).
195  *
196  * When holding an atomic kmap is is not legal to sleep, so atomic
197  * kmaps are appropriate for short, tight code paths only.
198  */
kmap_atomic_prot(struct page * page,pgprot_t prot)199 void *kmap_atomic_prot(struct page *page, pgprot_t prot)
200 {
201 	unsigned long vaddr;
202 	int idx, type;
203 	pte_t *pte;
204 
205 	/* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */
206 	pagefault_disable();
207 
208 	/* Avoid icache flushes by disallowing atomic executable mappings. */
209 	BUG_ON(pte_exec(prot));
210 
211 	if (!PageHighMem(page))
212 		return page_address(page);
213 
214 	type = kmap_atomic_idx_push();
215 	idx = type + KM_TYPE_NR*smp_processor_id();
216 	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
217 	pte = kmap_get_pte(vaddr);
218 	BUG_ON(!pte_none(*pte));
219 
220 	/* Register that this page is mapped atomically on this cpu. */
221 	kmap_atomic_register(page, type, vaddr, pte, mk_pte(page, prot));
222 
223 	return (void *)vaddr;
224 }
225 EXPORT_SYMBOL(kmap_atomic_prot);
226 
kmap_atomic(struct page * page)227 void *kmap_atomic(struct page *page)
228 {
229 	/* PAGE_NONE is a magic value that tells us to check immutability. */
230 	return kmap_atomic_prot(page, PAGE_NONE);
231 }
232 EXPORT_SYMBOL(kmap_atomic);
233 
__kunmap_atomic(void * kvaddr)234 void __kunmap_atomic(void *kvaddr)
235 {
236 	unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK;
237 
238 	if (vaddr >= __fix_to_virt(FIX_KMAP_END) &&
239 	    vaddr <= __fix_to_virt(FIX_KMAP_BEGIN)) {
240 		pte_t *pte = kmap_get_pte(vaddr);
241 		pte_t pteval = *pte;
242 		int idx, type;
243 
244 		type = kmap_atomic_idx();
245 		idx = type + KM_TYPE_NR*smp_processor_id();
246 
247 		/*
248 		 * Force other mappings to Oops if they try to access this pte
249 		 * without first remapping it.  Keeping stale mappings around
250 		 * is a bad idea.
251 		 */
252 		BUG_ON(!pte_present(pteval) && !pte_migrating(pteval));
253 		kmap_atomic_unregister(pte_page(pteval), vaddr);
254 		kpte_clear_flush(pte, vaddr);
255 		kmap_atomic_idx_pop();
256 	} else {
257 		/* Must be a lowmem page */
258 		BUG_ON(vaddr < PAGE_OFFSET);
259 		BUG_ON(vaddr >= (unsigned long)high_memory);
260 	}
261 
262 	arch_flush_lazy_mmu_mode();
263 	pagefault_enable();
264 }
265 EXPORT_SYMBOL(__kunmap_atomic);
266 
267 /*
268  * This API is supposed to allow us to map memory without a "struct page".
269  * Currently we don't support this, though this may change in the future.
270  */
kmap_atomic_pfn(unsigned long pfn)271 void *kmap_atomic_pfn(unsigned long pfn)
272 {
273 	return kmap_atomic(pfn_to_page(pfn));
274 }
kmap_atomic_prot_pfn(unsigned long pfn,pgprot_t prot)275 void *kmap_atomic_prot_pfn(unsigned long pfn, pgprot_t prot)
276 {
277 	return kmap_atomic_prot(pfn_to_page(pfn), prot);
278 }
279 
kmap_atomic_to_page(void * ptr)280 struct page *kmap_atomic_to_page(void *ptr)
281 {
282 	pte_t *pte;
283 	unsigned long vaddr = (unsigned long)ptr;
284 
285 	if (vaddr < FIXADDR_START)
286 		return virt_to_page(ptr);
287 
288 	pte = kmap_get_pte(vaddr);
289 	return pte_page(*pte);
290 }
291