• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18 
19 #include "irq.h"
20 #include "mmu.h"
21 #include "cpuid.h"
22 
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/sched.h>
29 #include <linux/moduleparam.h>
30 #include <linux/ftrace_event.h>
31 #include <linux/slab.h>
32 #include <linux/tboot.h>
33 #include "kvm_cache_regs.h"
34 #include "x86.h"
35 
36 #include <asm/io.h>
37 #include <asm/desc.h>
38 #include <asm/vmx.h>
39 #include <asm/virtext.h>
40 #include <asm/mce.h>
41 #include <asm/i387.h>
42 #include <asm/xcr.h>
43 #include <asm/perf_event.h>
44 
45 #include "trace.h"
46 
47 #define __ex(x) __kvm_handle_fault_on_reboot(x)
48 #define __ex_clear(x, reg) \
49 	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
50 
51 MODULE_AUTHOR("Qumranet");
52 MODULE_LICENSE("GPL");
53 
54 static bool __read_mostly enable_vpid = 1;
55 module_param_named(vpid, enable_vpid, bool, 0444);
56 
57 static bool __read_mostly flexpriority_enabled = 1;
58 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
59 
60 static bool __read_mostly enable_ept = 1;
61 module_param_named(ept, enable_ept, bool, S_IRUGO);
62 
63 static bool __read_mostly enable_unrestricted_guest = 1;
64 module_param_named(unrestricted_guest,
65 			enable_unrestricted_guest, bool, S_IRUGO);
66 
67 static bool __read_mostly emulate_invalid_guest_state = 0;
68 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
69 
70 static bool __read_mostly vmm_exclusive = 1;
71 module_param(vmm_exclusive, bool, S_IRUGO);
72 
73 static bool __read_mostly fasteoi = 1;
74 module_param(fasteoi, bool, S_IRUGO);
75 
76 /*
77  * If nested=1, nested virtualization is supported, i.e., guests may use
78  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
79  * use VMX instructions.
80  */
81 static bool __read_mostly nested = 0;
82 module_param(nested, bool, S_IRUGO);
83 
84 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST				\
85 	(X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
86 #define KVM_GUEST_CR0_MASK						\
87 	(KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
88 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST				\
89 	(X86_CR0_WP | X86_CR0_NE)
90 #define KVM_VM_CR0_ALWAYS_ON						\
91 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
92 #define KVM_CR4_GUEST_OWNED_BITS				      \
93 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
94 	 | X86_CR4_OSXMMEXCPT)
95 
96 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
97 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
98 
99 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
100 
101 /*
102  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
103  * ple_gap:    upper bound on the amount of time between two successive
104  *             executions of PAUSE in a loop. Also indicate if ple enabled.
105  *             According to test, this time is usually smaller than 128 cycles.
106  * ple_window: upper bound on the amount of time a guest is allowed to execute
107  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
108  *             less than 2^12 cycles
109  * Time is measured based on a counter that runs at the same rate as the TSC,
110  * refer SDM volume 3b section 21.6.13 & 22.1.3.
111  */
112 #define KVM_VMX_DEFAULT_PLE_GAP    128
113 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
114 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
115 module_param(ple_gap, int, S_IRUGO);
116 
117 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
118 module_param(ple_window, int, S_IRUGO);
119 
120 #define NR_AUTOLOAD_MSRS 8
121 #define VMCS02_POOL_SIZE 1
122 
123 struct vmcs {
124 	u32 revision_id;
125 	u32 abort;
126 	char data[0];
127 };
128 
129 /*
130  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
131  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
132  * loaded on this CPU (so we can clear them if the CPU goes down).
133  */
134 struct loaded_vmcs {
135 	struct vmcs *vmcs;
136 	int cpu;
137 	int launched;
138 	struct list_head loaded_vmcss_on_cpu_link;
139 };
140 
141 struct shared_msr_entry {
142 	unsigned index;
143 	u64 data;
144 	u64 mask;
145 };
146 
147 /*
148  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
149  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
150  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
151  * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
152  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
153  * More than one of these structures may exist, if L1 runs multiple L2 guests.
154  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
155  * underlying hardware which will be used to run L2.
156  * This structure is packed to ensure that its layout is identical across
157  * machines (necessary for live migration).
158  * If there are changes in this struct, VMCS12_REVISION must be changed.
159  */
160 typedef u64 natural_width;
161 struct __packed vmcs12 {
162 	/* According to the Intel spec, a VMCS region must start with the
163 	 * following two fields. Then follow implementation-specific data.
164 	 */
165 	u32 revision_id;
166 	u32 abort;
167 
168 	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
169 	u32 padding[7]; /* room for future expansion */
170 
171 	u64 io_bitmap_a;
172 	u64 io_bitmap_b;
173 	u64 msr_bitmap;
174 	u64 vm_exit_msr_store_addr;
175 	u64 vm_exit_msr_load_addr;
176 	u64 vm_entry_msr_load_addr;
177 	u64 tsc_offset;
178 	u64 virtual_apic_page_addr;
179 	u64 apic_access_addr;
180 	u64 ept_pointer;
181 	u64 guest_physical_address;
182 	u64 vmcs_link_pointer;
183 	u64 guest_ia32_debugctl;
184 	u64 guest_ia32_pat;
185 	u64 guest_ia32_efer;
186 	u64 guest_ia32_perf_global_ctrl;
187 	u64 guest_pdptr0;
188 	u64 guest_pdptr1;
189 	u64 guest_pdptr2;
190 	u64 guest_pdptr3;
191 	u64 host_ia32_pat;
192 	u64 host_ia32_efer;
193 	u64 host_ia32_perf_global_ctrl;
194 	u64 padding64[8]; /* room for future expansion */
195 	/*
196 	 * To allow migration of L1 (complete with its L2 guests) between
197 	 * machines of different natural widths (32 or 64 bit), we cannot have
198 	 * unsigned long fields with no explict size. We use u64 (aliased
199 	 * natural_width) instead. Luckily, x86 is little-endian.
200 	 */
201 	natural_width cr0_guest_host_mask;
202 	natural_width cr4_guest_host_mask;
203 	natural_width cr0_read_shadow;
204 	natural_width cr4_read_shadow;
205 	natural_width cr3_target_value0;
206 	natural_width cr3_target_value1;
207 	natural_width cr3_target_value2;
208 	natural_width cr3_target_value3;
209 	natural_width exit_qualification;
210 	natural_width guest_linear_address;
211 	natural_width guest_cr0;
212 	natural_width guest_cr3;
213 	natural_width guest_cr4;
214 	natural_width guest_es_base;
215 	natural_width guest_cs_base;
216 	natural_width guest_ss_base;
217 	natural_width guest_ds_base;
218 	natural_width guest_fs_base;
219 	natural_width guest_gs_base;
220 	natural_width guest_ldtr_base;
221 	natural_width guest_tr_base;
222 	natural_width guest_gdtr_base;
223 	natural_width guest_idtr_base;
224 	natural_width guest_dr7;
225 	natural_width guest_rsp;
226 	natural_width guest_rip;
227 	natural_width guest_rflags;
228 	natural_width guest_pending_dbg_exceptions;
229 	natural_width guest_sysenter_esp;
230 	natural_width guest_sysenter_eip;
231 	natural_width host_cr0;
232 	natural_width host_cr3;
233 	natural_width host_cr4;
234 	natural_width host_fs_base;
235 	natural_width host_gs_base;
236 	natural_width host_tr_base;
237 	natural_width host_gdtr_base;
238 	natural_width host_idtr_base;
239 	natural_width host_ia32_sysenter_esp;
240 	natural_width host_ia32_sysenter_eip;
241 	natural_width host_rsp;
242 	natural_width host_rip;
243 	natural_width paddingl[8]; /* room for future expansion */
244 	u32 pin_based_vm_exec_control;
245 	u32 cpu_based_vm_exec_control;
246 	u32 exception_bitmap;
247 	u32 page_fault_error_code_mask;
248 	u32 page_fault_error_code_match;
249 	u32 cr3_target_count;
250 	u32 vm_exit_controls;
251 	u32 vm_exit_msr_store_count;
252 	u32 vm_exit_msr_load_count;
253 	u32 vm_entry_controls;
254 	u32 vm_entry_msr_load_count;
255 	u32 vm_entry_intr_info_field;
256 	u32 vm_entry_exception_error_code;
257 	u32 vm_entry_instruction_len;
258 	u32 tpr_threshold;
259 	u32 secondary_vm_exec_control;
260 	u32 vm_instruction_error;
261 	u32 vm_exit_reason;
262 	u32 vm_exit_intr_info;
263 	u32 vm_exit_intr_error_code;
264 	u32 idt_vectoring_info_field;
265 	u32 idt_vectoring_error_code;
266 	u32 vm_exit_instruction_len;
267 	u32 vmx_instruction_info;
268 	u32 guest_es_limit;
269 	u32 guest_cs_limit;
270 	u32 guest_ss_limit;
271 	u32 guest_ds_limit;
272 	u32 guest_fs_limit;
273 	u32 guest_gs_limit;
274 	u32 guest_ldtr_limit;
275 	u32 guest_tr_limit;
276 	u32 guest_gdtr_limit;
277 	u32 guest_idtr_limit;
278 	u32 guest_es_ar_bytes;
279 	u32 guest_cs_ar_bytes;
280 	u32 guest_ss_ar_bytes;
281 	u32 guest_ds_ar_bytes;
282 	u32 guest_fs_ar_bytes;
283 	u32 guest_gs_ar_bytes;
284 	u32 guest_ldtr_ar_bytes;
285 	u32 guest_tr_ar_bytes;
286 	u32 guest_interruptibility_info;
287 	u32 guest_activity_state;
288 	u32 guest_sysenter_cs;
289 	u32 host_ia32_sysenter_cs;
290 	u32 padding32[8]; /* room for future expansion */
291 	u16 virtual_processor_id;
292 	u16 guest_es_selector;
293 	u16 guest_cs_selector;
294 	u16 guest_ss_selector;
295 	u16 guest_ds_selector;
296 	u16 guest_fs_selector;
297 	u16 guest_gs_selector;
298 	u16 guest_ldtr_selector;
299 	u16 guest_tr_selector;
300 	u16 host_es_selector;
301 	u16 host_cs_selector;
302 	u16 host_ss_selector;
303 	u16 host_ds_selector;
304 	u16 host_fs_selector;
305 	u16 host_gs_selector;
306 	u16 host_tr_selector;
307 };
308 
309 /*
310  * VMCS12_REVISION is an arbitrary id that should be changed if the content or
311  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
312  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
313  */
314 #define VMCS12_REVISION 0x11e57ed0
315 
316 /*
317  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
318  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
319  * current implementation, 4K are reserved to avoid future complications.
320  */
321 #define VMCS12_SIZE 0x1000
322 
323 /* Used to remember the last vmcs02 used for some recently used vmcs12s */
324 struct vmcs02_list {
325 	struct list_head list;
326 	gpa_t vmptr;
327 	struct loaded_vmcs vmcs02;
328 };
329 
330 /*
331  * The nested_vmx structure is part of vcpu_vmx, and holds information we need
332  * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
333  */
334 struct nested_vmx {
335 	/* Has the level1 guest done vmxon? */
336 	bool vmxon;
337 
338 	/* The guest-physical address of the current VMCS L1 keeps for L2 */
339 	gpa_t current_vmptr;
340 	/* The host-usable pointer to the above */
341 	struct page *current_vmcs12_page;
342 	struct vmcs12 *current_vmcs12;
343 
344 	/* vmcs02_list cache of VMCSs recently used to run L2 guests */
345 	struct list_head vmcs02_pool;
346 	int vmcs02_num;
347 	u64 vmcs01_tsc_offset;
348 	/* L2 must run next, and mustn't decide to exit to L1. */
349 	bool nested_run_pending;
350 	/*
351 	 * Guest pages referred to in vmcs02 with host-physical pointers, so
352 	 * we must keep them pinned while L2 runs.
353 	 */
354 	struct page *apic_access_page;
355 };
356 
357 struct vcpu_vmx {
358 	struct kvm_vcpu       vcpu;
359 	unsigned long         host_rsp;
360 	u8                    fail;
361 	u8                    cpl;
362 	bool                  nmi_known_unmasked;
363 	u32                   exit_intr_info;
364 	u32                   idt_vectoring_info;
365 	ulong                 rflags;
366 	struct shared_msr_entry *guest_msrs;
367 	int                   nmsrs;
368 	int                   save_nmsrs;
369 #ifdef CONFIG_X86_64
370 	u64 		      msr_host_kernel_gs_base;
371 	u64 		      msr_guest_kernel_gs_base;
372 #endif
373 	/*
374 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
375 	 * non-nested (L1) guest, it always points to vmcs01. For a nested
376 	 * guest (L2), it points to a different VMCS.
377 	 */
378 	struct loaded_vmcs    vmcs01;
379 	struct loaded_vmcs   *loaded_vmcs;
380 	bool                  __launched; /* temporary, used in vmx_vcpu_run */
381 	struct msr_autoload {
382 		unsigned nr;
383 		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
384 		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
385 	} msr_autoload;
386 	struct {
387 		int           loaded;
388 		u16           fs_sel, gs_sel, ldt_sel;
389 		int           gs_ldt_reload_needed;
390 		int           fs_reload_needed;
391 	} host_state;
392 	struct {
393 		int vm86_active;
394 		ulong save_rflags;
395 		struct kvm_save_segment {
396 			u16 selector;
397 			unsigned long base;
398 			u32 limit;
399 			u32 ar;
400 		} tr, es, ds, fs, gs;
401 	} rmode;
402 	struct {
403 		u32 bitmask; /* 4 bits per segment (1 bit per field) */
404 		struct kvm_save_segment seg[8];
405 	} segment_cache;
406 	int vpid;
407 	bool emulation_required;
408 
409 	/* Support for vnmi-less CPUs */
410 	int soft_vnmi_blocked;
411 	ktime_t entry_time;
412 	s64 vnmi_blocked_time;
413 	u32 exit_reason;
414 
415 	bool rdtscp_enabled;
416 
417 	/* Support for a guest hypervisor (nested VMX) */
418 	struct nested_vmx nested;
419 };
420 
421 enum segment_cache_field {
422 	SEG_FIELD_SEL = 0,
423 	SEG_FIELD_BASE = 1,
424 	SEG_FIELD_LIMIT = 2,
425 	SEG_FIELD_AR = 3,
426 
427 	SEG_FIELD_NR = 4
428 };
429 
to_vmx(struct kvm_vcpu * vcpu)430 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
431 {
432 	return container_of(vcpu, struct vcpu_vmx, vcpu);
433 }
434 
435 #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
436 #define FIELD(number, name)	[number] = VMCS12_OFFSET(name)
437 #define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \
438 				[number##_HIGH] = VMCS12_OFFSET(name)+4
439 
440 static unsigned short vmcs_field_to_offset_table[] = {
441 	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
442 	FIELD(GUEST_ES_SELECTOR, guest_es_selector),
443 	FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
444 	FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
445 	FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
446 	FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
447 	FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
448 	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
449 	FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
450 	FIELD(HOST_ES_SELECTOR, host_es_selector),
451 	FIELD(HOST_CS_SELECTOR, host_cs_selector),
452 	FIELD(HOST_SS_SELECTOR, host_ss_selector),
453 	FIELD(HOST_DS_SELECTOR, host_ds_selector),
454 	FIELD(HOST_FS_SELECTOR, host_fs_selector),
455 	FIELD(HOST_GS_SELECTOR, host_gs_selector),
456 	FIELD(HOST_TR_SELECTOR, host_tr_selector),
457 	FIELD64(IO_BITMAP_A, io_bitmap_a),
458 	FIELD64(IO_BITMAP_B, io_bitmap_b),
459 	FIELD64(MSR_BITMAP, msr_bitmap),
460 	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
461 	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
462 	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
463 	FIELD64(TSC_OFFSET, tsc_offset),
464 	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
465 	FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
466 	FIELD64(EPT_POINTER, ept_pointer),
467 	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
468 	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
469 	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
470 	FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
471 	FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
472 	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
473 	FIELD64(GUEST_PDPTR0, guest_pdptr0),
474 	FIELD64(GUEST_PDPTR1, guest_pdptr1),
475 	FIELD64(GUEST_PDPTR2, guest_pdptr2),
476 	FIELD64(GUEST_PDPTR3, guest_pdptr3),
477 	FIELD64(HOST_IA32_PAT, host_ia32_pat),
478 	FIELD64(HOST_IA32_EFER, host_ia32_efer),
479 	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
480 	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
481 	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
482 	FIELD(EXCEPTION_BITMAP, exception_bitmap),
483 	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
484 	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
485 	FIELD(CR3_TARGET_COUNT, cr3_target_count),
486 	FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
487 	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
488 	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
489 	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
490 	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
491 	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
492 	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
493 	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
494 	FIELD(TPR_THRESHOLD, tpr_threshold),
495 	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
496 	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
497 	FIELD(VM_EXIT_REASON, vm_exit_reason),
498 	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
499 	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
500 	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
501 	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
502 	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
503 	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
504 	FIELD(GUEST_ES_LIMIT, guest_es_limit),
505 	FIELD(GUEST_CS_LIMIT, guest_cs_limit),
506 	FIELD(GUEST_SS_LIMIT, guest_ss_limit),
507 	FIELD(GUEST_DS_LIMIT, guest_ds_limit),
508 	FIELD(GUEST_FS_LIMIT, guest_fs_limit),
509 	FIELD(GUEST_GS_LIMIT, guest_gs_limit),
510 	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
511 	FIELD(GUEST_TR_LIMIT, guest_tr_limit),
512 	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
513 	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
514 	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
515 	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
516 	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
517 	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
518 	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
519 	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
520 	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
521 	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
522 	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
523 	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
524 	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
525 	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
526 	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
527 	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
528 	FIELD(CR0_READ_SHADOW, cr0_read_shadow),
529 	FIELD(CR4_READ_SHADOW, cr4_read_shadow),
530 	FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
531 	FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
532 	FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
533 	FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
534 	FIELD(EXIT_QUALIFICATION, exit_qualification),
535 	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
536 	FIELD(GUEST_CR0, guest_cr0),
537 	FIELD(GUEST_CR3, guest_cr3),
538 	FIELD(GUEST_CR4, guest_cr4),
539 	FIELD(GUEST_ES_BASE, guest_es_base),
540 	FIELD(GUEST_CS_BASE, guest_cs_base),
541 	FIELD(GUEST_SS_BASE, guest_ss_base),
542 	FIELD(GUEST_DS_BASE, guest_ds_base),
543 	FIELD(GUEST_FS_BASE, guest_fs_base),
544 	FIELD(GUEST_GS_BASE, guest_gs_base),
545 	FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
546 	FIELD(GUEST_TR_BASE, guest_tr_base),
547 	FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
548 	FIELD(GUEST_IDTR_BASE, guest_idtr_base),
549 	FIELD(GUEST_DR7, guest_dr7),
550 	FIELD(GUEST_RSP, guest_rsp),
551 	FIELD(GUEST_RIP, guest_rip),
552 	FIELD(GUEST_RFLAGS, guest_rflags),
553 	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
554 	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
555 	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
556 	FIELD(HOST_CR0, host_cr0),
557 	FIELD(HOST_CR3, host_cr3),
558 	FIELD(HOST_CR4, host_cr4),
559 	FIELD(HOST_FS_BASE, host_fs_base),
560 	FIELD(HOST_GS_BASE, host_gs_base),
561 	FIELD(HOST_TR_BASE, host_tr_base),
562 	FIELD(HOST_GDTR_BASE, host_gdtr_base),
563 	FIELD(HOST_IDTR_BASE, host_idtr_base),
564 	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
565 	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
566 	FIELD(HOST_RSP, host_rsp),
567 	FIELD(HOST_RIP, host_rip),
568 };
569 static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
570 
vmcs_field_to_offset(unsigned long field)571 static inline short vmcs_field_to_offset(unsigned long field)
572 {
573 	if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
574 		return -1;
575 	return vmcs_field_to_offset_table[field];
576 }
577 
get_vmcs12(struct kvm_vcpu * vcpu)578 static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
579 {
580 	return to_vmx(vcpu)->nested.current_vmcs12;
581 }
582 
nested_get_page(struct kvm_vcpu * vcpu,gpa_t addr)583 static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
584 {
585 	struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
586 	if (is_error_page(page)) {
587 		kvm_release_page_clean(page);
588 		return NULL;
589 	}
590 	return page;
591 }
592 
nested_release_page(struct page * page)593 static void nested_release_page(struct page *page)
594 {
595 	kvm_release_page_dirty(page);
596 }
597 
nested_release_page_clean(struct page * page)598 static void nested_release_page_clean(struct page *page)
599 {
600 	kvm_release_page_clean(page);
601 }
602 
603 static u64 construct_eptp(unsigned long root_hpa);
604 static void kvm_cpu_vmxon(u64 addr);
605 static void kvm_cpu_vmxoff(void);
606 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
607 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
608 
609 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
610 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
611 /*
612  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
613  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
614  */
615 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
616 static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
617 
618 static unsigned long *vmx_io_bitmap_a;
619 static unsigned long *vmx_io_bitmap_b;
620 static unsigned long *vmx_msr_bitmap_legacy;
621 static unsigned long *vmx_msr_bitmap_longmode;
622 
623 static bool cpu_has_load_ia32_efer;
624 static bool cpu_has_load_perf_global_ctrl;
625 
626 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
627 static DEFINE_SPINLOCK(vmx_vpid_lock);
628 
629 static struct vmcs_config {
630 	int size;
631 	int order;
632 	u32 revision_id;
633 	u32 pin_based_exec_ctrl;
634 	u32 cpu_based_exec_ctrl;
635 	u32 cpu_based_2nd_exec_ctrl;
636 	u32 vmexit_ctrl;
637 	u32 vmentry_ctrl;
638 } vmcs_config;
639 
640 static struct vmx_capability {
641 	u32 ept;
642 	u32 vpid;
643 } vmx_capability;
644 
645 #define VMX_SEGMENT_FIELD(seg)					\
646 	[VCPU_SREG_##seg] = {                                   \
647 		.selector = GUEST_##seg##_SELECTOR,		\
648 		.base = GUEST_##seg##_BASE,		   	\
649 		.limit = GUEST_##seg##_LIMIT,		   	\
650 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\
651 	}
652 
653 static struct kvm_vmx_segment_field {
654 	unsigned selector;
655 	unsigned base;
656 	unsigned limit;
657 	unsigned ar_bytes;
658 } kvm_vmx_segment_fields[] = {
659 	VMX_SEGMENT_FIELD(CS),
660 	VMX_SEGMENT_FIELD(DS),
661 	VMX_SEGMENT_FIELD(ES),
662 	VMX_SEGMENT_FIELD(FS),
663 	VMX_SEGMENT_FIELD(GS),
664 	VMX_SEGMENT_FIELD(SS),
665 	VMX_SEGMENT_FIELD(TR),
666 	VMX_SEGMENT_FIELD(LDTR),
667 };
668 
669 static u64 host_efer;
670 
671 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
672 
673 /*
674  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
675  * away by decrementing the array size.
676  */
677 static const u32 vmx_msr_index[] = {
678 #ifdef CONFIG_X86_64
679 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
680 #endif
681 	MSR_EFER, MSR_TSC_AUX, MSR_STAR,
682 };
683 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
684 
is_page_fault(u32 intr_info)685 static inline bool is_page_fault(u32 intr_info)
686 {
687 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
688 			     INTR_INFO_VALID_MASK)) ==
689 		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
690 }
691 
is_no_device(u32 intr_info)692 static inline bool is_no_device(u32 intr_info)
693 {
694 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
695 			     INTR_INFO_VALID_MASK)) ==
696 		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
697 }
698 
is_invalid_opcode(u32 intr_info)699 static inline bool is_invalid_opcode(u32 intr_info)
700 {
701 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
702 			     INTR_INFO_VALID_MASK)) ==
703 		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
704 }
705 
is_external_interrupt(u32 intr_info)706 static inline bool is_external_interrupt(u32 intr_info)
707 {
708 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
709 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
710 }
711 
is_machine_check(u32 intr_info)712 static inline bool is_machine_check(u32 intr_info)
713 {
714 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
715 			     INTR_INFO_VALID_MASK)) ==
716 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
717 }
718 
cpu_has_vmx_msr_bitmap(void)719 static inline bool cpu_has_vmx_msr_bitmap(void)
720 {
721 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
722 }
723 
cpu_has_vmx_tpr_shadow(void)724 static inline bool cpu_has_vmx_tpr_shadow(void)
725 {
726 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
727 }
728 
vm_need_tpr_shadow(struct kvm * kvm)729 static inline bool vm_need_tpr_shadow(struct kvm *kvm)
730 {
731 	return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
732 }
733 
cpu_has_secondary_exec_ctrls(void)734 static inline bool cpu_has_secondary_exec_ctrls(void)
735 {
736 	return vmcs_config.cpu_based_exec_ctrl &
737 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
738 }
739 
cpu_has_vmx_virtualize_apic_accesses(void)740 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
741 {
742 	return vmcs_config.cpu_based_2nd_exec_ctrl &
743 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
744 }
745 
cpu_has_vmx_flexpriority(void)746 static inline bool cpu_has_vmx_flexpriority(void)
747 {
748 	return cpu_has_vmx_tpr_shadow() &&
749 		cpu_has_vmx_virtualize_apic_accesses();
750 }
751 
cpu_has_vmx_ept_execute_only(void)752 static inline bool cpu_has_vmx_ept_execute_only(void)
753 {
754 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
755 }
756 
cpu_has_vmx_eptp_uncacheable(void)757 static inline bool cpu_has_vmx_eptp_uncacheable(void)
758 {
759 	return vmx_capability.ept & VMX_EPTP_UC_BIT;
760 }
761 
cpu_has_vmx_eptp_writeback(void)762 static inline bool cpu_has_vmx_eptp_writeback(void)
763 {
764 	return vmx_capability.ept & VMX_EPTP_WB_BIT;
765 }
766 
cpu_has_vmx_ept_2m_page(void)767 static inline bool cpu_has_vmx_ept_2m_page(void)
768 {
769 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
770 }
771 
cpu_has_vmx_ept_1g_page(void)772 static inline bool cpu_has_vmx_ept_1g_page(void)
773 {
774 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
775 }
776 
cpu_has_vmx_ept_4levels(void)777 static inline bool cpu_has_vmx_ept_4levels(void)
778 {
779 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
780 }
781 
cpu_has_vmx_invept_individual_addr(void)782 static inline bool cpu_has_vmx_invept_individual_addr(void)
783 {
784 	return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
785 }
786 
cpu_has_vmx_invept_context(void)787 static inline bool cpu_has_vmx_invept_context(void)
788 {
789 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
790 }
791 
cpu_has_vmx_invept_global(void)792 static inline bool cpu_has_vmx_invept_global(void)
793 {
794 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
795 }
796 
cpu_has_vmx_invvpid_single(void)797 static inline bool cpu_has_vmx_invvpid_single(void)
798 {
799 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
800 }
801 
cpu_has_vmx_invvpid_global(void)802 static inline bool cpu_has_vmx_invvpid_global(void)
803 {
804 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
805 }
806 
cpu_has_vmx_ept(void)807 static inline bool cpu_has_vmx_ept(void)
808 {
809 	return vmcs_config.cpu_based_2nd_exec_ctrl &
810 		SECONDARY_EXEC_ENABLE_EPT;
811 }
812 
cpu_has_vmx_unrestricted_guest(void)813 static inline bool cpu_has_vmx_unrestricted_guest(void)
814 {
815 	return vmcs_config.cpu_based_2nd_exec_ctrl &
816 		SECONDARY_EXEC_UNRESTRICTED_GUEST;
817 }
818 
cpu_has_vmx_ple(void)819 static inline bool cpu_has_vmx_ple(void)
820 {
821 	return vmcs_config.cpu_based_2nd_exec_ctrl &
822 		SECONDARY_EXEC_PAUSE_LOOP_EXITING;
823 }
824 
vm_need_virtualize_apic_accesses(struct kvm * kvm)825 static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
826 {
827 	return flexpriority_enabled && irqchip_in_kernel(kvm);
828 }
829 
cpu_has_vmx_vpid(void)830 static inline bool cpu_has_vmx_vpid(void)
831 {
832 	return vmcs_config.cpu_based_2nd_exec_ctrl &
833 		SECONDARY_EXEC_ENABLE_VPID;
834 }
835 
cpu_has_vmx_rdtscp(void)836 static inline bool cpu_has_vmx_rdtscp(void)
837 {
838 	return vmcs_config.cpu_based_2nd_exec_ctrl &
839 		SECONDARY_EXEC_RDTSCP;
840 }
841 
cpu_has_virtual_nmis(void)842 static inline bool cpu_has_virtual_nmis(void)
843 {
844 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
845 }
846 
cpu_has_vmx_wbinvd_exit(void)847 static inline bool cpu_has_vmx_wbinvd_exit(void)
848 {
849 	return vmcs_config.cpu_based_2nd_exec_ctrl &
850 		SECONDARY_EXEC_WBINVD_EXITING;
851 }
852 
report_flexpriority(void)853 static inline bool report_flexpriority(void)
854 {
855 	return flexpriority_enabled;
856 }
857 
nested_cpu_has(struct vmcs12 * vmcs12,u32 bit)858 static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
859 {
860 	return vmcs12->cpu_based_vm_exec_control & bit;
861 }
862 
nested_cpu_has2(struct vmcs12 * vmcs12,u32 bit)863 static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
864 {
865 	return (vmcs12->cpu_based_vm_exec_control &
866 			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
867 		(vmcs12->secondary_vm_exec_control & bit);
868 }
869 
nested_cpu_has_virtual_nmis(struct vmcs12 * vmcs12,struct kvm_vcpu * vcpu)870 static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
871 	struct kvm_vcpu *vcpu)
872 {
873 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
874 }
875 
is_exception(u32 intr_info)876 static inline bool is_exception(u32 intr_info)
877 {
878 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
879 		== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
880 }
881 
882 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
883 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
884 			struct vmcs12 *vmcs12,
885 			u32 reason, unsigned long qualification);
886 
__find_msr_index(struct vcpu_vmx * vmx,u32 msr)887 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
888 {
889 	int i;
890 
891 	for (i = 0; i < vmx->nmsrs; ++i)
892 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
893 			return i;
894 	return -1;
895 }
896 
__invvpid(int ext,u16 vpid,gva_t gva)897 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
898 {
899     struct {
900 	u64 vpid : 16;
901 	u64 rsvd : 48;
902 	u64 gva;
903     } operand = { vpid, 0, gva };
904 
905     asm volatile (__ex(ASM_VMX_INVVPID)
906 		  /* CF==1 or ZF==1 --> rc = -1 */
907 		  "; ja 1f ; ud2 ; 1:"
908 		  : : "a"(&operand), "c"(ext) : "cc", "memory");
909 }
910 
__invept(int ext,u64 eptp,gpa_t gpa)911 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
912 {
913 	struct {
914 		u64 eptp, gpa;
915 	} operand = {eptp, gpa};
916 
917 	asm volatile (__ex(ASM_VMX_INVEPT)
918 			/* CF==1 or ZF==1 --> rc = -1 */
919 			"; ja 1f ; ud2 ; 1:\n"
920 			: : "a" (&operand), "c" (ext) : "cc", "memory");
921 }
922 
find_msr_entry(struct vcpu_vmx * vmx,u32 msr)923 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
924 {
925 	int i;
926 
927 	i = __find_msr_index(vmx, msr);
928 	if (i >= 0)
929 		return &vmx->guest_msrs[i];
930 	return NULL;
931 }
932 
vmcs_clear(struct vmcs * vmcs)933 static void vmcs_clear(struct vmcs *vmcs)
934 {
935 	u64 phys_addr = __pa(vmcs);
936 	u8 error;
937 
938 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
939 		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
940 		      : "cc", "memory");
941 	if (error)
942 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
943 		       vmcs, phys_addr);
944 }
945 
loaded_vmcs_init(struct loaded_vmcs * loaded_vmcs)946 static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
947 {
948 	vmcs_clear(loaded_vmcs->vmcs);
949 	loaded_vmcs->cpu = -1;
950 	loaded_vmcs->launched = 0;
951 }
952 
vmcs_load(struct vmcs * vmcs)953 static void vmcs_load(struct vmcs *vmcs)
954 {
955 	u64 phys_addr = __pa(vmcs);
956 	u8 error;
957 
958 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
959 			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
960 			: "cc", "memory");
961 	if (error)
962 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
963 		       vmcs, phys_addr);
964 }
965 
__loaded_vmcs_clear(void * arg)966 static void __loaded_vmcs_clear(void *arg)
967 {
968 	struct loaded_vmcs *loaded_vmcs = arg;
969 	int cpu = raw_smp_processor_id();
970 
971 	if (loaded_vmcs->cpu != cpu)
972 		return; /* vcpu migration can race with cpu offline */
973 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
974 		per_cpu(current_vmcs, cpu) = NULL;
975 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
976 	loaded_vmcs_init(loaded_vmcs);
977 }
978 
loaded_vmcs_clear(struct loaded_vmcs * loaded_vmcs)979 static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
980 {
981 	if (loaded_vmcs->cpu != -1)
982 		smp_call_function_single(
983 			loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
984 }
985 
vpid_sync_vcpu_single(struct vcpu_vmx * vmx)986 static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
987 {
988 	if (vmx->vpid == 0)
989 		return;
990 
991 	if (cpu_has_vmx_invvpid_single())
992 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
993 }
994 
vpid_sync_vcpu_global(void)995 static inline void vpid_sync_vcpu_global(void)
996 {
997 	if (cpu_has_vmx_invvpid_global())
998 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
999 }
1000 
vpid_sync_context(struct vcpu_vmx * vmx)1001 static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1002 {
1003 	if (cpu_has_vmx_invvpid_single())
1004 		vpid_sync_vcpu_single(vmx);
1005 	else
1006 		vpid_sync_vcpu_global();
1007 }
1008 
ept_sync_global(void)1009 static inline void ept_sync_global(void)
1010 {
1011 	if (cpu_has_vmx_invept_global())
1012 		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1013 }
1014 
ept_sync_context(u64 eptp)1015 static inline void ept_sync_context(u64 eptp)
1016 {
1017 	if (enable_ept) {
1018 		if (cpu_has_vmx_invept_context())
1019 			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1020 		else
1021 			ept_sync_global();
1022 	}
1023 }
1024 
ept_sync_individual_addr(u64 eptp,gpa_t gpa)1025 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1026 {
1027 	if (enable_ept) {
1028 		if (cpu_has_vmx_invept_individual_addr())
1029 			__invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1030 					eptp, gpa);
1031 		else
1032 			ept_sync_context(eptp);
1033 	}
1034 }
1035 
vmcs_readl(unsigned long field)1036 static __always_inline unsigned long vmcs_readl(unsigned long field)
1037 {
1038 	unsigned long value;
1039 
1040 	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1041 		      : "=a"(value) : "d"(field) : "cc");
1042 	return value;
1043 }
1044 
vmcs_read16(unsigned long field)1045 static __always_inline u16 vmcs_read16(unsigned long field)
1046 {
1047 	return vmcs_readl(field);
1048 }
1049 
vmcs_read32(unsigned long field)1050 static __always_inline u32 vmcs_read32(unsigned long field)
1051 {
1052 	return vmcs_readl(field);
1053 }
1054 
vmcs_read64(unsigned long field)1055 static __always_inline u64 vmcs_read64(unsigned long field)
1056 {
1057 #ifdef CONFIG_X86_64
1058 	return vmcs_readl(field);
1059 #else
1060 	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1061 #endif
1062 }
1063 
vmwrite_error(unsigned long field,unsigned long value)1064 static noinline void vmwrite_error(unsigned long field, unsigned long value)
1065 {
1066 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1067 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1068 	dump_stack();
1069 }
1070 
vmcs_writel(unsigned long field,unsigned long value)1071 static void vmcs_writel(unsigned long field, unsigned long value)
1072 {
1073 	u8 error;
1074 
1075 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1076 		       : "=q"(error) : "a"(value), "d"(field) : "cc");
1077 	if (unlikely(error))
1078 		vmwrite_error(field, value);
1079 }
1080 
vmcs_write16(unsigned long field,u16 value)1081 static void vmcs_write16(unsigned long field, u16 value)
1082 {
1083 	vmcs_writel(field, value);
1084 }
1085 
vmcs_write32(unsigned long field,u32 value)1086 static void vmcs_write32(unsigned long field, u32 value)
1087 {
1088 	vmcs_writel(field, value);
1089 }
1090 
vmcs_write64(unsigned long field,u64 value)1091 static void vmcs_write64(unsigned long field, u64 value)
1092 {
1093 	vmcs_writel(field, value);
1094 #ifndef CONFIG_X86_64
1095 	asm volatile ("");
1096 	vmcs_writel(field+1, value >> 32);
1097 #endif
1098 }
1099 
vmcs_clear_bits(unsigned long field,u32 mask)1100 static void vmcs_clear_bits(unsigned long field, u32 mask)
1101 {
1102 	vmcs_writel(field, vmcs_readl(field) & ~mask);
1103 }
1104 
vmcs_set_bits(unsigned long field,u32 mask)1105 static void vmcs_set_bits(unsigned long field, u32 mask)
1106 {
1107 	vmcs_writel(field, vmcs_readl(field) | mask);
1108 }
1109 
vmx_segment_cache_clear(struct vcpu_vmx * vmx)1110 static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1111 {
1112 	vmx->segment_cache.bitmask = 0;
1113 }
1114 
vmx_segment_cache_test_set(struct vcpu_vmx * vmx,unsigned seg,unsigned field)1115 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1116 				       unsigned field)
1117 {
1118 	bool ret;
1119 	u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1120 
1121 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1122 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1123 		vmx->segment_cache.bitmask = 0;
1124 	}
1125 	ret = vmx->segment_cache.bitmask & mask;
1126 	vmx->segment_cache.bitmask |= mask;
1127 	return ret;
1128 }
1129 
vmx_read_guest_seg_selector(struct vcpu_vmx * vmx,unsigned seg)1130 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1131 {
1132 	u16 *p = &vmx->segment_cache.seg[seg].selector;
1133 
1134 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1135 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1136 	return *p;
1137 }
1138 
vmx_read_guest_seg_base(struct vcpu_vmx * vmx,unsigned seg)1139 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1140 {
1141 	ulong *p = &vmx->segment_cache.seg[seg].base;
1142 
1143 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1144 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1145 	return *p;
1146 }
1147 
vmx_read_guest_seg_limit(struct vcpu_vmx * vmx,unsigned seg)1148 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1149 {
1150 	u32 *p = &vmx->segment_cache.seg[seg].limit;
1151 
1152 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1153 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1154 	return *p;
1155 }
1156 
vmx_read_guest_seg_ar(struct vcpu_vmx * vmx,unsigned seg)1157 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1158 {
1159 	u32 *p = &vmx->segment_cache.seg[seg].ar;
1160 
1161 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1162 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1163 	return *p;
1164 }
1165 
update_exception_bitmap(struct kvm_vcpu * vcpu)1166 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1167 {
1168 	u32 eb;
1169 
1170 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1171 	     (1u << NM_VECTOR) | (1u << DB_VECTOR);
1172 	if ((vcpu->guest_debug &
1173 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1174 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1175 		eb |= 1u << BP_VECTOR;
1176 	if (to_vmx(vcpu)->rmode.vm86_active)
1177 		eb = ~0;
1178 	if (enable_ept)
1179 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1180 	if (vcpu->fpu_active)
1181 		eb &= ~(1u << NM_VECTOR);
1182 
1183 	/* When we are running a nested L2 guest and L1 specified for it a
1184 	 * certain exception bitmap, we must trap the same exceptions and pass
1185 	 * them to L1. When running L2, we will only handle the exceptions
1186 	 * specified above if L1 did not want them.
1187 	 */
1188 	if (is_guest_mode(vcpu))
1189 		eb |= get_vmcs12(vcpu)->exception_bitmap;
1190 
1191 	vmcs_write32(EXCEPTION_BITMAP, eb);
1192 }
1193 
clear_atomic_switch_msr_special(unsigned long entry,unsigned long exit)1194 static void clear_atomic_switch_msr_special(unsigned long entry,
1195 		unsigned long exit)
1196 {
1197 	vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1198 	vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1199 }
1200 
clear_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr)1201 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1202 {
1203 	unsigned i;
1204 	struct msr_autoload *m = &vmx->msr_autoload;
1205 
1206 	switch (msr) {
1207 	case MSR_EFER:
1208 		if (cpu_has_load_ia32_efer) {
1209 			clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1210 					VM_EXIT_LOAD_IA32_EFER);
1211 			return;
1212 		}
1213 		break;
1214 	case MSR_CORE_PERF_GLOBAL_CTRL:
1215 		if (cpu_has_load_perf_global_ctrl) {
1216 			clear_atomic_switch_msr_special(
1217 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1218 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1219 			return;
1220 		}
1221 		break;
1222 	}
1223 
1224 	for (i = 0; i < m->nr; ++i)
1225 		if (m->guest[i].index == msr)
1226 			break;
1227 
1228 	if (i == m->nr)
1229 		return;
1230 	--m->nr;
1231 	m->guest[i] = m->guest[m->nr];
1232 	m->host[i] = m->host[m->nr];
1233 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1234 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1235 }
1236 
add_atomic_switch_msr_special(unsigned long entry,unsigned long exit,unsigned long guest_val_vmcs,unsigned long host_val_vmcs,u64 guest_val,u64 host_val)1237 static void add_atomic_switch_msr_special(unsigned long entry,
1238 		unsigned long exit, unsigned long guest_val_vmcs,
1239 		unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1240 {
1241 	vmcs_write64(guest_val_vmcs, guest_val);
1242 	vmcs_write64(host_val_vmcs, host_val);
1243 	vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1244 	vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1245 }
1246 
add_atomic_switch_msr(struct vcpu_vmx * vmx,unsigned msr,u64 guest_val,u64 host_val)1247 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1248 				  u64 guest_val, u64 host_val)
1249 {
1250 	unsigned i;
1251 	struct msr_autoload *m = &vmx->msr_autoload;
1252 
1253 	switch (msr) {
1254 	case MSR_EFER:
1255 		if (cpu_has_load_ia32_efer) {
1256 			add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1257 					VM_EXIT_LOAD_IA32_EFER,
1258 					GUEST_IA32_EFER,
1259 					HOST_IA32_EFER,
1260 					guest_val, host_val);
1261 			return;
1262 		}
1263 		break;
1264 	case MSR_CORE_PERF_GLOBAL_CTRL:
1265 		if (cpu_has_load_perf_global_ctrl) {
1266 			add_atomic_switch_msr_special(
1267 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1268 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1269 					GUEST_IA32_PERF_GLOBAL_CTRL,
1270 					HOST_IA32_PERF_GLOBAL_CTRL,
1271 					guest_val, host_val);
1272 			return;
1273 		}
1274 		break;
1275 	}
1276 
1277 	for (i = 0; i < m->nr; ++i)
1278 		if (m->guest[i].index == msr)
1279 			break;
1280 
1281 	if (i == NR_AUTOLOAD_MSRS) {
1282 		printk_once(KERN_WARNING"Not enough mst switch entries. "
1283 				"Can't add msr %x\n", msr);
1284 		return;
1285 	} else if (i == m->nr) {
1286 		++m->nr;
1287 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1288 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1289 	}
1290 
1291 	m->guest[i].index = msr;
1292 	m->guest[i].value = guest_val;
1293 	m->host[i].index = msr;
1294 	m->host[i].value = host_val;
1295 }
1296 
reload_tss(void)1297 static void reload_tss(void)
1298 {
1299 	/*
1300 	 * VT restores TR but not its size.  Useless.
1301 	 */
1302 	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1303 	struct desc_struct *descs;
1304 
1305 	descs = (void *)gdt->address;
1306 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1307 	load_TR_desc();
1308 }
1309 
update_transition_efer(struct vcpu_vmx * vmx,int efer_offset)1310 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1311 {
1312 	u64 guest_efer;
1313 	u64 ignore_bits;
1314 
1315 	guest_efer = vmx->vcpu.arch.efer;
1316 
1317 	/*
1318 	 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1319 	 * outside long mode
1320 	 */
1321 	ignore_bits = EFER_NX | EFER_SCE;
1322 #ifdef CONFIG_X86_64
1323 	ignore_bits |= EFER_LMA | EFER_LME;
1324 	/* SCE is meaningful only in long mode on Intel */
1325 	if (guest_efer & EFER_LMA)
1326 		ignore_bits &= ~(u64)EFER_SCE;
1327 #endif
1328 	guest_efer &= ~ignore_bits;
1329 	guest_efer |= host_efer & ignore_bits;
1330 	vmx->guest_msrs[efer_offset].data = guest_efer;
1331 	vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1332 
1333 	clear_atomic_switch_msr(vmx, MSR_EFER);
1334 	/* On ept, can't emulate nx, and must switch nx atomically */
1335 	if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1336 		guest_efer = vmx->vcpu.arch.efer;
1337 		if (!(guest_efer & EFER_LMA))
1338 			guest_efer &= ~EFER_LME;
1339 		add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1340 		return false;
1341 	}
1342 
1343 	return true;
1344 }
1345 
segment_base(u16 selector)1346 static unsigned long segment_base(u16 selector)
1347 {
1348 	struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1349 	struct desc_struct *d;
1350 	unsigned long table_base;
1351 	unsigned long v;
1352 
1353 	if (!(selector & ~3))
1354 		return 0;
1355 
1356 	table_base = gdt->address;
1357 
1358 	if (selector & 4) {           /* from ldt */
1359 		u16 ldt_selector = kvm_read_ldt();
1360 
1361 		if (!(ldt_selector & ~3))
1362 			return 0;
1363 
1364 		table_base = segment_base(ldt_selector);
1365 	}
1366 	d = (struct desc_struct *)(table_base + (selector & ~7));
1367 	v = get_desc_base(d);
1368 #ifdef CONFIG_X86_64
1369        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1370                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1371 #endif
1372 	return v;
1373 }
1374 
kvm_read_tr_base(void)1375 static inline unsigned long kvm_read_tr_base(void)
1376 {
1377 	u16 tr;
1378 	asm("str %0" : "=g"(tr));
1379 	return segment_base(tr);
1380 }
1381 
vmx_save_host_state(struct kvm_vcpu * vcpu)1382 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1383 {
1384 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1385 	int i;
1386 
1387 	if (vmx->host_state.loaded)
1388 		return;
1389 
1390 	vmx->host_state.loaded = 1;
1391 	/*
1392 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1393 	 * allow segment selectors with cpl > 0 or ti == 1.
1394 	 */
1395 	vmx->host_state.ldt_sel = kvm_read_ldt();
1396 	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1397 	savesegment(fs, vmx->host_state.fs_sel);
1398 	if (!(vmx->host_state.fs_sel & 7)) {
1399 		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1400 		vmx->host_state.fs_reload_needed = 0;
1401 	} else {
1402 		vmcs_write16(HOST_FS_SELECTOR, 0);
1403 		vmx->host_state.fs_reload_needed = 1;
1404 	}
1405 	savesegment(gs, vmx->host_state.gs_sel);
1406 	if (!(vmx->host_state.gs_sel & 7))
1407 		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1408 	else {
1409 		vmcs_write16(HOST_GS_SELECTOR, 0);
1410 		vmx->host_state.gs_ldt_reload_needed = 1;
1411 	}
1412 
1413 #ifdef CONFIG_X86_64
1414 	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1415 	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1416 #else
1417 	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1418 	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1419 #endif
1420 
1421 #ifdef CONFIG_X86_64
1422 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1423 	if (is_long_mode(&vmx->vcpu))
1424 		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1425 #endif
1426 	for (i = 0; i < vmx->save_nmsrs; ++i)
1427 		kvm_set_shared_msr(vmx->guest_msrs[i].index,
1428 				   vmx->guest_msrs[i].data,
1429 				   vmx->guest_msrs[i].mask);
1430 }
1431 
__vmx_load_host_state(struct vcpu_vmx * vmx)1432 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1433 {
1434 	if (!vmx->host_state.loaded)
1435 		return;
1436 
1437 	++vmx->vcpu.stat.host_state_reload;
1438 	vmx->host_state.loaded = 0;
1439 #ifdef CONFIG_X86_64
1440 	if (is_long_mode(&vmx->vcpu))
1441 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1442 #endif
1443 	if (vmx->host_state.gs_ldt_reload_needed) {
1444 		kvm_load_ldt(vmx->host_state.ldt_sel);
1445 #ifdef CONFIG_X86_64
1446 		load_gs_index(vmx->host_state.gs_sel);
1447 #else
1448 		loadsegment(gs, vmx->host_state.gs_sel);
1449 #endif
1450 	}
1451 	if (vmx->host_state.fs_reload_needed)
1452 		loadsegment(fs, vmx->host_state.fs_sel);
1453 	reload_tss();
1454 #ifdef CONFIG_X86_64
1455 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1456 #endif
1457 	if (user_has_fpu())
1458 		clts();
1459 	load_gdt(&__get_cpu_var(host_gdt));
1460 }
1461 
vmx_load_host_state(struct vcpu_vmx * vmx)1462 static void vmx_load_host_state(struct vcpu_vmx *vmx)
1463 {
1464 	preempt_disable();
1465 	__vmx_load_host_state(vmx);
1466 	preempt_enable();
1467 }
1468 
1469 /*
1470  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1471  * vcpu mutex is already taken.
1472  */
vmx_vcpu_load(struct kvm_vcpu * vcpu,int cpu)1473 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1474 {
1475 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1476 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1477 
1478 	if (!vmm_exclusive)
1479 		kvm_cpu_vmxon(phys_addr);
1480 	else if (vmx->loaded_vmcs->cpu != cpu)
1481 		loaded_vmcs_clear(vmx->loaded_vmcs);
1482 
1483 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1484 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1485 		vmcs_load(vmx->loaded_vmcs->vmcs);
1486 	}
1487 
1488 	if (vmx->loaded_vmcs->cpu != cpu) {
1489 		struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1490 		unsigned long sysenter_esp;
1491 
1492 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1493 		local_irq_disable();
1494 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1495 			 &per_cpu(loaded_vmcss_on_cpu, cpu));
1496 		local_irq_enable();
1497 
1498 		/*
1499 		 * Linux uses per-cpu TSS and GDT, so set these when switching
1500 		 * processors.
1501 		 */
1502 		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1503 		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1504 
1505 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1506 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1507 		vmx->loaded_vmcs->cpu = cpu;
1508 	}
1509 }
1510 
vmx_vcpu_put(struct kvm_vcpu * vcpu)1511 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1512 {
1513 	__vmx_load_host_state(to_vmx(vcpu));
1514 	if (!vmm_exclusive) {
1515 		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1516 		vcpu->cpu = -1;
1517 		kvm_cpu_vmxoff();
1518 	}
1519 }
1520 
vmx_fpu_activate(struct kvm_vcpu * vcpu)1521 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1522 {
1523 	ulong cr0;
1524 
1525 	if (vcpu->fpu_active)
1526 		return;
1527 	vcpu->fpu_active = 1;
1528 	cr0 = vmcs_readl(GUEST_CR0);
1529 	cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1530 	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1531 	vmcs_writel(GUEST_CR0, cr0);
1532 	update_exception_bitmap(vcpu);
1533 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1534 	if (is_guest_mode(vcpu))
1535 		vcpu->arch.cr0_guest_owned_bits &=
1536 			~get_vmcs12(vcpu)->cr0_guest_host_mask;
1537 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1538 }
1539 
1540 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1541 
1542 /*
1543  * Return the cr0 value that a nested guest would read. This is a combination
1544  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1545  * its hypervisor (cr0_read_shadow).
1546  */
nested_read_cr0(struct vmcs12 * fields)1547 static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1548 {
1549 	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1550 		(fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1551 }
nested_read_cr4(struct vmcs12 * fields)1552 static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1553 {
1554 	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1555 		(fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1556 }
1557 
vmx_fpu_deactivate(struct kvm_vcpu * vcpu)1558 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1559 {
1560 	/* Note that there is no vcpu->fpu_active = 0 here. The caller must
1561 	 * set this *before* calling this function.
1562 	 */
1563 	vmx_decache_cr0_guest_bits(vcpu);
1564 	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1565 	update_exception_bitmap(vcpu);
1566 	vcpu->arch.cr0_guest_owned_bits = 0;
1567 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1568 	if (is_guest_mode(vcpu)) {
1569 		/*
1570 		 * L1's specified read shadow might not contain the TS bit,
1571 		 * so now that we turned on shadowing of this bit, we need to
1572 		 * set this bit of the shadow. Like in nested_vmx_run we need
1573 		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1574 		 * up-to-date here because we just decached cr0.TS (and we'll
1575 		 * only update vmcs12->guest_cr0 on nested exit).
1576 		 */
1577 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1578 		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1579 			(vcpu->arch.cr0 & X86_CR0_TS);
1580 		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1581 	} else
1582 		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1583 }
1584 
vmx_get_rflags(struct kvm_vcpu * vcpu)1585 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1586 {
1587 	unsigned long rflags, save_rflags;
1588 
1589 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1590 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1591 		rflags = vmcs_readl(GUEST_RFLAGS);
1592 		if (to_vmx(vcpu)->rmode.vm86_active) {
1593 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1594 			save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1595 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1596 		}
1597 		to_vmx(vcpu)->rflags = rflags;
1598 	}
1599 	return to_vmx(vcpu)->rflags;
1600 }
1601 
vmx_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)1602 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1603 {
1604 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1605 	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
1606 	to_vmx(vcpu)->rflags = rflags;
1607 	if (to_vmx(vcpu)->rmode.vm86_active) {
1608 		to_vmx(vcpu)->rmode.save_rflags = rflags;
1609 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1610 	}
1611 	vmcs_writel(GUEST_RFLAGS, rflags);
1612 }
1613 
vmx_get_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1614 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1615 {
1616 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1617 	int ret = 0;
1618 
1619 	if (interruptibility & GUEST_INTR_STATE_STI)
1620 		ret |= KVM_X86_SHADOW_INT_STI;
1621 	if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1622 		ret |= KVM_X86_SHADOW_INT_MOV_SS;
1623 
1624 	return ret & mask;
1625 }
1626 
vmx_set_interrupt_shadow(struct kvm_vcpu * vcpu,int mask)1627 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1628 {
1629 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1630 	u32 interruptibility = interruptibility_old;
1631 
1632 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1633 
1634 	if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1635 		interruptibility |= GUEST_INTR_STATE_MOV_SS;
1636 	else if (mask & KVM_X86_SHADOW_INT_STI)
1637 		interruptibility |= GUEST_INTR_STATE_STI;
1638 
1639 	if ((interruptibility != interruptibility_old))
1640 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1641 }
1642 
skip_emulated_instruction(struct kvm_vcpu * vcpu)1643 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1644 {
1645 	unsigned long rip;
1646 
1647 	rip = kvm_rip_read(vcpu);
1648 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1649 	kvm_rip_write(vcpu, rip);
1650 
1651 	/* skipping an emulated instruction also counts */
1652 	vmx_set_interrupt_shadow(vcpu, 0);
1653 }
1654 
1655 /*
1656  * KVM wants to inject page-faults which it got to the guest. This function
1657  * checks whether in a nested guest, we need to inject them to L1 or L2.
1658  * This function assumes it is called with the exit reason in vmcs02 being
1659  * a #PF exception (this is the only case in which KVM injects a #PF when L2
1660  * is running).
1661  */
nested_pf_handled(struct kvm_vcpu * vcpu)1662 static int nested_pf_handled(struct kvm_vcpu *vcpu)
1663 {
1664 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1665 
1666 	/* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1667 	if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1668 		return 0;
1669 
1670 	nested_vmx_vmexit(vcpu);
1671 	return 1;
1672 }
1673 
vmx_queue_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error_code,u32 error_code,bool reinject)1674 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1675 				bool has_error_code, u32 error_code,
1676 				bool reinject)
1677 {
1678 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1679 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
1680 
1681 	if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1682 		nested_pf_handled(vcpu))
1683 		return;
1684 
1685 	if (has_error_code) {
1686 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1687 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1688 	}
1689 
1690 	if (vmx->rmode.vm86_active) {
1691 		int inc_eip = 0;
1692 		if (kvm_exception_is_soft(nr))
1693 			inc_eip = vcpu->arch.event_exit_inst_len;
1694 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1695 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1696 		return;
1697 	}
1698 
1699 	if (kvm_exception_is_soft(nr)) {
1700 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1701 			     vmx->vcpu.arch.event_exit_inst_len);
1702 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1703 	} else
1704 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
1705 
1706 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1707 }
1708 
vmx_rdtscp_supported(void)1709 static bool vmx_rdtscp_supported(void)
1710 {
1711 	return cpu_has_vmx_rdtscp();
1712 }
1713 
1714 /*
1715  * Swap MSR entry in host/guest MSR entry array.
1716  */
move_msr_up(struct vcpu_vmx * vmx,int from,int to)1717 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1718 {
1719 	struct shared_msr_entry tmp;
1720 
1721 	tmp = vmx->guest_msrs[to];
1722 	vmx->guest_msrs[to] = vmx->guest_msrs[from];
1723 	vmx->guest_msrs[from] = tmp;
1724 }
1725 
1726 /*
1727  * Set up the vmcs to automatically save and restore system
1728  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1729  * mode, as fiddling with msrs is very expensive.
1730  */
setup_msrs(struct vcpu_vmx * vmx)1731 static void setup_msrs(struct vcpu_vmx *vmx)
1732 {
1733 	int save_nmsrs, index;
1734 	unsigned long *msr_bitmap;
1735 
1736 	save_nmsrs = 0;
1737 #ifdef CONFIG_X86_64
1738 	if (is_long_mode(&vmx->vcpu)) {
1739 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
1740 		if (index >= 0)
1741 			move_msr_up(vmx, index, save_nmsrs++);
1742 		index = __find_msr_index(vmx, MSR_LSTAR);
1743 		if (index >= 0)
1744 			move_msr_up(vmx, index, save_nmsrs++);
1745 		index = __find_msr_index(vmx, MSR_CSTAR);
1746 		if (index >= 0)
1747 			move_msr_up(vmx, index, save_nmsrs++);
1748 		index = __find_msr_index(vmx, MSR_TSC_AUX);
1749 		if (index >= 0 && vmx->rdtscp_enabled)
1750 			move_msr_up(vmx, index, save_nmsrs++);
1751 		/*
1752 		 * MSR_STAR is only needed on long mode guests, and only
1753 		 * if efer.sce is enabled.
1754 		 */
1755 		index = __find_msr_index(vmx, MSR_STAR);
1756 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1757 			move_msr_up(vmx, index, save_nmsrs++);
1758 	}
1759 #endif
1760 	index = __find_msr_index(vmx, MSR_EFER);
1761 	if (index >= 0 && update_transition_efer(vmx, index))
1762 		move_msr_up(vmx, index, save_nmsrs++);
1763 
1764 	vmx->save_nmsrs = save_nmsrs;
1765 
1766 	if (cpu_has_vmx_msr_bitmap()) {
1767 		if (is_long_mode(&vmx->vcpu))
1768 			msr_bitmap = vmx_msr_bitmap_longmode;
1769 		else
1770 			msr_bitmap = vmx_msr_bitmap_legacy;
1771 
1772 		vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1773 	}
1774 }
1775 
1776 /*
1777  * reads and returns guest's timestamp counter "register"
1778  * guest_tsc = host_tsc + tsc_offset    -- 21.3
1779  */
guest_read_tsc(void)1780 static u64 guest_read_tsc(void)
1781 {
1782 	u64 host_tsc, tsc_offset;
1783 
1784 	rdtscll(host_tsc);
1785 	tsc_offset = vmcs_read64(TSC_OFFSET);
1786 	return host_tsc + tsc_offset;
1787 }
1788 
1789 /*
1790  * Like guest_read_tsc, but always returns L1's notion of the timestamp
1791  * counter, even if a nested guest (L2) is currently running.
1792  */
vmx_read_l1_tsc(struct kvm_vcpu * vcpu)1793 u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1794 {
1795 	u64 host_tsc, tsc_offset;
1796 
1797 	rdtscll(host_tsc);
1798 	tsc_offset = is_guest_mode(vcpu) ?
1799 		to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1800 		vmcs_read64(TSC_OFFSET);
1801 	return host_tsc + tsc_offset;
1802 }
1803 
1804 /*
1805  * Engage any workarounds for mis-matched TSC rates.  Currently limited to
1806  * software catchup for faster rates on slower CPUs.
1807  */
vmx_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)1808 static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1809 {
1810 	if (!scale)
1811 		return;
1812 
1813 	if (user_tsc_khz > tsc_khz) {
1814 		vcpu->arch.tsc_catchup = 1;
1815 		vcpu->arch.tsc_always_catchup = 1;
1816 	} else
1817 		WARN(1, "user requested TSC rate below hardware speed\n");
1818 }
1819 
1820 /*
1821  * writes 'offset' into guest's timestamp counter offset register
1822  */
vmx_write_tsc_offset(struct kvm_vcpu * vcpu,u64 offset)1823 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1824 {
1825 	if (is_guest_mode(vcpu)) {
1826 		/*
1827 		 * We're here if L1 chose not to trap WRMSR to TSC. According
1828 		 * to the spec, this should set L1's TSC; The offset that L1
1829 		 * set for L2 remains unchanged, and still needs to be added
1830 		 * to the newly set TSC to get L2's TSC.
1831 		 */
1832 		struct vmcs12 *vmcs12;
1833 		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1834 		/* recalculate vmcs02.TSC_OFFSET: */
1835 		vmcs12 = get_vmcs12(vcpu);
1836 		vmcs_write64(TSC_OFFSET, offset +
1837 			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1838 			 vmcs12->tsc_offset : 0));
1839 	} else {
1840 		vmcs_write64(TSC_OFFSET, offset);
1841 	}
1842 }
1843 
vmx_adjust_tsc_offset(struct kvm_vcpu * vcpu,s64 adjustment,bool host)1844 static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1845 {
1846 	u64 offset = vmcs_read64(TSC_OFFSET);
1847 	vmcs_write64(TSC_OFFSET, offset + adjustment);
1848 	if (is_guest_mode(vcpu)) {
1849 		/* Even when running L2, the adjustment needs to apply to L1 */
1850 		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1851 	}
1852 }
1853 
vmx_compute_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)1854 static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1855 {
1856 	return target_tsc - native_read_tsc();
1857 }
1858 
guest_cpuid_has_vmx(struct kvm_vcpu * vcpu)1859 static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1860 {
1861 	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1862 	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1863 }
1864 
1865 /*
1866  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1867  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1868  * all guests if the "nested" module option is off, and can also be disabled
1869  * for a single guest by disabling its VMX cpuid bit.
1870  */
nested_vmx_allowed(struct kvm_vcpu * vcpu)1871 static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1872 {
1873 	return nested && guest_cpuid_has_vmx(vcpu);
1874 }
1875 
1876 /*
1877  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1878  * returned for the various VMX controls MSRs when nested VMX is enabled.
1879  * The same values should also be used to verify that vmcs12 control fields are
1880  * valid during nested entry from L1 to L2.
1881  * Each of these control msrs has a low and high 32-bit half: A low bit is on
1882  * if the corresponding bit in the (32-bit) control field *must* be on, and a
1883  * bit in the high half is on if the corresponding bit in the control field
1884  * may be on. See also vmx_control_verify().
1885  * TODO: allow these variables to be modified (downgraded) by module options
1886  * or other means.
1887  */
1888 static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1889 static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1890 static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1891 static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1892 static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
nested_vmx_setup_ctls_msrs(void)1893 static __init void nested_vmx_setup_ctls_msrs(void)
1894 {
1895 	/*
1896 	 * Note that as a general rule, the high half of the MSRs (bits in
1897 	 * the control fields which may be 1) should be initialized by the
1898 	 * intersection of the underlying hardware's MSR (i.e., features which
1899 	 * can be supported) and the list of features we want to expose -
1900 	 * because they are known to be properly supported in our code.
1901 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
1902 	 * be set to 0, meaning that L1 may turn off any of these bits. The
1903 	 * reason is that if one of these bits is necessary, it will appear
1904 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1905 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
1906 	 * nested_vmx_exit_handled() will not pass related exits to L1.
1907 	 * These rules have exceptions below.
1908 	 */
1909 
1910 	/* pin-based controls */
1911 	/*
1912 	 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1913 	 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1914 	 */
1915 	nested_vmx_pinbased_ctls_low = 0x16 ;
1916 	nested_vmx_pinbased_ctls_high = 0x16 |
1917 		PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1918 		PIN_BASED_VIRTUAL_NMIS;
1919 
1920 	/* exit controls */
1921 	nested_vmx_exit_ctls_low = 0;
1922 	/* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
1923 #ifdef CONFIG_X86_64
1924 	nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1925 #else
1926 	nested_vmx_exit_ctls_high = 0;
1927 #endif
1928 
1929 	/* entry controls */
1930 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1931 		nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1932 	nested_vmx_entry_ctls_low = 0;
1933 	nested_vmx_entry_ctls_high &=
1934 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1935 
1936 	/* cpu-based controls */
1937 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1938 		nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1939 	nested_vmx_procbased_ctls_low = 0;
1940 	nested_vmx_procbased_ctls_high &=
1941 		CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1942 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1943 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1944 		CPU_BASED_CR3_STORE_EXITING |
1945 #ifdef CONFIG_X86_64
1946 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1947 #endif
1948 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1949 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
1950 		CPU_BASED_RDPMC_EXITING |
1951 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1952 	/*
1953 	 * We can allow some features even when not supported by the
1954 	 * hardware. For example, L1 can specify an MSR bitmap - and we
1955 	 * can use it to avoid exits to L1 - even when L0 runs L2
1956 	 * without MSR bitmaps.
1957 	 */
1958 	nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1959 
1960 	/* secondary cpu-based controls */
1961 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1962 		nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1963 	nested_vmx_secondary_ctls_low = 0;
1964 	nested_vmx_secondary_ctls_high &=
1965 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1966 }
1967 
vmx_control_verify(u32 control,u32 low,u32 high)1968 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1969 {
1970 	/*
1971 	 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1972 	 */
1973 	return ((control & high) | low) == control;
1974 }
1975 
vmx_control_msr(u32 low,u32 high)1976 static inline u64 vmx_control_msr(u32 low, u32 high)
1977 {
1978 	return low | ((u64)high << 32);
1979 }
1980 
1981 /*
1982  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1983  * also let it use VMX-specific MSRs.
1984  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
1985  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
1986  * like all other MSRs).
1987  */
vmx_get_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)1988 static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1989 {
1990 	if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
1991 		     msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
1992 		/*
1993 		 * According to the spec, processors which do not support VMX
1994 		 * should throw a #GP(0) when VMX capability MSRs are read.
1995 		 */
1996 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
1997 		return 1;
1998 	}
1999 
2000 	switch (msr_index) {
2001 	case MSR_IA32_FEATURE_CONTROL:
2002 		*pdata = 0;
2003 		break;
2004 	case MSR_IA32_VMX_BASIC:
2005 		/*
2006 		 * This MSR reports some information about VMX support. We
2007 		 * should return information about the VMX we emulate for the
2008 		 * guest, and the VMCS structure we give it - not about the
2009 		 * VMX support of the underlying hardware.
2010 		 */
2011 		*pdata = VMCS12_REVISION |
2012 			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2013 			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2014 		break;
2015 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2016 	case MSR_IA32_VMX_PINBASED_CTLS:
2017 		*pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2018 					nested_vmx_pinbased_ctls_high);
2019 		break;
2020 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2021 	case MSR_IA32_VMX_PROCBASED_CTLS:
2022 		*pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2023 					nested_vmx_procbased_ctls_high);
2024 		break;
2025 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2026 	case MSR_IA32_VMX_EXIT_CTLS:
2027 		*pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2028 					nested_vmx_exit_ctls_high);
2029 		break;
2030 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2031 	case MSR_IA32_VMX_ENTRY_CTLS:
2032 		*pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2033 					nested_vmx_entry_ctls_high);
2034 		break;
2035 	case MSR_IA32_VMX_MISC:
2036 		*pdata = 0;
2037 		break;
2038 	/*
2039 	 * These MSRs specify bits which the guest must keep fixed (on or off)
2040 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2041 	 * We picked the standard core2 setting.
2042 	 */
2043 #define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2044 #define VMXON_CR4_ALWAYSON	X86_CR4_VMXE
2045 	case MSR_IA32_VMX_CR0_FIXED0:
2046 		*pdata = VMXON_CR0_ALWAYSON;
2047 		break;
2048 	case MSR_IA32_VMX_CR0_FIXED1:
2049 		*pdata = -1ULL;
2050 		break;
2051 	case MSR_IA32_VMX_CR4_FIXED0:
2052 		*pdata = VMXON_CR4_ALWAYSON;
2053 		break;
2054 	case MSR_IA32_VMX_CR4_FIXED1:
2055 		*pdata = -1ULL;
2056 		break;
2057 	case MSR_IA32_VMX_VMCS_ENUM:
2058 		*pdata = 0x1f;
2059 		break;
2060 	case MSR_IA32_VMX_PROCBASED_CTLS2:
2061 		*pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2062 					nested_vmx_secondary_ctls_high);
2063 		break;
2064 	case MSR_IA32_VMX_EPT_VPID_CAP:
2065 		/* Currently, no nested ept or nested vpid */
2066 		*pdata = 0;
2067 		break;
2068 	default:
2069 		return 0;
2070 	}
2071 
2072 	return 1;
2073 }
2074 
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)2075 static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2076 {
2077 	if (!nested_vmx_allowed(vcpu))
2078 		return 0;
2079 
2080 	if (msr_index == MSR_IA32_FEATURE_CONTROL)
2081 		/* TODO: the right thing. */
2082 		return 1;
2083 	/*
2084 	 * No need to treat VMX capability MSRs specially: If we don't handle
2085 	 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2086 	 */
2087 	return 0;
2088 }
2089 
2090 /*
2091  * Reads an msr value (of 'msr_index') into 'pdata'.
2092  * Returns 0 on success, non-0 otherwise.
2093  * Assumes vcpu_load() was already called.
2094  */
vmx_get_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 * pdata)2095 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2096 {
2097 	u64 data;
2098 	struct shared_msr_entry *msr;
2099 
2100 	if (!pdata) {
2101 		printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2102 		return -EINVAL;
2103 	}
2104 
2105 	switch (msr_index) {
2106 #ifdef CONFIG_X86_64
2107 	case MSR_FS_BASE:
2108 		data = vmcs_readl(GUEST_FS_BASE);
2109 		break;
2110 	case MSR_GS_BASE:
2111 		data = vmcs_readl(GUEST_GS_BASE);
2112 		break;
2113 	case MSR_KERNEL_GS_BASE:
2114 		vmx_load_host_state(to_vmx(vcpu));
2115 		data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2116 		break;
2117 #endif
2118 	case MSR_EFER:
2119 		return kvm_get_msr_common(vcpu, msr_index, pdata);
2120 	case MSR_IA32_TSC:
2121 		data = guest_read_tsc();
2122 		break;
2123 	case MSR_IA32_SYSENTER_CS:
2124 		data = vmcs_read32(GUEST_SYSENTER_CS);
2125 		break;
2126 	case MSR_IA32_SYSENTER_EIP:
2127 		data = vmcs_readl(GUEST_SYSENTER_EIP);
2128 		break;
2129 	case MSR_IA32_SYSENTER_ESP:
2130 		data = vmcs_readl(GUEST_SYSENTER_ESP);
2131 		break;
2132 	case MSR_TSC_AUX:
2133 		if (!to_vmx(vcpu)->rdtscp_enabled)
2134 			return 1;
2135 		/* Otherwise falls through */
2136 	default:
2137 		if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2138 			return 0;
2139 		msr = find_msr_entry(to_vmx(vcpu), msr_index);
2140 		if (msr) {
2141 			data = msr->data;
2142 			break;
2143 		}
2144 		return kvm_get_msr_common(vcpu, msr_index, pdata);
2145 	}
2146 
2147 	*pdata = data;
2148 	return 0;
2149 }
2150 
2151 /*
2152  * Writes msr value into into the appropriate "register".
2153  * Returns 0 on success, non-0 otherwise.
2154  * Assumes vcpu_load() was already called.
2155  */
vmx_set_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)2156 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2157 {
2158 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2159 	struct shared_msr_entry *msr;
2160 	int ret = 0;
2161 
2162 	switch (msr_index) {
2163 	case MSR_EFER:
2164 		ret = kvm_set_msr_common(vcpu, msr_index, data);
2165 		break;
2166 #ifdef CONFIG_X86_64
2167 	case MSR_FS_BASE:
2168 		vmx_segment_cache_clear(vmx);
2169 		vmcs_writel(GUEST_FS_BASE, data);
2170 		break;
2171 	case MSR_GS_BASE:
2172 		vmx_segment_cache_clear(vmx);
2173 		vmcs_writel(GUEST_GS_BASE, data);
2174 		break;
2175 	case MSR_KERNEL_GS_BASE:
2176 		vmx_load_host_state(vmx);
2177 		vmx->msr_guest_kernel_gs_base = data;
2178 		break;
2179 #endif
2180 	case MSR_IA32_SYSENTER_CS:
2181 		vmcs_write32(GUEST_SYSENTER_CS, data);
2182 		break;
2183 	case MSR_IA32_SYSENTER_EIP:
2184 		vmcs_writel(GUEST_SYSENTER_EIP, data);
2185 		break;
2186 	case MSR_IA32_SYSENTER_ESP:
2187 		vmcs_writel(GUEST_SYSENTER_ESP, data);
2188 		break;
2189 	case MSR_IA32_TSC:
2190 		kvm_write_tsc(vcpu, data);
2191 		break;
2192 	case MSR_IA32_CR_PAT:
2193 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2194 			vmcs_write64(GUEST_IA32_PAT, data);
2195 			vcpu->arch.pat = data;
2196 			break;
2197 		}
2198 		ret = kvm_set_msr_common(vcpu, msr_index, data);
2199 		break;
2200 	case MSR_TSC_AUX:
2201 		if (!vmx->rdtscp_enabled)
2202 			return 1;
2203 		/* Check reserved bit, higher 32 bits should be zero */
2204 		if ((data >> 32) != 0)
2205 			return 1;
2206 		/* Otherwise falls through */
2207 	default:
2208 		if (vmx_set_vmx_msr(vcpu, msr_index, data))
2209 			break;
2210 		msr = find_msr_entry(vmx, msr_index);
2211 		if (msr) {
2212 			msr->data = data;
2213 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2214 				preempt_disable();
2215 				kvm_set_shared_msr(msr->index, msr->data,
2216 						   msr->mask);
2217 				preempt_enable();
2218 			}
2219 			break;
2220 		}
2221 		ret = kvm_set_msr_common(vcpu, msr_index, data);
2222 	}
2223 
2224 	return ret;
2225 }
2226 
vmx_cache_reg(struct kvm_vcpu * vcpu,enum kvm_reg reg)2227 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2228 {
2229 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2230 	switch (reg) {
2231 	case VCPU_REGS_RSP:
2232 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2233 		break;
2234 	case VCPU_REGS_RIP:
2235 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2236 		break;
2237 	case VCPU_EXREG_PDPTR:
2238 		if (enable_ept)
2239 			ept_save_pdptrs(vcpu);
2240 		break;
2241 	default:
2242 		break;
2243 	}
2244 }
2245 
set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)2246 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
2247 {
2248 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2249 		vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2250 	else
2251 		vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2252 
2253 	update_exception_bitmap(vcpu);
2254 }
2255 
cpu_has_kvm_support(void)2256 static __init int cpu_has_kvm_support(void)
2257 {
2258 	return cpu_has_vmx();
2259 }
2260 
vmx_disabled_by_bios(void)2261 static __init int vmx_disabled_by_bios(void)
2262 {
2263 	u64 msr;
2264 
2265 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2266 	if (msr & FEATURE_CONTROL_LOCKED) {
2267 		/* launched w/ TXT and VMX disabled */
2268 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2269 			&& tboot_enabled())
2270 			return 1;
2271 		/* launched w/o TXT and VMX only enabled w/ TXT */
2272 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2273 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2274 			&& !tboot_enabled()) {
2275 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2276 				"activate TXT before enabling KVM\n");
2277 			return 1;
2278 		}
2279 		/* launched w/o TXT and VMX disabled */
2280 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2281 			&& !tboot_enabled())
2282 			return 1;
2283 	}
2284 
2285 	return 0;
2286 }
2287 
kvm_cpu_vmxon(u64 addr)2288 static void kvm_cpu_vmxon(u64 addr)
2289 {
2290 	asm volatile (ASM_VMX_VMXON_RAX
2291 			: : "a"(&addr), "m"(addr)
2292 			: "memory", "cc");
2293 }
2294 
hardware_enable(void * garbage)2295 static int hardware_enable(void *garbage)
2296 {
2297 	int cpu = raw_smp_processor_id();
2298 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2299 	u64 old, test_bits;
2300 
2301 	if (read_cr4() & X86_CR4_VMXE)
2302 		return -EBUSY;
2303 
2304 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2305 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2306 
2307 	test_bits = FEATURE_CONTROL_LOCKED;
2308 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2309 	if (tboot_enabled())
2310 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2311 
2312 	if ((old & test_bits) != test_bits) {
2313 		/* enable and lock */
2314 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2315 	}
2316 	write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2317 
2318 	if (vmm_exclusive) {
2319 		kvm_cpu_vmxon(phys_addr);
2320 		ept_sync_global();
2321 	}
2322 
2323 	store_gdt(&__get_cpu_var(host_gdt));
2324 
2325 	return 0;
2326 }
2327 
vmclear_local_loaded_vmcss(void)2328 static void vmclear_local_loaded_vmcss(void)
2329 {
2330 	int cpu = raw_smp_processor_id();
2331 	struct loaded_vmcs *v, *n;
2332 
2333 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2334 				 loaded_vmcss_on_cpu_link)
2335 		__loaded_vmcs_clear(v);
2336 }
2337 
2338 
2339 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2340  * tricks.
2341  */
kvm_cpu_vmxoff(void)2342 static void kvm_cpu_vmxoff(void)
2343 {
2344 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2345 }
2346 
hardware_disable(void * garbage)2347 static void hardware_disable(void *garbage)
2348 {
2349 	if (vmm_exclusive) {
2350 		vmclear_local_loaded_vmcss();
2351 		kvm_cpu_vmxoff();
2352 	}
2353 	write_cr4(read_cr4() & ~X86_CR4_VMXE);
2354 }
2355 
adjust_vmx_controls(u32 ctl_min,u32 ctl_opt,u32 msr,u32 * result)2356 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2357 				      u32 msr, u32 *result)
2358 {
2359 	u32 vmx_msr_low, vmx_msr_high;
2360 	u32 ctl = ctl_min | ctl_opt;
2361 
2362 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2363 
2364 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2365 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2366 
2367 	/* Ensure minimum (required) set of control bits are supported. */
2368 	if (ctl_min & ~ctl)
2369 		return -EIO;
2370 
2371 	*result = ctl;
2372 	return 0;
2373 }
2374 
allow_1_setting(u32 msr,u32 ctl)2375 static __init bool allow_1_setting(u32 msr, u32 ctl)
2376 {
2377 	u32 vmx_msr_low, vmx_msr_high;
2378 
2379 	rdmsr(msr, vmx_msr_low, vmx_msr_high);
2380 	return vmx_msr_high & ctl;
2381 }
2382 
setup_vmcs_config(struct vmcs_config * vmcs_conf)2383 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2384 {
2385 	u32 vmx_msr_low, vmx_msr_high;
2386 	u32 min, opt, min2, opt2;
2387 	u32 _pin_based_exec_control = 0;
2388 	u32 _cpu_based_exec_control = 0;
2389 	u32 _cpu_based_2nd_exec_control = 0;
2390 	u32 _vmexit_control = 0;
2391 	u32 _vmentry_control = 0;
2392 
2393 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2394 	opt = PIN_BASED_VIRTUAL_NMIS;
2395 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2396 				&_pin_based_exec_control) < 0)
2397 		return -EIO;
2398 
2399 	min = CPU_BASED_HLT_EXITING |
2400 #ifdef CONFIG_X86_64
2401 	      CPU_BASED_CR8_LOAD_EXITING |
2402 	      CPU_BASED_CR8_STORE_EXITING |
2403 #endif
2404 	      CPU_BASED_CR3_LOAD_EXITING |
2405 	      CPU_BASED_CR3_STORE_EXITING |
2406 	      CPU_BASED_USE_IO_BITMAPS |
2407 	      CPU_BASED_MOV_DR_EXITING |
2408 	      CPU_BASED_USE_TSC_OFFSETING |
2409 	      CPU_BASED_MWAIT_EXITING |
2410 	      CPU_BASED_MONITOR_EXITING |
2411 	      CPU_BASED_INVLPG_EXITING |
2412 	      CPU_BASED_RDPMC_EXITING;
2413 
2414 	opt = CPU_BASED_TPR_SHADOW |
2415 	      CPU_BASED_USE_MSR_BITMAPS |
2416 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2417 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2418 				&_cpu_based_exec_control) < 0)
2419 		return -EIO;
2420 #ifdef CONFIG_X86_64
2421 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2422 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2423 					   ~CPU_BASED_CR8_STORE_EXITING;
2424 #endif
2425 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2426 		min2 = 0;
2427 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2428 			SECONDARY_EXEC_WBINVD_EXITING |
2429 			SECONDARY_EXEC_ENABLE_VPID |
2430 			SECONDARY_EXEC_ENABLE_EPT |
2431 			SECONDARY_EXEC_UNRESTRICTED_GUEST |
2432 			SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2433 			SECONDARY_EXEC_RDTSCP;
2434 		if (adjust_vmx_controls(min2, opt2,
2435 					MSR_IA32_VMX_PROCBASED_CTLS2,
2436 					&_cpu_based_2nd_exec_control) < 0)
2437 			return -EIO;
2438 	}
2439 #ifndef CONFIG_X86_64
2440 	if (!(_cpu_based_2nd_exec_control &
2441 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2442 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2443 #endif
2444 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2445 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2446 		   enabled */
2447 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2448 					     CPU_BASED_CR3_STORE_EXITING |
2449 					     CPU_BASED_INVLPG_EXITING);
2450 		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2451 		      vmx_capability.ept, vmx_capability.vpid);
2452 	}
2453 
2454 	min = 0;
2455 #ifdef CONFIG_X86_64
2456 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2457 #endif
2458 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
2459 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2460 				&_vmexit_control) < 0)
2461 		return -EIO;
2462 
2463 	min = 0;
2464 	opt = VM_ENTRY_LOAD_IA32_PAT;
2465 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2466 				&_vmentry_control) < 0)
2467 		return -EIO;
2468 
2469 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2470 
2471 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2472 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2473 		return -EIO;
2474 
2475 #ifdef CONFIG_X86_64
2476 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2477 	if (vmx_msr_high & (1u<<16))
2478 		return -EIO;
2479 #endif
2480 
2481 	/* Require Write-Back (WB) memory type for VMCS accesses. */
2482 	if (((vmx_msr_high >> 18) & 15) != 6)
2483 		return -EIO;
2484 
2485 	vmcs_conf->size = vmx_msr_high & 0x1fff;
2486 	vmcs_conf->order = get_order(vmcs_config.size);
2487 	vmcs_conf->revision_id = vmx_msr_low;
2488 
2489 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2490 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2491 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2492 	vmcs_conf->vmexit_ctrl         = _vmexit_control;
2493 	vmcs_conf->vmentry_ctrl        = _vmentry_control;
2494 
2495 	cpu_has_load_ia32_efer =
2496 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2497 				VM_ENTRY_LOAD_IA32_EFER)
2498 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2499 				   VM_EXIT_LOAD_IA32_EFER);
2500 
2501 	cpu_has_load_perf_global_ctrl =
2502 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2503 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2504 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2505 				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2506 
2507 	/*
2508 	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2509 	 * but due to arrata below it can't be used. Workaround is to use
2510 	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2511 	 *
2512 	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2513 	 *
2514 	 * AAK155             (model 26)
2515 	 * AAP115             (model 30)
2516 	 * AAT100             (model 37)
2517 	 * BC86,AAY89,BD102   (model 44)
2518 	 * BA97               (model 46)
2519 	 *
2520 	 */
2521 	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2522 		switch (boot_cpu_data.x86_model) {
2523 		case 26:
2524 		case 30:
2525 		case 37:
2526 		case 44:
2527 		case 46:
2528 			cpu_has_load_perf_global_ctrl = false;
2529 			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2530 					"does not work properly. Using workaround\n");
2531 			break;
2532 		default:
2533 			break;
2534 		}
2535 	}
2536 
2537 	return 0;
2538 }
2539 
alloc_vmcs_cpu(int cpu)2540 static struct vmcs *alloc_vmcs_cpu(int cpu)
2541 {
2542 	int node = cpu_to_node(cpu);
2543 	struct page *pages;
2544 	struct vmcs *vmcs;
2545 
2546 	pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2547 	if (!pages)
2548 		return NULL;
2549 	vmcs = page_address(pages);
2550 	memset(vmcs, 0, vmcs_config.size);
2551 	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2552 	return vmcs;
2553 }
2554 
alloc_vmcs(void)2555 static struct vmcs *alloc_vmcs(void)
2556 {
2557 	return alloc_vmcs_cpu(raw_smp_processor_id());
2558 }
2559 
free_vmcs(struct vmcs * vmcs)2560 static void free_vmcs(struct vmcs *vmcs)
2561 {
2562 	free_pages((unsigned long)vmcs, vmcs_config.order);
2563 }
2564 
2565 /*
2566  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2567  */
free_loaded_vmcs(struct loaded_vmcs * loaded_vmcs)2568 static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2569 {
2570 	if (!loaded_vmcs->vmcs)
2571 		return;
2572 	loaded_vmcs_clear(loaded_vmcs);
2573 	free_vmcs(loaded_vmcs->vmcs);
2574 	loaded_vmcs->vmcs = NULL;
2575 }
2576 
free_kvm_area(void)2577 static void free_kvm_area(void)
2578 {
2579 	int cpu;
2580 
2581 	for_each_possible_cpu(cpu) {
2582 		free_vmcs(per_cpu(vmxarea, cpu));
2583 		per_cpu(vmxarea, cpu) = NULL;
2584 	}
2585 }
2586 
alloc_kvm_area(void)2587 static __init int alloc_kvm_area(void)
2588 {
2589 	int cpu;
2590 
2591 	for_each_possible_cpu(cpu) {
2592 		struct vmcs *vmcs;
2593 
2594 		vmcs = alloc_vmcs_cpu(cpu);
2595 		if (!vmcs) {
2596 			free_kvm_area();
2597 			return -ENOMEM;
2598 		}
2599 
2600 		per_cpu(vmxarea, cpu) = vmcs;
2601 	}
2602 	return 0;
2603 }
2604 
hardware_setup(void)2605 static __init int hardware_setup(void)
2606 {
2607 	if (setup_vmcs_config(&vmcs_config) < 0)
2608 		return -EIO;
2609 
2610 	if (boot_cpu_has(X86_FEATURE_NX))
2611 		kvm_enable_efer_bits(EFER_NX);
2612 
2613 	if (!cpu_has_vmx_vpid())
2614 		enable_vpid = 0;
2615 
2616 	if (!cpu_has_vmx_ept() ||
2617 	    !cpu_has_vmx_ept_4levels()) {
2618 		enable_ept = 0;
2619 		enable_unrestricted_guest = 0;
2620 	}
2621 
2622 	if (!cpu_has_vmx_unrestricted_guest())
2623 		enable_unrestricted_guest = 0;
2624 
2625 	if (!cpu_has_vmx_flexpriority())
2626 		flexpriority_enabled = 0;
2627 
2628 	if (!cpu_has_vmx_tpr_shadow())
2629 		kvm_x86_ops->update_cr8_intercept = NULL;
2630 
2631 	if (enable_ept && !cpu_has_vmx_ept_2m_page())
2632 		kvm_disable_largepages();
2633 
2634 	if (!cpu_has_vmx_ple())
2635 		ple_gap = 0;
2636 
2637 	if (nested)
2638 		nested_vmx_setup_ctls_msrs();
2639 
2640 	return alloc_kvm_area();
2641 }
2642 
hardware_unsetup(void)2643 static __exit void hardware_unsetup(void)
2644 {
2645 	free_kvm_area();
2646 }
2647 
fix_pmode_dataseg(int seg,struct kvm_save_segment * save)2648 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2649 {
2650 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2651 
2652 	if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
2653 		vmcs_write16(sf->selector, save->selector);
2654 		vmcs_writel(sf->base, save->base);
2655 		vmcs_write32(sf->limit, save->limit);
2656 		vmcs_write32(sf->ar_bytes, save->ar);
2657 	} else {
2658 		u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2659 			<< AR_DPL_SHIFT;
2660 		vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2661 	}
2662 }
2663 
enter_pmode(struct kvm_vcpu * vcpu)2664 static void enter_pmode(struct kvm_vcpu *vcpu)
2665 {
2666 	unsigned long flags;
2667 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2668 
2669 	vmx->emulation_required = 1;
2670 	vmx->rmode.vm86_active = 0;
2671 
2672 	vmx_segment_cache_clear(vmx);
2673 
2674 	vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
2675 	vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2676 	vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2677 	vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
2678 
2679 	flags = vmcs_readl(GUEST_RFLAGS);
2680 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2681 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2682 	vmcs_writel(GUEST_RFLAGS, flags);
2683 
2684 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2685 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2686 
2687 	update_exception_bitmap(vcpu);
2688 
2689 	if (emulate_invalid_guest_state)
2690 		return;
2691 
2692 	fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2693 	fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2694 	fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2695 	fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
2696 
2697 	vmx_segment_cache_clear(vmx);
2698 
2699 	vmcs_write16(GUEST_SS_SELECTOR, 0);
2700 	vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2701 
2702 	vmcs_write16(GUEST_CS_SELECTOR,
2703 		     vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2704 	vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2705 }
2706 
rmode_tss_base(struct kvm * kvm)2707 static gva_t rmode_tss_base(struct kvm *kvm)
2708 {
2709 	if (!kvm->arch.tss_addr) {
2710 		struct kvm_memslots *slots;
2711 		struct kvm_memory_slot *slot;
2712 		gfn_t base_gfn;
2713 
2714 		slots = kvm_memslots(kvm);
2715 		slot = id_to_memslot(slots, 0);
2716 		base_gfn = slot->base_gfn + slot->npages - 3;
2717 
2718 		return base_gfn << PAGE_SHIFT;
2719 	}
2720 	return kvm->arch.tss_addr;
2721 }
2722 
fix_rmode_seg(int seg,struct kvm_save_segment * save)2723 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2724 {
2725 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2726 
2727 	save->selector = vmcs_read16(sf->selector);
2728 	save->base = vmcs_readl(sf->base);
2729 	save->limit = vmcs_read32(sf->limit);
2730 	save->ar = vmcs_read32(sf->ar_bytes);
2731 	vmcs_write16(sf->selector, save->base >> 4);
2732 	vmcs_write32(sf->base, save->base & 0xffff0);
2733 	vmcs_write32(sf->limit, 0xffff);
2734 	vmcs_write32(sf->ar_bytes, 0xf3);
2735 	if (save->base & 0xf)
2736 		printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2737 			    " aligned when entering protected mode (seg=%d)",
2738 			    seg);
2739 }
2740 
enter_rmode(struct kvm_vcpu * vcpu)2741 static void enter_rmode(struct kvm_vcpu *vcpu)
2742 {
2743 	unsigned long flags;
2744 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2745 
2746 	if (enable_unrestricted_guest)
2747 		return;
2748 
2749 	vmx->emulation_required = 1;
2750 	vmx->rmode.vm86_active = 1;
2751 
2752 	/*
2753 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2754 	 * vcpu. Call it here with phys address pointing 16M below 4G.
2755 	 */
2756 	if (!vcpu->kvm->arch.tss_addr) {
2757 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2758 			     "called before entering vcpu\n");
2759 		srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2760 		vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2761 		vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2762 	}
2763 
2764 	vmx_segment_cache_clear(vmx);
2765 
2766 	vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
2767 	vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
2768 	vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2769 
2770 	vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
2771 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2772 
2773 	vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
2774 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2775 
2776 	flags = vmcs_readl(GUEST_RFLAGS);
2777 	vmx->rmode.save_rflags = flags;
2778 
2779 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2780 
2781 	vmcs_writel(GUEST_RFLAGS, flags);
2782 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2783 	update_exception_bitmap(vcpu);
2784 
2785 	if (emulate_invalid_guest_state)
2786 		goto continue_rmode;
2787 
2788 	vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2789 	vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2790 	vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2791 
2792 	vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
2793 	vmcs_write32(GUEST_CS_LIMIT, 0xffff);
2794 	if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2795 		vmcs_writel(GUEST_CS_BASE, 0xf0000);
2796 	vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2797 
2798 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2799 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2800 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2801 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
2802 
2803 continue_rmode:
2804 	kvm_mmu_reset_context(vcpu);
2805 }
2806 
vmx_set_efer(struct kvm_vcpu * vcpu,u64 efer)2807 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2808 {
2809 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2810 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2811 
2812 	if (!msr)
2813 		return;
2814 
2815 	/*
2816 	 * Force kernel_gs_base reloading before EFER changes, as control
2817 	 * of this msr depends on is_long_mode().
2818 	 */
2819 	vmx_load_host_state(to_vmx(vcpu));
2820 	vcpu->arch.efer = efer;
2821 	if (efer & EFER_LMA) {
2822 		vmcs_write32(VM_ENTRY_CONTROLS,
2823 			     vmcs_read32(VM_ENTRY_CONTROLS) |
2824 			     VM_ENTRY_IA32E_MODE);
2825 		msr->data = efer;
2826 	} else {
2827 		vmcs_write32(VM_ENTRY_CONTROLS,
2828 			     vmcs_read32(VM_ENTRY_CONTROLS) &
2829 			     ~VM_ENTRY_IA32E_MODE);
2830 
2831 		msr->data = efer & ~EFER_LME;
2832 	}
2833 	setup_msrs(vmx);
2834 }
2835 
2836 #ifdef CONFIG_X86_64
2837 
enter_lmode(struct kvm_vcpu * vcpu)2838 static void enter_lmode(struct kvm_vcpu *vcpu)
2839 {
2840 	u32 guest_tr_ar;
2841 
2842 	vmx_segment_cache_clear(to_vmx(vcpu));
2843 
2844 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2845 	if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
2846 		pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2847 				     __func__);
2848 		vmcs_write32(GUEST_TR_AR_BYTES,
2849 			     (guest_tr_ar & ~AR_TYPE_MASK)
2850 			     | AR_TYPE_BUSY_64_TSS);
2851 	}
2852 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2853 }
2854 
exit_lmode(struct kvm_vcpu * vcpu)2855 static void exit_lmode(struct kvm_vcpu *vcpu)
2856 {
2857 	vmcs_write32(VM_ENTRY_CONTROLS,
2858 		     vmcs_read32(VM_ENTRY_CONTROLS)
2859 		     & ~VM_ENTRY_IA32E_MODE);
2860 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2861 }
2862 
2863 #endif
2864 
vmx_flush_tlb(struct kvm_vcpu * vcpu)2865 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2866 {
2867 	vpid_sync_context(to_vmx(vcpu));
2868 	if (enable_ept) {
2869 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2870 			return;
2871 		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
2872 	}
2873 }
2874 
vmx_decache_cr0_guest_bits(struct kvm_vcpu * vcpu)2875 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2876 {
2877 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2878 
2879 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2880 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2881 }
2882 
vmx_decache_cr3(struct kvm_vcpu * vcpu)2883 static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2884 {
2885 	if (enable_ept && is_paging(vcpu))
2886 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2887 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2888 }
2889 
vmx_decache_cr4_guest_bits(struct kvm_vcpu * vcpu)2890 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
2891 {
2892 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2893 
2894 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2895 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
2896 }
2897 
ept_load_pdptrs(struct kvm_vcpu * vcpu)2898 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2899 {
2900 	if (!test_bit(VCPU_EXREG_PDPTR,
2901 		      (unsigned long *)&vcpu->arch.regs_dirty))
2902 		return;
2903 
2904 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2905 		vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2906 		vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2907 		vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2908 		vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
2909 	}
2910 }
2911 
ept_save_pdptrs(struct kvm_vcpu * vcpu)2912 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2913 {
2914 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
2915 		vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2916 		vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2917 		vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2918 		vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2919 	}
2920 
2921 	__set_bit(VCPU_EXREG_PDPTR,
2922 		  (unsigned long *)&vcpu->arch.regs_avail);
2923 	__set_bit(VCPU_EXREG_PDPTR,
2924 		  (unsigned long *)&vcpu->arch.regs_dirty);
2925 }
2926 
2927 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
2928 
ept_update_paging_mode_cr0(unsigned long * hw_cr0,unsigned long cr0,struct kvm_vcpu * vcpu)2929 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2930 					unsigned long cr0,
2931 					struct kvm_vcpu *vcpu)
2932 {
2933 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2934 		vmx_decache_cr3(vcpu);
2935 	if (!(cr0 & X86_CR0_PG)) {
2936 		/* From paging/starting to nonpaging */
2937 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2938 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
2939 			     (CPU_BASED_CR3_LOAD_EXITING |
2940 			      CPU_BASED_CR3_STORE_EXITING));
2941 		vcpu->arch.cr0 = cr0;
2942 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2943 	} else if (!is_paging(vcpu)) {
2944 		/* From nonpaging to paging */
2945 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
2946 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2947 			     ~(CPU_BASED_CR3_LOAD_EXITING |
2948 			       CPU_BASED_CR3_STORE_EXITING));
2949 		vcpu->arch.cr0 = cr0;
2950 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
2951 	}
2952 
2953 	if (!(cr0 & X86_CR0_WP))
2954 		*hw_cr0 &= ~X86_CR0_WP;
2955 }
2956 
vmx_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)2957 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2958 {
2959 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2960 	unsigned long hw_cr0;
2961 
2962 	if (enable_unrestricted_guest)
2963 		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2964 			| KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2965 	else
2966 		hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
2967 
2968 	if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
2969 		enter_pmode(vcpu);
2970 
2971 	if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
2972 		enter_rmode(vcpu);
2973 
2974 #ifdef CONFIG_X86_64
2975 	if (vcpu->arch.efer & EFER_LME) {
2976 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
2977 			enter_lmode(vcpu);
2978 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
2979 			exit_lmode(vcpu);
2980 	}
2981 #endif
2982 
2983 	if (enable_ept)
2984 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2985 
2986 	if (!vcpu->fpu_active)
2987 		hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
2988 
2989 	vmcs_writel(CR0_READ_SHADOW, cr0);
2990 	vmcs_writel(GUEST_CR0, hw_cr0);
2991 	vcpu->arch.cr0 = cr0;
2992 	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
2993 }
2994 
construct_eptp(unsigned long root_hpa)2995 static u64 construct_eptp(unsigned long root_hpa)
2996 {
2997 	u64 eptp;
2998 
2999 	/* TODO write the value reading from MSR */
3000 	eptp = VMX_EPT_DEFAULT_MT |
3001 		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3002 	eptp |= (root_hpa & PAGE_MASK);
3003 
3004 	return eptp;
3005 }
3006 
vmx_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)3007 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3008 {
3009 	unsigned long guest_cr3;
3010 	u64 eptp;
3011 
3012 	guest_cr3 = cr3;
3013 	if (enable_ept) {
3014 		eptp = construct_eptp(cr3);
3015 		vmcs_write64(EPT_POINTER, eptp);
3016 		guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3017 			vcpu->kvm->arch.ept_identity_map_addr;
3018 		ept_load_pdptrs(vcpu);
3019 	}
3020 
3021 	vmx_flush_tlb(vcpu);
3022 	vmcs_writel(GUEST_CR3, guest_cr3);
3023 }
3024 
vmx_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)3025 static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3026 {
3027 	unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3028 		    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3029 
3030 	if (cr4 & X86_CR4_VMXE) {
3031 		/*
3032 		 * To use VMXON (and later other VMX instructions), a guest
3033 		 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3034 		 * So basically the check on whether to allow nested VMX
3035 		 * is here.
3036 		 */
3037 		if (!nested_vmx_allowed(vcpu))
3038 			return 1;
3039 	} else if (to_vmx(vcpu)->nested.vmxon)
3040 		return 1;
3041 
3042 	vcpu->arch.cr4 = cr4;
3043 	if (enable_ept) {
3044 		if (!is_paging(vcpu)) {
3045 			hw_cr4 &= ~X86_CR4_PAE;
3046 			hw_cr4 |= X86_CR4_PSE;
3047 		} else if (!(cr4 & X86_CR4_PAE)) {
3048 			hw_cr4 &= ~X86_CR4_PAE;
3049 		}
3050 	}
3051 
3052 	vmcs_writel(CR4_READ_SHADOW, cr4);
3053 	vmcs_writel(GUEST_CR4, hw_cr4);
3054 	return 0;
3055 }
3056 
vmx_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3057 static void vmx_get_segment(struct kvm_vcpu *vcpu,
3058 			    struct kvm_segment *var, int seg)
3059 {
3060 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3061 	struct kvm_save_segment *save;
3062 	u32 ar;
3063 
3064 	if (vmx->rmode.vm86_active
3065 	    && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3066 		|| seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3067 		|| seg == VCPU_SREG_GS)
3068 	    && !emulate_invalid_guest_state) {
3069 		switch (seg) {
3070 		case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3071 		case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3072 		case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3073 		case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3074 		case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3075 		default: BUG();
3076 		}
3077 		var->selector = save->selector;
3078 		var->base = save->base;
3079 		var->limit = save->limit;
3080 		ar = save->ar;
3081 		if (seg == VCPU_SREG_TR
3082 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3083 			goto use_saved_rmode_seg;
3084 	}
3085 	var->base = vmx_read_guest_seg_base(vmx, seg);
3086 	var->limit = vmx_read_guest_seg_limit(vmx, seg);
3087 	var->selector = vmx_read_guest_seg_selector(vmx, seg);
3088 	ar = vmx_read_guest_seg_ar(vmx, seg);
3089 use_saved_rmode_seg:
3090 	if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
3091 		ar = 0;
3092 	var->type = ar & 15;
3093 	var->s = (ar >> 4) & 1;
3094 	var->dpl = (ar >> 5) & 3;
3095 	var->present = (ar >> 7) & 1;
3096 	var->avl = (ar >> 12) & 1;
3097 	var->l = (ar >> 13) & 1;
3098 	var->db = (ar >> 14) & 1;
3099 	var->g = (ar >> 15) & 1;
3100 	var->unusable = (ar >> 16) & 1;
3101 }
3102 
vmx_get_segment_base(struct kvm_vcpu * vcpu,int seg)3103 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3104 {
3105 	struct kvm_segment s;
3106 
3107 	if (to_vmx(vcpu)->rmode.vm86_active) {
3108 		vmx_get_segment(vcpu, &s, seg);
3109 		return s.base;
3110 	}
3111 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3112 }
3113 
__vmx_get_cpl(struct kvm_vcpu * vcpu)3114 static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
3115 {
3116 	if (!is_protmode(vcpu))
3117 		return 0;
3118 
3119 	if (!is_long_mode(vcpu)
3120 	    && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3121 		return 3;
3122 
3123 	return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
3124 }
3125 
vmx_get_cpl(struct kvm_vcpu * vcpu)3126 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3127 {
3128 	if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3129 		__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3130 		to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3131 	}
3132 	return to_vmx(vcpu)->cpl;
3133 }
3134 
3135 
vmx_segment_access_rights(struct kvm_segment * var)3136 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3137 {
3138 	u32 ar;
3139 
3140 	if (var->unusable)
3141 		ar = 1 << 16;
3142 	else {
3143 		ar = var->type & 15;
3144 		ar |= (var->s & 1) << 4;
3145 		ar |= (var->dpl & 3) << 5;
3146 		ar |= (var->present & 1) << 7;
3147 		ar |= (var->avl & 1) << 12;
3148 		ar |= (var->l & 1) << 13;
3149 		ar |= (var->db & 1) << 14;
3150 		ar |= (var->g & 1) << 15;
3151 	}
3152 	if (ar == 0) /* a 0 value means unusable */
3153 		ar = AR_UNUSABLE_MASK;
3154 
3155 	return ar;
3156 }
3157 
vmx_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)3158 static void vmx_set_segment(struct kvm_vcpu *vcpu,
3159 			    struct kvm_segment *var, int seg)
3160 {
3161 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3162 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3163 	u32 ar;
3164 
3165 	vmx_segment_cache_clear(vmx);
3166 
3167 	if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
3168 		vmcs_write16(sf->selector, var->selector);
3169 		vmx->rmode.tr.selector = var->selector;
3170 		vmx->rmode.tr.base = var->base;
3171 		vmx->rmode.tr.limit = var->limit;
3172 		vmx->rmode.tr.ar = vmx_segment_access_rights(var);
3173 		return;
3174 	}
3175 	vmcs_writel(sf->base, var->base);
3176 	vmcs_write32(sf->limit, var->limit);
3177 	vmcs_write16(sf->selector, var->selector);
3178 	if (vmx->rmode.vm86_active && var->s) {
3179 		/*
3180 		 * Hack real-mode segments into vm86 compatibility.
3181 		 */
3182 		if (var->base == 0xffff0000 && var->selector == 0xf000)
3183 			vmcs_writel(sf->base, 0xf0000);
3184 		ar = 0xf3;
3185 	} else
3186 		ar = vmx_segment_access_rights(var);
3187 
3188 	/*
3189 	 *   Fix the "Accessed" bit in AR field of segment registers for older
3190 	 * qemu binaries.
3191 	 *   IA32 arch specifies that at the time of processor reset the
3192 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3193 	 * is setting it to 0 in the usedland code. This causes invalid guest
3194 	 * state vmexit when "unrestricted guest" mode is turned on.
3195 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3196 	 * tree. Newer qemu binaries with that qemu fix would not need this
3197 	 * kvm hack.
3198 	 */
3199 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3200 		ar |= 0x1; /* Accessed */
3201 
3202 	vmcs_write32(sf->ar_bytes, ar);
3203 	__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3204 }
3205 
vmx_get_cs_db_l_bits(struct kvm_vcpu * vcpu,int * db,int * l)3206 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3207 {
3208 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3209 
3210 	*db = (ar >> 14) & 1;
3211 	*l = (ar >> 13) & 1;
3212 }
3213 
vmx_get_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3214 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3215 {
3216 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3217 	dt->address = vmcs_readl(GUEST_IDTR_BASE);
3218 }
3219 
vmx_set_idt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3220 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3221 {
3222 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3223 	vmcs_writel(GUEST_IDTR_BASE, dt->address);
3224 }
3225 
vmx_get_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3226 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3227 {
3228 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3229 	dt->address = vmcs_readl(GUEST_GDTR_BASE);
3230 }
3231 
vmx_set_gdt(struct kvm_vcpu * vcpu,struct desc_ptr * dt)3232 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3233 {
3234 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3235 	vmcs_writel(GUEST_GDTR_BASE, dt->address);
3236 }
3237 
rmode_segment_valid(struct kvm_vcpu * vcpu,int seg)3238 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3239 {
3240 	struct kvm_segment var;
3241 	u32 ar;
3242 
3243 	vmx_get_segment(vcpu, &var, seg);
3244 	ar = vmx_segment_access_rights(&var);
3245 
3246 	if (var.base != (var.selector << 4))
3247 		return false;
3248 	if (var.limit != 0xffff)
3249 		return false;
3250 	if (ar != 0xf3)
3251 		return false;
3252 
3253 	return true;
3254 }
3255 
code_segment_valid(struct kvm_vcpu * vcpu)3256 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3257 {
3258 	struct kvm_segment cs;
3259 	unsigned int cs_rpl;
3260 
3261 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3262 	cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3263 
3264 	if (cs.unusable)
3265 		return false;
3266 	if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3267 		return false;
3268 	if (!cs.s)
3269 		return false;
3270 	if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3271 		if (cs.dpl > cs_rpl)
3272 			return false;
3273 	} else {
3274 		if (cs.dpl != cs_rpl)
3275 			return false;
3276 	}
3277 	if (!cs.present)
3278 		return false;
3279 
3280 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3281 	return true;
3282 }
3283 
stack_segment_valid(struct kvm_vcpu * vcpu)3284 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3285 {
3286 	struct kvm_segment ss;
3287 	unsigned int ss_rpl;
3288 
3289 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3290 	ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3291 
3292 	if (ss.unusable)
3293 		return true;
3294 	if (ss.type != 3 && ss.type != 7)
3295 		return false;
3296 	if (!ss.s)
3297 		return false;
3298 	if (ss.dpl != ss_rpl) /* DPL != RPL */
3299 		return false;
3300 	if (!ss.present)
3301 		return false;
3302 
3303 	return true;
3304 }
3305 
data_segment_valid(struct kvm_vcpu * vcpu,int seg)3306 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3307 {
3308 	struct kvm_segment var;
3309 	unsigned int rpl;
3310 
3311 	vmx_get_segment(vcpu, &var, seg);
3312 	rpl = var.selector & SELECTOR_RPL_MASK;
3313 
3314 	if (var.unusable)
3315 		return true;
3316 	if (!var.s)
3317 		return false;
3318 	if (!var.present)
3319 		return false;
3320 	if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3321 		if (var.dpl < rpl) /* DPL < RPL */
3322 			return false;
3323 	}
3324 
3325 	/* TODO: Add other members to kvm_segment_field to allow checking for other access
3326 	 * rights flags
3327 	 */
3328 	return true;
3329 }
3330 
tr_valid(struct kvm_vcpu * vcpu)3331 static bool tr_valid(struct kvm_vcpu *vcpu)
3332 {
3333 	struct kvm_segment tr;
3334 
3335 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3336 
3337 	if (tr.unusable)
3338 		return false;
3339 	if (tr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
3340 		return false;
3341 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3342 		return false;
3343 	if (!tr.present)
3344 		return false;
3345 
3346 	return true;
3347 }
3348 
ldtr_valid(struct kvm_vcpu * vcpu)3349 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3350 {
3351 	struct kvm_segment ldtr;
3352 
3353 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3354 
3355 	if (ldtr.unusable)
3356 		return true;
3357 	if (ldtr.selector & SELECTOR_TI_MASK)	/* TI = 1 */
3358 		return false;
3359 	if (ldtr.type != 2)
3360 		return false;
3361 	if (!ldtr.present)
3362 		return false;
3363 
3364 	return true;
3365 }
3366 
cs_ss_rpl_check(struct kvm_vcpu * vcpu)3367 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3368 {
3369 	struct kvm_segment cs, ss;
3370 
3371 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3372 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3373 
3374 	return ((cs.selector & SELECTOR_RPL_MASK) ==
3375 		 (ss.selector & SELECTOR_RPL_MASK));
3376 }
3377 
3378 /*
3379  * Check if guest state is valid. Returns true if valid, false if
3380  * not.
3381  * We assume that registers are always usable
3382  */
guest_state_valid(struct kvm_vcpu * vcpu)3383 static bool guest_state_valid(struct kvm_vcpu *vcpu)
3384 {
3385 	/* real mode guest state checks */
3386 	if (!is_protmode(vcpu)) {
3387 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3388 			return false;
3389 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3390 			return false;
3391 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3392 			return false;
3393 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3394 			return false;
3395 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3396 			return false;
3397 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3398 			return false;
3399 	} else {
3400 	/* protected mode guest state checks */
3401 		if (!cs_ss_rpl_check(vcpu))
3402 			return false;
3403 		if (!code_segment_valid(vcpu))
3404 			return false;
3405 		if (!stack_segment_valid(vcpu))
3406 			return false;
3407 		if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3408 			return false;
3409 		if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3410 			return false;
3411 		if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3412 			return false;
3413 		if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3414 			return false;
3415 		if (!tr_valid(vcpu))
3416 			return false;
3417 		if (!ldtr_valid(vcpu))
3418 			return false;
3419 	}
3420 	/* TODO:
3421 	 * - Add checks on RIP
3422 	 * - Add checks on RFLAGS
3423 	 */
3424 
3425 	return true;
3426 }
3427 
init_rmode_tss(struct kvm * kvm)3428 static int init_rmode_tss(struct kvm *kvm)
3429 {
3430 	gfn_t fn;
3431 	u16 data = 0;
3432 	int r, idx, ret = 0;
3433 
3434 	idx = srcu_read_lock(&kvm->srcu);
3435 	fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
3436 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3437 	if (r < 0)
3438 		goto out;
3439 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3440 	r = kvm_write_guest_page(kvm, fn++, &data,
3441 			TSS_IOPB_BASE_OFFSET, sizeof(u16));
3442 	if (r < 0)
3443 		goto out;
3444 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3445 	if (r < 0)
3446 		goto out;
3447 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3448 	if (r < 0)
3449 		goto out;
3450 	data = ~0;
3451 	r = kvm_write_guest_page(kvm, fn, &data,
3452 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3453 				 sizeof(u8));
3454 	if (r < 0)
3455 		goto out;
3456 
3457 	ret = 1;
3458 out:
3459 	srcu_read_unlock(&kvm->srcu, idx);
3460 	return ret;
3461 }
3462 
init_rmode_identity_map(struct kvm * kvm)3463 static int init_rmode_identity_map(struct kvm *kvm)
3464 {
3465 	int i, idx, r, ret;
3466 	pfn_t identity_map_pfn;
3467 	u32 tmp;
3468 
3469 	if (!enable_ept)
3470 		return 1;
3471 	if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3472 		printk(KERN_ERR "EPT: identity-mapping pagetable "
3473 			"haven't been allocated!\n");
3474 		return 0;
3475 	}
3476 	if (likely(kvm->arch.ept_identity_pagetable_done))
3477 		return 1;
3478 	ret = 0;
3479 	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3480 	idx = srcu_read_lock(&kvm->srcu);
3481 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3482 	if (r < 0)
3483 		goto out;
3484 	/* Set up identity-mapping pagetable for EPT in real mode */
3485 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3486 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3487 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3488 		r = kvm_write_guest_page(kvm, identity_map_pfn,
3489 				&tmp, i * sizeof(tmp), sizeof(tmp));
3490 		if (r < 0)
3491 			goto out;
3492 	}
3493 	kvm->arch.ept_identity_pagetable_done = true;
3494 	ret = 1;
3495 out:
3496 	srcu_read_unlock(&kvm->srcu, idx);
3497 	return ret;
3498 }
3499 
seg_setup(int seg)3500 static void seg_setup(int seg)
3501 {
3502 	struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3503 	unsigned int ar;
3504 
3505 	vmcs_write16(sf->selector, 0);
3506 	vmcs_writel(sf->base, 0);
3507 	vmcs_write32(sf->limit, 0xffff);
3508 	if (enable_unrestricted_guest) {
3509 		ar = 0x93;
3510 		if (seg == VCPU_SREG_CS)
3511 			ar |= 0x08; /* code segment */
3512 	} else
3513 		ar = 0xf3;
3514 
3515 	vmcs_write32(sf->ar_bytes, ar);
3516 }
3517 
alloc_apic_access_page(struct kvm * kvm)3518 static int alloc_apic_access_page(struct kvm *kvm)
3519 {
3520 	struct kvm_userspace_memory_region kvm_userspace_mem;
3521 	int r = 0;
3522 
3523 	mutex_lock(&kvm->slots_lock);
3524 	if (kvm->arch.apic_access_page)
3525 		goto out;
3526 	kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3527 	kvm_userspace_mem.flags = 0;
3528 	kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3529 	kvm_userspace_mem.memory_size = PAGE_SIZE;
3530 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3531 	if (r)
3532 		goto out;
3533 
3534 	kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
3535 out:
3536 	mutex_unlock(&kvm->slots_lock);
3537 	return r;
3538 }
3539 
alloc_identity_pagetable(struct kvm * kvm)3540 static int alloc_identity_pagetable(struct kvm *kvm)
3541 {
3542 	struct kvm_userspace_memory_region kvm_userspace_mem;
3543 	int r = 0;
3544 
3545 	mutex_lock(&kvm->slots_lock);
3546 	if (kvm->arch.ept_identity_pagetable)
3547 		goto out;
3548 	kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3549 	kvm_userspace_mem.flags = 0;
3550 	kvm_userspace_mem.guest_phys_addr =
3551 		kvm->arch.ept_identity_map_addr;
3552 	kvm_userspace_mem.memory_size = PAGE_SIZE;
3553 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3554 	if (r)
3555 		goto out;
3556 
3557 	kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
3558 			kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3559 out:
3560 	mutex_unlock(&kvm->slots_lock);
3561 	return r;
3562 }
3563 
allocate_vpid(struct vcpu_vmx * vmx)3564 static void allocate_vpid(struct vcpu_vmx *vmx)
3565 {
3566 	int vpid;
3567 
3568 	vmx->vpid = 0;
3569 	if (!enable_vpid)
3570 		return;
3571 	spin_lock(&vmx_vpid_lock);
3572 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3573 	if (vpid < VMX_NR_VPIDS) {
3574 		vmx->vpid = vpid;
3575 		__set_bit(vpid, vmx_vpid_bitmap);
3576 	}
3577 	spin_unlock(&vmx_vpid_lock);
3578 }
3579 
free_vpid(struct vcpu_vmx * vmx)3580 static void free_vpid(struct vcpu_vmx *vmx)
3581 {
3582 	if (!enable_vpid)
3583 		return;
3584 	spin_lock(&vmx_vpid_lock);
3585 	if (vmx->vpid != 0)
3586 		__clear_bit(vmx->vpid, vmx_vpid_bitmap);
3587 	spin_unlock(&vmx_vpid_lock);
3588 }
3589 
__vmx_disable_intercept_for_msr(unsigned long * msr_bitmap,u32 msr)3590 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
3591 {
3592 	int f = sizeof(unsigned long);
3593 
3594 	if (!cpu_has_vmx_msr_bitmap())
3595 		return;
3596 
3597 	/*
3598 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3599 	 * have the write-low and read-high bitmap offsets the wrong way round.
3600 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3601 	 */
3602 	if (msr <= 0x1fff) {
3603 		__clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3604 		__clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
3605 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3606 		msr &= 0x1fff;
3607 		__clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3608 		__clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
3609 	}
3610 }
3611 
vmx_disable_intercept_for_msr(u32 msr,bool longmode_only)3612 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3613 {
3614 	if (!longmode_only)
3615 		__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3616 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3617 }
3618 
3619 /*
3620  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3621  * will not change in the lifetime of the guest.
3622  * Note that host-state that does change is set elsewhere. E.g., host-state
3623  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3624  */
vmx_set_constant_host_state(void)3625 static void vmx_set_constant_host_state(void)
3626 {
3627 	u32 low32, high32;
3628 	unsigned long tmpl;
3629 	struct desc_ptr dt;
3630 
3631 	vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS);  /* 22.2.3 */
3632 	vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
3633 	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
3634 
3635 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
3636 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3637 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3638 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
3639 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
3640 
3641 	native_store_idt(&dt);
3642 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
3643 
3644 	asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3645 	vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3646 
3647 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3648 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3649 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3650 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
3651 
3652 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3653 		rdmsr(MSR_IA32_CR_PAT, low32, high32);
3654 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3655 	}
3656 }
3657 
set_cr4_guest_host_mask(struct vcpu_vmx * vmx)3658 static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3659 {
3660 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3661 	if (enable_ept)
3662 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
3663 	if (is_guest_mode(&vmx->vcpu))
3664 		vmx->vcpu.arch.cr4_guest_owned_bits &=
3665 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
3666 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3667 }
3668 
vmx_exec_control(struct vcpu_vmx * vmx)3669 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3670 {
3671 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3672 	if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3673 		exec_control &= ~CPU_BASED_TPR_SHADOW;
3674 #ifdef CONFIG_X86_64
3675 		exec_control |= CPU_BASED_CR8_STORE_EXITING |
3676 				CPU_BASED_CR8_LOAD_EXITING;
3677 #endif
3678 	}
3679 	if (!enable_ept)
3680 		exec_control |= CPU_BASED_CR3_STORE_EXITING |
3681 				CPU_BASED_CR3_LOAD_EXITING  |
3682 				CPU_BASED_INVLPG_EXITING;
3683 	return exec_control;
3684 }
3685 
vmx_secondary_exec_control(struct vcpu_vmx * vmx)3686 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3687 {
3688 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3689 	if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3690 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3691 	if (vmx->vpid == 0)
3692 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3693 	if (!enable_ept) {
3694 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3695 		enable_unrestricted_guest = 0;
3696 	}
3697 	if (!enable_unrestricted_guest)
3698 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3699 	if (!ple_gap)
3700 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3701 	return exec_control;
3702 }
3703 
ept_set_mmio_spte_mask(void)3704 static void ept_set_mmio_spte_mask(void)
3705 {
3706 	/*
3707 	 * EPT Misconfigurations can be generated if the value of bits 2:0
3708 	 * of an EPT paging-structure entry is 110b (write/execute).
3709 	 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3710 	 * spte.
3711 	 */
3712 	kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3713 }
3714 
3715 /*
3716  * Sets up the vmcs for emulated real mode.
3717  */
vmx_vcpu_setup(struct vcpu_vmx * vmx)3718 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
3719 {
3720 #ifdef CONFIG_X86_64
3721 	unsigned long a;
3722 #endif
3723 	int i;
3724 
3725 	/* I/O */
3726 	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3727 	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
3728 
3729 	if (cpu_has_vmx_msr_bitmap())
3730 		vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
3731 
3732 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3733 
3734 	/* Control */
3735 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3736 		vmcs_config.pin_based_exec_ctrl);
3737 
3738 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
3739 
3740 	if (cpu_has_secondary_exec_ctrls()) {
3741 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3742 				vmx_secondary_exec_control(vmx));
3743 	}
3744 
3745 	if (ple_gap) {
3746 		vmcs_write32(PLE_GAP, ple_gap);
3747 		vmcs_write32(PLE_WINDOW, ple_window);
3748 	}
3749 
3750 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3751 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
3752 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
3753 
3754 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
3755 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
3756 	vmx_set_constant_host_state();
3757 #ifdef CONFIG_X86_64
3758 	rdmsrl(MSR_FS_BASE, a);
3759 	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3760 	rdmsrl(MSR_GS_BASE, a);
3761 	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3762 #else
3763 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3764 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3765 #endif
3766 
3767 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3768 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3769 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
3770 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3771 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
3772 
3773 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
3774 		u32 msr_low, msr_high;
3775 		u64 host_pat;
3776 		rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3777 		host_pat = msr_low | ((u64) msr_high << 32);
3778 		/* Write the default value follow host pat */
3779 		vmcs_write64(GUEST_IA32_PAT, host_pat);
3780 		/* Keep arch.pat sync with GUEST_IA32_PAT */
3781 		vmx->vcpu.arch.pat = host_pat;
3782 	}
3783 
3784 	for (i = 0; i < NR_VMX_MSR; ++i) {
3785 		u32 index = vmx_msr_index[i];
3786 		u32 data_low, data_high;
3787 		int j = vmx->nmsrs;
3788 
3789 		if (rdmsr_safe(index, &data_low, &data_high) < 0)
3790 			continue;
3791 		if (wrmsr_safe(index, data_low, data_high) < 0)
3792 			continue;
3793 		vmx->guest_msrs[j].index = i;
3794 		vmx->guest_msrs[j].data = 0;
3795 		vmx->guest_msrs[j].mask = -1ull;
3796 		++vmx->nmsrs;
3797 	}
3798 
3799 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
3800 
3801 	/* 22.2.1, 20.8.1 */
3802 	vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3803 
3804 	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
3805 	set_cr4_guest_host_mask(vmx);
3806 
3807 	kvm_write_tsc(&vmx->vcpu, 0);
3808 
3809 	return 0;
3810 }
3811 
vmx_vcpu_reset(struct kvm_vcpu * vcpu)3812 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3813 {
3814 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3815 	u64 msr;
3816 	int ret;
3817 
3818 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
3819 
3820 	vmx->rmode.vm86_active = 0;
3821 
3822 	vmx->soft_vnmi_blocked = 0;
3823 
3824 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
3825 	kvm_set_cr8(&vmx->vcpu, 0);
3826 	msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
3827 	if (kvm_vcpu_is_bsp(&vmx->vcpu))
3828 		msr |= MSR_IA32_APICBASE_BSP;
3829 	kvm_set_apic_base(&vmx->vcpu, msr);
3830 
3831 	ret = fx_init(&vmx->vcpu);
3832 	if (ret != 0)
3833 		goto out;
3834 
3835 	vmx_segment_cache_clear(vmx);
3836 
3837 	seg_setup(VCPU_SREG_CS);
3838 	/*
3839 	 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3840 	 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4.  Sigh.
3841 	 */
3842 	if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
3843 		vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3844 		vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3845 	} else {
3846 		vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3847 		vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
3848 	}
3849 
3850 	seg_setup(VCPU_SREG_DS);
3851 	seg_setup(VCPU_SREG_ES);
3852 	seg_setup(VCPU_SREG_FS);
3853 	seg_setup(VCPU_SREG_GS);
3854 	seg_setup(VCPU_SREG_SS);
3855 
3856 	vmcs_write16(GUEST_TR_SELECTOR, 0);
3857 	vmcs_writel(GUEST_TR_BASE, 0);
3858 	vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3859 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3860 
3861 	vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3862 	vmcs_writel(GUEST_LDTR_BASE, 0);
3863 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3864 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3865 
3866 	vmcs_write32(GUEST_SYSENTER_CS, 0);
3867 	vmcs_writel(GUEST_SYSENTER_ESP, 0);
3868 	vmcs_writel(GUEST_SYSENTER_EIP, 0);
3869 
3870 	vmcs_writel(GUEST_RFLAGS, 0x02);
3871 	if (kvm_vcpu_is_bsp(&vmx->vcpu))
3872 		kvm_rip_write(vcpu, 0xfff0);
3873 	else
3874 		kvm_rip_write(vcpu, 0);
3875 	kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
3876 
3877 	vmcs_writel(GUEST_DR7, 0x400);
3878 
3879 	vmcs_writel(GUEST_GDTR_BASE, 0);
3880 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3881 
3882 	vmcs_writel(GUEST_IDTR_BASE, 0);
3883 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3884 
3885 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
3886 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3887 	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3888 
3889 	/* Special registers */
3890 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3891 
3892 	setup_msrs(vmx);
3893 
3894 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
3895 
3896 	if (cpu_has_vmx_tpr_shadow()) {
3897 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3898 		if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3899 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
3900 				     __pa(vmx->vcpu.arch.apic->regs));
3901 		vmcs_write32(TPR_THRESHOLD, 0);
3902 	}
3903 
3904 	if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3905 		vmcs_write64(APIC_ACCESS_ADDR,
3906 			     page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
3907 
3908 	if (vmx->vpid != 0)
3909 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3910 
3911 	vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
3912 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3913 	vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
3914 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3915 	vmx_set_cr4(&vmx->vcpu, 0);
3916 	vmx_set_efer(&vmx->vcpu, 0);
3917 	vmx_fpu_activate(&vmx->vcpu);
3918 	update_exception_bitmap(&vmx->vcpu);
3919 
3920 	vpid_sync_context(vmx);
3921 
3922 	ret = 0;
3923 
3924 	/* HACK: Don't enable emulation on guest boot/reset */
3925 	vmx->emulation_required = 0;
3926 
3927 out:
3928 	return ret;
3929 }
3930 
3931 /*
3932  * In nested virtualization, check if L1 asked to exit on external interrupts.
3933  * For most existing hypervisors, this will always return true.
3934  */
nested_exit_on_intr(struct kvm_vcpu * vcpu)3935 static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3936 {
3937 	return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3938 		PIN_BASED_EXT_INTR_MASK;
3939 }
3940 
enable_irq_window(struct kvm_vcpu * vcpu)3941 static void enable_irq_window(struct kvm_vcpu *vcpu)
3942 {
3943 	u32 cpu_based_vm_exec_control;
3944 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3945 		/*
3946 		 * We get here if vmx_interrupt_allowed() said we can't
3947 		 * inject to L1 now because L2 must run. Ask L2 to exit
3948 		 * right after entry, so we can inject to L1 more promptly.
3949 		 */
3950 		kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
3951 		return;
3952 	}
3953 
3954 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3955 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3956 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3957 }
3958 
enable_nmi_window(struct kvm_vcpu * vcpu)3959 static void enable_nmi_window(struct kvm_vcpu *vcpu)
3960 {
3961 	u32 cpu_based_vm_exec_control;
3962 
3963 	if (!cpu_has_virtual_nmis()) {
3964 		enable_irq_window(vcpu);
3965 		return;
3966 	}
3967 
3968 	if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3969 		enable_irq_window(vcpu);
3970 		return;
3971 	}
3972 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3973 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3974 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3975 }
3976 
vmx_inject_irq(struct kvm_vcpu * vcpu)3977 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
3978 {
3979 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3980 	uint32_t intr;
3981 	int irq = vcpu->arch.interrupt.nr;
3982 
3983 	trace_kvm_inj_virq(irq);
3984 
3985 	++vcpu->stat.irq_injections;
3986 	if (vmx->rmode.vm86_active) {
3987 		int inc_eip = 0;
3988 		if (vcpu->arch.interrupt.soft)
3989 			inc_eip = vcpu->arch.event_exit_inst_len;
3990 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
3991 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3992 		return;
3993 	}
3994 	intr = irq | INTR_INFO_VALID_MASK;
3995 	if (vcpu->arch.interrupt.soft) {
3996 		intr |= INTR_TYPE_SOFT_INTR;
3997 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
3998 			     vmx->vcpu.arch.event_exit_inst_len);
3999 	} else
4000 		intr |= INTR_TYPE_EXT_INTR;
4001 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4002 }
4003 
vmx_inject_nmi(struct kvm_vcpu * vcpu)4004 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4005 {
4006 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4007 
4008 	if (is_guest_mode(vcpu))
4009 		return;
4010 
4011 	if (!cpu_has_virtual_nmis()) {
4012 		/*
4013 		 * Tracking the NMI-blocked state in software is built upon
4014 		 * finding the next open IRQ window. This, in turn, depends on
4015 		 * well-behaving guests: They have to keep IRQs disabled at
4016 		 * least as long as the NMI handler runs. Otherwise we may
4017 		 * cause NMI nesting, maybe breaking the guest. But as this is
4018 		 * highly unlikely, we can live with the residual risk.
4019 		 */
4020 		vmx->soft_vnmi_blocked = 1;
4021 		vmx->vnmi_blocked_time = 0;
4022 	}
4023 
4024 	++vcpu->stat.nmi_injections;
4025 	vmx->nmi_known_unmasked = false;
4026 	if (vmx->rmode.vm86_active) {
4027 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4028 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4029 		return;
4030 	}
4031 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4032 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4033 }
4034 
vmx_nmi_allowed(struct kvm_vcpu * vcpu)4035 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4036 {
4037 	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4038 		return 0;
4039 
4040 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4041 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4042 		   | GUEST_INTR_STATE_NMI));
4043 }
4044 
vmx_get_nmi_mask(struct kvm_vcpu * vcpu)4045 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4046 {
4047 	if (!cpu_has_virtual_nmis())
4048 		return to_vmx(vcpu)->soft_vnmi_blocked;
4049 	if (to_vmx(vcpu)->nmi_known_unmasked)
4050 		return false;
4051 	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI;
4052 }
4053 
vmx_set_nmi_mask(struct kvm_vcpu * vcpu,bool masked)4054 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4055 {
4056 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4057 
4058 	if (!cpu_has_virtual_nmis()) {
4059 		if (vmx->soft_vnmi_blocked != masked) {
4060 			vmx->soft_vnmi_blocked = masked;
4061 			vmx->vnmi_blocked_time = 0;
4062 		}
4063 	} else {
4064 		vmx->nmi_known_unmasked = !masked;
4065 		if (masked)
4066 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4067 				      GUEST_INTR_STATE_NMI);
4068 		else
4069 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4070 					GUEST_INTR_STATE_NMI);
4071 	}
4072 }
4073 
vmx_interrupt_allowed(struct kvm_vcpu * vcpu)4074 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4075 {
4076 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
4077 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4078 		if (to_vmx(vcpu)->nested.nested_run_pending ||
4079 		    (vmcs12->idt_vectoring_info_field &
4080 		     VECTORING_INFO_VALID_MASK))
4081 			return 0;
4082 		nested_vmx_vmexit(vcpu);
4083 		vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4084 		vmcs12->vm_exit_intr_info = 0;
4085 		/* fall through to normal code, but now in L1, not L2 */
4086 	}
4087 
4088 	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4089 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4090 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4091 }
4092 
vmx_set_tss_addr(struct kvm * kvm,unsigned int addr)4093 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4094 {
4095 	int ret;
4096 	struct kvm_userspace_memory_region tss_mem = {
4097 		.slot = TSS_PRIVATE_MEMSLOT,
4098 		.guest_phys_addr = addr,
4099 		.memory_size = PAGE_SIZE * 3,
4100 		.flags = 0,
4101 	};
4102 
4103 	ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4104 	if (ret)
4105 		return ret;
4106 	kvm->arch.tss_addr = addr;
4107 	if (!init_rmode_tss(kvm))
4108 		return  -ENOMEM;
4109 
4110 	return 0;
4111 }
4112 
handle_rmode_exception(struct kvm_vcpu * vcpu,int vec,u32 err_code)4113 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4114 				  int vec, u32 err_code)
4115 {
4116 	/*
4117 	 * Instruction with address size override prefix opcode 0x67
4118 	 * Cause the #SS fault with 0 error code in VM86 mode.
4119 	 */
4120 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
4121 		if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
4122 			return 1;
4123 	/*
4124 	 * Forward all other exceptions that are valid in real mode.
4125 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4126 	 *        the required debugging infrastructure rework.
4127 	 */
4128 	switch (vec) {
4129 	case DB_VECTOR:
4130 		if (vcpu->guest_debug &
4131 		    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4132 			return 0;
4133 		kvm_queue_exception(vcpu, vec);
4134 		return 1;
4135 	case BP_VECTOR:
4136 		/*
4137 		 * Update instruction length as we may reinject the exception
4138 		 * from user space while in guest debugging mode.
4139 		 */
4140 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4141 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4142 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4143 			return 0;
4144 		/* fall through */
4145 	case DE_VECTOR:
4146 	case OF_VECTOR:
4147 	case BR_VECTOR:
4148 	case UD_VECTOR:
4149 	case DF_VECTOR:
4150 	case SS_VECTOR:
4151 	case GP_VECTOR:
4152 	case MF_VECTOR:
4153 		kvm_queue_exception(vcpu, vec);
4154 		return 1;
4155 	}
4156 	return 0;
4157 }
4158 
4159 /*
4160  * Trigger machine check on the host. We assume all the MSRs are already set up
4161  * by the CPU and that we still run on the same CPU as the MCE occurred on.
4162  * We pass a fake environment to the machine check handler because we want
4163  * the guest to be always treated like user space, no matter what context
4164  * it used internally.
4165  */
kvm_machine_check(void)4166 static void kvm_machine_check(void)
4167 {
4168 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4169 	struct pt_regs regs = {
4170 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */
4171 		.flags = X86_EFLAGS_IF,
4172 	};
4173 
4174 	do_machine_check(&regs, 0);
4175 #endif
4176 }
4177 
handle_machine_check(struct kvm_vcpu * vcpu)4178 static int handle_machine_check(struct kvm_vcpu *vcpu)
4179 {
4180 	/* already handled by vcpu_run */
4181 	return 1;
4182 }
4183 
handle_exception(struct kvm_vcpu * vcpu)4184 static int handle_exception(struct kvm_vcpu *vcpu)
4185 {
4186 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4187 	struct kvm_run *kvm_run = vcpu->run;
4188 	u32 intr_info, ex_no, error_code;
4189 	unsigned long cr2, rip, dr6;
4190 	u32 vect_info;
4191 	enum emulation_result er;
4192 
4193 	vect_info = vmx->idt_vectoring_info;
4194 	intr_info = vmx->exit_intr_info;
4195 
4196 	if (is_machine_check(intr_info))
4197 		return handle_machine_check(vcpu);
4198 
4199 	if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4200 	    !is_page_fault(intr_info)) {
4201 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4202 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4203 		vcpu->run->internal.ndata = 2;
4204 		vcpu->run->internal.data[0] = vect_info;
4205 		vcpu->run->internal.data[1] = intr_info;
4206 		return 0;
4207 	}
4208 
4209 	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4210 		return 1;  /* already handled by vmx_vcpu_run() */
4211 
4212 	if (is_no_device(intr_info)) {
4213 		vmx_fpu_activate(vcpu);
4214 		return 1;
4215 	}
4216 
4217 	if (is_invalid_opcode(intr_info)) {
4218 		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4219 		if (er != EMULATE_DONE)
4220 			kvm_queue_exception(vcpu, UD_VECTOR);
4221 		return 1;
4222 	}
4223 
4224 	error_code = 0;
4225 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4226 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4227 	if (is_page_fault(intr_info)) {
4228 		/* EPT won't cause page fault directly */
4229 		BUG_ON(enable_ept);
4230 		cr2 = vmcs_readl(EXIT_QUALIFICATION);
4231 		trace_kvm_page_fault(cr2, error_code);
4232 
4233 		if (kvm_event_needs_reinjection(vcpu))
4234 			kvm_mmu_unprotect_page_virt(vcpu, cr2);
4235 		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4236 	}
4237 
4238 	if (vmx->rmode.vm86_active &&
4239 	    handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
4240 								error_code)) {
4241 		if (vcpu->arch.halt_request) {
4242 			vcpu->arch.halt_request = 0;
4243 			return kvm_emulate_halt(vcpu);
4244 		}
4245 		return 1;
4246 	}
4247 
4248 	ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4249 	switch (ex_no) {
4250 	case DB_VECTOR:
4251 		dr6 = vmcs_readl(EXIT_QUALIFICATION);
4252 		if (!(vcpu->guest_debug &
4253 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4254 			vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4255 			kvm_queue_exception(vcpu, DB_VECTOR);
4256 			return 1;
4257 		}
4258 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4259 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4260 		/* fall through */
4261 	case BP_VECTOR:
4262 		/*
4263 		 * Update instruction length as we may reinject #BP from
4264 		 * user space while in guest debugging mode. Reading it for
4265 		 * #DB as well causes no harm, it is not used in that case.
4266 		 */
4267 		vmx->vcpu.arch.event_exit_inst_len =
4268 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4269 		kvm_run->exit_reason = KVM_EXIT_DEBUG;
4270 		rip = kvm_rip_read(vcpu);
4271 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4272 		kvm_run->debug.arch.exception = ex_no;
4273 		break;
4274 	default:
4275 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4276 		kvm_run->ex.exception = ex_no;
4277 		kvm_run->ex.error_code = error_code;
4278 		break;
4279 	}
4280 	return 0;
4281 }
4282 
handle_external_interrupt(struct kvm_vcpu * vcpu)4283 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4284 {
4285 	++vcpu->stat.irq_exits;
4286 	return 1;
4287 }
4288 
handle_triple_fault(struct kvm_vcpu * vcpu)4289 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4290 {
4291 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4292 	return 0;
4293 }
4294 
handle_io(struct kvm_vcpu * vcpu)4295 static int handle_io(struct kvm_vcpu *vcpu)
4296 {
4297 	unsigned long exit_qualification;
4298 	int size, in, string;
4299 	unsigned port;
4300 
4301 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4302 	string = (exit_qualification & 16) != 0;
4303 	in = (exit_qualification & 8) != 0;
4304 
4305 	++vcpu->stat.io_exits;
4306 
4307 	if (string || in)
4308 		return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4309 
4310 	port = exit_qualification >> 16;
4311 	size = (exit_qualification & 7) + 1;
4312 	skip_emulated_instruction(vcpu);
4313 
4314 	return kvm_fast_pio_out(vcpu, size, port);
4315 }
4316 
4317 static void
vmx_patch_hypercall(struct kvm_vcpu * vcpu,unsigned char * hypercall)4318 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4319 {
4320 	/*
4321 	 * Patch in the VMCALL instruction:
4322 	 */
4323 	hypercall[0] = 0x0f;
4324 	hypercall[1] = 0x01;
4325 	hypercall[2] = 0xc1;
4326 }
4327 
4328 /* called to set cr0 as approriate for a mov-to-cr0 exit. */
handle_set_cr0(struct kvm_vcpu * vcpu,unsigned long val)4329 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4330 {
4331 	if (to_vmx(vcpu)->nested.vmxon &&
4332 	    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4333 		return 1;
4334 
4335 	if (is_guest_mode(vcpu)) {
4336 		/*
4337 		 * We get here when L2 changed cr0 in a way that did not change
4338 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4339 		 * but did change L0 shadowed bits. This can currently happen
4340 		 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4341 		 * loading) while pretending to allow the guest to change it.
4342 		 */
4343 		if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4344 			 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4345 			return 1;
4346 		vmcs_writel(CR0_READ_SHADOW, val);
4347 		return 0;
4348 	} else
4349 		return kvm_set_cr0(vcpu, val);
4350 }
4351 
handle_set_cr4(struct kvm_vcpu * vcpu,unsigned long val)4352 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4353 {
4354 	if (is_guest_mode(vcpu)) {
4355 		if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4356 			 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4357 			return 1;
4358 		vmcs_writel(CR4_READ_SHADOW, val);
4359 		return 0;
4360 	} else
4361 		return kvm_set_cr4(vcpu, val);
4362 }
4363 
4364 /* called to set cr0 as approriate for clts instruction exit. */
handle_clts(struct kvm_vcpu * vcpu)4365 static void handle_clts(struct kvm_vcpu *vcpu)
4366 {
4367 	if (is_guest_mode(vcpu)) {
4368 		/*
4369 		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4370 		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4371 		 * just pretend it's off (also in arch.cr0 for fpu_activate).
4372 		 */
4373 		vmcs_writel(CR0_READ_SHADOW,
4374 			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4375 		vcpu->arch.cr0 &= ~X86_CR0_TS;
4376 	} else
4377 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4378 }
4379 
handle_cr(struct kvm_vcpu * vcpu)4380 static int handle_cr(struct kvm_vcpu *vcpu)
4381 {
4382 	unsigned long exit_qualification, val;
4383 	int cr;
4384 	int reg;
4385 	int err;
4386 
4387 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4388 	cr = exit_qualification & 15;
4389 	reg = (exit_qualification >> 8) & 15;
4390 	switch ((exit_qualification >> 4) & 3) {
4391 	case 0: /* mov to cr */
4392 		val = kvm_register_read(vcpu, reg);
4393 		trace_kvm_cr_write(cr, val);
4394 		switch (cr) {
4395 		case 0:
4396 			err = handle_set_cr0(vcpu, val);
4397 			kvm_complete_insn_gp(vcpu, err);
4398 			return 1;
4399 		case 3:
4400 			err = kvm_set_cr3(vcpu, val);
4401 			kvm_complete_insn_gp(vcpu, err);
4402 			return 1;
4403 		case 4:
4404 			err = handle_set_cr4(vcpu, val);
4405 			kvm_complete_insn_gp(vcpu, err);
4406 			return 1;
4407 		case 8: {
4408 				u8 cr8_prev = kvm_get_cr8(vcpu);
4409 				u8 cr8 = kvm_register_read(vcpu, reg);
4410 				err = kvm_set_cr8(vcpu, cr8);
4411 				kvm_complete_insn_gp(vcpu, err);
4412 				if (irqchip_in_kernel(vcpu->kvm))
4413 					return 1;
4414 				if (cr8_prev <= cr8)
4415 					return 1;
4416 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4417 				return 0;
4418 			}
4419 		};
4420 		break;
4421 	case 2: /* clts */
4422 		handle_clts(vcpu);
4423 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4424 		skip_emulated_instruction(vcpu);
4425 		vmx_fpu_activate(vcpu);
4426 		return 1;
4427 	case 1: /*mov from cr*/
4428 		switch (cr) {
4429 		case 3:
4430 			val = kvm_read_cr3(vcpu);
4431 			kvm_register_write(vcpu, reg, val);
4432 			trace_kvm_cr_read(cr, val);
4433 			skip_emulated_instruction(vcpu);
4434 			return 1;
4435 		case 8:
4436 			val = kvm_get_cr8(vcpu);
4437 			kvm_register_write(vcpu, reg, val);
4438 			trace_kvm_cr_read(cr, val);
4439 			skip_emulated_instruction(vcpu);
4440 			return 1;
4441 		}
4442 		break;
4443 	case 3: /* lmsw */
4444 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4445 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4446 		kvm_lmsw(vcpu, val);
4447 
4448 		skip_emulated_instruction(vcpu);
4449 		return 1;
4450 	default:
4451 		break;
4452 	}
4453 	vcpu->run->exit_reason = 0;
4454 	pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4455 	       (int)(exit_qualification >> 4) & 3, cr);
4456 	return 0;
4457 }
4458 
handle_dr(struct kvm_vcpu * vcpu)4459 static int handle_dr(struct kvm_vcpu *vcpu)
4460 {
4461 	unsigned long exit_qualification;
4462 	int dr, reg;
4463 
4464 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */
4465 	if (!kvm_require_cpl(vcpu, 0))
4466 		return 1;
4467 	dr = vmcs_readl(GUEST_DR7);
4468 	if (dr & DR7_GD) {
4469 		/*
4470 		 * As the vm-exit takes precedence over the debug trap, we
4471 		 * need to emulate the latter, either for the host or the
4472 		 * guest debugging itself.
4473 		 */
4474 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4475 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4476 			vcpu->run->debug.arch.dr7 = dr;
4477 			vcpu->run->debug.arch.pc =
4478 				vmcs_readl(GUEST_CS_BASE) +
4479 				vmcs_readl(GUEST_RIP);
4480 			vcpu->run->debug.arch.exception = DB_VECTOR;
4481 			vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4482 			return 0;
4483 		} else {
4484 			vcpu->arch.dr7 &= ~DR7_GD;
4485 			vcpu->arch.dr6 |= DR6_BD;
4486 			vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4487 			kvm_queue_exception(vcpu, DB_VECTOR);
4488 			return 1;
4489 		}
4490 	}
4491 
4492 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4493 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4494 	reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4495 	if (exit_qualification & TYPE_MOV_FROM_DR) {
4496 		unsigned long val;
4497 		if (!kvm_get_dr(vcpu, dr, &val))
4498 			kvm_register_write(vcpu, reg, val);
4499 	} else
4500 		kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
4501 	skip_emulated_instruction(vcpu);
4502 	return 1;
4503 }
4504 
vmx_set_dr7(struct kvm_vcpu * vcpu,unsigned long val)4505 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4506 {
4507 	vmcs_writel(GUEST_DR7, val);
4508 }
4509 
handle_cpuid(struct kvm_vcpu * vcpu)4510 static int handle_cpuid(struct kvm_vcpu *vcpu)
4511 {
4512 	kvm_emulate_cpuid(vcpu);
4513 	return 1;
4514 }
4515 
handle_rdmsr(struct kvm_vcpu * vcpu)4516 static int handle_rdmsr(struct kvm_vcpu *vcpu)
4517 {
4518 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4519 	u64 data;
4520 
4521 	if (vmx_get_msr(vcpu, ecx, &data)) {
4522 		trace_kvm_msr_read_ex(ecx);
4523 		kvm_inject_gp(vcpu, 0);
4524 		return 1;
4525 	}
4526 
4527 	trace_kvm_msr_read(ecx, data);
4528 
4529 	/* FIXME: handling of bits 32:63 of rax, rdx */
4530 	vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4531 	vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
4532 	skip_emulated_instruction(vcpu);
4533 	return 1;
4534 }
4535 
handle_wrmsr(struct kvm_vcpu * vcpu)4536 static int handle_wrmsr(struct kvm_vcpu *vcpu)
4537 {
4538 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4539 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4540 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
4541 
4542 	if (vmx_set_msr(vcpu, ecx, data) != 0) {
4543 		trace_kvm_msr_write_ex(ecx, data);
4544 		kvm_inject_gp(vcpu, 0);
4545 		return 1;
4546 	}
4547 
4548 	trace_kvm_msr_write(ecx, data);
4549 	skip_emulated_instruction(vcpu);
4550 	return 1;
4551 }
4552 
handle_tpr_below_threshold(struct kvm_vcpu * vcpu)4553 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
4554 {
4555 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4556 	return 1;
4557 }
4558 
handle_interrupt_window(struct kvm_vcpu * vcpu)4559 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
4560 {
4561 	u32 cpu_based_vm_exec_control;
4562 
4563 	/* clear pending irq */
4564 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4565 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4566 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4567 
4568 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4569 
4570 	++vcpu->stat.irq_window_exits;
4571 
4572 	/*
4573 	 * If the user space waits to inject interrupts, exit as soon as
4574 	 * possible
4575 	 */
4576 	if (!irqchip_in_kernel(vcpu->kvm) &&
4577 	    vcpu->run->request_interrupt_window &&
4578 	    !kvm_cpu_has_interrupt(vcpu)) {
4579 		vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
4580 		return 0;
4581 	}
4582 	return 1;
4583 }
4584 
handle_halt(struct kvm_vcpu * vcpu)4585 static int handle_halt(struct kvm_vcpu *vcpu)
4586 {
4587 	skip_emulated_instruction(vcpu);
4588 	return kvm_emulate_halt(vcpu);
4589 }
4590 
handle_vmcall(struct kvm_vcpu * vcpu)4591 static int handle_vmcall(struct kvm_vcpu *vcpu)
4592 {
4593 	skip_emulated_instruction(vcpu);
4594 	kvm_emulate_hypercall(vcpu);
4595 	return 1;
4596 }
4597 
handle_invd(struct kvm_vcpu * vcpu)4598 static int handle_invd(struct kvm_vcpu *vcpu)
4599 {
4600 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4601 }
4602 
handle_invlpg(struct kvm_vcpu * vcpu)4603 static int handle_invlpg(struct kvm_vcpu *vcpu)
4604 {
4605 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4606 
4607 	kvm_mmu_invlpg(vcpu, exit_qualification);
4608 	skip_emulated_instruction(vcpu);
4609 	return 1;
4610 }
4611 
handle_rdpmc(struct kvm_vcpu * vcpu)4612 static int handle_rdpmc(struct kvm_vcpu *vcpu)
4613 {
4614 	int err;
4615 
4616 	err = kvm_rdpmc(vcpu);
4617 	kvm_complete_insn_gp(vcpu, err);
4618 
4619 	return 1;
4620 }
4621 
handle_wbinvd(struct kvm_vcpu * vcpu)4622 static int handle_wbinvd(struct kvm_vcpu *vcpu)
4623 {
4624 	skip_emulated_instruction(vcpu);
4625 	kvm_emulate_wbinvd(vcpu);
4626 	return 1;
4627 }
4628 
handle_xsetbv(struct kvm_vcpu * vcpu)4629 static int handle_xsetbv(struct kvm_vcpu *vcpu)
4630 {
4631 	u64 new_bv = kvm_read_edx_eax(vcpu);
4632 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4633 
4634 	if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4635 		skip_emulated_instruction(vcpu);
4636 	return 1;
4637 }
4638 
handle_apic_access(struct kvm_vcpu * vcpu)4639 static int handle_apic_access(struct kvm_vcpu *vcpu)
4640 {
4641 	if (likely(fasteoi)) {
4642 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4643 		int access_type, offset;
4644 
4645 		access_type = exit_qualification & APIC_ACCESS_TYPE;
4646 		offset = exit_qualification & APIC_ACCESS_OFFSET;
4647 		/*
4648 		 * Sane guest uses MOV to write EOI, with written value
4649 		 * not cared. So make a short-circuit here by avoiding
4650 		 * heavy instruction emulation.
4651 		 */
4652 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4653 		    (offset == APIC_EOI)) {
4654 			kvm_lapic_set_eoi(vcpu);
4655 			skip_emulated_instruction(vcpu);
4656 			return 1;
4657 		}
4658 	}
4659 	return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4660 }
4661 
handle_task_switch(struct kvm_vcpu * vcpu)4662 static int handle_task_switch(struct kvm_vcpu *vcpu)
4663 {
4664 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4665 	unsigned long exit_qualification;
4666 	bool has_error_code = false;
4667 	u32 error_code = 0;
4668 	u16 tss_selector;
4669 	int reason, type, idt_v, idt_index;
4670 
4671 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4672 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
4673 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
4674 
4675 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4676 
4677 	reason = (u32)exit_qualification >> 30;
4678 	if (reason == TASK_SWITCH_GATE && idt_v) {
4679 		switch (type) {
4680 		case INTR_TYPE_NMI_INTR:
4681 			vcpu->arch.nmi_injected = false;
4682 			vmx_set_nmi_mask(vcpu, true);
4683 			break;
4684 		case INTR_TYPE_EXT_INTR:
4685 		case INTR_TYPE_SOFT_INTR:
4686 			kvm_clear_interrupt_queue(vcpu);
4687 			break;
4688 		case INTR_TYPE_HARD_EXCEPTION:
4689 			if (vmx->idt_vectoring_info &
4690 			    VECTORING_INFO_DELIVER_CODE_MASK) {
4691 				has_error_code = true;
4692 				error_code =
4693 					vmcs_read32(IDT_VECTORING_ERROR_CODE);
4694 			}
4695 			/* fall through */
4696 		case INTR_TYPE_SOFT_EXCEPTION:
4697 			kvm_clear_exception_queue(vcpu);
4698 			break;
4699 		default:
4700 			break;
4701 		}
4702 	}
4703 	tss_selector = exit_qualification;
4704 
4705 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4706 		       type != INTR_TYPE_EXT_INTR &&
4707 		       type != INTR_TYPE_NMI_INTR))
4708 		skip_emulated_instruction(vcpu);
4709 
4710 	if (kvm_task_switch(vcpu, tss_selector,
4711 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
4712 			    has_error_code, error_code) == EMULATE_FAIL) {
4713 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4714 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4715 		vcpu->run->internal.ndata = 0;
4716 		return 0;
4717 	}
4718 
4719 	/* clear all local breakpoint enable flags */
4720 	vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4721 
4722 	/*
4723 	 * TODO: What about debug traps on tss switch?
4724 	 *       Are we supposed to inject them and update dr6?
4725 	 */
4726 
4727 	return 1;
4728 }
4729 
handle_ept_violation(struct kvm_vcpu * vcpu)4730 static int handle_ept_violation(struct kvm_vcpu *vcpu)
4731 {
4732 	unsigned long exit_qualification;
4733 	gpa_t gpa;
4734 	int gla_validity;
4735 
4736 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4737 
4738 	if (exit_qualification & (1 << 6)) {
4739 		printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
4740 		return -EINVAL;
4741 	}
4742 
4743 	gla_validity = (exit_qualification >> 7) & 0x3;
4744 	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4745 		printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4746 		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4747 			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
4748 			vmcs_readl(GUEST_LINEAR_ADDRESS));
4749 		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4750 			(long unsigned int)exit_qualification);
4751 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4752 		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
4753 		return 0;
4754 	}
4755 
4756 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4757 	trace_kvm_page_fault(gpa, exit_qualification);
4758 	return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
4759 }
4760 
ept_rsvd_mask(u64 spte,int level)4761 static u64 ept_rsvd_mask(u64 spte, int level)
4762 {
4763 	int i;
4764 	u64 mask = 0;
4765 
4766 	for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4767 		mask |= (1ULL << i);
4768 
4769 	if (level > 2)
4770 		/* bits 7:3 reserved */
4771 		mask |= 0xf8;
4772 	else if (level == 2) {
4773 		if (spte & (1ULL << 7))
4774 			/* 2MB ref, bits 20:12 reserved */
4775 			mask |= 0x1ff000;
4776 		else
4777 			/* bits 6:3 reserved */
4778 			mask |= 0x78;
4779 	}
4780 
4781 	return mask;
4782 }
4783 
ept_misconfig_inspect_spte(struct kvm_vcpu * vcpu,u64 spte,int level)4784 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4785 				       int level)
4786 {
4787 	printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4788 
4789 	/* 010b (write-only) */
4790 	WARN_ON((spte & 0x7) == 0x2);
4791 
4792 	/* 110b (write/execute) */
4793 	WARN_ON((spte & 0x7) == 0x6);
4794 
4795 	/* 100b (execute-only) and value not supported by logical processor */
4796 	if (!cpu_has_vmx_ept_execute_only())
4797 		WARN_ON((spte & 0x7) == 0x4);
4798 
4799 	/* not 000b */
4800 	if ((spte & 0x7)) {
4801 		u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4802 
4803 		if (rsvd_bits != 0) {
4804 			printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4805 					 __func__, rsvd_bits);
4806 			WARN_ON(1);
4807 		}
4808 
4809 		if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4810 			u64 ept_mem_type = (spte & 0x38) >> 3;
4811 
4812 			if (ept_mem_type == 2 || ept_mem_type == 3 ||
4813 			    ept_mem_type == 7) {
4814 				printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4815 						__func__, ept_mem_type);
4816 				WARN_ON(1);
4817 			}
4818 		}
4819 	}
4820 }
4821 
handle_ept_misconfig(struct kvm_vcpu * vcpu)4822 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
4823 {
4824 	u64 sptes[4];
4825 	int nr_sptes, i, ret;
4826 	gpa_t gpa;
4827 
4828 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4829 
4830 	ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4831 	if (likely(ret == 1))
4832 		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4833 					      EMULATE_DONE;
4834 	if (unlikely(!ret))
4835 		return 1;
4836 
4837 	/* It is the real ept misconfig */
4838 	printk(KERN_ERR "EPT: Misconfiguration.\n");
4839 	printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4840 
4841 	nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4842 
4843 	for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4844 		ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4845 
4846 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4847 	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
4848 
4849 	return 0;
4850 }
4851 
handle_nmi_window(struct kvm_vcpu * vcpu)4852 static int handle_nmi_window(struct kvm_vcpu *vcpu)
4853 {
4854 	u32 cpu_based_vm_exec_control;
4855 
4856 	/* clear pending NMI */
4857 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4858 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4859 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4860 	++vcpu->stat.nmi_window_exits;
4861 	kvm_make_request(KVM_REQ_EVENT, vcpu);
4862 
4863 	return 1;
4864 }
4865 
handle_invalid_guest_state(struct kvm_vcpu * vcpu)4866 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
4867 {
4868 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4869 	enum emulation_result err = EMULATE_DONE;
4870 	int ret = 1;
4871 	u32 cpu_exec_ctrl;
4872 	bool intr_window_requested;
4873 
4874 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4875 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
4876 
4877 	while (!guest_state_valid(vcpu)) {
4878 		if (intr_window_requested
4879 		    && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4880 			return handle_interrupt_window(&vmx->vcpu);
4881 
4882 		err = emulate_instruction(vcpu, 0);
4883 
4884 		if (err == EMULATE_DO_MMIO) {
4885 			ret = 0;
4886 			goto out;
4887 		}
4888 
4889 		if (err != EMULATE_DONE)
4890 			return 0;
4891 
4892 		if (vcpu->arch.halt_request) {
4893 			vcpu->arch.halt_request = 0;
4894 			ret = kvm_emulate_halt(vcpu);
4895 			goto out;
4896 		}
4897 
4898 		if (signal_pending(current))
4899 			goto out;
4900 		if (need_resched())
4901 			schedule();
4902 	}
4903 
4904 	vmx->emulation_required = 0;
4905 out:
4906 	return ret;
4907 }
4908 
4909 /*
4910  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4911  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4912  */
handle_pause(struct kvm_vcpu * vcpu)4913 static int handle_pause(struct kvm_vcpu *vcpu)
4914 {
4915 	skip_emulated_instruction(vcpu);
4916 	kvm_vcpu_on_spin(vcpu);
4917 
4918 	return 1;
4919 }
4920 
handle_invalid_op(struct kvm_vcpu * vcpu)4921 static int handle_invalid_op(struct kvm_vcpu *vcpu)
4922 {
4923 	kvm_queue_exception(vcpu, UD_VECTOR);
4924 	return 1;
4925 }
4926 
4927 /*
4928  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4929  * We could reuse a single VMCS for all the L2 guests, but we also want the
4930  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4931  * allows keeping them loaded on the processor, and in the future will allow
4932  * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4933  * every entry if they never change.
4934  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4935  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4936  *
4937  * The following functions allocate and free a vmcs02 in this pool.
4938  */
4939 
4940 /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
nested_get_current_vmcs02(struct vcpu_vmx * vmx)4941 static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4942 {
4943 	struct vmcs02_list *item;
4944 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4945 		if (item->vmptr == vmx->nested.current_vmptr) {
4946 			list_move(&item->list, &vmx->nested.vmcs02_pool);
4947 			return &item->vmcs02;
4948 		}
4949 
4950 	if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4951 		/* Recycle the least recently used VMCS. */
4952 		item = list_entry(vmx->nested.vmcs02_pool.prev,
4953 			struct vmcs02_list, list);
4954 		item->vmptr = vmx->nested.current_vmptr;
4955 		list_move(&item->list, &vmx->nested.vmcs02_pool);
4956 		return &item->vmcs02;
4957 	}
4958 
4959 	/* Create a new VMCS */
4960 	item = (struct vmcs02_list *)
4961 		kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4962 	if (!item)
4963 		return NULL;
4964 	item->vmcs02.vmcs = alloc_vmcs();
4965 	if (!item->vmcs02.vmcs) {
4966 		kfree(item);
4967 		return NULL;
4968 	}
4969 	loaded_vmcs_init(&item->vmcs02);
4970 	item->vmptr = vmx->nested.current_vmptr;
4971 	list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4972 	vmx->nested.vmcs02_num++;
4973 	return &item->vmcs02;
4974 }
4975 
4976 /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
nested_free_vmcs02(struct vcpu_vmx * vmx,gpa_t vmptr)4977 static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4978 {
4979 	struct vmcs02_list *item;
4980 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4981 		if (item->vmptr == vmptr) {
4982 			free_loaded_vmcs(&item->vmcs02);
4983 			list_del(&item->list);
4984 			kfree(item);
4985 			vmx->nested.vmcs02_num--;
4986 			return;
4987 		}
4988 }
4989 
4990 /*
4991  * Free all VMCSs saved for this vcpu, except the one pointed by
4992  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4993  * currently used, if running L2), and vmcs01 when running L2.
4994  */
nested_free_all_saved_vmcss(struct vcpu_vmx * vmx)4995 static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
4996 {
4997 	struct vmcs02_list *item, *n;
4998 	list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4999 		if (vmx->loaded_vmcs != &item->vmcs02)
5000 			free_loaded_vmcs(&item->vmcs02);
5001 		list_del(&item->list);
5002 		kfree(item);
5003 	}
5004 	vmx->nested.vmcs02_num = 0;
5005 
5006 	if (vmx->loaded_vmcs != &vmx->vmcs01)
5007 		free_loaded_vmcs(&vmx->vmcs01);
5008 }
5009 
5010 /*
5011  * Emulate the VMXON instruction.
5012  * Currently, we just remember that VMX is active, and do not save or even
5013  * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5014  * do not currently need to store anything in that guest-allocated memory
5015  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5016  * argument is different from the VMXON pointer (which the spec says they do).
5017  */
handle_vmon(struct kvm_vcpu * vcpu)5018 static int handle_vmon(struct kvm_vcpu *vcpu)
5019 {
5020 	struct kvm_segment cs;
5021 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5022 
5023 	/* The Intel VMX Instruction Reference lists a bunch of bits that
5024 	 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5025 	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5026 	 * Otherwise, we should fail with #UD. We test these now:
5027 	 */
5028 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5029 	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5030 	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5031 		kvm_queue_exception(vcpu, UD_VECTOR);
5032 		return 1;
5033 	}
5034 
5035 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5036 	if (is_long_mode(vcpu) && !cs.l) {
5037 		kvm_queue_exception(vcpu, UD_VECTOR);
5038 		return 1;
5039 	}
5040 
5041 	if (vmx_get_cpl(vcpu)) {
5042 		kvm_inject_gp(vcpu, 0);
5043 		return 1;
5044 	}
5045 
5046 	INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5047 	vmx->nested.vmcs02_num = 0;
5048 
5049 	vmx->nested.vmxon = true;
5050 
5051 	skip_emulated_instruction(vcpu);
5052 	return 1;
5053 }
5054 
5055 /*
5056  * Intel's VMX Instruction Reference specifies a common set of prerequisites
5057  * for running VMX instructions (except VMXON, whose prerequisites are
5058  * slightly different). It also specifies what exception to inject otherwise.
5059  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)5060 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5061 {
5062 	struct kvm_segment cs;
5063 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5064 
5065 	if (!vmx->nested.vmxon) {
5066 		kvm_queue_exception(vcpu, UD_VECTOR);
5067 		return 0;
5068 	}
5069 
5070 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5071 	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5072 	    (is_long_mode(vcpu) && !cs.l)) {
5073 		kvm_queue_exception(vcpu, UD_VECTOR);
5074 		return 0;
5075 	}
5076 
5077 	if (vmx_get_cpl(vcpu)) {
5078 		kvm_inject_gp(vcpu, 0);
5079 		return 0;
5080 	}
5081 
5082 	return 1;
5083 }
5084 
5085 /*
5086  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5087  * just stops using VMX.
5088  */
free_nested(struct vcpu_vmx * vmx)5089 static void free_nested(struct vcpu_vmx *vmx)
5090 {
5091 	if (!vmx->nested.vmxon)
5092 		return;
5093 	vmx->nested.vmxon = false;
5094 	if (vmx->nested.current_vmptr != -1ull) {
5095 		kunmap(vmx->nested.current_vmcs12_page);
5096 		nested_release_page(vmx->nested.current_vmcs12_page);
5097 		vmx->nested.current_vmptr = -1ull;
5098 		vmx->nested.current_vmcs12 = NULL;
5099 	}
5100 	/* Unpin physical memory we referred to in current vmcs02 */
5101 	if (vmx->nested.apic_access_page) {
5102 		nested_release_page(vmx->nested.apic_access_page);
5103 		vmx->nested.apic_access_page = 0;
5104 	}
5105 
5106 	nested_free_all_saved_vmcss(vmx);
5107 }
5108 
5109 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)5110 static int handle_vmoff(struct kvm_vcpu *vcpu)
5111 {
5112 	if (!nested_vmx_check_permission(vcpu))
5113 		return 1;
5114 	free_nested(to_vmx(vcpu));
5115 	skip_emulated_instruction(vcpu);
5116 	return 1;
5117 }
5118 
5119 /*
5120  * Decode the memory-address operand of a vmx instruction, as recorded on an
5121  * exit caused by such an instruction (run by a guest hypervisor).
5122  * On success, returns 0. When the operand is invalid, returns 1 and throws
5123  * #UD or #GP.
5124  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,gva_t * ret)5125 static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5126 				 unsigned long exit_qualification,
5127 				 u32 vmx_instruction_info, gva_t *ret)
5128 {
5129 	/*
5130 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5131 	 * Execution", on an exit, vmx_instruction_info holds most of the
5132 	 * addressing components of the operand. Only the displacement part
5133 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5134 	 * For how an actual address is calculated from all these components,
5135 	 * refer to Vol. 1, "Operand Addressing".
5136 	 */
5137 	int  scaling = vmx_instruction_info & 3;
5138 	int  addr_size = (vmx_instruction_info >> 7) & 7;
5139 	bool is_reg = vmx_instruction_info & (1u << 10);
5140 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
5141 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5142 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5143 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5144 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5145 
5146 	if (is_reg) {
5147 		kvm_queue_exception(vcpu, UD_VECTOR);
5148 		return 1;
5149 	}
5150 
5151 	/* Addr = segment_base + offset */
5152 	/* offset = base + [index * scale] + displacement */
5153 	*ret = vmx_get_segment_base(vcpu, seg_reg);
5154 	if (base_is_valid)
5155 		*ret += kvm_register_read(vcpu, base_reg);
5156 	if (index_is_valid)
5157 		*ret += kvm_register_read(vcpu, index_reg)<<scaling;
5158 	*ret += exit_qualification; /* holds the displacement */
5159 
5160 	if (addr_size == 1) /* 32 bit */
5161 		*ret &= 0xffffffff;
5162 
5163 	/*
5164 	 * TODO: throw #GP (and return 1) in various cases that the VM*
5165 	 * instructions require it - e.g., offset beyond segment limit,
5166 	 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5167 	 * address, and so on. Currently these are not checked.
5168 	 */
5169 	return 0;
5170 }
5171 
5172 /*
5173  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5174  * set the success or error code of an emulated VMX instruction, as specified
5175  * by Vol 2B, VMX Instruction Reference, "Conventions".
5176  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)5177 static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5178 {
5179 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5180 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5181 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5182 }
5183 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)5184 static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5185 {
5186 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5187 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5188 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
5189 			| X86_EFLAGS_CF);
5190 }
5191 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)5192 static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5193 					u32 vm_instruction_error)
5194 {
5195 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5196 		/*
5197 		 * failValid writes the error number to the current VMCS, which
5198 		 * can't be done there isn't a current VMCS.
5199 		 */
5200 		nested_vmx_failInvalid(vcpu);
5201 		return;
5202 	}
5203 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5204 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5205 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
5206 			| X86_EFLAGS_ZF);
5207 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5208 }
5209 
5210 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5211 static int handle_vmclear(struct kvm_vcpu *vcpu)
5212 {
5213 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5214 	gva_t gva;
5215 	gpa_t vmptr;
5216 	struct vmcs12 *vmcs12;
5217 	struct page *page;
5218 	struct x86_exception e;
5219 
5220 	if (!nested_vmx_check_permission(vcpu))
5221 		return 1;
5222 
5223 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5224 			vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5225 		return 1;
5226 
5227 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5228 				sizeof(vmptr), &e)) {
5229 		kvm_inject_page_fault(vcpu, &e);
5230 		return 1;
5231 	}
5232 
5233 	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5234 		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5235 		skip_emulated_instruction(vcpu);
5236 		return 1;
5237 	}
5238 
5239 	if (vmptr == vmx->nested.current_vmptr) {
5240 		kunmap(vmx->nested.current_vmcs12_page);
5241 		nested_release_page(vmx->nested.current_vmcs12_page);
5242 		vmx->nested.current_vmptr = -1ull;
5243 		vmx->nested.current_vmcs12 = NULL;
5244 	}
5245 
5246 	page = nested_get_page(vcpu, vmptr);
5247 	if (page == NULL) {
5248 		/*
5249 		 * For accurate processor emulation, VMCLEAR beyond available
5250 		 * physical memory should do nothing at all. However, it is
5251 		 * possible that a nested vmx bug, not a guest hypervisor bug,
5252 		 * resulted in this case, so let's shut down before doing any
5253 		 * more damage:
5254 		 */
5255 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5256 		return 1;
5257 	}
5258 	vmcs12 = kmap(page);
5259 	vmcs12->launch_state = 0;
5260 	kunmap(page);
5261 	nested_release_page(page);
5262 
5263 	nested_free_vmcs02(vmx, vmptr);
5264 
5265 	skip_emulated_instruction(vcpu);
5266 	nested_vmx_succeed(vcpu);
5267 	return 1;
5268 }
5269 
5270 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5271 
5272 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5273 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5274 {
5275 	return nested_vmx_run(vcpu, true);
5276 }
5277 
5278 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5279 static int handle_vmresume(struct kvm_vcpu *vcpu)
5280 {
5281 
5282 	return nested_vmx_run(vcpu, false);
5283 }
5284 
5285 enum vmcs_field_type {
5286 	VMCS_FIELD_TYPE_U16 = 0,
5287 	VMCS_FIELD_TYPE_U64 = 1,
5288 	VMCS_FIELD_TYPE_U32 = 2,
5289 	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5290 };
5291 
vmcs_field_type(unsigned long field)5292 static inline int vmcs_field_type(unsigned long field)
5293 {
5294 	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */
5295 		return VMCS_FIELD_TYPE_U32;
5296 	return (field >> 13) & 0x3 ;
5297 }
5298 
vmcs_field_readonly(unsigned long field)5299 static inline int vmcs_field_readonly(unsigned long field)
5300 {
5301 	return (((field >> 10) & 0x3) == 1);
5302 }
5303 
5304 /*
5305  * Read a vmcs12 field. Since these can have varying lengths and we return
5306  * one type, we chose the biggest type (u64) and zero-extend the return value
5307  * to that size. Note that the caller, handle_vmread, might need to use only
5308  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5309  * 64-bit fields are to be returned).
5310  */
vmcs12_read_any(struct kvm_vcpu * vcpu,unsigned long field,u64 * ret)5311 static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5312 					unsigned long field, u64 *ret)
5313 {
5314 	short offset = vmcs_field_to_offset(field);
5315 	char *p;
5316 
5317 	if (offset < 0)
5318 		return 0;
5319 
5320 	p = ((char *)(get_vmcs12(vcpu))) + offset;
5321 
5322 	switch (vmcs_field_type(field)) {
5323 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5324 		*ret = *((natural_width *)p);
5325 		return 1;
5326 	case VMCS_FIELD_TYPE_U16:
5327 		*ret = *((u16 *)p);
5328 		return 1;
5329 	case VMCS_FIELD_TYPE_U32:
5330 		*ret = *((u32 *)p);
5331 		return 1;
5332 	case VMCS_FIELD_TYPE_U64:
5333 		*ret = *((u64 *)p);
5334 		return 1;
5335 	default:
5336 		return 0; /* can never happen. */
5337 	}
5338 }
5339 
5340 /*
5341  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5342  * used before) all generate the same failure when it is missing.
5343  */
nested_vmx_check_vmcs12(struct kvm_vcpu * vcpu)5344 static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5345 {
5346 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5347 	if (vmx->nested.current_vmptr == -1ull) {
5348 		nested_vmx_failInvalid(vcpu);
5349 		skip_emulated_instruction(vcpu);
5350 		return 0;
5351 	}
5352 	return 1;
5353 }
5354 
handle_vmread(struct kvm_vcpu * vcpu)5355 static int handle_vmread(struct kvm_vcpu *vcpu)
5356 {
5357 	unsigned long field;
5358 	u64 field_value;
5359 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5360 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5361 	gva_t gva = 0;
5362 
5363 	if (!nested_vmx_check_permission(vcpu) ||
5364 	    !nested_vmx_check_vmcs12(vcpu))
5365 		return 1;
5366 
5367 	/* Decode instruction info and find the field to read */
5368 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5369 	/* Read the field, zero-extended to a u64 field_value */
5370 	if (!vmcs12_read_any(vcpu, field, &field_value)) {
5371 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5372 		skip_emulated_instruction(vcpu);
5373 		return 1;
5374 	}
5375 	/*
5376 	 * Now copy part of this value to register or memory, as requested.
5377 	 * Note that the number of bits actually copied is 32 or 64 depending
5378 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5379 	 */
5380 	if (vmx_instruction_info & (1u << 10)) {
5381 		kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5382 			field_value);
5383 	} else {
5384 		if (get_vmx_mem_address(vcpu, exit_qualification,
5385 				vmx_instruction_info, &gva))
5386 			return 1;
5387 		/* _system ok, as nested_vmx_check_permission verified cpl=0 */
5388 		kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5389 			     &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5390 	}
5391 
5392 	nested_vmx_succeed(vcpu);
5393 	skip_emulated_instruction(vcpu);
5394 	return 1;
5395 }
5396 
5397 
handle_vmwrite(struct kvm_vcpu * vcpu)5398 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5399 {
5400 	unsigned long field;
5401 	gva_t gva;
5402 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5403 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5404 	char *p;
5405 	short offset;
5406 	/* The value to write might be 32 or 64 bits, depending on L1's long
5407 	 * mode, and eventually we need to write that into a field of several
5408 	 * possible lengths. The code below first zero-extends the value to 64
5409 	 * bit (field_value), and then copies only the approriate number of
5410 	 * bits into the vmcs12 field.
5411 	 */
5412 	u64 field_value = 0;
5413 	struct x86_exception e;
5414 
5415 	if (!nested_vmx_check_permission(vcpu) ||
5416 	    !nested_vmx_check_vmcs12(vcpu))
5417 		return 1;
5418 
5419 	if (vmx_instruction_info & (1u << 10))
5420 		field_value = kvm_register_read(vcpu,
5421 			(((vmx_instruction_info) >> 3) & 0xf));
5422 	else {
5423 		if (get_vmx_mem_address(vcpu, exit_qualification,
5424 				vmx_instruction_info, &gva))
5425 			return 1;
5426 		if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5427 			   &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5428 			kvm_inject_page_fault(vcpu, &e);
5429 			return 1;
5430 		}
5431 	}
5432 
5433 
5434 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5435 	if (vmcs_field_readonly(field)) {
5436 		nested_vmx_failValid(vcpu,
5437 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5438 		skip_emulated_instruction(vcpu);
5439 		return 1;
5440 	}
5441 
5442 	offset = vmcs_field_to_offset(field);
5443 	if (offset < 0) {
5444 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5445 		skip_emulated_instruction(vcpu);
5446 		return 1;
5447 	}
5448 	p = ((char *) get_vmcs12(vcpu)) + offset;
5449 
5450 	switch (vmcs_field_type(field)) {
5451 	case VMCS_FIELD_TYPE_U16:
5452 		*(u16 *)p = field_value;
5453 		break;
5454 	case VMCS_FIELD_TYPE_U32:
5455 		*(u32 *)p = field_value;
5456 		break;
5457 	case VMCS_FIELD_TYPE_U64:
5458 		*(u64 *)p = field_value;
5459 		break;
5460 	case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5461 		*(natural_width *)p = field_value;
5462 		break;
5463 	default:
5464 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5465 		skip_emulated_instruction(vcpu);
5466 		return 1;
5467 	}
5468 
5469 	nested_vmx_succeed(vcpu);
5470 	skip_emulated_instruction(vcpu);
5471 	return 1;
5472 }
5473 
5474 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5475 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5476 {
5477 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5478 	gva_t gva;
5479 	gpa_t vmptr;
5480 	struct x86_exception e;
5481 
5482 	if (!nested_vmx_check_permission(vcpu))
5483 		return 1;
5484 
5485 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5486 			vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5487 		return 1;
5488 
5489 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5490 				sizeof(vmptr), &e)) {
5491 		kvm_inject_page_fault(vcpu, &e);
5492 		return 1;
5493 	}
5494 
5495 	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5496 		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5497 		skip_emulated_instruction(vcpu);
5498 		return 1;
5499 	}
5500 
5501 	if (vmx->nested.current_vmptr != vmptr) {
5502 		struct vmcs12 *new_vmcs12;
5503 		struct page *page;
5504 		page = nested_get_page(vcpu, vmptr);
5505 		if (page == NULL) {
5506 			nested_vmx_failInvalid(vcpu);
5507 			skip_emulated_instruction(vcpu);
5508 			return 1;
5509 		}
5510 		new_vmcs12 = kmap(page);
5511 		if (new_vmcs12->revision_id != VMCS12_REVISION) {
5512 			kunmap(page);
5513 			nested_release_page_clean(page);
5514 			nested_vmx_failValid(vcpu,
5515 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5516 			skip_emulated_instruction(vcpu);
5517 			return 1;
5518 		}
5519 		if (vmx->nested.current_vmptr != -1ull) {
5520 			kunmap(vmx->nested.current_vmcs12_page);
5521 			nested_release_page(vmx->nested.current_vmcs12_page);
5522 		}
5523 
5524 		vmx->nested.current_vmptr = vmptr;
5525 		vmx->nested.current_vmcs12 = new_vmcs12;
5526 		vmx->nested.current_vmcs12_page = page;
5527 	}
5528 
5529 	nested_vmx_succeed(vcpu);
5530 	skip_emulated_instruction(vcpu);
5531 	return 1;
5532 }
5533 
5534 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5535 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5536 {
5537 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5538 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5539 	gva_t vmcs_gva;
5540 	struct x86_exception e;
5541 
5542 	if (!nested_vmx_check_permission(vcpu))
5543 		return 1;
5544 
5545 	if (get_vmx_mem_address(vcpu, exit_qualification,
5546 			vmx_instruction_info, &vmcs_gva))
5547 		return 1;
5548 	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5549 	if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5550 				 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5551 				 sizeof(u64), &e)) {
5552 		kvm_inject_page_fault(vcpu, &e);
5553 		return 1;
5554 	}
5555 	nested_vmx_succeed(vcpu);
5556 	skip_emulated_instruction(vcpu);
5557 	return 1;
5558 }
5559 
5560 /*
5561  * The exit handlers return 1 if the exit was handled fully and guest execution
5562  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5563  * to be done to userspace and return 0.
5564  */
5565 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5566 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
5567 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5568 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5569 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window,
5570 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5571 	[EXIT_REASON_CR_ACCESS]               = handle_cr,
5572 	[EXIT_REASON_DR_ACCESS]               = handle_dr,
5573 	[EXIT_REASON_CPUID]                   = handle_cpuid,
5574 	[EXIT_REASON_MSR_READ]                = handle_rdmsr,
5575 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
5576 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
5577 	[EXIT_REASON_HLT]                     = handle_halt,
5578 	[EXIT_REASON_INVD]		      = handle_invd,
5579 	[EXIT_REASON_INVLPG]		      = handle_invlpg,
5580 	[EXIT_REASON_RDPMC]                   = handle_rdpmc,
5581 	[EXIT_REASON_VMCALL]                  = handle_vmcall,
5582 	[EXIT_REASON_VMCLEAR]	              = handle_vmclear,
5583 	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
5584 	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
5585 	[EXIT_REASON_VMPTRST]                 = handle_vmptrst,
5586 	[EXIT_REASON_VMREAD]                  = handle_vmread,
5587 	[EXIT_REASON_VMRESUME]                = handle_vmresume,
5588 	[EXIT_REASON_VMWRITE]                 = handle_vmwrite,
5589 	[EXIT_REASON_VMOFF]                   = handle_vmoff,
5590 	[EXIT_REASON_VMON]                    = handle_vmon,
5591 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5592 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5593 	[EXIT_REASON_WBINVD]                  = handle_wbinvd,
5594 	[EXIT_REASON_XSETBV]                  = handle_xsetbv,
5595 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5596 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5597 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation,
5598 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5599 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5600 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_invalid_op,
5601 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
5602 };
5603 
5604 static const int kvm_vmx_max_exit_handlers =
5605 	ARRAY_SIZE(kvm_vmx_exit_handlers);
5606 
5607 /*
5608  * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5609  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5610  * disinterest in the current event (read or write a specific MSR) by using an
5611  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5612  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 exit_reason)5613 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5614 	struct vmcs12 *vmcs12, u32 exit_reason)
5615 {
5616 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5617 	gpa_t bitmap;
5618 
5619 	if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5620 		return 1;
5621 
5622 	/*
5623 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5624 	 * for the four combinations of read/write and low/high MSR numbers.
5625 	 * First we need to figure out which of the four to use:
5626 	 */
5627 	bitmap = vmcs12->msr_bitmap;
5628 	if (exit_reason == EXIT_REASON_MSR_WRITE)
5629 		bitmap += 2048;
5630 	if (msr_index >= 0xc0000000) {
5631 		msr_index -= 0xc0000000;
5632 		bitmap += 1024;
5633 	}
5634 
5635 	/* Then read the msr_index'th bit from this bitmap: */
5636 	if (msr_index < 1024*8) {
5637 		unsigned char b;
5638 		kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5639 		return 1 & (b >> (msr_index & 7));
5640 	} else
5641 		return 1; /* let L1 handle the wrong parameter */
5642 }
5643 
5644 /*
5645  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5646  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5647  * intercept (via guest_host_mask etc.) the current event.
5648  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5649 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5650 	struct vmcs12 *vmcs12)
5651 {
5652 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5653 	int cr = exit_qualification & 15;
5654 	int reg = (exit_qualification >> 8) & 15;
5655 	unsigned long val = kvm_register_read(vcpu, reg);
5656 
5657 	switch ((exit_qualification >> 4) & 3) {
5658 	case 0: /* mov to cr */
5659 		switch (cr) {
5660 		case 0:
5661 			if (vmcs12->cr0_guest_host_mask &
5662 			    (val ^ vmcs12->cr0_read_shadow))
5663 				return 1;
5664 			break;
5665 		case 3:
5666 			if ((vmcs12->cr3_target_count >= 1 &&
5667 					vmcs12->cr3_target_value0 == val) ||
5668 				(vmcs12->cr3_target_count >= 2 &&
5669 					vmcs12->cr3_target_value1 == val) ||
5670 				(vmcs12->cr3_target_count >= 3 &&
5671 					vmcs12->cr3_target_value2 == val) ||
5672 				(vmcs12->cr3_target_count >= 4 &&
5673 					vmcs12->cr3_target_value3 == val))
5674 				return 0;
5675 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5676 				return 1;
5677 			break;
5678 		case 4:
5679 			if (vmcs12->cr4_guest_host_mask &
5680 			    (vmcs12->cr4_read_shadow ^ val))
5681 				return 1;
5682 			break;
5683 		case 8:
5684 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5685 				return 1;
5686 			break;
5687 		}
5688 		break;
5689 	case 2: /* clts */
5690 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5691 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5692 			return 1;
5693 		break;
5694 	case 1: /* mov from cr */
5695 		switch (cr) {
5696 		case 3:
5697 			if (vmcs12->cpu_based_vm_exec_control &
5698 			    CPU_BASED_CR3_STORE_EXITING)
5699 				return 1;
5700 			break;
5701 		case 8:
5702 			if (vmcs12->cpu_based_vm_exec_control &
5703 			    CPU_BASED_CR8_STORE_EXITING)
5704 				return 1;
5705 			break;
5706 		}
5707 		break;
5708 	case 3: /* lmsw */
5709 		/*
5710 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5711 		 * cr0. Other attempted changes are ignored, with no exit.
5712 		 */
5713 		if (vmcs12->cr0_guest_host_mask & 0xe &
5714 		    (val ^ vmcs12->cr0_read_shadow))
5715 			return 1;
5716 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5717 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5718 		    (val & 0x1))
5719 			return 1;
5720 		break;
5721 	}
5722 	return 0;
5723 }
5724 
5725 /*
5726  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5727  * should handle it ourselves in L0 (and then continue L2). Only call this
5728  * when in is_guest_mode (L2).
5729  */
nested_vmx_exit_handled(struct kvm_vcpu * vcpu)5730 static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5731 {
5732 	u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5733 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5734 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5735 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5736 
5737 	if (vmx->nested.nested_run_pending)
5738 		return 0;
5739 
5740 	if (unlikely(vmx->fail)) {
5741 		pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5742 				    vmcs_read32(VM_INSTRUCTION_ERROR));
5743 		return 1;
5744 	}
5745 
5746 	switch (exit_reason) {
5747 	case EXIT_REASON_EXCEPTION_NMI:
5748 		if (!is_exception(intr_info))
5749 			return 0;
5750 		else if (is_page_fault(intr_info))
5751 			return enable_ept;
5752 		return vmcs12->exception_bitmap &
5753 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
5754 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5755 		return 0;
5756 	case EXIT_REASON_TRIPLE_FAULT:
5757 		return 1;
5758 	case EXIT_REASON_PENDING_INTERRUPT:
5759 	case EXIT_REASON_NMI_WINDOW:
5760 		/*
5761 		 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5762 		 * (aka Interrupt Window Exiting) only when L1 turned it on,
5763 		 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5764 		 * Same for NMI Window Exiting.
5765 		 */
5766 		return 1;
5767 	case EXIT_REASON_TASK_SWITCH:
5768 		return 1;
5769 	case EXIT_REASON_CPUID:
5770 		return 1;
5771 	case EXIT_REASON_HLT:
5772 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5773 	case EXIT_REASON_INVD:
5774 		return 1;
5775 	case EXIT_REASON_INVLPG:
5776 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5777 	case EXIT_REASON_RDPMC:
5778 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5779 	case EXIT_REASON_RDTSC:
5780 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5781 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5782 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5783 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5784 	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5785 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5786 		/*
5787 		 * VMX instructions trap unconditionally. This allows L1 to
5788 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5789 		 */
5790 		return 1;
5791 	case EXIT_REASON_CR_ACCESS:
5792 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5793 	case EXIT_REASON_DR_ACCESS:
5794 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5795 	case EXIT_REASON_IO_INSTRUCTION:
5796 		/* TODO: support IO bitmaps */
5797 		return 1;
5798 	case EXIT_REASON_MSR_READ:
5799 	case EXIT_REASON_MSR_WRITE:
5800 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5801 	case EXIT_REASON_INVALID_STATE:
5802 		return 1;
5803 	case EXIT_REASON_MWAIT_INSTRUCTION:
5804 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5805 	case EXIT_REASON_MONITOR_INSTRUCTION:
5806 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5807 	case EXIT_REASON_PAUSE_INSTRUCTION:
5808 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5809 			nested_cpu_has2(vmcs12,
5810 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5811 	case EXIT_REASON_MCE_DURING_VMENTRY:
5812 		return 0;
5813 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
5814 		return 1;
5815 	case EXIT_REASON_APIC_ACCESS:
5816 		return nested_cpu_has2(vmcs12,
5817 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5818 	case EXIT_REASON_EPT_VIOLATION:
5819 	case EXIT_REASON_EPT_MISCONFIG:
5820 		return 0;
5821 	case EXIT_REASON_WBINVD:
5822 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5823 	case EXIT_REASON_XSETBV:
5824 		return 1;
5825 	default:
5826 		return 1;
5827 	}
5828 }
5829 
vmx_get_exit_info(struct kvm_vcpu * vcpu,u64 * info1,u64 * info2)5830 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5831 {
5832 	*info1 = vmcs_readl(EXIT_QUALIFICATION);
5833 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5834 }
5835 
5836 /*
5837  * The guest has exited.  See if we can fix it or if we need userspace
5838  * assistance.
5839  */
vmx_handle_exit(struct kvm_vcpu * vcpu)5840 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
5841 {
5842 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5843 	u32 exit_reason = vmx->exit_reason;
5844 	u32 vectoring_info = vmx->idt_vectoring_info;
5845 
5846 	/* If guest state is invalid, start emulating */
5847 	if (vmx->emulation_required && emulate_invalid_guest_state)
5848 		return handle_invalid_guest_state(vcpu);
5849 
5850 	/*
5851 	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5852 	 * we did not inject a still-pending event to L1 now because of
5853 	 * nested_run_pending, we need to re-enable this bit.
5854 	 */
5855 	if (vmx->nested.nested_run_pending)
5856 		kvm_make_request(KVM_REQ_EVENT, vcpu);
5857 
5858 	if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5859 	    exit_reason == EXIT_REASON_VMRESUME))
5860 		vmx->nested.nested_run_pending = 1;
5861 	else
5862 		vmx->nested.nested_run_pending = 0;
5863 
5864 	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5865 		nested_vmx_vmexit(vcpu);
5866 		return 1;
5867 	}
5868 
5869 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5870 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5871 		vcpu->run->fail_entry.hardware_entry_failure_reason
5872 			= exit_reason;
5873 		return 0;
5874 	}
5875 
5876 	if (unlikely(vmx->fail)) {
5877 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5878 		vcpu->run->fail_entry.hardware_entry_failure_reason
5879 			= vmcs_read32(VM_INSTRUCTION_ERROR);
5880 		return 0;
5881 	}
5882 
5883 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5884 			(exit_reason != EXIT_REASON_EXCEPTION_NMI &&
5885 			exit_reason != EXIT_REASON_EPT_VIOLATION &&
5886 			exit_reason != EXIT_REASON_TASK_SWITCH))
5887 		printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5888 		       "(0x%x) and exit reason is 0x%x\n",
5889 		       __func__, vectoring_info, exit_reason);
5890 
5891 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5892 	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5893 	                                get_vmcs12(vcpu), vcpu)))) {
5894 		if (vmx_interrupt_allowed(vcpu)) {
5895 			vmx->soft_vnmi_blocked = 0;
5896 		} else if (vmx->vnmi_blocked_time > 1000000000LL &&
5897 			   vcpu->arch.nmi_pending) {
5898 			/*
5899 			 * This CPU don't support us in finding the end of an
5900 			 * NMI-blocked window if the guest runs with IRQs
5901 			 * disabled. So we pull the trigger after 1 s of
5902 			 * futile waiting, but inform the user about this.
5903 			 */
5904 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5905 			       "state on VCPU %d after 1 s timeout\n",
5906 			       __func__, vcpu->vcpu_id);
5907 			vmx->soft_vnmi_blocked = 0;
5908 		}
5909 	}
5910 
5911 	if (exit_reason < kvm_vmx_max_exit_handlers
5912 	    && kvm_vmx_exit_handlers[exit_reason])
5913 		return kvm_vmx_exit_handlers[exit_reason](vcpu);
5914 	else {
5915 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5916 		vcpu->run->hw.hardware_exit_reason = exit_reason;
5917 	}
5918 	return 0;
5919 }
5920 
update_cr8_intercept(struct kvm_vcpu * vcpu,int tpr,int irr)5921 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
5922 {
5923 	if (irr == -1 || tpr < irr) {
5924 		vmcs_write32(TPR_THRESHOLD, 0);
5925 		return;
5926 	}
5927 
5928 	vmcs_write32(TPR_THRESHOLD, irr);
5929 }
5930 
vmx_complete_atomic_exit(struct vcpu_vmx * vmx)5931 static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
5932 {
5933 	u32 exit_intr_info;
5934 
5935 	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5936 	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5937 		return;
5938 
5939 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5940 	exit_intr_info = vmx->exit_intr_info;
5941 
5942 	/* Handle machine checks before interrupts are enabled */
5943 	if (is_machine_check(exit_intr_info))
5944 		kvm_machine_check();
5945 
5946 	/* We need to handle NMIs before interrupts are enabled */
5947 	if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
5948 	    (exit_intr_info & INTR_INFO_VALID_MASK)) {
5949 		kvm_before_handle_nmi(&vmx->vcpu);
5950 		asm("int $2");
5951 		kvm_after_handle_nmi(&vmx->vcpu);
5952 	}
5953 }
5954 
vmx_recover_nmi_blocking(struct vcpu_vmx * vmx)5955 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5956 {
5957 	u32 exit_intr_info;
5958 	bool unblock_nmi;
5959 	u8 vector;
5960 	bool idtv_info_valid;
5961 
5962 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
5963 
5964 	if (cpu_has_virtual_nmis()) {
5965 		if (vmx->nmi_known_unmasked)
5966 			return;
5967 		/*
5968 		 * Can't use vmx->exit_intr_info since we're not sure what
5969 		 * the exit reason is.
5970 		 */
5971 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5972 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5973 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5974 		/*
5975 		 * SDM 3: 27.7.1.2 (September 2008)
5976 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5977 		 * a guest IRET fault.
5978 		 * SDM 3: 23.2.2 (September 2008)
5979 		 * Bit 12 is undefined in any of the following cases:
5980 		 *  If the VM exit sets the valid bit in the IDT-vectoring
5981 		 *   information field.
5982 		 *  If the VM exit is due to a double fault.
5983 		 */
5984 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5985 		    vector != DF_VECTOR && !idtv_info_valid)
5986 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5987 				      GUEST_INTR_STATE_NMI);
5988 		else
5989 			vmx->nmi_known_unmasked =
5990 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5991 				  & GUEST_INTR_STATE_NMI);
5992 	} else if (unlikely(vmx->soft_vnmi_blocked))
5993 		vmx->vnmi_blocked_time +=
5994 			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
5995 }
5996 
__vmx_complete_interrupts(struct vcpu_vmx * vmx,u32 idt_vectoring_info,int instr_len_field,int error_code_field)5997 static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
5998 				      u32 idt_vectoring_info,
5999 				      int instr_len_field,
6000 				      int error_code_field)
6001 {
6002 	u8 vector;
6003 	int type;
6004 	bool idtv_info_valid;
6005 
6006 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6007 
6008 	vmx->vcpu.arch.nmi_injected = false;
6009 	kvm_clear_exception_queue(&vmx->vcpu);
6010 	kvm_clear_interrupt_queue(&vmx->vcpu);
6011 
6012 	if (!idtv_info_valid)
6013 		return;
6014 
6015 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6016 
6017 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6018 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6019 
6020 	switch (type) {
6021 	case INTR_TYPE_NMI_INTR:
6022 		vmx->vcpu.arch.nmi_injected = true;
6023 		/*
6024 		 * SDM 3: 27.7.1.2 (September 2008)
6025 		 * Clear bit "block by NMI" before VM entry if a NMI
6026 		 * delivery faulted.
6027 		 */
6028 		vmx_set_nmi_mask(&vmx->vcpu, false);
6029 		break;
6030 	case INTR_TYPE_SOFT_EXCEPTION:
6031 		vmx->vcpu.arch.event_exit_inst_len =
6032 			vmcs_read32(instr_len_field);
6033 		/* fall through */
6034 	case INTR_TYPE_HARD_EXCEPTION:
6035 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6036 			u32 err = vmcs_read32(error_code_field);
6037 			kvm_queue_exception_e(&vmx->vcpu, vector, err);
6038 		} else
6039 			kvm_queue_exception(&vmx->vcpu, vector);
6040 		break;
6041 	case INTR_TYPE_SOFT_INTR:
6042 		vmx->vcpu.arch.event_exit_inst_len =
6043 			vmcs_read32(instr_len_field);
6044 		/* fall through */
6045 	case INTR_TYPE_EXT_INTR:
6046 		kvm_queue_interrupt(&vmx->vcpu, vector,
6047 			type == INTR_TYPE_SOFT_INTR);
6048 		break;
6049 	default:
6050 		break;
6051 	}
6052 }
6053 
vmx_complete_interrupts(struct vcpu_vmx * vmx)6054 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6055 {
6056 	if (is_guest_mode(&vmx->vcpu))
6057 		return;
6058 	__vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6059 				  VM_EXIT_INSTRUCTION_LEN,
6060 				  IDT_VECTORING_ERROR_CODE);
6061 }
6062 
vmx_cancel_injection(struct kvm_vcpu * vcpu)6063 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6064 {
6065 	if (is_guest_mode(vcpu))
6066 		return;
6067 	__vmx_complete_interrupts(to_vmx(vcpu),
6068 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6069 				  VM_ENTRY_INSTRUCTION_LEN,
6070 				  VM_ENTRY_EXCEPTION_ERROR_CODE);
6071 
6072 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6073 }
6074 
atomic_switch_perf_msrs(struct vcpu_vmx * vmx)6075 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6076 {
6077 	int i, nr_msrs;
6078 	struct perf_guest_switch_msr *msrs;
6079 
6080 	msrs = perf_guest_get_msrs(&nr_msrs);
6081 
6082 	if (!msrs)
6083 		return;
6084 
6085 	for (i = 0; i < nr_msrs; i++)
6086 		if (msrs[i].host == msrs[i].guest)
6087 			clear_atomic_switch_msr(vmx, msrs[i].msr);
6088 		else
6089 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6090 					msrs[i].host);
6091 }
6092 
6093 #ifdef CONFIG_X86_64
6094 #define R "r"
6095 #define Q "q"
6096 #else
6097 #define R "e"
6098 #define Q "l"
6099 #endif
6100 
vmx_vcpu_run(struct kvm_vcpu * vcpu)6101 static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6102 {
6103 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6104 
6105 	if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6106 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6107 		if (vmcs12->idt_vectoring_info_field &
6108 				VECTORING_INFO_VALID_MASK) {
6109 			vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6110 				vmcs12->idt_vectoring_info_field);
6111 			vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6112 				vmcs12->vm_exit_instruction_len);
6113 			if (vmcs12->idt_vectoring_info_field &
6114 					VECTORING_INFO_DELIVER_CODE_MASK)
6115 				vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6116 					vmcs12->idt_vectoring_error_code);
6117 		}
6118 	}
6119 
6120 	/* Record the guest's net vcpu time for enforced NMI injections. */
6121 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6122 		vmx->entry_time = ktime_get();
6123 
6124 	/* Don't enter VMX if guest state is invalid, let the exit handler
6125 	   start emulation until we arrive back to a valid state */
6126 	if (vmx->emulation_required && emulate_invalid_guest_state)
6127 		return;
6128 
6129 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6130 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6131 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6132 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6133 
6134 	/* When single-stepping over STI and MOV SS, we must clear the
6135 	 * corresponding interruptibility bits in the guest state. Otherwise
6136 	 * vmentry fails as it then expects bit 14 (BS) in pending debug
6137 	 * exceptions being set, but that's not correct for the guest debugging
6138 	 * case. */
6139 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6140 		vmx_set_interrupt_shadow(vcpu, 0);
6141 
6142 	atomic_switch_perf_msrs(vmx);
6143 
6144 	vmx->__launched = vmx->loaded_vmcs->launched;
6145 	asm(
6146 		/* Store host registers */
6147 		"push %%"R"dx; push %%"R"bp;"
6148 		"push %%"R"cx \n\t" /* placeholder for guest rcx */
6149 		"push %%"R"cx \n\t"
6150 		"cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6151 		"je 1f \n\t"
6152 		"mov %%"R"sp, %c[host_rsp](%0) \n\t"
6153 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6154 		"1: \n\t"
6155 		/* Reload cr2 if changed */
6156 		"mov %c[cr2](%0), %%"R"ax \n\t"
6157 		"mov %%cr2, %%"R"dx \n\t"
6158 		"cmp %%"R"ax, %%"R"dx \n\t"
6159 		"je 2f \n\t"
6160 		"mov %%"R"ax, %%cr2 \n\t"
6161 		"2: \n\t"
6162 		/* Check if vmlaunch of vmresume is needed */
6163 		"cmpl $0, %c[launched](%0) \n\t"
6164 		/* Load guest registers.  Don't clobber flags. */
6165 		"mov %c[rax](%0), %%"R"ax \n\t"
6166 		"mov %c[rbx](%0), %%"R"bx \n\t"
6167 		"mov %c[rdx](%0), %%"R"dx \n\t"
6168 		"mov %c[rsi](%0), %%"R"si \n\t"
6169 		"mov %c[rdi](%0), %%"R"di \n\t"
6170 		"mov %c[rbp](%0), %%"R"bp \n\t"
6171 #ifdef CONFIG_X86_64
6172 		"mov %c[r8](%0),  %%r8  \n\t"
6173 		"mov %c[r9](%0),  %%r9  \n\t"
6174 		"mov %c[r10](%0), %%r10 \n\t"
6175 		"mov %c[r11](%0), %%r11 \n\t"
6176 		"mov %c[r12](%0), %%r12 \n\t"
6177 		"mov %c[r13](%0), %%r13 \n\t"
6178 		"mov %c[r14](%0), %%r14 \n\t"
6179 		"mov %c[r15](%0), %%r15 \n\t"
6180 #endif
6181 		"mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6182 
6183 		/* Enter guest mode */
6184 		"jne .Llaunched \n\t"
6185 		__ex(ASM_VMX_VMLAUNCH) "\n\t"
6186 		"jmp .Lkvm_vmx_return \n\t"
6187 		".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
6188 		".Lkvm_vmx_return: "
6189 		/* Save guest registers, load host registers, keep flags */
6190 		"mov %0, %c[wordsize](%%"R"sp) \n\t"
6191 		"pop %0 \n\t"
6192 		"mov %%"R"ax, %c[rax](%0) \n\t"
6193 		"mov %%"R"bx, %c[rbx](%0) \n\t"
6194 		"pop"Q" %c[rcx](%0) \n\t"
6195 		"mov %%"R"dx, %c[rdx](%0) \n\t"
6196 		"mov %%"R"si, %c[rsi](%0) \n\t"
6197 		"mov %%"R"di, %c[rdi](%0) \n\t"
6198 		"mov %%"R"bp, %c[rbp](%0) \n\t"
6199 #ifdef CONFIG_X86_64
6200 		"mov %%r8,  %c[r8](%0) \n\t"
6201 		"mov %%r9,  %c[r9](%0) \n\t"
6202 		"mov %%r10, %c[r10](%0) \n\t"
6203 		"mov %%r11, %c[r11](%0) \n\t"
6204 		"mov %%r12, %c[r12](%0) \n\t"
6205 		"mov %%r13, %c[r13](%0) \n\t"
6206 		"mov %%r14, %c[r14](%0) \n\t"
6207 		"mov %%r15, %c[r15](%0) \n\t"
6208 #endif
6209 		"mov %%cr2, %%"R"ax   \n\t"
6210 		"mov %%"R"ax, %c[cr2](%0) \n\t"
6211 
6212 		"pop  %%"R"bp; pop  %%"R"dx \n\t"
6213 		"setbe %c[fail](%0) \n\t"
6214 	      : : "c"(vmx), "d"((unsigned long)HOST_RSP),
6215 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)),
6216 		[fail]"i"(offsetof(struct vcpu_vmx, fail)),
6217 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
6218 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6219 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6220 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6221 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6222 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6223 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6224 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
6225 #ifdef CONFIG_X86_64
6226 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6227 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6228 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6229 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6230 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6231 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6232 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6233 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6234 #endif
6235 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6236 		[wordsize]"i"(sizeof(ulong))
6237 	      : "cc", "memory"
6238 		, R"ax", R"bx", R"di", R"si"
6239 #ifdef CONFIG_X86_64
6240 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6241 #endif
6242 	      );
6243 
6244 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6245 				  | (1 << VCPU_EXREG_RFLAGS)
6246 				  | (1 << VCPU_EXREG_CPL)
6247 				  | (1 << VCPU_EXREG_PDPTR)
6248 				  | (1 << VCPU_EXREG_SEGMENTS)
6249 				  | (1 << VCPU_EXREG_CR3));
6250 	vcpu->arch.regs_dirty = 0;
6251 
6252 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6253 
6254 	if (is_guest_mode(vcpu)) {
6255 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6256 		vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6257 		if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6258 			vmcs12->idt_vectoring_error_code =
6259 				vmcs_read32(IDT_VECTORING_ERROR_CODE);
6260 			vmcs12->vm_exit_instruction_len =
6261 				vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6262 		}
6263 	}
6264 
6265 	asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
6266 	vmx->loaded_vmcs->launched = 1;
6267 
6268 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
6269 	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
6270 
6271 	vmx_complete_atomic_exit(vmx);
6272 	vmx_recover_nmi_blocking(vmx);
6273 	vmx_complete_interrupts(vmx);
6274 }
6275 
6276 #undef R
6277 #undef Q
6278 
6279 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6280 {
6281 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6282 
6283 	free_vpid(vmx);
6284 	free_nested(vmx);
6285 	free_loaded_vmcs(vmx->loaded_vmcs);
6286 	kfree(vmx->guest_msrs);
6287 	kvm_vcpu_uninit(vcpu);
6288 	kmem_cache_free(kvm_vcpu_cache, vmx);
6289 }
6290 
6291 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6292 {
6293 	int err;
6294 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
6295 	int cpu;
6296 
6297 	if (!vmx)
6298 		return ERR_PTR(-ENOMEM);
6299 
6300 	allocate_vpid(vmx);
6301 
6302 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6303 	if (err)
6304 		goto free_vcpu;
6305 
6306 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
6307 	err = -ENOMEM;
6308 	if (!vmx->guest_msrs) {
6309 		goto uninit_vcpu;
6310 	}
6311 
6312 	vmx->loaded_vmcs = &vmx->vmcs01;
6313 	vmx->loaded_vmcs->vmcs = alloc_vmcs();
6314 	if (!vmx->loaded_vmcs->vmcs)
6315 		goto free_msrs;
6316 	if (!vmm_exclusive)
6317 		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6318 	loaded_vmcs_init(vmx->loaded_vmcs);
6319 	if (!vmm_exclusive)
6320 		kvm_cpu_vmxoff();
6321 
6322 	cpu = get_cpu();
6323 	vmx_vcpu_load(&vmx->vcpu, cpu);
6324 	vmx->vcpu.cpu = cpu;
6325 	err = vmx_vcpu_setup(vmx);
6326 	vmx_vcpu_put(&vmx->vcpu);
6327 	put_cpu();
6328 	if (err)
6329 		goto free_vmcs;
6330 	if (vm_need_virtualize_apic_accesses(kvm))
6331 		err = alloc_apic_access_page(kvm);
6332 		if (err)
6333 			goto free_vmcs;
6334 
6335 	if (enable_ept) {
6336 		if (!kvm->arch.ept_identity_map_addr)
6337 			kvm->arch.ept_identity_map_addr =
6338 				VMX_EPT_IDENTITY_PAGETABLE_ADDR;
6339 		err = -ENOMEM;
6340 		if (alloc_identity_pagetable(kvm) != 0)
6341 			goto free_vmcs;
6342 		if (!init_rmode_identity_map(kvm))
6343 			goto free_vmcs;
6344 	}
6345 
6346 	vmx->nested.current_vmptr = -1ull;
6347 	vmx->nested.current_vmcs12 = NULL;
6348 
6349 	return &vmx->vcpu;
6350 
6351 free_vmcs:
6352 	free_vmcs(vmx->loaded_vmcs->vmcs);
6353 free_msrs:
6354 	kfree(vmx->guest_msrs);
6355 uninit_vcpu:
6356 	kvm_vcpu_uninit(&vmx->vcpu);
6357 free_vcpu:
6358 	free_vpid(vmx);
6359 	kmem_cache_free(kvm_vcpu_cache, vmx);
6360 	return ERR_PTR(err);
6361 }
6362 
6363 static void __init vmx_check_processor_compat(void *rtn)
6364 {
6365 	struct vmcs_config vmcs_conf;
6366 
6367 	*(int *)rtn = 0;
6368 	if (setup_vmcs_config(&vmcs_conf) < 0)
6369 		*(int *)rtn = -EIO;
6370 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6371 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6372 				smp_processor_id());
6373 		*(int *)rtn = -EIO;
6374 	}
6375 }
6376 
6377 static int get_ept_level(void)
6378 {
6379 	return VMX_EPT_DEFAULT_GAW + 1;
6380 }
6381 
6382 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6383 {
6384 	u64 ret;
6385 
6386 	/* For VT-d and EPT combination
6387 	 * 1. MMIO: always map as UC
6388 	 * 2. EPT with VT-d:
6389 	 *   a. VT-d without snooping control feature: can't guarantee the
6390 	 *	result, try to trust guest.
6391 	 *   b. VT-d with snooping control feature: snooping control feature of
6392 	 *	VT-d engine can guarantee the cache correctness. Just set it
6393 	 *	to WB to keep consistent with host. So the same as item 3.
6394 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
6395 	 *    consistent with host MTRR
6396 	 */
6397 	if (is_mmio)
6398 		ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
6399 	else if (vcpu->kvm->arch.iommu_domain &&
6400 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6401 		ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6402 		      VMX_EPT_MT_EPTE_SHIFT;
6403 	else
6404 		ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
6405 			| VMX_EPT_IPAT_BIT;
6406 
6407 	return ret;
6408 }
6409 
6410 static int vmx_get_lpage_level(void)
6411 {
6412 	if (enable_ept && !cpu_has_vmx_ept_1g_page())
6413 		return PT_DIRECTORY_LEVEL;
6414 	else
6415 		/* For shadow and EPT supported 1GB page */
6416 		return PT_PDPE_LEVEL;
6417 }
6418 
6419 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6420 {
6421 	struct kvm_cpuid_entry2 *best;
6422 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6423 	u32 exec_control;
6424 
6425 	vmx->rdtscp_enabled = false;
6426 	if (vmx_rdtscp_supported()) {
6427 		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6428 		if (exec_control & SECONDARY_EXEC_RDTSCP) {
6429 			best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6430 			if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6431 				vmx->rdtscp_enabled = true;
6432 			else {
6433 				exec_control &= ~SECONDARY_EXEC_RDTSCP;
6434 				vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6435 						exec_control);
6436 			}
6437 		}
6438 	}
6439 }
6440 
6441 static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6442 {
6443 	if (func == 1 && nested)
6444 		entry->ecx |= bit(X86_FEATURE_VMX);
6445 }
6446 
6447 /*
6448  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6449  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6450  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6451  * guest in a way that will both be appropriate to L1's requests, and our
6452  * needs. In addition to modifying the active vmcs (which is vmcs02), this
6453  * function also has additional necessary side-effects, like setting various
6454  * vcpu->arch fields.
6455  */
6456 static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6457 {
6458 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6459 	u32 exec_control;
6460 
6461 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6462 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6463 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6464 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6465 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6466 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6467 	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6468 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6469 	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6470 	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6471 	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6472 	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6473 	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6474 	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6475 	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6476 	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6477 	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6478 	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6479 	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6480 	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6481 	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6482 	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6483 	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6484 	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6485 	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6486 	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6487 	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6488 	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6489 	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6490 	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6491 	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6492 	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6493 	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6494 	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6495 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6496 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6497 
6498 	vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6499 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6500 		vmcs12->vm_entry_intr_info_field);
6501 	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6502 		vmcs12->vm_entry_exception_error_code);
6503 	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6504 		vmcs12->vm_entry_instruction_len);
6505 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6506 		vmcs12->guest_interruptibility_info);
6507 	vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6508 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6509 	vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6510 	vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6511 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6512 		vmcs12->guest_pending_dbg_exceptions);
6513 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6514 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6515 
6516 	vmcs_write64(VMCS_LINK_POINTER, -1ull);
6517 
6518 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6519 		(vmcs_config.pin_based_exec_ctrl |
6520 		 vmcs12->pin_based_vm_exec_control));
6521 
6522 	/*
6523 	 * Whether page-faults are trapped is determined by a combination of
6524 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6525 	 * If enable_ept, L0 doesn't care about page faults and we should
6526 	 * set all of these to L1's desires. However, if !enable_ept, L0 does
6527 	 * care about (at least some) page faults, and because it is not easy
6528 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6529 	 * to exit on each and every L2 page fault. This is done by setting
6530 	 * MASK=MATCH=0 and (see below) EB.PF=1.
6531 	 * Note that below we don't need special code to set EB.PF beyond the
6532 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6533 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6534 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6535 	 *
6536 	 * A problem with this approach (when !enable_ept) is that L1 may be
6537 	 * injected with more page faults than it asked for. This could have
6538 	 * caused problems, but in practice existing hypervisors don't care.
6539 	 * To fix this, we will need to emulate the PFEC checking (on the L1
6540 	 * page tables), using walk_addr(), when injecting PFs to L1.
6541 	 */
6542 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6543 		enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6544 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6545 		enable_ept ? vmcs12->page_fault_error_code_match : 0);
6546 
6547 	if (cpu_has_secondary_exec_ctrls()) {
6548 		u32 exec_control = vmx_secondary_exec_control(vmx);
6549 		if (!vmx->rdtscp_enabled)
6550 			exec_control &= ~SECONDARY_EXEC_RDTSCP;
6551 		/* Take the following fields only from vmcs12 */
6552 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6553 		if (nested_cpu_has(vmcs12,
6554 				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6555 			exec_control |= vmcs12->secondary_vm_exec_control;
6556 
6557 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6558 			/*
6559 			 * Translate L1 physical address to host physical
6560 			 * address for vmcs02. Keep the page pinned, so this
6561 			 * physical address remains valid. We keep a reference
6562 			 * to it so we can release it later.
6563 			 */
6564 			if (vmx->nested.apic_access_page) /* shouldn't happen */
6565 				nested_release_page(vmx->nested.apic_access_page);
6566 			vmx->nested.apic_access_page =
6567 				nested_get_page(vcpu, vmcs12->apic_access_addr);
6568 			/*
6569 			 * If translation failed, no matter: This feature asks
6570 			 * to exit when accessing the given address, and if it
6571 			 * can never be accessed, this feature won't do
6572 			 * anything anyway.
6573 			 */
6574 			if (!vmx->nested.apic_access_page)
6575 				exec_control &=
6576 				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6577 			else
6578 				vmcs_write64(APIC_ACCESS_ADDR,
6579 				  page_to_phys(vmx->nested.apic_access_page));
6580 		}
6581 
6582 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6583 	}
6584 
6585 
6586 	/*
6587 	 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6588 	 * Some constant fields are set here by vmx_set_constant_host_state().
6589 	 * Other fields are different per CPU, and will be set later when
6590 	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6591 	 */
6592 	vmx_set_constant_host_state();
6593 
6594 	/*
6595 	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6596 	 * entry, but only if the current (host) sp changed from the value
6597 	 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6598 	 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6599 	 * here we just force the write to happen on entry.
6600 	 */
6601 	vmx->host_rsp = 0;
6602 
6603 	exec_control = vmx_exec_control(vmx); /* L0's desires */
6604 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6605 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6606 	exec_control &= ~CPU_BASED_TPR_SHADOW;
6607 	exec_control |= vmcs12->cpu_based_vm_exec_control;
6608 	/*
6609 	 * Merging of IO and MSR bitmaps not currently supported.
6610 	 * Rather, exit every time.
6611 	 */
6612 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6613 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6614 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6615 
6616 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6617 
6618 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6619 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
6620 	 * trap. Note that CR0.TS also needs updating - we do this later.
6621 	 */
6622 	update_exception_bitmap(vcpu);
6623 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6624 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6625 
6626 	/* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6627 	vmcs_write32(VM_EXIT_CONTROLS,
6628 		vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6629 	vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6630 		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6631 
6632 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6633 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6634 	else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6635 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6636 
6637 
6638 	set_cr4_guest_host_mask(vmx);
6639 
6640 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6641 		vmcs_write64(TSC_OFFSET,
6642 			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6643 	else
6644 		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
6645 
6646 	if (enable_vpid) {
6647 		/*
6648 		 * Trivially support vpid by letting L2s share their parent
6649 		 * L1's vpid. TODO: move to a more elaborate solution, giving
6650 		 * each L2 its own vpid and exposing the vpid feature to L1.
6651 		 */
6652 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6653 		vmx_flush_tlb(vcpu);
6654 	}
6655 
6656 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6657 		vcpu->arch.efer = vmcs12->guest_ia32_efer;
6658 	if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6659 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6660 	else
6661 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6662 	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6663 	vmx_set_efer(vcpu, vcpu->arch.efer);
6664 
6665 	/*
6666 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6667 	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6668 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
6669 	 * the specifications by L1; It's not enough to take
6670 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6671 	 * have more bits than L1 expected.
6672 	 */
6673 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6674 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6675 
6676 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6677 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6678 
6679 	/* shadow page tables on either EPT or shadow page tables */
6680 	kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6681 	kvm_mmu_reset_context(vcpu);
6682 
6683 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6684 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6685 }
6686 
6687 /*
6688  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6689  * for running an L2 nested guest.
6690  */
6691 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6692 {
6693 	struct vmcs12 *vmcs12;
6694 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6695 	int cpu;
6696 	struct loaded_vmcs *vmcs02;
6697 
6698 	if (!nested_vmx_check_permission(vcpu) ||
6699 	    !nested_vmx_check_vmcs12(vcpu))
6700 		return 1;
6701 
6702 	skip_emulated_instruction(vcpu);
6703 	vmcs12 = get_vmcs12(vcpu);
6704 
6705 	/*
6706 	 * The nested entry process starts with enforcing various prerequisites
6707 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
6708 	 * they fail: As the SDM explains, some conditions should cause the
6709 	 * instruction to fail, while others will cause the instruction to seem
6710 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6711 	 * To speed up the normal (success) code path, we should avoid checking
6712 	 * for misconfigurations which will anyway be caught by the processor
6713 	 * when using the merged vmcs02.
6714 	 */
6715 	if (vmcs12->launch_state == launch) {
6716 		nested_vmx_failValid(vcpu,
6717 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6718 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6719 		return 1;
6720 	}
6721 
6722 	if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6723 			!IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6724 		/*TODO: Also verify bits beyond physical address width are 0*/
6725 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6726 		return 1;
6727 	}
6728 
6729 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6730 			!IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6731 		/*TODO: Also verify bits beyond physical address width are 0*/
6732 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6733 		return 1;
6734 	}
6735 
6736 	if (vmcs12->vm_entry_msr_load_count > 0 ||
6737 	    vmcs12->vm_exit_msr_load_count > 0 ||
6738 	    vmcs12->vm_exit_msr_store_count > 0) {
6739 		pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6740 				    __func__);
6741 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6742 		return 1;
6743 	}
6744 
6745 	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6746 	      nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6747 	    !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6748 	      nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6749 	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6750 	      nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6751 	    !vmx_control_verify(vmcs12->vm_exit_controls,
6752 	      nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6753 	    !vmx_control_verify(vmcs12->vm_entry_controls,
6754 	      nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6755 	{
6756 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6757 		return 1;
6758 	}
6759 
6760 	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6761 	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6762 		nested_vmx_failValid(vcpu,
6763 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6764 		return 1;
6765 	}
6766 
6767 	if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6768 	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6769 		nested_vmx_entry_failure(vcpu, vmcs12,
6770 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6771 		return 1;
6772 	}
6773 	if (vmcs12->vmcs_link_pointer != -1ull) {
6774 		nested_vmx_entry_failure(vcpu, vmcs12,
6775 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6776 		return 1;
6777 	}
6778 
6779 	/*
6780 	 * We're finally done with prerequisite checking, and can start with
6781 	 * the nested entry.
6782 	 */
6783 
6784 	vmcs02 = nested_get_current_vmcs02(vmx);
6785 	if (!vmcs02)
6786 		return -ENOMEM;
6787 
6788 	enter_guest_mode(vcpu);
6789 
6790 	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6791 
6792 	cpu = get_cpu();
6793 	vmx->loaded_vmcs = vmcs02;
6794 	vmx_vcpu_put(vcpu);
6795 	vmx_vcpu_load(vcpu, cpu);
6796 	vcpu->cpu = cpu;
6797 	put_cpu();
6798 
6799 	vmcs12->launch_state = 1;
6800 
6801 	prepare_vmcs02(vcpu, vmcs12);
6802 
6803 	/*
6804 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6805 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6806 	 * returned as far as L1 is concerned. It will only return (and set
6807 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6808 	 */
6809 	return 1;
6810 }
6811 
6812 /*
6813  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6814  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6815  * This function returns the new value we should put in vmcs12.guest_cr0.
6816  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6817  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6818  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6819  *     didn't trap the bit, because if L1 did, so would L0).
6820  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6821  *     been modified by L2, and L1 knows it. So just leave the old value of
6822  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6823  *     isn't relevant, because if L0 traps this bit it can set it to anything.
6824  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6825  *     changed these bits, and therefore they need to be updated, but L0
6826  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6827  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6828  */
6829 static inline unsigned long
6830 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6831 {
6832 	return
6833 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6834 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6835 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6836 			vcpu->arch.cr0_guest_owned_bits));
6837 }
6838 
6839 static inline unsigned long
6840 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6841 {
6842 	return
6843 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6844 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6845 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6846 			vcpu->arch.cr4_guest_owned_bits));
6847 }
6848 
6849 /*
6850  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6851  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6852  * and this function updates it to reflect the changes to the guest state while
6853  * L2 was running (and perhaps made some exits which were handled directly by L0
6854  * without going back to L1), and to reflect the exit reason.
6855  * Note that we do not have to copy here all VMCS fields, just those that
6856  * could have changed by the L2 guest or the exit - i.e., the guest-state and
6857  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6858  * which already writes to vmcs12 directly.
6859  */
6860 void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6861 {
6862 	/* update guest state fields: */
6863 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6864 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6865 
6866 	kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6867 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6868 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6869 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6870 
6871 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6872 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6873 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6874 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6875 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6876 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6877 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6878 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6879 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6880 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6881 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6882 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6883 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6884 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6885 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6886 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6887 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6888 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6889 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6890 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6891 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6892 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6893 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6894 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6895 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6896 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6897 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6898 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6899 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6900 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6901 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6902 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6903 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6904 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6905 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6906 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6907 
6908 	vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6909 	vmcs12->guest_interruptibility_info =
6910 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6911 	vmcs12->guest_pending_dbg_exceptions =
6912 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6913 
6914 	/* TODO: These cannot have changed unless we have MSR bitmaps and
6915 	 * the relevant bit asks not to trap the change */
6916 	vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6917 	if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6918 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6919 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6920 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6921 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6922 
6923 	/* update exit information fields: */
6924 
6925 	vmcs12->vm_exit_reason  = vmcs_read32(VM_EXIT_REASON);
6926 	vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6927 
6928 	vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6929 	vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6930 	vmcs12->idt_vectoring_info_field =
6931 		vmcs_read32(IDT_VECTORING_INFO_FIELD);
6932 	vmcs12->idt_vectoring_error_code =
6933 		vmcs_read32(IDT_VECTORING_ERROR_CODE);
6934 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6935 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6936 
6937 	/* clear vm-entry fields which are to be cleared on exit */
6938 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6939 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6940 }
6941 
6942 /*
6943  * A part of what we need to when the nested L2 guest exits and we want to
6944  * run its L1 parent, is to reset L1's guest state to the host state specified
6945  * in vmcs12.
6946  * This function is to be called not only on normal nested exit, but also on
6947  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6948  * Failures During or After Loading Guest State").
6949  * This function should be called when the active VMCS is L1's (vmcs01).
6950  */
6951 void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6952 {
6953 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6954 		vcpu->arch.efer = vmcs12->host_ia32_efer;
6955 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6956 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6957 	else
6958 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6959 	vmx_set_efer(vcpu, vcpu->arch.efer);
6960 
6961 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6962 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6963 	/*
6964 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6965 	 * actually changed, because it depends on the current state of
6966 	 * fpu_active (which may have changed).
6967 	 * Note that vmx_set_cr0 refers to efer set above.
6968 	 */
6969 	kvm_set_cr0(vcpu, vmcs12->host_cr0);
6970 	/*
6971 	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6972 	 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6973 	 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6974 	 */
6975 	update_exception_bitmap(vcpu);
6976 	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6977 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6978 
6979 	/*
6980 	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6981 	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6982 	 */
6983 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6984 	kvm_set_cr4(vcpu, vmcs12->host_cr4);
6985 
6986 	/* shadow page tables on either EPT or shadow page tables */
6987 	kvm_set_cr3(vcpu, vmcs12->host_cr3);
6988 	kvm_mmu_reset_context(vcpu);
6989 
6990 	if (enable_vpid) {
6991 		/*
6992 		 * Trivially support vpid by letting L2s share their parent
6993 		 * L1's vpid. TODO: move to a more elaborate solution, giving
6994 		 * each L2 its own vpid and exposing the vpid feature to L1.
6995 		 */
6996 		vmx_flush_tlb(vcpu);
6997 	}
6998 
6999 
7000 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7001 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7002 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7003 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7004 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7005 	vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7006 	vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7007 	vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7008 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7009 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7010 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7011 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7012 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7013 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7014 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7015 
7016 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7017 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7018 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7019 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7020 			vmcs12->host_ia32_perf_global_ctrl);
7021 }
7022 
7023 /*
7024  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7025  * and modify vmcs12 to make it see what it would expect to see there if
7026  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7027  */
7028 static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7029 {
7030 	struct vcpu_vmx *vmx = to_vmx(vcpu);
7031 	int cpu;
7032 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7033 
7034 	leave_guest_mode(vcpu);
7035 	prepare_vmcs12(vcpu, vmcs12);
7036 
7037 	cpu = get_cpu();
7038 	vmx->loaded_vmcs = &vmx->vmcs01;
7039 	vmx_vcpu_put(vcpu);
7040 	vmx_vcpu_load(vcpu, cpu);
7041 	vcpu->cpu = cpu;
7042 	put_cpu();
7043 
7044 	/* if no vmcs02 cache requested, remove the one we used */
7045 	if (VMCS02_POOL_SIZE == 0)
7046 		nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7047 
7048 	load_vmcs12_host_state(vcpu, vmcs12);
7049 
7050 	/* Update TSC_OFFSET if TSC was changed while L2 ran */
7051 	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7052 
7053 	/* This is needed for same reason as it was needed in prepare_vmcs02 */
7054 	vmx->host_rsp = 0;
7055 
7056 	/* Unpin physical memory we referred to in vmcs02 */
7057 	if (vmx->nested.apic_access_page) {
7058 		nested_release_page(vmx->nested.apic_access_page);
7059 		vmx->nested.apic_access_page = 0;
7060 	}
7061 
7062 	/*
7063 	 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7064 	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7065 	 * success or failure flag accordingly.
7066 	 */
7067 	if (unlikely(vmx->fail)) {
7068 		vmx->fail = 0;
7069 		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7070 	} else
7071 		nested_vmx_succeed(vcpu);
7072 }
7073 
7074 /*
7075  * L1's failure to enter L2 is a subset of a normal exit, as explained in
7076  * 23.7 "VM-entry failures during or after loading guest state" (this also
7077  * lists the acceptable exit-reason and exit-qualification parameters).
7078  * It should only be called before L2 actually succeeded to run, and when
7079  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7080  */
7081 static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7082 			struct vmcs12 *vmcs12,
7083 			u32 reason, unsigned long qualification)
7084 {
7085 	load_vmcs12_host_state(vcpu, vmcs12);
7086 	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7087 	vmcs12->exit_qualification = qualification;
7088 	nested_vmx_succeed(vcpu);
7089 }
7090 
7091 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7092 			       struct x86_instruction_info *info,
7093 			       enum x86_intercept_stage stage)
7094 {
7095 	return X86EMUL_CONTINUE;
7096 }
7097 
7098 static struct kvm_x86_ops vmx_x86_ops = {
7099 	.cpu_has_kvm_support = cpu_has_kvm_support,
7100 	.disabled_by_bios = vmx_disabled_by_bios,
7101 	.hardware_setup = hardware_setup,
7102 	.hardware_unsetup = hardware_unsetup,
7103 	.check_processor_compatibility = vmx_check_processor_compat,
7104 	.hardware_enable = hardware_enable,
7105 	.hardware_disable = hardware_disable,
7106 	.cpu_has_accelerated_tpr = report_flexpriority,
7107 
7108 	.vcpu_create = vmx_create_vcpu,
7109 	.vcpu_free = vmx_free_vcpu,
7110 	.vcpu_reset = vmx_vcpu_reset,
7111 
7112 	.prepare_guest_switch = vmx_save_host_state,
7113 	.vcpu_load = vmx_vcpu_load,
7114 	.vcpu_put = vmx_vcpu_put,
7115 
7116 	.set_guest_debug = set_guest_debug,
7117 	.get_msr = vmx_get_msr,
7118 	.set_msr = vmx_set_msr,
7119 	.get_segment_base = vmx_get_segment_base,
7120 	.get_segment = vmx_get_segment,
7121 	.set_segment = vmx_set_segment,
7122 	.get_cpl = vmx_get_cpl,
7123 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7124 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
7125 	.decache_cr3 = vmx_decache_cr3,
7126 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
7127 	.set_cr0 = vmx_set_cr0,
7128 	.set_cr3 = vmx_set_cr3,
7129 	.set_cr4 = vmx_set_cr4,
7130 	.set_efer = vmx_set_efer,
7131 	.get_idt = vmx_get_idt,
7132 	.set_idt = vmx_set_idt,
7133 	.get_gdt = vmx_get_gdt,
7134 	.set_gdt = vmx_set_gdt,
7135 	.set_dr7 = vmx_set_dr7,
7136 	.cache_reg = vmx_cache_reg,
7137 	.get_rflags = vmx_get_rflags,
7138 	.set_rflags = vmx_set_rflags,
7139 	.fpu_activate = vmx_fpu_activate,
7140 	.fpu_deactivate = vmx_fpu_deactivate,
7141 
7142 	.tlb_flush = vmx_flush_tlb,
7143 
7144 	.run = vmx_vcpu_run,
7145 	.handle_exit = vmx_handle_exit,
7146 	.skip_emulated_instruction = skip_emulated_instruction,
7147 	.set_interrupt_shadow = vmx_set_interrupt_shadow,
7148 	.get_interrupt_shadow = vmx_get_interrupt_shadow,
7149 	.patch_hypercall = vmx_patch_hypercall,
7150 	.set_irq = vmx_inject_irq,
7151 	.set_nmi = vmx_inject_nmi,
7152 	.queue_exception = vmx_queue_exception,
7153 	.cancel_injection = vmx_cancel_injection,
7154 	.interrupt_allowed = vmx_interrupt_allowed,
7155 	.nmi_allowed = vmx_nmi_allowed,
7156 	.get_nmi_mask = vmx_get_nmi_mask,
7157 	.set_nmi_mask = vmx_set_nmi_mask,
7158 	.enable_nmi_window = enable_nmi_window,
7159 	.enable_irq_window = enable_irq_window,
7160 	.update_cr8_intercept = update_cr8_intercept,
7161 
7162 	.set_tss_addr = vmx_set_tss_addr,
7163 	.get_tdp_level = get_ept_level,
7164 	.get_mt_mask = vmx_get_mt_mask,
7165 
7166 	.get_exit_info = vmx_get_exit_info,
7167 
7168 	.get_lpage_level = vmx_get_lpage_level,
7169 
7170 	.cpuid_update = vmx_cpuid_update,
7171 
7172 	.rdtscp_supported = vmx_rdtscp_supported,
7173 
7174 	.set_supported_cpuid = vmx_set_supported_cpuid,
7175 
7176 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7177 
7178 	.set_tsc_khz = vmx_set_tsc_khz,
7179 	.write_tsc_offset = vmx_write_tsc_offset,
7180 	.adjust_tsc_offset = vmx_adjust_tsc_offset,
7181 	.compute_tsc_offset = vmx_compute_tsc_offset,
7182 	.read_l1_tsc = vmx_read_l1_tsc,
7183 
7184 	.set_tdp_cr3 = vmx_set_cr3,
7185 
7186 	.check_intercept = vmx_check_intercept,
7187 };
7188 
7189 static int __init vmx_init(void)
7190 {
7191 	int r, i;
7192 
7193 	rdmsrl_safe(MSR_EFER, &host_efer);
7194 
7195 	for (i = 0; i < NR_VMX_MSR; ++i)
7196 		kvm_define_shared_msr(i, vmx_msr_index[i]);
7197 
7198 	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
7199 	if (!vmx_io_bitmap_a)
7200 		return -ENOMEM;
7201 
7202 	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
7203 	if (!vmx_io_bitmap_b) {
7204 		r = -ENOMEM;
7205 		goto out;
7206 	}
7207 
7208 	vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7209 	if (!vmx_msr_bitmap_legacy) {
7210 		r = -ENOMEM;
7211 		goto out1;
7212 	}
7213 
7214 	vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7215 	if (!vmx_msr_bitmap_longmode) {
7216 		r = -ENOMEM;
7217 		goto out2;
7218 	}
7219 
7220 	/*
7221 	 * Allow direct access to the PC debug port (it is often used for I/O
7222 	 * delays, but the vmexits simply slow things down).
7223 	 */
7224 	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7225 	clear_bit(0x80, vmx_io_bitmap_a);
7226 
7227 	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
7228 
7229 	memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7230 	memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
7231 
7232 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7233 
7234 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7235 		     __alignof__(struct vcpu_vmx), THIS_MODULE);
7236 	if (r)
7237 		goto out3;
7238 
7239 	vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7240 	vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7241 	vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7242 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7243 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7244 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
7245 
7246 	if (enable_ept) {
7247 		kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
7248 				VMX_EPT_EXECUTABLE_MASK);
7249 		ept_set_mmio_spte_mask();
7250 		kvm_enable_tdp();
7251 	} else
7252 		kvm_disable_tdp();
7253 
7254 	return 0;
7255 
7256 out3:
7257 	free_page((unsigned long)vmx_msr_bitmap_longmode);
7258 out2:
7259 	free_page((unsigned long)vmx_msr_bitmap_legacy);
7260 out1:
7261 	free_page((unsigned long)vmx_io_bitmap_b);
7262 out:
7263 	free_page((unsigned long)vmx_io_bitmap_a);
7264 	return r;
7265 }
7266 
7267 static void __exit vmx_exit(void)
7268 {
7269 	free_page((unsigned long)vmx_msr_bitmap_legacy);
7270 	free_page((unsigned long)vmx_msr_bitmap_longmode);
7271 	free_page((unsigned long)vmx_io_bitmap_b);
7272 	free_page((unsigned long)vmx_io_bitmap_a);
7273 
7274 	kvm_exit();
7275 }
7276 
7277 module_init(vmx_init)
7278 module_exit(vmx_exit)
7279