• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Handle caching attributes in page tables (PAT)
3  *
4  * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
5  *          Suresh B Siddha <suresh.b.siddha@intel.com>
6  *
7  * Interval tree (augmented rbtree) used to store the PAT memory type
8  * reservations.
9  */
10 
11 #include <linux/seq_file.h>
12 #include <linux/debugfs.h>
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/rbtree.h>
16 #include <linux/sched.h>
17 #include <linux/gfp.h>
18 
19 #include <asm/pgtable.h>
20 #include <asm/pat.h>
21 
22 #include "pat_internal.h"
23 
24 /*
25  * The memtype tree keeps track of memory type for specific
26  * physical memory areas. Without proper tracking, conflicting memory
27  * types in different mappings can cause CPU cache corruption.
28  *
29  * The tree is an interval tree (augmented rbtree) with tree ordered
30  * on starting address. Tree can contain multiple entries for
31  * different regions which overlap. All the aliases have the same
32  * cache attributes of course.
33  *
34  * memtype_lock protects the rbtree.
35  */
36 
37 static struct rb_root memtype_rbroot = RB_ROOT;
38 
is_node_overlap(struct memtype * node,u64 start,u64 end)39 static int is_node_overlap(struct memtype *node, u64 start, u64 end)
40 {
41 	if (node->start >= end || node->end <= start)
42 		return 0;
43 
44 	return 1;
45 }
46 
get_subtree_max_end(struct rb_node * node)47 static u64 get_subtree_max_end(struct rb_node *node)
48 {
49 	u64 ret = 0;
50 	if (node) {
51 		struct memtype *data = container_of(node, struct memtype, rb);
52 		ret = data->subtree_max_end;
53 	}
54 	return ret;
55 }
56 
57 /* Update 'subtree_max_end' for a node, based on node and its children */
memtype_rb_augment_cb(struct rb_node * node,void * __unused)58 static void memtype_rb_augment_cb(struct rb_node *node, void *__unused)
59 {
60 	struct memtype *data;
61 	u64 max_end, child_max_end;
62 
63 	if (!node)
64 		return;
65 
66 	data = container_of(node, struct memtype, rb);
67 	max_end = data->end;
68 
69 	child_max_end = get_subtree_max_end(node->rb_right);
70 	if (child_max_end > max_end)
71 		max_end = child_max_end;
72 
73 	child_max_end = get_subtree_max_end(node->rb_left);
74 	if (child_max_end > max_end)
75 		max_end = child_max_end;
76 
77 	data->subtree_max_end = max_end;
78 }
79 
80 /* Find the first (lowest start addr) overlapping range from rb tree */
memtype_rb_lowest_match(struct rb_root * root,u64 start,u64 end)81 static struct memtype *memtype_rb_lowest_match(struct rb_root *root,
82 				u64 start, u64 end)
83 {
84 	struct rb_node *node = root->rb_node;
85 	struct memtype *last_lower = NULL;
86 
87 	while (node) {
88 		struct memtype *data = container_of(node, struct memtype, rb);
89 
90 		if (get_subtree_max_end(node->rb_left) > start) {
91 			/* Lowest overlap if any must be on left side */
92 			node = node->rb_left;
93 		} else if (is_node_overlap(data, start, end)) {
94 			last_lower = data;
95 			break;
96 		} else if (start >= data->start) {
97 			/* Lowest overlap if any must be on right side */
98 			node = node->rb_right;
99 		} else {
100 			break;
101 		}
102 	}
103 	return last_lower; /* Returns NULL if there is no overlap */
104 }
105 
memtype_rb_exact_match(struct rb_root * root,u64 start,u64 end)106 static struct memtype *memtype_rb_exact_match(struct rb_root *root,
107 				u64 start, u64 end)
108 {
109 	struct memtype *match;
110 
111 	match = memtype_rb_lowest_match(root, start, end);
112 	while (match != NULL && match->start < end) {
113 		struct rb_node *node;
114 
115 		if (match->start == start && match->end == end)
116 			return match;
117 
118 		node = rb_next(&match->rb);
119 		if (node)
120 			match = container_of(node, struct memtype, rb);
121 		else
122 			match = NULL;
123 	}
124 
125 	return NULL; /* Returns NULL if there is no exact match */
126 }
127 
memtype_rb_check_conflict(struct rb_root * root,u64 start,u64 end,unsigned long reqtype,unsigned long * newtype)128 static int memtype_rb_check_conflict(struct rb_root *root,
129 				u64 start, u64 end,
130 				unsigned long reqtype, unsigned long *newtype)
131 {
132 	struct rb_node *node;
133 	struct memtype *match;
134 	int found_type = reqtype;
135 
136 	match = memtype_rb_lowest_match(&memtype_rbroot, start, end);
137 	if (match == NULL)
138 		goto success;
139 
140 	if (match->type != found_type && newtype == NULL)
141 		goto failure;
142 
143 	dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
144 	found_type = match->type;
145 
146 	node = rb_next(&match->rb);
147 	while (node) {
148 		match = container_of(node, struct memtype, rb);
149 
150 		if (match->start >= end) /* Checked all possible matches */
151 			goto success;
152 
153 		if (is_node_overlap(match, start, end) &&
154 		    match->type != found_type) {
155 			goto failure;
156 		}
157 
158 		node = rb_next(&match->rb);
159 	}
160 success:
161 	if (newtype)
162 		*newtype = found_type;
163 
164 	return 0;
165 
166 failure:
167 	printk(KERN_INFO "%s:%d conflicting memory types "
168 		"%Lx-%Lx %s<->%s\n", current->comm, current->pid, start,
169 		end, cattr_name(found_type), cattr_name(match->type));
170 	return -EBUSY;
171 }
172 
memtype_rb_insert(struct rb_root * root,struct memtype * newdata)173 static void memtype_rb_insert(struct rb_root *root, struct memtype *newdata)
174 {
175 	struct rb_node **node = &(root->rb_node);
176 	struct rb_node *parent = NULL;
177 
178 	while (*node) {
179 		struct memtype *data = container_of(*node, struct memtype, rb);
180 
181 		parent = *node;
182 		if (newdata->start <= data->start)
183 			node = &((*node)->rb_left);
184 		else if (newdata->start > data->start)
185 			node = &((*node)->rb_right);
186 	}
187 
188 	rb_link_node(&newdata->rb, parent, node);
189 	rb_insert_color(&newdata->rb, root);
190 	rb_augment_insert(&newdata->rb, memtype_rb_augment_cb, NULL);
191 }
192 
rbt_memtype_check_insert(struct memtype * new,unsigned long * ret_type)193 int rbt_memtype_check_insert(struct memtype *new, unsigned long *ret_type)
194 {
195 	int err = 0;
196 
197 	err = memtype_rb_check_conflict(&memtype_rbroot, new->start, new->end,
198 						new->type, ret_type);
199 
200 	if (!err) {
201 		if (ret_type)
202 			new->type = *ret_type;
203 
204 		new->subtree_max_end = new->end;
205 		memtype_rb_insert(&memtype_rbroot, new);
206 	}
207 	return err;
208 }
209 
rbt_memtype_erase(u64 start,u64 end)210 struct memtype *rbt_memtype_erase(u64 start, u64 end)
211 {
212 	struct rb_node *deepest;
213 	struct memtype *data;
214 
215 	data = memtype_rb_exact_match(&memtype_rbroot, start, end);
216 	if (!data)
217 		goto out;
218 
219 	deepest = rb_augment_erase_begin(&data->rb);
220 	rb_erase(&data->rb, &memtype_rbroot);
221 	rb_augment_erase_end(deepest, memtype_rb_augment_cb, NULL);
222 out:
223 	return data;
224 }
225 
rbt_memtype_lookup(u64 addr)226 struct memtype *rbt_memtype_lookup(u64 addr)
227 {
228 	struct memtype *data;
229 	data = memtype_rb_lowest_match(&memtype_rbroot, addr, addr + PAGE_SIZE);
230 	return data;
231 }
232 
233 #if defined(CONFIG_DEBUG_FS)
rbt_memtype_copy_nth_element(struct memtype * out,loff_t pos)234 int rbt_memtype_copy_nth_element(struct memtype *out, loff_t pos)
235 {
236 	struct rb_node *node;
237 	int i = 1;
238 
239 	node = rb_first(&memtype_rbroot);
240 	while (node && pos != i) {
241 		node = rb_next(node);
242 		i++;
243 	}
244 
245 	if (node) { /* pos == i */
246 		struct memtype *this = container_of(node, struct memtype, rb);
247 		*out = *this;
248 		return 0;
249 	} else {
250 		return 1;
251 	}
252 }
253 #endif
254