• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2   Madge Horizon ATM Adapter driver.
3   Copyright (C) 1995-1999  Madge Networks Ltd.
4 
5   This program is free software; you can redistribute it and/or modify
6   it under the terms of the GNU General Public License as published by
7   the Free Software Foundation; either version 2 of the License, or
8   (at your option) any later version.
9 
10   This program is distributed in the hope that it will be useful,
11   but WITHOUT ANY WARRANTY; without even the implied warranty of
12   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13   GNU General Public License for more details.
14 
15   You should have received a copy of the GNU General Public License
16   along with this program; if not, write to the Free Software
17   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18 
19   The GNU GPL is contained in /usr/doc/copyright/GPL on a Debian
20   system and in the file COPYING in the Linux kernel source.
21 */
22 
23 /*
24   IMPORTANT NOTE: Madge Networks no longer makes the adapters
25   supported by this driver and makes no commitment to maintain it.
26 */
27 
28 #include <linux/module.h>
29 #include <linux/kernel.h>
30 #include <linux/mm.h>
31 #include <linux/pci.h>
32 #include <linux/errno.h>
33 #include <linux/atm.h>
34 #include <linux/atmdev.h>
35 #include <linux/sonet.h>
36 #include <linux/skbuff.h>
37 #include <linux/time.h>
38 #include <linux/delay.h>
39 #include <linux/uio.h>
40 #include <linux/init.h>
41 #include <linux/interrupt.h>
42 #include <linux/ioport.h>
43 #include <linux/wait.h>
44 #include <linux/slab.h>
45 
46 #include <asm/io.h>
47 #include <linux/atomic.h>
48 #include <asm/uaccess.h>
49 #include <asm/string.h>
50 #include <asm/byteorder.h>
51 
52 #include "horizon.h"
53 
54 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
55 #define description_string "Madge ATM Horizon [Ultra] driver"
56 #define version_string "1.2.1"
57 
show_version(void)58 static inline void __init show_version (void) {
59   printk ("%s version %s\n", description_string, version_string);
60 }
61 
62 /*
63 
64   CREDITS
65 
66   Driver and documentation by:
67 
68   Chris Aston        Madge Networks
69   Giuliano Procida   Madge Networks
70   Simon Benham       Madge Networks
71   Simon Johnson      Madge Networks
72   Various Others     Madge Networks
73 
74   Some inspiration taken from other drivers by:
75 
76   Alexandru Cucos    UTBv
77   Kari Mettinen      University of Helsinki
78   Werner Almesberger EPFL LRC
79 
80   Theory of Operation
81 
82   I Hardware, detection, initialisation and shutdown.
83 
84   1. Supported Hardware
85 
86   This driver should handle all variants of the PCI Madge ATM adapters
87   with the Horizon chipset. These are all PCI cards supporting PIO, BM
88   DMA and a form of MMIO (registers only, not internal RAM).
89 
90   The driver is only known to work with SONET and UTP Horizon Ultra
91   cards at 155Mb/s. However, code is in place to deal with both the
92   original Horizon and 25Mb/s operation.
93 
94   There are two revisions of the Horizon ASIC: the original and the
95   Ultra. Details of hardware bugs are in section III.
96 
97   The ASIC version can be distinguished by chip markings but is NOT
98   indicated by the PCI revision (all adapters seem to have PCI rev 1).
99 
100   I believe that:
101 
102   Horizon       => Collage  25 PCI Adapter (UTP and STP)
103   Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
104   Ambassador x  => Collage 155 PCI Server (completely different)
105 
106   Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
107   have a Madge B154 plus glue logic serializer. I have also found a
108   really ancient version of this with slightly different glue. It
109   comes with the revision 0 (140-025-01) ASIC.
110 
111   Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
112   output (UTP) or an HP HFBR 5205 output (SONET). It has either
113   Madge's SAMBA framer or a SUNI-lite device (early versions). It
114   comes with the revision 1 (140-027-01) ASIC.
115 
116   2. Detection
117 
118   All Horizon-based cards present with the same PCI Vendor and Device
119   IDs. The standard Linux 2.2 PCI API is used to locate any cards and
120   to enable bus-mastering (with appropriate latency).
121 
122   ATM_LAYER_STATUS in the control register distinguishes between the
123   two possible physical layers (25 and 155). It is not clear whether
124   the 155 cards can also operate at 25Mbps. We rely on the fact that a
125   card operates at 155 if and only if it has the newer Horizon Ultra
126   ASIC.
127 
128   For 155 cards the two possible framers are probed for and then set
129   up for loop-timing.
130 
131   3. Initialisation
132 
133   The card is reset and then put into a known state. The physical
134   layer is configured for normal operation at the appropriate speed;
135   in the case of the 155 cards, the framer is initialised with
136   line-based timing; the internal RAM is zeroed and the allocation of
137   buffers for RX and TX is made; the Burnt In Address is read and
138   copied to the ATM ESI; various policy settings for RX (VPI bits,
139   unknown VCs, oam cells) are made. Ideally all policy items should be
140   configurable at module load (if not actually on-demand), however,
141   only the vpi vs vci bit allocation can be specified at insmod.
142 
143   4. Shutdown
144 
145   This is in response to module_cleaup. No VCs are in use and the card
146   should be idle; it is reset.
147 
148   II Driver software (as it should be)
149 
150   0. Traffic Parameters
151 
152   The traffic classes (not an enumeration) are currently: ATM_NONE (no
153   traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
154   (compatible with everything). Together with (perhaps only some of)
155   the following items they make up the traffic specification.
156 
157   struct atm_trafprm {
158     unsigned char traffic_class; traffic class (ATM_UBR, ...)
159     int           max_pcr;       maximum PCR in cells per second
160     int           pcr;           desired PCR in cells per second
161     int           min_pcr;       minimum PCR in cells per second
162     int           max_cdv;       maximum CDV in microseconds
163     int           max_sdu;       maximum SDU in bytes
164   };
165 
166   Note that these denote bandwidth available not bandwidth used; the
167   possibilities according to ATMF are:
168 
169   Real Time (cdv and max CDT given)
170 
171   CBR(pcr)             pcr bandwidth always available
172   rtVBR(pcr,scr,mbs)   scr bandwidth always available, up to pcr at mbs too
173 
174   Non Real Time
175 
176   nrtVBR(pcr,scr,mbs)  scr bandwidth always available, up to pcr at mbs too
177   UBR()
178   ABR(mcr,pcr)         mcr bandwidth always available, up to pcr (depending) too
179 
180   mbs is max burst size (bucket)
181   pcr and scr have associated cdvt values
182   mcr is like scr but has no cdtv
183   cdtv may differ at each hop
184 
185   Some of the above items are qos items (as opposed to traffic
186   parameters). We have nothing to do with qos. All except ABR can have
187   their traffic parameters converted to GCRA parameters. The GCRA may
188   be implemented as a (real-number) leaky bucket. The GCRA can be used
189   in complicated ways by switches and in simpler ways by end-stations.
190   It can be used both to filter incoming cells and shape out-going
191   cells.
192 
193   ATM Linux actually supports:
194 
195   ATM_NONE() (no traffic in this direction)
196   ATM_UBR(max_frame_size)
197   ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
198 
199   0 or ATM_MAX_PCR are used to indicate maximum available PCR
200 
201   A traffic specification consists of the AAL type and separate
202   traffic specifications for either direction. In ATM Linux it is:
203 
204   struct atm_qos {
205   struct atm_trafprm txtp;
206   struct atm_trafprm rxtp;
207   unsigned char aal;
208   };
209 
210   AAL types are:
211 
212   ATM_NO_AAL    AAL not specified
213   ATM_AAL0      "raw" ATM cells
214   ATM_AAL1      AAL1 (CBR)
215   ATM_AAL2      AAL2 (VBR)
216   ATM_AAL34     AAL3/4 (data)
217   ATM_AAL5      AAL5 (data)
218   ATM_SAAL      signaling AAL
219 
220   The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
221   it does not implement AAL 3/4 SAR and it has a different notion of
222   "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
223   supported by this driver.
224 
225   The Horizon has limited support for ABR (including UBR), VBR and
226   CBR. Each TX channel has a bucket (containing up to 31 cell units)
227   and two timers (PCR and SCR) associated with it that can be used to
228   govern cell emissions and host notification (in the case of ABR this
229   is presumably so that RM cells may be emitted at appropriate times).
230   The timers may either be disabled or may be set to any of 240 values
231   (determined by the clock crystal, a fixed (?) per-device divider, a
232   configurable divider and a configurable timer preload value).
233 
234   At the moment only UBR and CBR are supported by the driver. VBR will
235   be supported as soon as ATM for Linux supports it. ABR support is
236   very unlikely as RM cell handling is completely up to the driver.
237 
238   1. TX (TX channel setup and TX transfer)
239 
240   The TX half of the driver owns the TX Horizon registers. The TX
241   component in the IRQ handler is the BM completion handler. This can
242   only be entered when tx_busy is true (enforced by hardware). The
243   other TX component can only be entered when tx_busy is false
244   (enforced by driver). So TX is single-threaded.
245 
246   Apart from a minor optimisation to not re-select the last channel,
247   the TX send component works as follows:
248 
249   Atomic test and set tx_busy until we succeed; we should implement
250   some sort of timeout so that tx_busy will never be stuck at true.
251 
252   If no TX channel is set up for this VC we wait for an idle one (if
253   necessary) and set it up.
254 
255   At this point we have a TX channel ready for use. We wait for enough
256   buffers to become available then start a TX transmit (set the TX
257   descriptor, schedule transfer, exit).
258 
259   The IRQ component handles TX completion (stats, free buffer, tx_busy
260   unset, exit). We also re-schedule further transfers for the same
261   frame if needed.
262 
263   TX setup in more detail:
264 
265   TX open is a nop, the relevant information is held in the hrz_vcc
266   (vcc->dev_data) structure and is "cached" on the card.
267 
268   TX close gets the TX lock and clears the channel from the "cache".
269 
270   2. RX (Data Available and RX transfer)
271 
272   The RX half of the driver owns the RX registers. There are two RX
273   components in the IRQ handler: the data available handler deals with
274   fresh data that has arrived on the card, the BM completion handler
275   is very similar to the TX completion handler. The data available
276   handler grabs the rx_lock and it is only released once the data has
277   been discarded or completely transferred to the host. The BM
278   completion handler only runs when the lock is held; the data
279   available handler is locked out over the same period.
280 
281   Data available on the card triggers an interrupt. If the data is not
282   suitable for our existing RX channels or we cannot allocate a buffer
283   it is flushed. Otherwise an RX receive is scheduled. Multiple RX
284   transfers may be scheduled for the same frame.
285 
286   RX setup in more detail:
287 
288   RX open...
289   RX close...
290 
291   III Hardware Bugs
292 
293   0. Byte vs Word addressing of adapter RAM.
294 
295   A design feature; see the .h file (especially the memory map).
296 
297   1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
298 
299   The host must not start a transmit direction transfer at a
300   non-four-byte boundary in host memory. Instead the host should
301   perform a byte, or a two byte, or one byte followed by two byte
302   transfer in order to start the rest of the transfer on a four byte
303   boundary. RX is OK.
304 
305   Simultaneous transmit and receive direction bus master transfers are
306   not allowed.
307 
308   The simplest solution to these two is to always do PIO (never DMA)
309   in the TX direction on the original Horizon. More complicated
310   solutions are likely to hurt my brain.
311 
312   2. Loss of buffer on close VC
313 
314   When a VC is being closed, the buffer associated with it is not
315   returned to the pool. The host must store the reference to this
316   buffer and when opening a new VC then give it to that new VC.
317 
318   The host intervention currently consists of stacking such a buffer
319   pointer at VC close and checking the stack at VC open.
320 
321   3. Failure to close a VC
322 
323   If a VC is currently receiving a frame then closing the VC may fail
324   and the frame continues to be received.
325 
326   The solution is to make sure any received frames are flushed when
327   ready. This is currently done just before the solution to 2.
328 
329   4. PCI bus (original Horizon only, fixed in Ultra)
330 
331   Reading from the data port prior to initialisation will hang the PCI
332   bus. Just don't do that then! We don't.
333 
334   IV To Do List
335 
336   . Timer code may be broken.
337 
338   . Allow users to specify buffer allocation split for TX and RX.
339 
340   . Deal once and for all with buggy VC close.
341 
342   . Handle interrupted and/or non-blocking operations.
343 
344   . Change some macros to functions and move from .h to .c.
345 
346   . Try to limit the number of TX frames each VC may have queued, in
347     order to reduce the chances of TX buffer exhaustion.
348 
349   . Implement VBR (bucket and timers not understood) and ABR (need to
350     do RM cells manually); also no Linux support for either.
351 
352   . Implement QoS changes on open VCs (involves extracting parts of VC open
353     and close into separate functions and using them to make changes).
354 
355 */
356 
357 /********** globals **********/
358 
359 static void do_housekeeping (unsigned long arg);
360 
361 static unsigned short debug = 0;
362 static unsigned short vpi_bits = 0;
363 static int max_tx_size = 9000;
364 static int max_rx_size = 9000;
365 static unsigned char pci_lat = 0;
366 
367 /********** access functions **********/
368 
369 /* Read / Write Horizon registers */
wr_regl(const hrz_dev * dev,unsigned char reg,u32 data)370 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
371   outl (cpu_to_le32 (data), dev->iobase + reg);
372 }
373 
rd_regl(const hrz_dev * dev,unsigned char reg)374 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
375   return le32_to_cpu (inl (dev->iobase + reg));
376 }
377 
wr_regw(const hrz_dev * dev,unsigned char reg,u16 data)378 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
379   outw (cpu_to_le16 (data), dev->iobase + reg);
380 }
381 
rd_regw(const hrz_dev * dev,unsigned char reg)382 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
383   return le16_to_cpu (inw (dev->iobase + reg));
384 }
385 
wrs_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)386 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
387   outsb (dev->iobase + reg, addr, len);
388 }
389 
rds_regb(const hrz_dev * dev,unsigned char reg,void * addr,u32 len)390 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
391   insb (dev->iobase + reg, addr, len);
392 }
393 
394 /* Read / Write to a given address in Horizon buffer memory.
395    Interrupts must be disabled between the address register and data
396    port accesses as these must form an atomic operation. */
wr_mem(const hrz_dev * dev,HDW * addr,u32 data)397 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
398   // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
399   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
400   wr_regl (dev, MEMORY_PORT_OFF, data);
401 }
402 
rd_mem(const hrz_dev * dev,HDW * addr)403 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
404   // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
405   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
406   return rd_regl (dev, MEMORY_PORT_OFF);
407 }
408 
wr_framer(const hrz_dev * dev,u32 addr,u32 data)409 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
410   wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
411   wr_regl (dev, MEMORY_PORT_OFF, data);
412 }
413 
rd_framer(const hrz_dev * dev,u32 addr)414 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
415   wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
416   return rd_regl (dev, MEMORY_PORT_OFF);
417 }
418 
419 /********** specialised access functions **********/
420 
421 /* RX */
422 
FLUSH_RX_CHANNEL(hrz_dev * dev,u16 channel)423 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
424   wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
425   return;
426 }
427 
WAIT_FLUSH_RX_COMPLETE(hrz_dev * dev)428 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
429   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
430     ;
431   return;
432 }
433 
SELECT_RX_CHANNEL(hrz_dev * dev,u16 channel)434 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
435   wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
436   return;
437 }
438 
WAIT_UPDATE_COMPLETE(hrz_dev * dev)439 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
440   while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
441     ;
442   return;
443 }
444 
445 /* TX */
446 
SELECT_TX_CHANNEL(hrz_dev * dev,u16 tx_channel)447 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
448   wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
449   return;
450 }
451 
452 /* Update or query one configuration parameter of a particular channel. */
453 
update_tx_channel_config(hrz_dev * dev,short chan,u8 mode,u16 value)454 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
455   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
456 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
457     wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
458     return;
459 }
460 
query_tx_channel_config(hrz_dev * dev,short chan,u8 mode)461 static inline u16 query_tx_channel_config (hrz_dev * dev, short chan, u8 mode) {
462   wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
463 	   chan * TX_CHANNEL_CONFIG_MULT | mode);
464     return rd_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF);
465 }
466 
467 /********** dump functions **********/
468 
dump_skb(char * prefix,unsigned int vc,struct sk_buff * skb)469 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
470 #ifdef DEBUG_HORIZON
471   unsigned int i;
472   unsigned char * data = skb->data;
473   PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
474   for (i=0; i<skb->len && i < 256;i++)
475     PRINTDM (DBG_DATA, "%02x ", data[i]);
476   PRINTDE (DBG_DATA,"");
477 #else
478   (void) prefix;
479   (void) vc;
480   (void) skb;
481 #endif
482   return;
483 }
484 
dump_regs(hrz_dev * dev)485 static inline void dump_regs (hrz_dev * dev) {
486 #ifdef DEBUG_HORIZON
487   PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
488   PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
489   PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
490   PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
491   PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
492   PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
493 #else
494   (void) dev;
495 #endif
496   return;
497 }
498 
dump_framer(hrz_dev * dev)499 static inline void dump_framer (hrz_dev * dev) {
500 #ifdef DEBUG_HORIZON
501   unsigned int i;
502   PRINTDB (DBG_REGS, "framer registers:");
503   for (i = 0; i < 0x10; ++i)
504     PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
505   PRINTDE (DBG_REGS,"");
506 #else
507   (void) dev;
508 #endif
509   return;
510 }
511 
512 /********** VPI/VCI <-> (RX) channel conversions **********/
513 
514 /* RX channels are 10 bit integers, these fns are quite paranoid */
515 
channel_to_vpivci(const u16 channel,short * vpi,int * vci)516 static inline int channel_to_vpivci (const u16 channel, short * vpi, int * vci) {
517   unsigned short vci_bits = 10 - vpi_bits;
518   if ((channel & RX_CHANNEL_MASK) == channel) {
519     *vci = channel & ((~0)<<vci_bits);
520     *vpi = channel >> vci_bits;
521     return channel ? 0 : -EINVAL;
522   }
523   return -EINVAL;
524 }
525 
vpivci_to_channel(u16 * channel,const short vpi,const int vci)526 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
527   unsigned short vci_bits = 10 - vpi_bits;
528   if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
529     *channel = vpi<<vci_bits | vci;
530     return *channel ? 0 : -EINVAL;
531   }
532   return -EINVAL;
533 }
534 
535 /********** decode RX queue entries **********/
536 
rx_q_entry_to_length(u32 x)537 static inline u16 rx_q_entry_to_length (u32 x) {
538   return x & RX_Q_ENTRY_LENGTH_MASK;
539 }
540 
rx_q_entry_to_rx_channel(u32 x)541 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
542   return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
543 }
544 
545 /* Cell Transmit Rate Values
546  *
547  * the cell transmit rate (cells per sec) can be set to a variety of
548  * different values by specifying two parameters: a timer preload from
549  * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
550  * an exponent from 0 to 14; the special value 15 disables the timer).
551  *
552  * cellrate = baserate / (preload * 2^divider)
553  *
554  * The maximum cell rate that can be specified is therefore just the
555  * base rate. Halving the preload is equivalent to adding 1 to the
556  * divider and so values 1 to 8 of the preload are redundant except
557  * in the case of a maximal divider (14).
558  *
559  * Given a desired cell rate, an algorithm to determine the preload
560  * and divider is:
561  *
562  * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
563  * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
564  *    if x <= 16 then set p = x, d = 0 (high rates), done
565  * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
566  *    know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
567  *    we find the range (n will be between 1 and 14), set d = n
568  * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
569  *
570  * The algorithm used below is a minor variant of the above.
571  *
572  * The base rate is derived from the oscillator frequency (Hz) using a
573  * fixed divider:
574  *
575  * baserate = freq / 32 in the case of some Unknown Card
576  * baserate = freq / 8  in the case of the Horizon        25
577  * baserate = freq / 8  in the case of the Horizon Ultra 155
578  *
579  * The Horizon cards have oscillators and base rates as follows:
580  *
581  * Card               Oscillator  Base Rate
582  * Unknown Card       33 MHz      1.03125 MHz (33 MHz = PCI freq)
583  * Horizon        25  32 MHz      4       MHz
584  * Horizon Ultra 155  40 MHz      5       MHz
585  *
586  * The following defines give the base rates in Hz. These were
587  * previously a factor of 100 larger, no doubt someone was using
588  * cps*100.
589  */
590 
591 #define BR_UKN 1031250l
592 #define BR_HRZ 4000000l
593 #define BR_ULT 5000000l
594 
595 // d is an exponent
596 #define CR_MIND 0
597 #define CR_MAXD 14
598 
599 // p ranges from 1 to a power of 2
600 #define CR_MAXPEXP 4
601 
make_rate(const hrz_dev * dev,u32 c,rounding r,u16 * bits,unsigned int * actual)602 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
603 		      u16 * bits, unsigned int * actual)
604 {
605 	// note: rounding the rate down means rounding 'p' up
606 	const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
607 
608 	u32 div = CR_MIND;
609 	u32 pre;
610 
611 	// br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
612 	// the tests below. We could think harder about exact possibilities
613 	// of failure...
614 
615 	unsigned long br_man = br;
616 	unsigned int br_exp = 0;
617 
618 	PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
619 		r == round_up ? "up" : r == round_down ? "down" : "nearest");
620 
621 	// avoid div by zero
622 	if (!c) {
623 		PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
624 		return -EINVAL;
625 	}
626 
627 	while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
628 		br_man = br_man >> 1;
629 		++br_exp;
630 	}
631 	// (br >>br_exp) <<br_exp == br and
632 	// br_exp <= CR_MAXPEXP+CR_MIND
633 
634 	if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
635 		// Equivalent to: B <= (c << (MAXPEXP+MIND))
636 		// take care of rounding
637 		switch (r) {
638 			case round_down:
639 				pre = DIV_ROUND_UP(br, c<<div);
640 				// but p must be non-zero
641 				if (!pre)
642 					pre = 1;
643 				break;
644 			case round_nearest:
645 				pre = DIV_ROUND_CLOSEST(br, c<<div);
646 				// but p must be non-zero
647 				if (!pre)
648 					pre = 1;
649 				break;
650 			default:	/* round_up */
651 				pre = br/(c<<div);
652 				// but p must be non-zero
653 				if (!pre)
654 					return -EINVAL;
655 		}
656 		PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
657 		goto got_it;
658 	}
659 
660 	// at this point we have
661 	// d == MIND and (c << (MAXPEXP+MIND)) < B
662 	while (div < CR_MAXD) {
663 		div++;
664 		if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
665 			// Equivalent to: B <= (c << (MAXPEXP+d))
666 			// c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
667 			// 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
668 			// MAXP/2 < B/c2^d <= MAXP
669 			// take care of rounding
670 			switch (r) {
671 				case round_down:
672 					pre = DIV_ROUND_UP(br, c<<div);
673 					break;
674 				case round_nearest:
675 					pre = DIV_ROUND_CLOSEST(br, c<<div);
676 					break;
677 				default: /* round_up */
678 					pre = br/(c<<div);
679 			}
680 			PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
681 			goto got_it;
682 		}
683 	}
684 	// at this point we have
685 	// d == MAXD and (c << (MAXPEXP+MAXD)) < B
686 	// but we cannot go any higher
687 	// take care of rounding
688 	if (r == round_down)
689 		return -EINVAL;
690 	pre = 1 << CR_MAXPEXP;
691 	PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
692 got_it:
693 	// paranoia
694 	if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
695 		PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
696 			div, pre);
697 		return -EINVAL;
698 	} else {
699 		if (bits)
700 			*bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
701 		if (actual) {
702 			*actual = DIV_ROUND_UP(br, pre<<div);
703 			PRINTD (DBG_QOS, "actual rate: %u", *actual);
704 		}
705 		return 0;
706 	}
707 }
708 
make_rate_with_tolerance(const hrz_dev * dev,u32 c,rounding r,unsigned int tol,u16 * bit_pattern,unsigned int * actual)709 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
710 				     u16 * bit_pattern, unsigned int * actual) {
711   unsigned int my_actual;
712 
713   PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
714 	  c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
715 
716   if (!actual)
717     // actual rate is not returned
718     actual = &my_actual;
719 
720   if (make_rate (dev, c, round_nearest, bit_pattern, actual))
721     // should never happen as round_nearest always succeeds
722     return -1;
723 
724   if (c - tol <= *actual && *actual <= c + tol)
725     // within tolerance
726     return 0;
727   else
728     // intolerant, try rounding instead
729     return make_rate (dev, c, r, bit_pattern, actual);
730 }
731 
732 /********** Listen on a VC **********/
733 
hrz_open_rx(hrz_dev * dev,u16 channel)734 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
735   // is there any guarantee that we don't get two simulataneous
736   // identical calls of this function from different processes? yes
737   // rate_lock
738   unsigned long flags;
739   u32 channel_type; // u16?
740 
741   u16 buf_ptr = RX_CHANNEL_IDLE;
742 
743   rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
744 
745   PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
746 
747   spin_lock_irqsave (&dev->mem_lock, flags);
748   channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
749   spin_unlock_irqrestore (&dev->mem_lock, flags);
750 
751   // very serious error, should never occur
752   if (channel_type != RX_CHANNEL_DISABLED) {
753     PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
754     return -EBUSY; // clean up?
755   }
756 
757   // Give back spare buffer
758   if (dev->noof_spare_buffers) {
759     buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
760     PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
761     // should never occur
762     if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
763       // but easy to recover from
764       PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
765       buf_ptr = RX_CHANNEL_IDLE;
766     }
767   } else {
768     PRINTD (DBG_VCC, "using IDLE buffer pointer");
769   }
770 
771   // Channel is currently disabled so change its status to idle
772 
773   // do we really need to save the flags again?
774   spin_lock_irqsave (&dev->mem_lock, flags);
775 
776   wr_mem (dev, &rx_desc->wr_buf_type,
777 	  buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
778   if (buf_ptr != RX_CHANNEL_IDLE)
779     wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
780 
781   spin_unlock_irqrestore (&dev->mem_lock, flags);
782 
783   // rxer->rate = make_rate (qos->peak_cells);
784 
785   PRINTD (DBG_FLOW, "hrz_open_rx ok");
786 
787   return 0;
788 }
789 
790 #if 0
791 /********** change vc rate for a given vc **********/
792 
793 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
794   rxer->rate = make_rate (qos->peak_cells);
795 }
796 #endif
797 
798 /********** free an skb (as per ATM device driver documentation) **********/
799 
hrz_kfree_skb(struct sk_buff * skb)800 static void hrz_kfree_skb (struct sk_buff * skb) {
801   if (ATM_SKB(skb)->vcc->pop) {
802     ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
803   } else {
804     dev_kfree_skb_any (skb);
805   }
806 }
807 
808 /********** cancel listen on a VC **********/
809 
hrz_close_rx(hrz_dev * dev,u16 vc)810 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
811   unsigned long flags;
812 
813   u32 value;
814 
815   u32 r1, r2;
816 
817   rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
818 
819   int was_idle = 0;
820 
821   spin_lock_irqsave (&dev->mem_lock, flags);
822   value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
823   spin_unlock_irqrestore (&dev->mem_lock, flags);
824 
825   if (value == RX_CHANNEL_DISABLED) {
826     // I suppose this could happen once we deal with _NONE traffic properly
827     PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
828     return;
829   }
830   if (value == RX_CHANNEL_IDLE)
831     was_idle = 1;
832 
833   spin_lock_irqsave (&dev->mem_lock, flags);
834 
835   for (;;) {
836     wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
837 
838     if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
839       break;
840 
841     was_idle = 0;
842   }
843 
844   if (was_idle) {
845     spin_unlock_irqrestore (&dev->mem_lock, flags);
846     return;
847   }
848 
849   WAIT_FLUSH_RX_COMPLETE(dev);
850 
851   // XXX Is this all really necessary? We can rely on the rx_data_av
852   // handler to discard frames that remain queued for delivery. If the
853   // worry is that immediately reopening the channel (perhaps by a
854   // different process) may cause some data to be mis-delivered then
855   // there may still be a simpler solution (such as busy-waiting on
856   // rx_busy once the channel is disabled or before a new one is
857   // opened - does this leave any holes?). Arguably setting up and
858   // tearing down the TX and RX halves of each virtual circuit could
859   // most safely be done within ?x_busy protected regions.
860 
861   // OK, current changes are that Simon's marker is disabled and we DO
862   // look for NULL rxer elsewhere. The code here seems flush frames
863   // and then remember the last dead cell belonging to the channel
864   // just disabled - the cell gets relinked at the next vc_open.
865   // However, when all VCs are closed or only a few opened there are a
866   // handful of buffers that are unusable.
867 
868   // Does anyone feel like documenting spare_buffers properly?
869   // Does anyone feel like fixing this in a nicer way?
870 
871   // Flush any data which is left in the channel
872   for (;;) {
873     // Change the rx channel port to something different to the RX
874     // channel we are trying to close to force Horizon to flush the rx
875     // channel read and write pointers.
876 
877     u16 other = vc^(RX_CHANS/2);
878 
879     SELECT_RX_CHANNEL (dev, other);
880     WAIT_UPDATE_COMPLETE (dev);
881 
882     r1 = rd_mem (dev, &rx_desc->rd_buf_type);
883 
884     // Select this RX channel. Flush doesn't seem to work unless we
885     // select an RX channel before hand
886 
887     SELECT_RX_CHANNEL (dev, vc);
888     WAIT_UPDATE_COMPLETE (dev);
889 
890     // Attempt to flush a frame on this RX channel
891 
892     FLUSH_RX_CHANNEL (dev, vc);
893     WAIT_FLUSH_RX_COMPLETE (dev);
894 
895     // Force Horizon to flush rx channel read and write pointers as before
896 
897     SELECT_RX_CHANNEL (dev, other);
898     WAIT_UPDATE_COMPLETE (dev);
899 
900     r2 = rd_mem (dev, &rx_desc->rd_buf_type);
901 
902     PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
903 
904     if (r1 == r2) {
905       dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
906       break;
907     }
908   }
909 
910 #if 0
911   {
912     rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
913     rx_q_entry * rd_ptr = dev->rx_q_entry;
914 
915     PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
916 
917     while (rd_ptr != wr_ptr) {
918       u32 x = rd_mem (dev, (HDW *) rd_ptr);
919 
920       if (vc == rx_q_entry_to_rx_channel (x)) {
921 	x |= SIMONS_DODGEY_MARKER;
922 
923 	PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
924 
925 	wr_mem (dev, (HDW *) rd_ptr, x);
926       }
927 
928       if (rd_ptr == dev->rx_q_wrap)
929 	rd_ptr = dev->rx_q_reset;
930       else
931 	rd_ptr++;
932     }
933   }
934 #endif
935 
936   spin_unlock_irqrestore (&dev->mem_lock, flags);
937 
938   return;
939 }
940 
941 /********** schedule RX transfers **********/
942 
943 // Note on tail recursion: a GCC developer said that it is not likely
944 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
945 // are sure it does as you may otherwise overflow the kernel stack.
946 
947 // giving this fn a return value would help GCC, allegedly
948 
rx_schedule(hrz_dev * dev,int irq)949 static void rx_schedule (hrz_dev * dev, int irq) {
950   unsigned int rx_bytes;
951 
952   int pio_instead = 0;
953 #ifndef TAILRECURSIONWORKS
954   pio_instead = 1;
955   while (pio_instead) {
956 #endif
957     // bytes waiting for RX transfer
958     rx_bytes = dev->rx_bytes;
959 
960 #if 0
961     spin_count = 0;
962     while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
963       PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
964       if (++spin_count > 10) {
965 	PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
966 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
967 	clear_bit (rx_busy, &dev->flags);
968 	hrz_kfree_skb (dev->rx_skb);
969 	return;
970       }
971     }
972 #endif
973 
974     // this code follows the TX code but (at the moment) there is only
975     // one region - the skb itself. I don't know if this will change,
976     // but it doesn't hurt to have the code here, disabled.
977 
978     if (rx_bytes) {
979       // start next transfer within same region
980       if (rx_bytes <= MAX_PIO_COUNT) {
981 	PRINTD (DBG_RX|DBG_BUS, "(pio)");
982 	pio_instead = 1;
983       }
984       if (rx_bytes <= MAX_TRANSFER_COUNT) {
985 	PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
986 	dev->rx_bytes = 0;
987       } else {
988 	PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
989 	dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
990 	rx_bytes = MAX_TRANSFER_COUNT;
991       }
992     } else {
993       // rx_bytes == 0 -- we're between regions
994       // regions remaining to transfer
995 #if 0
996       unsigned int rx_regions = dev->rx_regions;
997 #else
998       unsigned int rx_regions = 0;
999 #endif
1000 
1001       if (rx_regions) {
1002 #if 0
1003 	// start a new region
1004 	dev->rx_addr = dev->rx_iovec->iov_base;
1005 	rx_bytes = dev->rx_iovec->iov_len;
1006 	++dev->rx_iovec;
1007 	dev->rx_regions = rx_regions - 1;
1008 
1009 	if (rx_bytes <= MAX_PIO_COUNT) {
1010 	  PRINTD (DBG_RX|DBG_BUS, "(pio)");
1011 	  pio_instead = 1;
1012 	}
1013 	if (rx_bytes <= MAX_TRANSFER_COUNT) {
1014 	  PRINTD (DBG_RX|DBG_BUS, "(full region)");
1015 	  dev->rx_bytes = 0;
1016 	} else {
1017 	  PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
1018 	  dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
1019 	  rx_bytes = MAX_TRANSFER_COUNT;
1020 	}
1021 #endif
1022       } else {
1023 	// rx_regions == 0
1024 	// that's all folks - end of frame
1025 	struct sk_buff * skb = dev->rx_skb;
1026 	// dev->rx_iovec = 0;
1027 
1028 	FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1029 
1030 	dump_skb ("<<<", dev->rx_channel, skb);
1031 
1032 	PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1033 
1034 	{
1035 	  struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1036 	  // VC layer stats
1037 	  atomic_inc(&vcc->stats->rx);
1038 	  __net_timestamp(skb);
1039 	  // end of our responsibility
1040 	  vcc->push (vcc, skb);
1041 	}
1042       }
1043     }
1044 
1045     // note: writing RX_COUNT clears any interrupt condition
1046     if (rx_bytes) {
1047       if (pio_instead) {
1048 	if (irq)
1049 	  wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1050 	rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1051       } else {
1052 	wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1053 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1054       }
1055       dev->rx_addr += rx_bytes;
1056     } else {
1057       if (irq)
1058 	wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1059       // allow another RX thread to start
1060       YELLOW_LED_ON(dev);
1061       clear_bit (rx_busy, &dev->flags);
1062       PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1063     }
1064 
1065 #ifdef TAILRECURSIONWORKS
1066     // and we all bless optimised tail calls
1067     if (pio_instead)
1068       return rx_schedule (dev, 0);
1069     return;
1070 #else
1071     // grrrrrrr!
1072     irq = 0;
1073   }
1074   return;
1075 #endif
1076 }
1077 
1078 /********** handle RX bus master complete events **********/
1079 
rx_bus_master_complete_handler(hrz_dev * dev)1080 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1081   if (test_bit (rx_busy, &dev->flags)) {
1082     rx_schedule (dev, 1);
1083   } else {
1084     PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1085     // clear interrupt condition on adapter
1086     wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1087   }
1088   return;
1089 }
1090 
1091 /********** (queue to) become the next TX thread **********/
1092 
tx_hold(hrz_dev * dev)1093 static int tx_hold (hrz_dev * dev) {
1094   PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1095   wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1096   PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1097   if (signal_pending (current))
1098     return -1;
1099   PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1100   return 0;
1101 }
1102 
1103 /********** allow another TX thread to start **********/
1104 
tx_release(hrz_dev * dev)1105 static inline void tx_release (hrz_dev * dev) {
1106   clear_bit (tx_busy, &dev->flags);
1107   PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1108   wake_up_interruptible (&dev->tx_queue);
1109 }
1110 
1111 /********** schedule TX transfers **********/
1112 
tx_schedule(hrz_dev * const dev,int irq)1113 static void tx_schedule (hrz_dev * const dev, int irq) {
1114   unsigned int tx_bytes;
1115 
1116   int append_desc = 0;
1117 
1118   int pio_instead = 0;
1119 #ifndef TAILRECURSIONWORKS
1120   pio_instead = 1;
1121   while (pio_instead) {
1122 #endif
1123     // bytes in current region waiting for TX transfer
1124     tx_bytes = dev->tx_bytes;
1125 
1126 #if 0
1127     spin_count = 0;
1128     while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1129       PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1130       if (++spin_count > 10) {
1131 	PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1132 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1133 	tx_release (dev);
1134 	hrz_kfree_skb (dev->tx_skb);
1135 	return;
1136       }
1137     }
1138 #endif
1139 
1140     if (tx_bytes) {
1141       // start next transfer within same region
1142       if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1143 	PRINTD (DBG_TX|DBG_BUS, "(pio)");
1144 	pio_instead = 1;
1145       }
1146       if (tx_bytes <= MAX_TRANSFER_COUNT) {
1147 	PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1148 	if (!dev->tx_iovec) {
1149 	  // end of last region
1150 	  append_desc = 1;
1151 	}
1152 	dev->tx_bytes = 0;
1153       } else {
1154 	PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1155 	dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1156 	tx_bytes = MAX_TRANSFER_COUNT;
1157       }
1158     } else {
1159       // tx_bytes == 0 -- we're between regions
1160       // regions remaining to transfer
1161       unsigned int tx_regions = dev->tx_regions;
1162 
1163       if (tx_regions) {
1164 	// start a new region
1165 	dev->tx_addr = dev->tx_iovec->iov_base;
1166 	tx_bytes = dev->tx_iovec->iov_len;
1167 	++dev->tx_iovec;
1168 	dev->tx_regions = tx_regions - 1;
1169 
1170 	if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1171 	  PRINTD (DBG_TX|DBG_BUS, "(pio)");
1172 	  pio_instead = 1;
1173 	}
1174 	if (tx_bytes <= MAX_TRANSFER_COUNT) {
1175 	  PRINTD (DBG_TX|DBG_BUS, "(full region)");
1176 	  dev->tx_bytes = 0;
1177 	} else {
1178 	  PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1179 	  dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1180 	  tx_bytes = MAX_TRANSFER_COUNT;
1181 	}
1182       } else {
1183 	// tx_regions == 0
1184 	// that's all folks - end of frame
1185 	struct sk_buff * skb = dev->tx_skb;
1186 	dev->tx_iovec = NULL;
1187 
1188 	// VC layer stats
1189 	atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1190 
1191 	// free the skb
1192 	hrz_kfree_skb (skb);
1193       }
1194     }
1195 
1196     // note: writing TX_COUNT clears any interrupt condition
1197     if (tx_bytes) {
1198       if (pio_instead) {
1199 	if (irq)
1200 	  wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1201 	wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1202 	if (append_desc)
1203 	  wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1204       } else {
1205 	wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1206 	if (append_desc)
1207 	  wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1208 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1209 		 append_desc
1210 		 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1211 		 : tx_bytes);
1212       }
1213       dev->tx_addr += tx_bytes;
1214     } else {
1215       if (irq)
1216 	wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1217       YELLOW_LED_ON(dev);
1218       tx_release (dev);
1219     }
1220 
1221 #ifdef TAILRECURSIONWORKS
1222     // and we all bless optimised tail calls
1223     if (pio_instead)
1224       return tx_schedule (dev, 0);
1225     return;
1226 #else
1227     // grrrrrrr!
1228     irq = 0;
1229   }
1230   return;
1231 #endif
1232 }
1233 
1234 /********** handle TX bus master complete events **********/
1235 
tx_bus_master_complete_handler(hrz_dev * dev)1236 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1237   if (test_bit (tx_busy, &dev->flags)) {
1238     tx_schedule (dev, 1);
1239   } else {
1240     PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1241     // clear interrupt condition on adapter
1242     wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1243   }
1244   return;
1245 }
1246 
1247 /********** move RX Q pointer to next item in circular buffer **********/
1248 
1249 // called only from IRQ sub-handler
rx_queue_entry_next(hrz_dev * dev)1250 static u32 rx_queue_entry_next (hrz_dev * dev) {
1251   u32 rx_queue_entry;
1252   spin_lock (&dev->mem_lock);
1253   rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1254   if (dev->rx_q_entry == dev->rx_q_wrap)
1255     dev->rx_q_entry = dev->rx_q_reset;
1256   else
1257     dev->rx_q_entry++;
1258   wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1259   spin_unlock (&dev->mem_lock);
1260   return rx_queue_entry;
1261 }
1262 
1263 /********** handle RX disabled by device **********/
1264 
rx_disabled_handler(hrz_dev * dev)1265 static inline void rx_disabled_handler (hrz_dev * dev) {
1266   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1267   // count me please
1268   PRINTK (KERN_WARNING, "RX was disabled!");
1269 }
1270 
1271 /********** handle RX data received by device **********/
1272 
1273 // called from IRQ handler
rx_data_av_handler(hrz_dev * dev)1274 static void rx_data_av_handler (hrz_dev * dev) {
1275   u32 rx_queue_entry;
1276   u32 rx_queue_entry_flags;
1277   u16 rx_len;
1278   u16 rx_channel;
1279 
1280   PRINTD (DBG_FLOW, "hrz_data_av_handler");
1281 
1282   // try to grab rx lock (not possible during RX bus mastering)
1283   if (test_and_set_bit (rx_busy, &dev->flags)) {
1284     PRINTD (DBG_RX, "locked out of rx lock");
1285     return;
1286   }
1287   PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1288   // lock is cleared if we fail now, o/w after bus master completion
1289 
1290   YELLOW_LED_OFF(dev);
1291 
1292   rx_queue_entry = rx_queue_entry_next (dev);
1293 
1294   rx_len = rx_q_entry_to_length (rx_queue_entry);
1295   rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1296 
1297   WAIT_FLUSH_RX_COMPLETE (dev);
1298 
1299   SELECT_RX_CHANNEL (dev, rx_channel);
1300 
1301   PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1302   rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1303 
1304   if (!rx_len) {
1305     // (at least) bus-mastering breaks if we try to handle a
1306     // zero-length frame, besides AAL5 does not support them
1307     PRINTK (KERN_ERR, "zero-length frame!");
1308     rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1309   }
1310 
1311   if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1312     PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1313   }
1314   if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1315     struct atm_vcc * atm_vcc;
1316 
1317     PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1318 
1319     atm_vcc = dev->rxer[rx_channel];
1320     // if no vcc is assigned to this channel, we should drop the frame
1321     // (is this what SIMONS etc. was trying to achieve?)
1322 
1323     if (atm_vcc) {
1324 
1325       if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1326 
1327 	if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1328 
1329 	  struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1330 	  if (skb) {
1331 	    // remember this so we can push it later
1332 	    dev->rx_skb = skb;
1333 	    // remember this so we can flush it later
1334 	    dev->rx_channel = rx_channel;
1335 
1336 	    // prepare socket buffer
1337 	    skb_put (skb, rx_len);
1338 	    ATM_SKB(skb)->vcc = atm_vcc;
1339 
1340 	    // simple transfer
1341 	    // dev->rx_regions = 0;
1342 	    // dev->rx_iovec = 0;
1343 	    dev->rx_bytes = rx_len;
1344 	    dev->rx_addr = skb->data;
1345 	    PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1346 		    skb->data, rx_len);
1347 
1348 	    // do the business
1349 	    rx_schedule (dev, 0);
1350 	    return;
1351 
1352 	  } else {
1353 	    PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1354 	  }
1355 
1356 	} else {
1357 	  PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1358 	  // do we count this?
1359 	}
1360 
1361       } else {
1362 	PRINTK (KERN_WARNING, "dropped over-size frame");
1363 	// do we count this?
1364       }
1365 
1366     } else {
1367       PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1368       // do we count this?
1369     }
1370 
1371   } else {
1372     // Wait update complete ? SPONG
1373   }
1374 
1375   // RX was aborted
1376   YELLOW_LED_ON(dev);
1377 
1378   FLUSH_RX_CHANNEL (dev,rx_channel);
1379   clear_bit (rx_busy, &dev->flags);
1380 
1381   return;
1382 }
1383 
1384 /********** interrupt handler **********/
1385 
interrupt_handler(int irq,void * dev_id)1386 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1387 {
1388   hrz_dev *dev = dev_id;
1389   u32 int_source;
1390   unsigned int irq_ok;
1391 
1392   PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1393 
1394   // definitely for us
1395   irq_ok = 0;
1396   while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1397 	  & INTERESTING_INTERRUPTS)) {
1398     // In the interests of fairness, the handlers below are
1399     // called in sequence and without immediate return to the head of
1400     // the while loop. This is only of issue for slow hosts (or when
1401     // debugging messages are on). Really slow hosts may find a fast
1402     // sender keeps them permanently in the IRQ handler. :(
1403 
1404     // (only an issue for slow hosts) RX completion goes before
1405     // rx_data_av as the former implies rx_busy and so the latter
1406     // would just abort. If it reschedules another transfer
1407     // (continuing the same frame) then it will not clear rx_busy.
1408 
1409     // (only an issue for slow hosts) TX completion goes before RX
1410     // data available as it is a much shorter routine - there is the
1411     // chance that any further transfers it schedules will be complete
1412     // by the time of the return to the head of the while loop
1413 
1414     if (int_source & RX_BUS_MASTER_COMPLETE) {
1415       ++irq_ok;
1416       PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1417       rx_bus_master_complete_handler (dev);
1418     }
1419     if (int_source & TX_BUS_MASTER_COMPLETE) {
1420       ++irq_ok;
1421       PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1422       tx_bus_master_complete_handler (dev);
1423     }
1424     if (int_source & RX_DATA_AV) {
1425       ++irq_ok;
1426       PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1427       rx_data_av_handler (dev);
1428     }
1429   }
1430   if (irq_ok) {
1431     PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1432   } else {
1433     PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1434   }
1435 
1436   PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1437   if (irq_ok)
1438 	return IRQ_HANDLED;
1439   return IRQ_NONE;
1440 }
1441 
1442 /********** housekeeping **********/
1443 
do_housekeeping(unsigned long arg)1444 static void do_housekeeping (unsigned long arg) {
1445   // just stats at the moment
1446   hrz_dev * dev = (hrz_dev *) arg;
1447 
1448   // collect device-specific (not driver/atm-linux) stats here
1449   dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1450   dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1451   dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1452   dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1453 
1454   mod_timer (&dev->housekeeping, jiffies + HZ/10);
1455 
1456   return;
1457 }
1458 
1459 /********** find an idle channel for TX and set it up **********/
1460 
1461 // called with tx_busy set
setup_idle_tx_channel(hrz_dev * dev,hrz_vcc * vcc)1462 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1463   unsigned short idle_channels;
1464   short tx_channel = -1;
1465   unsigned int spin_count;
1466   PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1467 
1468   // better would be to fail immediately, the caller can then decide whether
1469   // to wait or drop (depending on whether this is UBR etc.)
1470   spin_count = 0;
1471   while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1472     PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1473     // delay a bit here
1474     if (++spin_count > 100) {
1475       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1476       return -EBUSY;
1477     }
1478   }
1479 
1480   // got an idle channel
1481   {
1482     // tx_idle ensures we look for idle channels in RR order
1483     int chan = dev->tx_idle;
1484 
1485     int keep_going = 1;
1486     while (keep_going) {
1487       if (idle_channels & (1<<chan)) {
1488 	tx_channel = chan;
1489 	keep_going = 0;
1490       }
1491       ++chan;
1492       if (chan == TX_CHANS)
1493 	chan = 0;
1494     }
1495 
1496     dev->tx_idle = chan;
1497   }
1498 
1499   // set up the channel we found
1500   {
1501     // Initialise the cell header in the transmit channel descriptor
1502     // a.k.a. prepare the channel and remember that we have done so.
1503 
1504     tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1505     u32 rd_ptr;
1506     u32 wr_ptr;
1507     u16 channel = vcc->channel;
1508 
1509     unsigned long flags;
1510     spin_lock_irqsave (&dev->mem_lock, flags);
1511 
1512     // Update the transmit channel record.
1513     dev->tx_channel_record[tx_channel] = channel;
1514 
1515     // xBR channel
1516     update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1517 			      vcc->tx_xbr_bits);
1518 
1519     // Update the PCR counter preload value etc.
1520     update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1521 			      vcc->tx_pcr_bits);
1522 
1523 #if 0
1524     if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1525       // SCR timer
1526       update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1527 				vcc->tx_scr_bits);
1528 
1529       // Bucket size...
1530       update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1531 				vcc->tx_bucket_bits);
1532 
1533       // ... and fullness
1534       update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1535 				vcc->tx_bucket_bits);
1536     }
1537 #endif
1538 
1539     // Initialise the read and write buffer pointers
1540     rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1541     wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1542 
1543     // idle TX channels should have identical pointers
1544     if (rd_ptr != wr_ptr) {
1545       PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1546       // spin_unlock... return -E...
1547       // I wonder if gcc would get rid of one of the pointer aliases
1548     }
1549     PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1550 	    rd_ptr, wr_ptr);
1551 
1552     switch (vcc->aal) {
1553       case aal0:
1554 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1555 	rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1556 	wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1557 	break;
1558       case aal34:
1559 	PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1560 	rd_ptr |= CHANNEL_TYPE_AAL3_4;
1561 	wr_ptr |= CHANNEL_TYPE_AAL3_4;
1562 	break;
1563       case aal5:
1564 	rd_ptr |= CHANNEL_TYPE_AAL5;
1565 	wr_ptr |= CHANNEL_TYPE_AAL5;
1566 	// Initialise the CRC
1567 	wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1568 	break;
1569     }
1570 
1571     wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1572     wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1573 
1574     // Write the Cell Header
1575     // Payload Type, CLP and GFC would go here if non-zero
1576     wr_mem (dev, &tx_desc->cell_header, channel);
1577 
1578     spin_unlock_irqrestore (&dev->mem_lock, flags);
1579   }
1580 
1581   return tx_channel;
1582 }
1583 
1584 /********** send a frame **********/
1585 
hrz_send(struct atm_vcc * atm_vcc,struct sk_buff * skb)1586 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1587   unsigned int spin_count;
1588   int free_buffers;
1589   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1590   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1591   u16 channel = vcc->channel;
1592 
1593   u32 buffers_required;
1594 
1595   /* signed for error return */
1596   short tx_channel;
1597 
1598   PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1599 	  channel, skb->data, skb->len);
1600 
1601   dump_skb (">>>", channel, skb);
1602 
1603   if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1604     PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1605     hrz_kfree_skb (skb);
1606     return -EIO;
1607   }
1608 
1609   // don't understand this
1610   ATM_SKB(skb)->vcc = atm_vcc;
1611 
1612   if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1613     PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1614     hrz_kfree_skb (skb);
1615     return -EIO;
1616   }
1617 
1618   if (!channel) {
1619     PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1620     hrz_kfree_skb (skb);
1621     return -EIO;
1622   }
1623 
1624 #if 0
1625   {
1626     // where would be a better place for this? housekeeping?
1627     u16 status;
1628     pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1629     if (status & PCI_STATUS_REC_MASTER_ABORT) {
1630       PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1631       status &= ~PCI_STATUS_REC_MASTER_ABORT;
1632       pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1633       if (test_bit (tx_busy, &dev->flags)) {
1634 	hrz_kfree_skb (dev->tx_skb);
1635 	tx_release (dev);
1636       }
1637     }
1638   }
1639 #endif
1640 
1641 #ifdef DEBUG_HORIZON
1642   /* wey-hey! */
1643   if (channel == 1023) {
1644     unsigned int i;
1645     unsigned short d = 0;
1646     char * s = skb->data;
1647     if (*s++ == 'D') {
1648 	for (i = 0; i < 4; ++i)
1649 		d = (d << 4) | hex_to_bin(*s++);
1650       PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1651     }
1652   }
1653 #endif
1654 
1655   // wait until TX is free and grab lock
1656   if (tx_hold (dev)) {
1657     hrz_kfree_skb (skb);
1658     return -ERESTARTSYS;
1659   }
1660 
1661   // Wait for enough space to be available in transmit buffer memory.
1662 
1663   // should be number of cells needed + 2 (according to hardware docs)
1664   // = ((framelen+8)+47) / 48 + 2
1665   // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1666   buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1667 
1668   // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1669   spin_count = 0;
1670   while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1671     PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1672 	    free_buffers, buffers_required);
1673     // what is the appropriate delay? implement a timeout? (depending on line speed?)
1674     // mdelay (1);
1675     // what happens if we kill (current_pid, SIGKILL) ?
1676     schedule();
1677     if (++spin_count > 1000) {
1678       PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1679 	      free_buffers, buffers_required);
1680       tx_release (dev);
1681       hrz_kfree_skb (skb);
1682       return -ERESTARTSYS;
1683     }
1684   }
1685 
1686   // Select a channel to transmit the frame on.
1687   if (channel == dev->last_vc) {
1688     PRINTD (DBG_TX, "last vc hack: hit");
1689     tx_channel = dev->tx_last;
1690   } else {
1691     PRINTD (DBG_TX, "last vc hack: miss");
1692     // Are we currently transmitting this VC on one of the channels?
1693     for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1694       if (dev->tx_channel_record[tx_channel] == channel) {
1695 	PRINTD (DBG_TX, "vc already on channel: hit");
1696 	break;
1697       }
1698     if (tx_channel == TX_CHANS) {
1699       PRINTD (DBG_TX, "vc already on channel: miss");
1700       // Find and set up an idle channel.
1701       tx_channel = setup_idle_tx_channel (dev, vcc);
1702       if (tx_channel < 0) {
1703 	PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1704 	tx_release (dev);
1705 	return tx_channel;
1706       }
1707     }
1708 
1709     PRINTD (DBG_TX, "got channel");
1710     SELECT_TX_CHANNEL(dev, tx_channel);
1711 
1712     dev->last_vc = channel;
1713     dev->tx_last = tx_channel;
1714   }
1715 
1716   PRINTD (DBG_TX, "using channel %u", tx_channel);
1717 
1718   YELLOW_LED_OFF(dev);
1719 
1720   // TX start transfer
1721 
1722   {
1723     unsigned int tx_len = skb->len;
1724     unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1725     // remember this so we can free it later
1726     dev->tx_skb = skb;
1727 
1728     if (tx_iovcnt) {
1729       // scatter gather transfer
1730       dev->tx_regions = tx_iovcnt;
1731       dev->tx_iovec = NULL;		/* @@@ needs rewritten */
1732       dev->tx_bytes = 0;
1733       PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1734 	      skb->data, tx_len);
1735       tx_release (dev);
1736       hrz_kfree_skb (skb);
1737       return -EIO;
1738     } else {
1739       // simple transfer
1740       dev->tx_regions = 0;
1741       dev->tx_iovec = NULL;
1742       dev->tx_bytes = tx_len;
1743       dev->tx_addr = skb->data;
1744       PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1745 	      skb->data, tx_len);
1746     }
1747 
1748     // and do the business
1749     tx_schedule (dev, 0);
1750 
1751   }
1752 
1753   return 0;
1754 }
1755 
1756 /********** reset a card **********/
1757 
hrz_reset(const hrz_dev * dev)1758 static void hrz_reset (const hrz_dev * dev) {
1759   u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1760 
1761   // why not set RESET_HORIZON to one and wait for the card to
1762   // reassert that bit as zero? Like so:
1763   control_0_reg = control_0_reg & RESET_HORIZON;
1764   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1765   while (control_0_reg & RESET_HORIZON)
1766     control_0_reg = rd_regl (dev, CONTROL_0_REG);
1767 
1768   // old reset code retained:
1769   wr_regl (dev, CONTROL_0_REG, control_0_reg |
1770 	   RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1771   // just guessing here
1772   udelay (1000);
1773 
1774   wr_regl (dev, CONTROL_0_REG, control_0_reg);
1775 }
1776 
1777 /********** read the burnt in address **********/
1778 
WRITE_IT_WAIT(const hrz_dev * dev,u32 ctrl)1779 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1780 {
1781 	wr_regl (dev, CONTROL_0_REG, ctrl);
1782 	udelay (5);
1783 }
1784 
CLOCK_IT(const hrz_dev * dev,u32 ctrl)1785 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1786 {
1787 	// DI must be valid around rising SK edge
1788 	WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1789 	WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1790 }
1791 
read_bia(const hrz_dev * dev,u16 addr)1792 static u16 __devinit read_bia (const hrz_dev * dev, u16 addr)
1793 {
1794   u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1795 
1796   const unsigned int addr_bits = 6;
1797   const unsigned int data_bits = 16;
1798 
1799   unsigned int i;
1800 
1801   u16 res;
1802 
1803   ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1804   WRITE_IT_WAIT(dev, ctrl);
1805 
1806   // wake Serial EEPROM and send 110 (READ) command
1807   ctrl |=  (SEEPROM_CS | SEEPROM_DI);
1808   CLOCK_IT(dev, ctrl);
1809 
1810   ctrl |= SEEPROM_DI;
1811   CLOCK_IT(dev, ctrl);
1812 
1813   ctrl &= ~SEEPROM_DI;
1814   CLOCK_IT(dev, ctrl);
1815 
1816   for (i=0; i<addr_bits; i++) {
1817     if (addr & (1 << (addr_bits-1)))
1818       ctrl |= SEEPROM_DI;
1819     else
1820       ctrl &= ~SEEPROM_DI;
1821 
1822     CLOCK_IT(dev, ctrl);
1823 
1824     addr = addr << 1;
1825   }
1826 
1827   // we could check that we have DO = 0 here
1828   ctrl &= ~SEEPROM_DI;
1829 
1830   res = 0;
1831   for (i=0;i<data_bits;i++) {
1832     res = res >> 1;
1833 
1834     CLOCK_IT(dev, ctrl);
1835 
1836     if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1837       res |= (1 << (data_bits-1));
1838   }
1839 
1840   ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1841   WRITE_IT_WAIT(dev, ctrl);
1842 
1843   return res;
1844 }
1845 
1846 /********** initialise a card **********/
1847 
hrz_init(hrz_dev * dev)1848 static int __devinit hrz_init (hrz_dev * dev) {
1849   int onefivefive;
1850 
1851   u16 chan;
1852 
1853   int buff_count;
1854 
1855   HDW * mem;
1856 
1857   cell_buf * tx_desc;
1858   cell_buf * rx_desc;
1859 
1860   u32 ctrl;
1861 
1862   ctrl = rd_regl (dev, CONTROL_0_REG);
1863   PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1864   onefivefive = ctrl & ATM_LAYER_STATUS;
1865 
1866   if (onefivefive)
1867     printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1868   else
1869     printk (DEV_LABEL ": Horizon (at 25 MBps)");
1870 
1871   printk (":");
1872   // Reset the card to get everything in a known state
1873 
1874   printk (" reset");
1875   hrz_reset (dev);
1876 
1877   // Clear all the buffer memory
1878 
1879   printk (" clearing memory");
1880 
1881   for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1882     wr_mem (dev, mem, 0);
1883 
1884   printk (" tx channels");
1885 
1886   // All transmit eight channels are set up as AAL5 ABR channels with
1887   // a 16us cell spacing. Why?
1888 
1889   // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1890   // buffer at 110h etc.
1891 
1892   for (chan = 0; chan < TX_CHANS; ++chan) {
1893     tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1894     cell_buf * buf = &memmap->inittxbufs[chan];
1895 
1896     // initialise the read and write buffer pointers
1897     wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1898     wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1899 
1900     // set the status of the initial buffers to empty
1901     wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1902   }
1903 
1904   // Use space bufn3 at the moment for tx buffers
1905 
1906   printk (" tx buffers");
1907 
1908   tx_desc = memmap->bufn3;
1909 
1910   wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1911 
1912   for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1913     wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1914     tx_desc++;
1915   }
1916 
1917   wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1918 
1919   // Initialise the transmit free buffer count
1920   wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1921 
1922   printk (" rx channels");
1923 
1924   // Initialise all of the receive channels to be AAL5 disabled with
1925   // an interrupt threshold of 0
1926 
1927   for (chan = 0; chan < RX_CHANS; ++chan) {
1928     rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1929 
1930     wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1931   }
1932 
1933   printk (" rx buffers");
1934 
1935   // Use space bufn4 at the moment for rx buffers
1936 
1937   rx_desc = memmap->bufn4;
1938 
1939   wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1940 
1941   for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1942     wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1943 
1944     rx_desc++;
1945   }
1946 
1947   wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1948 
1949   // Initialise the receive free buffer count
1950   wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1951 
1952   // Initialize Horizons registers
1953 
1954   // TX config
1955   wr_regw (dev, TX_CONFIG_OFF,
1956 	   ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1957 
1958   // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1959   wr_regw (dev, RX_CONFIG_OFF,
1960 	   DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1961 
1962   // RX line config
1963   wr_regw (dev, RX_LINE_CONFIG_OFF,
1964 	   LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1965 
1966   // Set the max AAL5 cell count to be just enough to contain the
1967   // largest AAL5 frame that the user wants to receive
1968   wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1969 	   DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1970 
1971   // Enable receive
1972   wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1973 
1974   printk (" control");
1975 
1976   // Drive the OE of the LEDs then turn the green LED on
1977   ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1978   wr_regl (dev, CONTROL_0_REG, ctrl);
1979 
1980   // Test for a 155-capable card
1981 
1982   if (onefivefive) {
1983     // Select 155 mode... make this a choice (or: how do we detect
1984     // external line speed and switch?)
1985     ctrl |= ATM_LAYER_SELECT;
1986     wr_regl (dev, CONTROL_0_REG, ctrl);
1987 
1988     // test SUNI-lite vs SAMBA
1989 
1990     // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1991     // they will always be zero for the SAMBA.  Ha!  Bloody hardware
1992     // engineers.  It'll never work.
1993 
1994     if (rd_framer (dev, 0) & 0x00f0) {
1995       // SUNI
1996       printk (" SUNI");
1997 
1998       // Reset, just in case
1999       wr_framer (dev, 0x00, 0x0080);
2000       wr_framer (dev, 0x00, 0x0000);
2001 
2002       // Configure transmit FIFO
2003       wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
2004 
2005       // Set line timed mode
2006       wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
2007     } else {
2008       // SAMBA
2009       printk (" SAMBA");
2010 
2011       // Reset, just in case
2012       wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
2013       wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
2014 
2015       // Turn off diagnostic loopback and enable line-timed mode
2016       wr_framer (dev, 0, 0x0002);
2017 
2018       // Turn on transmit outputs
2019       wr_framer (dev, 2, 0x0B80);
2020     }
2021   } else {
2022     // Select 25 mode
2023     ctrl &= ~ATM_LAYER_SELECT;
2024 
2025     // Madge B154 setup
2026     // none required?
2027   }
2028 
2029   printk (" LEDs");
2030 
2031   GREEN_LED_ON(dev);
2032   YELLOW_LED_ON(dev);
2033 
2034   printk (" ESI=");
2035 
2036   {
2037     u16 b = 0;
2038     int i;
2039     u8 * esi = dev->atm_dev->esi;
2040 
2041     // in the card I have, EEPROM
2042     // addresses 0, 1, 2 contain 0
2043     // addresess 5, 6 etc. contain ffff
2044     // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2045     // the read_bia routine gets the BIA in Ethernet bit order
2046 
2047     for (i=0; i < ESI_LEN; ++i) {
2048       if (i % 2 == 0)
2049 	b = read_bia (dev, i/2 + 2);
2050       else
2051 	b = b >> 8;
2052       esi[i] = b & 0xFF;
2053       printk ("%02x", esi[i]);
2054     }
2055   }
2056 
2057   // Enable RX_Q and ?X_COMPLETE interrupts only
2058   wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2059   printk (" IRQ on");
2060 
2061   printk (".\n");
2062 
2063   return onefivefive;
2064 }
2065 
2066 /********** check max_sdu **********/
2067 
check_max_sdu(hrz_aal aal,struct atm_trafprm * tp,unsigned int max_frame_size)2068 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2069   PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2070 
2071   switch (aal) {
2072     case aal0:
2073       if (!(tp->max_sdu)) {
2074 	PRINTD (DBG_QOS, "defaulting max_sdu");
2075 	tp->max_sdu = ATM_AAL0_SDU;
2076       } else if (tp->max_sdu != ATM_AAL0_SDU) {
2077 	PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2078 	return -EINVAL;
2079       }
2080       break;
2081     case aal34:
2082       if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2083 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2084 	tp->max_sdu = ATM_MAX_AAL34_PDU;
2085       }
2086       break;
2087     case aal5:
2088       if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2089 	PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2090 	tp->max_sdu = max_frame_size;
2091       }
2092       break;
2093   }
2094   return 0;
2095 }
2096 
2097 /********** check pcr **********/
2098 
2099 // something like this should be part of ATM Linux
atm_pcr_check(struct atm_trafprm * tp,unsigned int pcr)2100 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2101   // we are assuming non-UBR, and non-special values of pcr
2102   if (tp->min_pcr == ATM_MAX_PCR)
2103     PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2104   else if (tp->min_pcr < 0)
2105     PRINTD (DBG_QOS, "luser gave negative min_pcr");
2106   else if (tp->min_pcr && tp->min_pcr > pcr)
2107     PRINTD (DBG_QOS, "pcr less than min_pcr");
2108   else
2109     // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2110     // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2111     // [this would get rid of next two conditionals]
2112     if ((0) && tp->max_pcr == ATM_MAX_PCR)
2113       PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2114     else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2115       PRINTD (DBG_QOS, "luser gave negative max_pcr");
2116     else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2117       PRINTD (DBG_QOS, "pcr greater than max_pcr");
2118     else {
2119       // each limit unspecified or not violated
2120       PRINTD (DBG_QOS, "xBR(pcr) OK");
2121       return 0;
2122     }
2123   PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2124 	  pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2125   return -EINVAL;
2126 }
2127 
2128 /********** open VC **********/
2129 
hrz_open(struct atm_vcc * atm_vcc)2130 static int hrz_open (struct atm_vcc *atm_vcc)
2131 {
2132   int error;
2133   u16 channel;
2134 
2135   struct atm_qos * qos;
2136   struct atm_trafprm * txtp;
2137   struct atm_trafprm * rxtp;
2138 
2139   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2140   hrz_vcc vcc;
2141   hrz_vcc * vccp; // allocated late
2142   short vpi = atm_vcc->vpi;
2143   int vci = atm_vcc->vci;
2144   PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2145 
2146 #ifdef ATM_VPI_UNSPEC
2147   // UNSPEC is deprecated, remove this code eventually
2148   if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2149     PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2150     return -EINVAL;
2151   }
2152 #endif
2153 
2154   error = vpivci_to_channel (&channel, vpi, vci);
2155   if (error) {
2156     PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2157     return error;
2158   }
2159 
2160   vcc.channel = channel;
2161   // max speed for the moment
2162   vcc.tx_rate = 0x0;
2163 
2164   qos = &atm_vcc->qos;
2165 
2166   // check AAL and remember it
2167   switch (qos->aal) {
2168     case ATM_AAL0:
2169       // we would if it were 48 bytes and not 52!
2170       PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2171       vcc.aal = aal0;
2172       break;
2173     case ATM_AAL34:
2174       // we would if I knew how do the SAR!
2175       PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2176       vcc.aal = aal34;
2177       break;
2178     case ATM_AAL5:
2179       PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2180       vcc.aal = aal5;
2181       break;
2182     default:
2183       PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2184       return -EINVAL;
2185       break;
2186   }
2187 
2188   // TX traffic parameters
2189 
2190   // there are two, interrelated problems here: 1. the reservation of
2191   // PCR is not a binary choice, we are given bounds and/or a
2192   // desirable value; 2. the device is only capable of certain values,
2193   // most of which are not integers. It is almost certainly acceptable
2194   // to be off by a maximum of 1 to 10 cps.
2195 
2196   // Pragmatic choice: always store an integral PCR as that which has
2197   // been allocated, even if we allocate a little (or a lot) less,
2198   // after rounding. The actual allocation depends on what we can
2199   // manage with our rate selection algorithm. The rate selection
2200   // algorithm is given an integral PCR and a tolerance and told
2201   // whether it should round the value up or down if the tolerance is
2202   // exceeded; it returns: a) the actual rate selected (rounded up to
2203   // the nearest integer), b) a bit pattern to feed to the timer
2204   // register, and c) a failure value if no applicable rate exists.
2205 
2206   // Part of the job is done by atm_pcr_goal which gives us a PCR
2207   // specification which says: EITHER grab the maximum available PCR
2208   // (and perhaps a lower bound which we musn't pass), OR grab this
2209   // amount, rounding down if you have to (and perhaps a lower bound
2210   // which we musn't pass) OR grab this amount, rounding up if you
2211   // have to (and perhaps an upper bound which we musn't pass). If any
2212   // bounds ARE passed we fail. Note that rounding is only rounding to
2213   // match device limitations, we do not round down to satisfy
2214   // bandwidth availability even if this would not violate any given
2215   // lower bound.
2216 
2217   // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2218   // (say) so this is not even a binary fixpoint cell rate (but this
2219   // device can do it). To avoid this sort of hassle we use a
2220   // tolerance parameter (currently fixed at 10 cps).
2221 
2222   PRINTD (DBG_QOS, "TX:");
2223 
2224   txtp = &qos->txtp;
2225 
2226   // set up defaults for no traffic
2227   vcc.tx_rate = 0;
2228   // who knows what would actually happen if you try and send on this?
2229   vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2230   vcc.tx_pcr_bits = CLOCK_DISABLE;
2231 #if 0
2232   vcc.tx_scr_bits = CLOCK_DISABLE;
2233   vcc.tx_bucket_bits = 0;
2234 #endif
2235 
2236   if (txtp->traffic_class != ATM_NONE) {
2237     error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2238     if (error) {
2239       PRINTD (DBG_QOS, "TX max_sdu check failed");
2240       return error;
2241     }
2242 
2243     switch (txtp->traffic_class) {
2244       case ATM_UBR: {
2245 	// we take "the PCR" as a rate-cap
2246 	// not reserved
2247 	vcc.tx_rate = 0;
2248 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2249 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2250 	break;
2251       }
2252 #if 0
2253       case ATM_ABR: {
2254 	// reserve min, allow up to max
2255 	vcc.tx_rate = 0; // ?
2256 	make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2257 	vcc.tx_xbr_bits = ABR_RATE_TYPE;
2258 	break;
2259       }
2260 #endif
2261       case ATM_CBR: {
2262 	int pcr = atm_pcr_goal (txtp);
2263 	rounding r;
2264 	if (!pcr) {
2265 	  // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2266 	  // should really have: once someone gets unlimited bandwidth
2267 	  // that no more non-UBR channels can be opened until the
2268 	  // unlimited one closes?? For the moment, round_down means
2269 	  // greedy people actually get something and not nothing
2270 	  r = round_down;
2271 	  // slight race (no locking) here so we may get -EAGAIN
2272 	  // later; the greedy bastards would deserve it :)
2273 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2274 	  pcr = dev->tx_avail;
2275 	} else if (pcr < 0) {
2276 	  r = round_down;
2277 	  pcr = -pcr;
2278 	} else {
2279 	  r = round_up;
2280 	}
2281 	error = make_rate_with_tolerance (dev, pcr, r, 10,
2282 					  &vcc.tx_pcr_bits, &vcc.tx_rate);
2283 	if (error) {
2284 	  PRINTD (DBG_QOS, "could not make rate from TX PCR");
2285 	  return error;
2286 	}
2287 	// not really clear what further checking is needed
2288 	error = atm_pcr_check (txtp, vcc.tx_rate);
2289 	if (error) {
2290 	  PRINTD (DBG_QOS, "TX PCR failed consistency check");
2291 	  return error;
2292 	}
2293 	vcc.tx_xbr_bits = CBR_RATE_TYPE;
2294 	break;
2295       }
2296 #if 0
2297       case ATM_VBR: {
2298 	int pcr = atm_pcr_goal (txtp);
2299 	// int scr = atm_scr_goal (txtp);
2300 	int scr = pcr/2; // just for fun
2301 	unsigned int mbs = 60; // just for fun
2302 	rounding pr;
2303 	rounding sr;
2304 	unsigned int bucket;
2305 	if (!pcr) {
2306 	  pr = round_nearest;
2307 	  pcr = 1<<30;
2308 	} else if (pcr < 0) {
2309 	  pr = round_down;
2310 	  pcr = -pcr;
2311 	} else {
2312 	  pr = round_up;
2313 	}
2314 	error = make_rate_with_tolerance (dev, pcr, pr, 10,
2315 					  &vcc.tx_pcr_bits, 0);
2316 	if (!scr) {
2317 	  // see comments for PCR with CBR above
2318 	  sr = round_down;
2319 	  // slight race (no locking) here so we may get -EAGAIN
2320 	  // later; the greedy bastards would deserve it :)
2321 	  PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2322 	  scr = dev->tx_avail;
2323 	} else if (scr < 0) {
2324 	  sr = round_down;
2325 	  scr = -scr;
2326 	} else {
2327 	  sr = round_up;
2328 	}
2329 	error = make_rate_with_tolerance (dev, scr, sr, 10,
2330 					  &vcc.tx_scr_bits, &vcc.tx_rate);
2331 	if (error) {
2332 	  PRINTD (DBG_QOS, "could not make rate from TX SCR");
2333 	  return error;
2334 	}
2335 	// not really clear what further checking is needed
2336 	// error = atm_scr_check (txtp, vcc.tx_rate);
2337 	if (error) {
2338 	  PRINTD (DBG_QOS, "TX SCR failed consistency check");
2339 	  return error;
2340 	}
2341 	// bucket calculations (from a piece of paper...) cell bucket
2342 	// capacity must be largest integer smaller than m(p-s)/p + 1
2343 	// where m = max burst size, p = pcr, s = scr
2344 	bucket = mbs*(pcr-scr)/pcr;
2345 	if (bucket*pcr != mbs*(pcr-scr))
2346 	  bucket += 1;
2347 	if (bucket > BUCKET_MAX_SIZE) {
2348 	  PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2349 		  bucket, BUCKET_MAX_SIZE);
2350 	  bucket = BUCKET_MAX_SIZE;
2351 	}
2352 	vcc.tx_xbr_bits = VBR_RATE_TYPE;
2353 	vcc.tx_bucket_bits = bucket;
2354 	break;
2355       }
2356 #endif
2357       default: {
2358 	PRINTD (DBG_QOS, "unsupported TX traffic class");
2359 	return -EINVAL;
2360 	break;
2361       }
2362     }
2363   }
2364 
2365   // RX traffic parameters
2366 
2367   PRINTD (DBG_QOS, "RX:");
2368 
2369   rxtp = &qos->rxtp;
2370 
2371   // set up defaults for no traffic
2372   vcc.rx_rate = 0;
2373 
2374   if (rxtp->traffic_class != ATM_NONE) {
2375     error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2376     if (error) {
2377       PRINTD (DBG_QOS, "RX max_sdu check failed");
2378       return error;
2379     }
2380     switch (rxtp->traffic_class) {
2381       case ATM_UBR: {
2382 	// not reserved
2383 	break;
2384       }
2385 #if 0
2386       case ATM_ABR: {
2387 	// reserve min
2388 	vcc.rx_rate = 0; // ?
2389 	break;
2390       }
2391 #endif
2392       case ATM_CBR: {
2393 	int pcr = atm_pcr_goal (rxtp);
2394 	if (!pcr) {
2395 	  // slight race (no locking) here so we may get -EAGAIN
2396 	  // later; the greedy bastards would deserve it :)
2397 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2398 	  pcr = dev->rx_avail;
2399 	} else if (pcr < 0) {
2400 	  pcr = -pcr;
2401 	}
2402 	vcc.rx_rate = pcr;
2403 	// not really clear what further checking is needed
2404 	error = atm_pcr_check (rxtp, vcc.rx_rate);
2405 	if (error) {
2406 	  PRINTD (DBG_QOS, "RX PCR failed consistency check");
2407 	  return error;
2408 	}
2409 	break;
2410       }
2411 #if 0
2412       case ATM_VBR: {
2413 	// int scr = atm_scr_goal (rxtp);
2414 	int scr = 1<<16; // just for fun
2415 	if (!scr) {
2416 	  // slight race (no locking) here so we may get -EAGAIN
2417 	  // later; the greedy bastards would deserve it :)
2418 	  PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2419 	  scr = dev->rx_avail;
2420 	} else if (scr < 0) {
2421 	  scr = -scr;
2422 	}
2423 	vcc.rx_rate = scr;
2424 	// not really clear what further checking is needed
2425 	// error = atm_scr_check (rxtp, vcc.rx_rate);
2426 	if (error) {
2427 	  PRINTD (DBG_QOS, "RX SCR failed consistency check");
2428 	  return error;
2429 	}
2430 	break;
2431       }
2432 #endif
2433       default: {
2434 	PRINTD (DBG_QOS, "unsupported RX traffic class");
2435 	return -EINVAL;
2436 	break;
2437       }
2438     }
2439   }
2440 
2441 
2442   // late abort useful for diagnostics
2443   if (vcc.aal != aal5) {
2444     PRINTD (DBG_QOS, "AAL not supported");
2445     return -EINVAL;
2446   }
2447 
2448   // get space for our vcc stuff and copy parameters into it
2449   vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2450   if (!vccp) {
2451     PRINTK (KERN_ERR, "out of memory!");
2452     return -ENOMEM;
2453   }
2454   *vccp = vcc;
2455 
2456   // clear error and grab cell rate resource lock
2457   error = 0;
2458   spin_lock (&dev->rate_lock);
2459 
2460   if (vcc.tx_rate > dev->tx_avail) {
2461     PRINTD (DBG_QOS, "not enough TX PCR left");
2462     error = -EAGAIN;
2463   }
2464 
2465   if (vcc.rx_rate > dev->rx_avail) {
2466     PRINTD (DBG_QOS, "not enough RX PCR left");
2467     error = -EAGAIN;
2468   }
2469 
2470   if (!error) {
2471     // really consume cell rates
2472     dev->tx_avail -= vcc.tx_rate;
2473     dev->rx_avail -= vcc.rx_rate;
2474     PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2475 	    vcc.tx_rate, vcc.rx_rate);
2476   }
2477 
2478   // release lock and exit on error
2479   spin_unlock (&dev->rate_lock);
2480   if (error) {
2481     PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2482     kfree (vccp);
2483     return error;
2484   }
2485 
2486   // this is "immediately before allocating the connection identifier
2487   // in hardware" - so long as the next call does not fail :)
2488   set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2489 
2490   // any errors here are very serious and should never occur
2491 
2492   if (rxtp->traffic_class != ATM_NONE) {
2493     if (dev->rxer[channel]) {
2494       PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2495       error = -EBUSY;
2496     }
2497     if (!error)
2498       error = hrz_open_rx (dev, channel);
2499     if (error) {
2500       kfree (vccp);
2501       return error;
2502     }
2503     // this link allows RX frames through
2504     dev->rxer[channel] = atm_vcc;
2505   }
2506 
2507   // success, set elements of atm_vcc
2508   atm_vcc->dev_data = (void *) vccp;
2509 
2510   // indicate readiness
2511   set_bit(ATM_VF_READY,&atm_vcc->flags);
2512 
2513   return 0;
2514 }
2515 
2516 /********** close VC **********/
2517 
hrz_close(struct atm_vcc * atm_vcc)2518 static void hrz_close (struct atm_vcc * atm_vcc) {
2519   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2520   hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2521   u16 channel = vcc->channel;
2522   PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2523 
2524   // indicate unreadiness
2525   clear_bit(ATM_VF_READY,&atm_vcc->flags);
2526 
2527   if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2528     unsigned int i;
2529 
2530     // let any TX on this channel that has started complete
2531     // no restart, just keep trying
2532     while (tx_hold (dev))
2533       ;
2534     // remove record of any tx_channel having been setup for this channel
2535     for (i = 0; i < TX_CHANS; ++i)
2536       if (dev->tx_channel_record[i] == channel) {
2537 	dev->tx_channel_record[i] = -1;
2538 	break;
2539       }
2540     if (dev->last_vc == channel)
2541       dev->tx_last = -1;
2542     tx_release (dev);
2543   }
2544 
2545   if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2546     // disable RXing - it tries quite hard
2547     hrz_close_rx (dev, channel);
2548     // forget the vcc - no more skbs will be pushed
2549     if (atm_vcc != dev->rxer[channel])
2550       PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2551 	      "arghhh! we're going to die!",
2552 	      atm_vcc, dev->rxer[channel]);
2553     dev->rxer[channel] = NULL;
2554   }
2555 
2556   // atomically release our rate reservation
2557   spin_lock (&dev->rate_lock);
2558   PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2559 	  vcc->tx_rate, vcc->rx_rate);
2560   dev->tx_avail += vcc->tx_rate;
2561   dev->rx_avail += vcc->rx_rate;
2562   spin_unlock (&dev->rate_lock);
2563 
2564   // free our structure
2565   kfree (vcc);
2566   // say the VPI/VCI is free again
2567   clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2568 }
2569 
2570 #if 0
2571 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2572 			   void *optval, int optlen) {
2573   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2574   PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2575   switch (level) {
2576     case SOL_SOCKET:
2577       switch (optname) {
2578 //	case SO_BCTXOPT:
2579 //	  break;
2580 //	case SO_BCRXOPT:
2581 //	  break;
2582 	default:
2583 	  return -ENOPROTOOPT;
2584 	  break;
2585       };
2586       break;
2587   }
2588   return -EINVAL;
2589 }
2590 
2591 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2592 			   void *optval, unsigned int optlen) {
2593   hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2594   PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2595   switch (level) {
2596     case SOL_SOCKET:
2597       switch (optname) {
2598 //	case SO_BCTXOPT:
2599 //	  break;
2600 //	case SO_BCRXOPT:
2601 //	  break;
2602 	default:
2603 	  return -ENOPROTOOPT;
2604 	  break;
2605       };
2606       break;
2607   }
2608   return -EINVAL;
2609 }
2610 #endif
2611 
2612 #if 0
2613 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2614   hrz_dev * dev = HRZ_DEV(atm_dev);
2615   PRINTD (DBG_FLOW, "hrz_ioctl");
2616   return -1;
2617 }
2618 
2619 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2620   hrz_dev * dev = HRZ_DEV(atm_dev);
2621   PRINTD (DBG_FLOW, "hrz_phy_get");
2622   return 0;
2623 }
2624 
2625 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2626 			 unsigned long addr) {
2627   hrz_dev * dev = HRZ_DEV(atm_dev);
2628   PRINTD (DBG_FLOW, "hrz_phy_put");
2629 }
2630 
2631 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2632   hrz_dev * dev = HRZ_DEV(vcc->dev);
2633   PRINTD (DBG_FLOW, "hrz_change_qos");
2634   return -1;
2635 }
2636 #endif
2637 
2638 /********** proc file contents **********/
2639 
hrz_proc_read(struct atm_dev * atm_dev,loff_t * pos,char * page)2640 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2641   hrz_dev * dev = HRZ_DEV(atm_dev);
2642   int left = *pos;
2643   PRINTD (DBG_FLOW, "hrz_proc_read");
2644 
2645   /* more diagnostics here? */
2646 
2647 #if 0
2648   if (!left--) {
2649     unsigned int count = sprintf (page, "vbr buckets:");
2650     unsigned int i;
2651     for (i = 0; i < TX_CHANS; ++i)
2652       count += sprintf (page, " %u/%u",
2653 			query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2654 			query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2655     count += sprintf (page+count, ".\n");
2656     return count;
2657   }
2658 #endif
2659 
2660   if (!left--)
2661     return sprintf (page,
2662 		    "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2663 		    dev->tx_cell_count, dev->rx_cell_count,
2664 		    dev->hec_error_count, dev->unassigned_cell_count);
2665 
2666   if (!left--)
2667     return sprintf (page,
2668 		    "free cell buffers: TX %hu, RX %hu+%hu.\n",
2669 		    rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2670 		    rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2671 		    dev->noof_spare_buffers);
2672 
2673   if (!left--)
2674     return sprintf (page,
2675 		    "cps remaining: TX %u, RX %u\n",
2676 		    dev->tx_avail, dev->rx_avail);
2677 
2678   return 0;
2679 }
2680 
2681 static const struct atmdev_ops hrz_ops = {
2682   .open	= hrz_open,
2683   .close	= hrz_close,
2684   .send	= hrz_send,
2685   .proc_read	= hrz_proc_read,
2686   .owner	= THIS_MODULE,
2687 };
2688 
hrz_probe(struct pci_dev * pci_dev,const struct pci_device_id * pci_ent)2689 static int __devinit hrz_probe(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2690 {
2691 	hrz_dev * dev;
2692 	int err = 0;
2693 
2694 	// adapter slot free, read resources from PCI configuration space
2695 	u32 iobase = pci_resource_start (pci_dev, 0);
2696 	u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2697 	unsigned int irq;
2698 	unsigned char lat;
2699 
2700 	PRINTD (DBG_FLOW, "hrz_probe");
2701 
2702 	if (pci_enable_device(pci_dev))
2703 		return -EINVAL;
2704 
2705 	/* XXX DEV_LABEL is a guess */
2706 	if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2707 		err = -EINVAL;
2708 		goto out_disable;
2709 	}
2710 
2711 	dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2712 	if (!dev) {
2713 		// perhaps we should be nice: deregister all adapters and abort?
2714 		PRINTD(DBG_ERR, "out of memory");
2715 		err = -ENOMEM;
2716 		goto out_release;
2717 	}
2718 
2719 	pci_set_drvdata(pci_dev, dev);
2720 
2721 	// grab IRQ and install handler - move this someplace more sensible
2722 	irq = pci_dev->irq;
2723 	if (request_irq(irq,
2724 			interrupt_handler,
2725 			IRQF_SHARED, /* irqflags guess */
2726 			DEV_LABEL, /* name guess */
2727 			dev)) {
2728 		PRINTD(DBG_WARN, "request IRQ failed!");
2729 		err = -EINVAL;
2730 		goto out_free;
2731 	}
2732 
2733 	PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2734 	       iobase, irq, membase);
2735 
2736 	dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2737 					NULL);
2738 	if (!(dev->atm_dev)) {
2739 		PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2740 		err = -EINVAL;
2741 		goto out_free_irq;
2742 	}
2743 
2744 	PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2745 	       dev->atm_dev->number, dev, dev->atm_dev);
2746 	dev->atm_dev->dev_data = (void *) dev;
2747 	dev->pci_dev = pci_dev;
2748 
2749 	// enable bus master accesses
2750 	pci_set_master(pci_dev);
2751 
2752 	// frobnicate latency (upwards, usually)
2753 	pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2754 	if (pci_lat) {
2755 		PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2756 		       "changing", lat, pci_lat);
2757 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2758 	} else if (lat < MIN_PCI_LATENCY) {
2759 		PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2760 		       "increasing", lat, MIN_PCI_LATENCY);
2761 		pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2762 	}
2763 
2764 	dev->iobase = iobase;
2765 	dev->irq = irq;
2766 	dev->membase = membase;
2767 
2768 	dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2769 	dev->rx_q_wrap  = &memmap->rx_q_entries[RX_CHANS-1];
2770 
2771 	// these next three are performance hacks
2772 	dev->last_vc = -1;
2773 	dev->tx_last = -1;
2774 	dev->tx_idle = 0;
2775 
2776 	dev->tx_regions = 0;
2777 	dev->tx_bytes = 0;
2778 	dev->tx_skb = NULL;
2779 	dev->tx_iovec = NULL;
2780 
2781 	dev->tx_cell_count = 0;
2782 	dev->rx_cell_count = 0;
2783 	dev->hec_error_count = 0;
2784 	dev->unassigned_cell_count = 0;
2785 
2786 	dev->noof_spare_buffers = 0;
2787 
2788 	{
2789 		unsigned int i;
2790 		for (i = 0; i < TX_CHANS; ++i)
2791 			dev->tx_channel_record[i] = -1;
2792 	}
2793 
2794 	dev->flags = 0;
2795 
2796 	// Allocate cell rates and remember ASIC version
2797 	// Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2798 	// Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2799 	// Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2800 
2801 	if (hrz_init(dev)) {
2802 		// to be really pedantic, this should be ATM_OC3c_PCR
2803 		dev->tx_avail = ATM_OC3_PCR;
2804 		dev->rx_avail = ATM_OC3_PCR;
2805 		set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2806 	} else {
2807 		dev->tx_avail = ((25600000/8)*26)/(27*53);
2808 		dev->rx_avail = ((25600000/8)*26)/(27*53);
2809 		PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2810 	}
2811 
2812 	// rate changes spinlock
2813 	spin_lock_init(&dev->rate_lock);
2814 
2815 	// on-board memory access spinlock; we want atomic reads and
2816 	// writes to adapter memory (handles IRQ and SMP)
2817 	spin_lock_init(&dev->mem_lock);
2818 
2819 	init_waitqueue_head(&dev->tx_queue);
2820 
2821 	// vpi in 0..4, vci in 6..10
2822 	dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2823 	dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2824 
2825 	init_timer(&dev->housekeeping);
2826 	dev->housekeeping.function = do_housekeeping;
2827 	dev->housekeeping.data = (unsigned long) dev;
2828 	mod_timer(&dev->housekeeping, jiffies);
2829 
2830 out:
2831 	return err;
2832 
2833 out_free_irq:
2834 	free_irq(dev->irq, dev);
2835 out_free:
2836 	kfree(dev);
2837 out_release:
2838 	release_region(iobase, HRZ_IO_EXTENT);
2839 out_disable:
2840 	pci_disable_device(pci_dev);
2841 	goto out;
2842 }
2843 
hrz_remove_one(struct pci_dev * pci_dev)2844 static void __devexit hrz_remove_one(struct pci_dev *pci_dev)
2845 {
2846 	hrz_dev *dev;
2847 
2848 	dev = pci_get_drvdata(pci_dev);
2849 
2850 	PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2851 	del_timer_sync(&dev->housekeeping);
2852 	hrz_reset(dev);
2853 	atm_dev_deregister(dev->atm_dev);
2854 	free_irq(dev->irq, dev);
2855 	release_region(dev->iobase, HRZ_IO_EXTENT);
2856 	kfree(dev);
2857 
2858 	pci_disable_device(pci_dev);
2859 }
2860 
hrz_check_args(void)2861 static void __init hrz_check_args (void) {
2862 #ifdef DEBUG_HORIZON
2863   PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2864 #else
2865   if (debug)
2866     PRINTK (KERN_NOTICE, "no debug support in this image");
2867 #endif
2868 
2869   if (vpi_bits > HRZ_MAX_VPI)
2870     PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2871 	    vpi_bits = HRZ_MAX_VPI);
2872 
2873   if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2874     PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2875 	    max_tx_size = TX_AAL5_LIMIT);
2876 
2877   if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2878     PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2879 	    max_rx_size = RX_AAL5_LIMIT);
2880 
2881   return;
2882 }
2883 
2884 MODULE_AUTHOR(maintainer_string);
2885 MODULE_DESCRIPTION(description_string);
2886 MODULE_LICENSE("GPL");
2887 module_param(debug, ushort, 0644);
2888 module_param(vpi_bits, ushort, 0);
2889 module_param(max_tx_size, int, 0);
2890 module_param(max_rx_size, int, 0);
2891 module_param(pci_lat, byte, 0);
2892 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2893 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2894 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2895 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2896 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2897 
2898 static struct pci_device_id hrz_pci_tbl[] = {
2899 	{ PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2900 	  0, 0, 0 },
2901 	{ 0, }
2902 };
2903 
2904 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2905 
2906 static struct pci_driver hrz_driver = {
2907 	.name =		"horizon",
2908 	.probe =	hrz_probe,
2909 	.remove =	__devexit_p(hrz_remove_one),
2910 	.id_table =	hrz_pci_tbl,
2911 };
2912 
2913 /********** module entry **********/
2914 
hrz_module_init(void)2915 static int __init hrz_module_init (void) {
2916   // sanity check - cast is needed since printk does not support %Zu
2917   if (sizeof(struct MEMMAP) != 128*1024/4) {
2918     PRINTK (KERN_ERR, "Fix struct MEMMAP (is %lu fakewords).",
2919 	    (unsigned long) sizeof(struct MEMMAP));
2920     return -ENOMEM;
2921   }
2922 
2923   show_version();
2924 
2925   // check arguments
2926   hrz_check_args();
2927 
2928   // get the juice
2929   return pci_register_driver(&hrz_driver);
2930 }
2931 
2932 /********** module exit **********/
2933 
hrz_module_exit(void)2934 static void __exit hrz_module_exit (void) {
2935   PRINTD (DBG_FLOW, "cleanup_module");
2936 
2937   pci_unregister_driver(&hrz_driver);
2938 }
2939 
2940 module_init(hrz_module_init);
2941 module_exit(hrz_module_exit);
2942