• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * The low performance USB storage driver (ub).
3  *
4  * Copyright (c) 1999, 2000 Matthew Dharm (mdharm-usb@one-eyed-alien.net)
5  * Copyright (C) 2004 Pete Zaitcev (zaitcev@yahoo.com)
6  *
7  * This work is a part of Linux kernel, is derived from it,
8  * and is not licensed separately. See file COPYING for details.
9  *
10  * TODO (sorted by decreasing priority)
11  *  -- Return sense now that rq allows it (we always auto-sense anyway).
12  *  -- set readonly flag for CDs, set removable flag for CF readers
13  *  -- do inquiry and verify we got a disk and not a tape (for LUN mismatch)
14  *  -- verify the 13 conditions and do bulk resets
15  *  -- highmem
16  *  -- move top_sense and work_bcs into separate allocations (if they survive)
17  *     for cache purists and esoteric architectures.
18  *  -- Allocate structure for LUN 0 before the first ub_sync_tur, avoid NULL. ?
19  *  -- prune comments, they are too volumnous
20  *  -- Resove XXX's
21  *  -- CLEAR, CLR2STS, CLRRS seem to be ripe for refactoring.
22  */
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/usb.h>
26 #include <linux/usb_usual.h>
27 #include <linux/blkdev.h>
28 #include <linux/timer.h>
29 #include <linux/scatterlist.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <scsi/scsi.h>
33 
34 #define DRV_NAME "ub"
35 
36 #define UB_MAJOR 180
37 
38 /*
39  * The command state machine is the key model for understanding of this driver.
40  *
41  * The general rule is that all transitions are done towards the bottom
42  * of the diagram, thus preventing any loops.
43  *
44  * An exception to that is how the STAT state is handled. A counter allows it
45  * to be re-entered along the path marked with [C].
46  *
47  *       +--------+
48  *       ! INIT   !
49  *       +--------+
50  *           !
51  *        ub_scsi_cmd_start fails ->--------------------------------------\
52  *           !                                                            !
53  *           V                                                            !
54  *       +--------+                                                       !
55  *       ! CMD    !                                                       !
56  *       +--------+                                                       !
57  *           !                                            +--------+      !
58  *         was -EPIPE -->-------------------------------->! CLEAR  !      !
59  *           !                                            +--------+      !
60  *           !                                                !           !
61  *         was error -->------------------------------------- ! --------->\
62  *           !                                                !           !
63  *  /--<-- cmd->dir == NONE ?                                 !           !
64  *  !        !                                                !           !
65  *  !        V                                                !           !
66  *  !    +--------+                                           !           !
67  *  !    ! DATA   !                                           !           !
68  *  !    +--------+                                           !           !
69  *  !        !                           +---------+          !           !
70  *  !      was -EPIPE -->--------------->! CLR2STS !          !           !
71  *  !        !                           +---------+          !           !
72  *  !        !                                !               !           !
73  *  !        !                              was error -->---- ! --------->\
74  *  !      was error -->--------------------- ! ------------- ! --------->\
75  *  !        !                                !               !           !
76  *  !        V                                !               !           !
77  *  \--->+--------+                           !               !           !
78  *       ! STAT   !<--------------------------/               !           !
79  *  /--->+--------+                                           !           !
80  *  !        !                                                !           !
81  * [C]     was -EPIPE -->-----------\                         !           !
82  *  !        !                      !                         !           !
83  *  +<---- len == 0                 !                         !           !
84  *  !        !                      !                         !           !
85  *  !      was error -->--------------------------------------!---------->\
86  *  !        !                      !                         !           !
87  *  +<---- bad CSW                  !                         !           !
88  *  +<---- bad tag                  !                         !           !
89  *  !        !                      V                         !           !
90  *  !        !                 +--------+                     !           !
91  *  !        !                 ! CLRRS  !                     !           !
92  *  !        !                 +--------+                     !           !
93  *  !        !                      !                         !           !
94  *  \------- ! --------------------[C]--------\               !           !
95  *           !                                !               !           !
96  *         cmd->error---\                +--------+           !           !
97  *           !          +--------------->! SENSE  !<----------/           !
98  *         STAT_FAIL----/                +--------+                       !
99  *           !                                !                           V
100  *           !                                V                      +--------+
101  *           \--------------------------------\--------------------->! DONE   !
102  *                                                                   +--------+
103  */
104 
105 /*
106  * This many LUNs per USB device.
107  * Every one of them takes a host, see UB_MAX_HOSTS.
108  */
109 #define UB_MAX_LUNS   9
110 
111 /*
112  */
113 
114 #define UB_PARTS_PER_LUN      8
115 
116 #define UB_MAX_CDB_SIZE      16		/* Corresponds to Bulk */
117 
118 #define UB_SENSE_SIZE  18
119 
120 /*
121  */
122 struct ub_dev;
123 
124 #define UB_MAX_REQ_SG	9	/* cdrecord requires 32KB and maybe a header */
125 #define UB_MAX_SECTORS 64
126 
127 /*
128  * A second is more than enough for a 32K transfer (UB_MAX_SECTORS)
129  * even if a webcam hogs the bus, but some devices need time to spin up.
130  */
131 #define UB_URB_TIMEOUT	(HZ*2)
132 #define UB_DATA_TIMEOUT	(HZ*5)	/* ZIP does spin-ups in the data phase */
133 #define UB_STAT_TIMEOUT	(HZ*5)	/* Same spinups and eject for a dataless cmd. */
134 #define UB_CTRL_TIMEOUT	(HZ/2)	/* 500ms ought to be enough to clear a stall */
135 
136 /*
137  * An instance of a SCSI command in transit.
138  */
139 #define UB_DIR_NONE	0
140 #define UB_DIR_READ	1
141 #define UB_DIR_ILLEGAL2	2
142 #define UB_DIR_WRITE	3
143 
144 #define UB_DIR_CHAR(c)  (((c)==UB_DIR_WRITE)? 'w': \
145 			 (((c)==UB_DIR_READ)? 'r': 'n'))
146 
147 enum ub_scsi_cmd_state {
148 	UB_CMDST_INIT,			/* Initial state */
149 	UB_CMDST_CMD,			/* Command submitted */
150 	UB_CMDST_DATA,			/* Data phase */
151 	UB_CMDST_CLR2STS,		/* Clearing before requesting status */
152 	UB_CMDST_STAT,			/* Status phase */
153 	UB_CMDST_CLEAR,			/* Clearing a stall (halt, actually) */
154 	UB_CMDST_CLRRS,			/* Clearing before retrying status */
155 	UB_CMDST_SENSE,			/* Sending Request Sense */
156 	UB_CMDST_DONE			/* Final state */
157 };
158 
159 struct ub_scsi_cmd {
160 	unsigned char cdb[UB_MAX_CDB_SIZE];
161 	unsigned char cdb_len;
162 
163 	unsigned char dir;		/* 0 - none, 1 - read, 3 - write. */
164 	enum ub_scsi_cmd_state state;
165 	unsigned int tag;
166 	struct ub_scsi_cmd *next;
167 
168 	int error;			/* Return code - valid upon done */
169 	unsigned int act_len;		/* Return size */
170 	unsigned char key, asc, ascq;	/* May be valid if error==-EIO */
171 
172 	int stat_count;			/* Retries getting status. */
173 	unsigned int timeo;		/* jiffies until rq->timeout changes */
174 
175 	unsigned int len;		/* Requested length */
176 	unsigned int current_sg;
177 	unsigned int nsg;		/* sgv[nsg] */
178 	struct scatterlist sgv[UB_MAX_REQ_SG];
179 
180 	struct ub_lun *lun;
181 	void (*done)(struct ub_dev *, struct ub_scsi_cmd *);
182 	void *back;
183 };
184 
185 struct ub_request {
186 	struct request *rq;
187 	unsigned int current_try;
188 	unsigned int nsg;		/* sgv[nsg] */
189 	struct scatterlist sgv[UB_MAX_REQ_SG];
190 };
191 
192 /*
193  */
194 struct ub_capacity {
195 	unsigned long nsec;		/* Linux size - 512 byte sectors */
196 	unsigned int bsize;		/* Linux hardsect_size */
197 	unsigned int bshift;		/* Shift between 512 and hard sects */
198 };
199 
200 /*
201  * This is a direct take-off from linux/include/completion.h
202  * The difference is that I do not wait on this thing, just poll.
203  * When I want to wait (ub_probe), I just use the stock completion.
204  *
205  * Note that INIT_COMPLETION takes no lock. It is correct. But why
206  * in the bloody hell that thing takes struct instead of pointer to struct
207  * is quite beyond me. I just copied it from the stock completion.
208  */
209 struct ub_completion {
210 	unsigned int done;
211 	spinlock_t lock;
212 };
213 
214 static DEFINE_MUTEX(ub_mutex);
ub_init_completion(struct ub_completion * x)215 static inline void ub_init_completion(struct ub_completion *x)
216 {
217 	x->done = 0;
218 	spin_lock_init(&x->lock);
219 }
220 
221 #define UB_INIT_COMPLETION(x)	((x).done = 0)
222 
ub_complete(struct ub_completion * x)223 static void ub_complete(struct ub_completion *x)
224 {
225 	unsigned long flags;
226 
227 	spin_lock_irqsave(&x->lock, flags);
228 	x->done++;
229 	spin_unlock_irqrestore(&x->lock, flags);
230 }
231 
ub_is_completed(struct ub_completion * x)232 static int ub_is_completed(struct ub_completion *x)
233 {
234 	unsigned long flags;
235 	int ret;
236 
237 	spin_lock_irqsave(&x->lock, flags);
238 	ret = x->done;
239 	spin_unlock_irqrestore(&x->lock, flags);
240 	return ret;
241 }
242 
243 /*
244  */
245 struct ub_scsi_cmd_queue {
246 	int qlen, qmax;
247 	struct ub_scsi_cmd *head, *tail;
248 };
249 
250 /*
251  * The block device instance (one per LUN).
252  */
253 struct ub_lun {
254 	struct ub_dev *udev;
255 	struct list_head link;
256 	struct gendisk *disk;
257 	int id;				/* Host index */
258 	int num;			/* LUN number */
259 	char name[16];
260 
261 	int changed;			/* Media was changed */
262 	int removable;
263 	int readonly;
264 
265 	struct ub_request urq;
266 
267 	/* Use Ingo's mempool if or when we have more than one command. */
268 	/*
269 	 * Currently we never need more than one command for the whole device.
270 	 * However, giving every LUN a command is a cheap and automatic way
271 	 * to enforce fairness between them.
272 	 */
273 	int cmda[1];
274 	struct ub_scsi_cmd cmdv[1];
275 
276 	struct ub_capacity capacity;
277 };
278 
279 /*
280  * The USB device instance.
281  */
282 struct ub_dev {
283 	spinlock_t *lock;
284 	atomic_t poison;		/* The USB device is disconnected */
285 	int openc;			/* protected by ub_lock! */
286 					/* kref is too implicit for our taste */
287 	int reset;			/* Reset is running */
288 	int bad_resid;
289 	unsigned int tagcnt;
290 	char name[12];
291 	struct usb_device *dev;
292 	struct usb_interface *intf;
293 
294 	struct list_head luns;
295 
296 	unsigned int send_bulk_pipe;	/* cached pipe values */
297 	unsigned int recv_bulk_pipe;
298 	unsigned int send_ctrl_pipe;
299 	unsigned int recv_ctrl_pipe;
300 
301 	struct tasklet_struct tasklet;
302 
303 	struct ub_scsi_cmd_queue cmd_queue;
304 	struct ub_scsi_cmd top_rqs_cmd;	/* REQUEST SENSE */
305 	unsigned char top_sense[UB_SENSE_SIZE];
306 
307 	struct ub_completion work_done;
308 	struct urb work_urb;
309 	struct timer_list work_timer;
310 	int last_pipe;			/* What might need clearing */
311 	__le32 signature;		/* Learned signature */
312 	struct bulk_cb_wrap work_bcb;
313 	struct bulk_cs_wrap work_bcs;
314 	struct usb_ctrlrequest work_cr;
315 
316 	struct work_struct reset_work;
317 	wait_queue_head_t reset_wait;
318 };
319 
320 /*
321  */
322 static void ub_cleanup(struct ub_dev *sc);
323 static int ub_request_fn_1(struct ub_lun *lun, struct request *rq);
324 static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun,
325     struct ub_scsi_cmd *cmd, struct ub_request *urq);
326 static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun,
327     struct ub_scsi_cmd *cmd, struct ub_request *urq);
328 static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
329 static void ub_end_rq(struct request *rq, unsigned int status);
330 static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun,
331     struct ub_request *urq, struct ub_scsi_cmd *cmd);
332 static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
333 static void ub_urb_complete(struct urb *urb);
334 static void ub_scsi_action(unsigned long _dev);
335 static void ub_scsi_dispatch(struct ub_dev *sc);
336 static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
337 static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
338 static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc);
339 static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
340 static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
341 static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
342 static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd);
343 static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
344     int stalled_pipe);
345 static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd);
346 static void ub_reset_enter(struct ub_dev *sc, int try);
347 static void ub_reset_task(struct work_struct *work);
348 static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun);
349 static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun,
350     struct ub_capacity *ret);
351 static int ub_sync_reset(struct ub_dev *sc);
352 static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe);
353 static int ub_probe_lun(struct ub_dev *sc, int lnum);
354 
355 /*
356  */
357 #ifdef CONFIG_USB_LIBUSUAL
358 
359 #define ub_usb_ids  usb_storage_usb_ids
360 #else
361 
362 static const struct usb_device_id ub_usb_ids[] = {
363 	{ USB_INTERFACE_INFO(USB_CLASS_MASS_STORAGE, USB_SC_SCSI, USB_PR_BULK) },
364 	{ }
365 };
366 
367 MODULE_DEVICE_TABLE(usb, ub_usb_ids);
368 #endif /* CONFIG_USB_LIBUSUAL */
369 
370 /*
371  * Find me a way to identify "next free minor" for add_disk(),
372  * and the array disappears the next day. However, the number of
373  * hosts has something to do with the naming and /proc/partitions.
374  * This has to be thought out in detail before changing.
375  * If UB_MAX_HOST was 1000, we'd use a bitmap. Or a better data structure.
376  */
377 #define UB_MAX_HOSTS  26
378 static char ub_hostv[UB_MAX_HOSTS];
379 
380 #define UB_QLOCK_NUM 5
381 static spinlock_t ub_qlockv[UB_QLOCK_NUM];
382 static int ub_qlock_next = 0;
383 
384 static DEFINE_SPINLOCK(ub_lock);	/* Locks globals and ->openc */
385 
386 /*
387  * The id allocator.
388  *
389  * This also stores the host for indexing by minor, which is somewhat dirty.
390  */
ub_id_get(void)391 static int ub_id_get(void)
392 {
393 	unsigned long flags;
394 	int i;
395 
396 	spin_lock_irqsave(&ub_lock, flags);
397 	for (i = 0; i < UB_MAX_HOSTS; i++) {
398 		if (ub_hostv[i] == 0) {
399 			ub_hostv[i] = 1;
400 			spin_unlock_irqrestore(&ub_lock, flags);
401 			return i;
402 		}
403 	}
404 	spin_unlock_irqrestore(&ub_lock, flags);
405 	return -1;
406 }
407 
ub_id_put(int id)408 static void ub_id_put(int id)
409 {
410 	unsigned long flags;
411 
412 	if (id < 0 || id >= UB_MAX_HOSTS) {
413 		printk(KERN_ERR DRV_NAME ": bad host ID %d\n", id);
414 		return;
415 	}
416 
417 	spin_lock_irqsave(&ub_lock, flags);
418 	if (ub_hostv[id] == 0) {
419 		spin_unlock_irqrestore(&ub_lock, flags);
420 		printk(KERN_ERR DRV_NAME ": freeing free host ID %d\n", id);
421 		return;
422 	}
423 	ub_hostv[id] = 0;
424 	spin_unlock_irqrestore(&ub_lock, flags);
425 }
426 
427 /*
428  * This is necessitated by the fact that blk_cleanup_queue does not
429  * necesserily destroy the queue. Instead, it may merely decrease q->refcnt.
430  * Since our blk_init_queue() passes a spinlock common with ub_dev,
431  * we have life time issues when ub_cleanup frees ub_dev.
432  */
ub_next_lock(void)433 static spinlock_t *ub_next_lock(void)
434 {
435 	unsigned long flags;
436 	spinlock_t *ret;
437 
438 	spin_lock_irqsave(&ub_lock, flags);
439 	ret = &ub_qlockv[ub_qlock_next];
440 	ub_qlock_next = (ub_qlock_next + 1) % UB_QLOCK_NUM;
441 	spin_unlock_irqrestore(&ub_lock, flags);
442 	return ret;
443 }
444 
445 /*
446  * Downcount for deallocation. This rides on two assumptions:
447  *  - once something is poisoned, its refcount cannot grow
448  *  - opens cannot happen at this time (del_gendisk was done)
449  * If the above is true, we can drop the lock, which we need for
450  * blk_cleanup_queue(): the silly thing may attempt to sleep.
451  * [Actually, it never needs to sleep for us, but it calls might_sleep()]
452  */
ub_put(struct ub_dev * sc)453 static void ub_put(struct ub_dev *sc)
454 {
455 	unsigned long flags;
456 
457 	spin_lock_irqsave(&ub_lock, flags);
458 	--sc->openc;
459 	if (sc->openc == 0 && atomic_read(&sc->poison)) {
460 		spin_unlock_irqrestore(&ub_lock, flags);
461 		ub_cleanup(sc);
462 	} else {
463 		spin_unlock_irqrestore(&ub_lock, flags);
464 	}
465 }
466 
467 /*
468  * Final cleanup and deallocation.
469  */
ub_cleanup(struct ub_dev * sc)470 static void ub_cleanup(struct ub_dev *sc)
471 {
472 	struct list_head *p;
473 	struct ub_lun *lun;
474 	struct request_queue *q;
475 
476 	while (!list_empty(&sc->luns)) {
477 		p = sc->luns.next;
478 		lun = list_entry(p, struct ub_lun, link);
479 		list_del(p);
480 
481 		/* I don't think queue can be NULL. But... Stolen from sx8.c */
482 		if ((q = lun->disk->queue) != NULL)
483 			blk_cleanup_queue(q);
484 		/*
485 		 * If we zero disk->private_data BEFORE put_disk, we have
486 		 * to check for NULL all over the place in open, release,
487 		 * check_media and revalidate, because the block level
488 		 * semaphore is well inside the put_disk.
489 		 * But we cannot zero after the call, because *disk is gone.
490 		 * The sd.c is blatantly racy in this area.
491 		 */
492 		/* disk->private_data = NULL; */
493 		put_disk(lun->disk);
494 		lun->disk = NULL;
495 
496 		ub_id_put(lun->id);
497 		kfree(lun);
498 	}
499 
500 	usb_set_intfdata(sc->intf, NULL);
501 	usb_put_intf(sc->intf);
502 	usb_put_dev(sc->dev);
503 	kfree(sc);
504 }
505 
506 /*
507  * The "command allocator".
508  */
ub_get_cmd(struct ub_lun * lun)509 static struct ub_scsi_cmd *ub_get_cmd(struct ub_lun *lun)
510 {
511 	struct ub_scsi_cmd *ret;
512 
513 	if (lun->cmda[0])
514 		return NULL;
515 	ret = &lun->cmdv[0];
516 	lun->cmda[0] = 1;
517 	return ret;
518 }
519 
ub_put_cmd(struct ub_lun * lun,struct ub_scsi_cmd * cmd)520 static void ub_put_cmd(struct ub_lun *lun, struct ub_scsi_cmd *cmd)
521 {
522 	if (cmd != &lun->cmdv[0]) {
523 		printk(KERN_WARNING "%s: releasing a foreign cmd %p\n",
524 		    lun->name, cmd);
525 		return;
526 	}
527 	if (!lun->cmda[0]) {
528 		printk(KERN_WARNING "%s: releasing a free cmd\n", lun->name);
529 		return;
530 	}
531 	lun->cmda[0] = 0;
532 }
533 
534 /*
535  * The command queue.
536  */
ub_cmdq_add(struct ub_dev * sc,struct ub_scsi_cmd * cmd)537 static void ub_cmdq_add(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
538 {
539 	struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
540 
541 	if (t->qlen++ == 0) {
542 		t->head = cmd;
543 		t->tail = cmd;
544 	} else {
545 		t->tail->next = cmd;
546 		t->tail = cmd;
547 	}
548 
549 	if (t->qlen > t->qmax)
550 		t->qmax = t->qlen;
551 }
552 
ub_cmdq_insert(struct ub_dev * sc,struct ub_scsi_cmd * cmd)553 static void ub_cmdq_insert(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
554 {
555 	struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
556 
557 	if (t->qlen++ == 0) {
558 		t->head = cmd;
559 		t->tail = cmd;
560 	} else {
561 		cmd->next = t->head;
562 		t->head = cmd;
563 	}
564 
565 	if (t->qlen > t->qmax)
566 		t->qmax = t->qlen;
567 }
568 
ub_cmdq_pop(struct ub_dev * sc)569 static struct ub_scsi_cmd *ub_cmdq_pop(struct ub_dev *sc)
570 {
571 	struct ub_scsi_cmd_queue *t = &sc->cmd_queue;
572 	struct ub_scsi_cmd *cmd;
573 
574 	if (t->qlen == 0)
575 		return NULL;
576 	if (--t->qlen == 0)
577 		t->tail = NULL;
578 	cmd = t->head;
579 	t->head = cmd->next;
580 	cmd->next = NULL;
581 	return cmd;
582 }
583 
584 #define ub_cmdq_peek(sc)  ((sc)->cmd_queue.head)
585 
586 /*
587  * The request function is our main entry point
588  */
589 
ub_request_fn(struct request_queue * q)590 static void ub_request_fn(struct request_queue *q)
591 {
592 	struct ub_lun *lun = q->queuedata;
593 	struct request *rq;
594 
595 	while ((rq = blk_peek_request(q)) != NULL) {
596 		if (ub_request_fn_1(lun, rq) != 0) {
597 			blk_stop_queue(q);
598 			break;
599 		}
600 	}
601 }
602 
ub_request_fn_1(struct ub_lun * lun,struct request * rq)603 static int ub_request_fn_1(struct ub_lun *lun, struct request *rq)
604 {
605 	struct ub_dev *sc = lun->udev;
606 	struct ub_scsi_cmd *cmd;
607 	struct ub_request *urq;
608 	int n_elem;
609 
610 	if (atomic_read(&sc->poison)) {
611 		blk_start_request(rq);
612 		ub_end_rq(rq, DID_NO_CONNECT << 16);
613 		return 0;
614 	}
615 
616 	if (lun->changed && rq->cmd_type != REQ_TYPE_BLOCK_PC) {
617 		blk_start_request(rq);
618 		ub_end_rq(rq, SAM_STAT_CHECK_CONDITION);
619 		return 0;
620 	}
621 
622 	if (lun->urq.rq != NULL)
623 		return -1;
624 	if ((cmd = ub_get_cmd(lun)) == NULL)
625 		return -1;
626 	memset(cmd, 0, sizeof(struct ub_scsi_cmd));
627 
628 	blk_start_request(rq);
629 
630 	urq = &lun->urq;
631 	memset(urq, 0, sizeof(struct ub_request));
632 	urq->rq = rq;
633 
634 	/*
635 	 * get scatterlist from block layer
636 	 */
637 	sg_init_table(&urq->sgv[0], UB_MAX_REQ_SG);
638 	n_elem = blk_rq_map_sg(lun->disk->queue, rq, &urq->sgv[0]);
639 	if (n_elem < 0) {
640 		/* Impossible, because blk_rq_map_sg should not hit ENOMEM. */
641 		printk(KERN_INFO "%s: failed request map (%d)\n",
642 		    lun->name, n_elem);
643 		goto drop;
644 	}
645 	if (n_elem > UB_MAX_REQ_SG) {	/* Paranoia */
646 		printk(KERN_WARNING "%s: request with %d segments\n",
647 		    lun->name, n_elem);
648 		goto drop;
649 	}
650 	urq->nsg = n_elem;
651 
652 	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
653 		ub_cmd_build_packet(sc, lun, cmd, urq);
654 	} else {
655 		ub_cmd_build_block(sc, lun, cmd, urq);
656 	}
657 	cmd->state = UB_CMDST_INIT;
658 	cmd->lun = lun;
659 	cmd->done = ub_rw_cmd_done;
660 	cmd->back = urq;
661 
662 	cmd->tag = sc->tagcnt++;
663 	if (ub_submit_scsi(sc, cmd) != 0)
664 		goto drop;
665 
666 	return 0;
667 
668 drop:
669 	ub_put_cmd(lun, cmd);
670 	ub_end_rq(rq, DID_ERROR << 16);
671 	return 0;
672 }
673 
ub_cmd_build_block(struct ub_dev * sc,struct ub_lun * lun,struct ub_scsi_cmd * cmd,struct ub_request * urq)674 static void ub_cmd_build_block(struct ub_dev *sc, struct ub_lun *lun,
675     struct ub_scsi_cmd *cmd, struct ub_request *urq)
676 {
677 	struct request *rq = urq->rq;
678 	unsigned int block, nblks;
679 
680 	if (rq_data_dir(rq) == WRITE)
681 		cmd->dir = UB_DIR_WRITE;
682 	else
683 		cmd->dir = UB_DIR_READ;
684 
685 	cmd->nsg = urq->nsg;
686 	memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg);
687 
688 	/*
689 	 * build the command
690 	 *
691 	 * The call to blk_queue_logical_block_size() guarantees that request
692 	 * is aligned, but it is given in terms of 512 byte units, always.
693 	 */
694 	block = blk_rq_pos(rq) >> lun->capacity.bshift;
695 	nblks = blk_rq_sectors(rq) >> lun->capacity.bshift;
696 
697 	cmd->cdb[0] = (cmd->dir == UB_DIR_READ)? READ_10: WRITE_10;
698 	/* 10-byte uses 4 bytes of LBA: 2147483648KB, 2097152MB, 2048GB */
699 	cmd->cdb[2] = block >> 24;
700 	cmd->cdb[3] = block >> 16;
701 	cmd->cdb[4] = block >> 8;
702 	cmd->cdb[5] = block;
703 	cmd->cdb[7] = nblks >> 8;
704 	cmd->cdb[8] = nblks;
705 	cmd->cdb_len = 10;
706 
707 	cmd->len = blk_rq_bytes(rq);
708 }
709 
ub_cmd_build_packet(struct ub_dev * sc,struct ub_lun * lun,struct ub_scsi_cmd * cmd,struct ub_request * urq)710 static void ub_cmd_build_packet(struct ub_dev *sc, struct ub_lun *lun,
711     struct ub_scsi_cmd *cmd, struct ub_request *urq)
712 {
713 	struct request *rq = urq->rq;
714 
715 	if (blk_rq_bytes(rq) == 0) {
716 		cmd->dir = UB_DIR_NONE;
717 	} else {
718 		if (rq_data_dir(rq) == WRITE)
719 			cmd->dir = UB_DIR_WRITE;
720 		else
721 			cmd->dir = UB_DIR_READ;
722 	}
723 
724 	cmd->nsg = urq->nsg;
725 	memcpy(cmd->sgv, urq->sgv, sizeof(struct scatterlist) * cmd->nsg);
726 
727 	memcpy(&cmd->cdb, rq->cmd, rq->cmd_len);
728 	cmd->cdb_len = rq->cmd_len;
729 
730 	cmd->len = blk_rq_bytes(rq);
731 
732 	/*
733 	 * To reapply this to every URB is not as incorrect as it looks.
734 	 * In return, we avoid any complicated tracking calculations.
735 	 */
736 	cmd->timeo = rq->timeout;
737 }
738 
ub_rw_cmd_done(struct ub_dev * sc,struct ub_scsi_cmd * cmd)739 static void ub_rw_cmd_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
740 {
741 	struct ub_lun *lun = cmd->lun;
742 	struct ub_request *urq = cmd->back;
743 	struct request *rq;
744 	unsigned int scsi_status;
745 
746 	rq = urq->rq;
747 
748 	if (cmd->error == 0) {
749 		if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
750 			if (cmd->act_len >= rq->resid_len)
751 				rq->resid_len = 0;
752 			else
753 				rq->resid_len -= cmd->act_len;
754 			scsi_status = 0;
755 		} else {
756 			if (cmd->act_len != cmd->len) {
757 				scsi_status = SAM_STAT_CHECK_CONDITION;
758 			} else {
759 				scsi_status = 0;
760 			}
761 		}
762 	} else {
763 		if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
764 			/* UB_SENSE_SIZE is smaller than SCSI_SENSE_BUFFERSIZE */
765 			memcpy(rq->sense, sc->top_sense, UB_SENSE_SIZE);
766 			rq->sense_len = UB_SENSE_SIZE;
767 			if (sc->top_sense[0] != 0)
768 				scsi_status = SAM_STAT_CHECK_CONDITION;
769 			else
770 				scsi_status = DID_ERROR << 16;
771 		} else {
772 			if (cmd->error == -EIO &&
773 			    (cmd->key == 0 ||
774 			     cmd->key == MEDIUM_ERROR ||
775 			     cmd->key == UNIT_ATTENTION)) {
776 				if (ub_rw_cmd_retry(sc, lun, urq, cmd) == 0)
777 					return;
778 			}
779 			scsi_status = SAM_STAT_CHECK_CONDITION;
780 		}
781 	}
782 
783 	urq->rq = NULL;
784 
785 	ub_put_cmd(lun, cmd);
786 	ub_end_rq(rq, scsi_status);
787 	blk_start_queue(lun->disk->queue);
788 }
789 
ub_end_rq(struct request * rq,unsigned int scsi_status)790 static void ub_end_rq(struct request *rq, unsigned int scsi_status)
791 {
792 	int error;
793 
794 	if (scsi_status == 0) {
795 		error = 0;
796 	} else {
797 		error = -EIO;
798 		rq->errors = scsi_status;
799 	}
800 	__blk_end_request_all(rq, error);
801 }
802 
ub_rw_cmd_retry(struct ub_dev * sc,struct ub_lun * lun,struct ub_request * urq,struct ub_scsi_cmd * cmd)803 static int ub_rw_cmd_retry(struct ub_dev *sc, struct ub_lun *lun,
804     struct ub_request *urq, struct ub_scsi_cmd *cmd)
805 {
806 
807 	if (atomic_read(&sc->poison))
808 		return -ENXIO;
809 
810 	ub_reset_enter(sc, urq->current_try);
811 
812 	if (urq->current_try >= 3)
813 		return -EIO;
814 	urq->current_try++;
815 
816 	/* Remove this if anyone complains of flooding. */
817 	printk(KERN_DEBUG "%s: dir %c len/act %d/%d "
818 	    "[sense %x %02x %02x] retry %d\n",
819 	    sc->name, UB_DIR_CHAR(cmd->dir), cmd->len, cmd->act_len,
820 	    cmd->key, cmd->asc, cmd->ascq, urq->current_try);
821 
822 	memset(cmd, 0, sizeof(struct ub_scsi_cmd));
823 	ub_cmd_build_block(sc, lun, cmd, urq);
824 
825 	cmd->state = UB_CMDST_INIT;
826 	cmd->lun = lun;
827 	cmd->done = ub_rw_cmd_done;
828 	cmd->back = urq;
829 
830 	cmd->tag = sc->tagcnt++;
831 
832 #if 0 /* Wasteful */
833 	return ub_submit_scsi(sc, cmd);
834 #else
835 	ub_cmdq_add(sc, cmd);
836 	return 0;
837 #endif
838 }
839 
840 /*
841  * Submit a regular SCSI operation (not an auto-sense).
842  *
843  * The Iron Law of Good Submit Routine is:
844  * Zero return - callback is done, Nonzero return - callback is not done.
845  * No exceptions.
846  *
847  * Host is assumed locked.
848  */
ub_submit_scsi(struct ub_dev * sc,struct ub_scsi_cmd * cmd)849 static int ub_submit_scsi(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
850 {
851 
852 	if (cmd->state != UB_CMDST_INIT ||
853 	    (cmd->dir != UB_DIR_NONE && cmd->len == 0)) {
854 		return -EINVAL;
855 	}
856 
857 	ub_cmdq_add(sc, cmd);
858 	/*
859 	 * We can call ub_scsi_dispatch(sc) right away here, but it's a little
860 	 * safer to jump to a tasklet, in case upper layers do something silly.
861 	 */
862 	tasklet_schedule(&sc->tasklet);
863 	return 0;
864 }
865 
866 /*
867  * Submit the first URB for the queued command.
868  * This function does not deal with queueing in any way.
869  */
ub_scsi_cmd_start(struct ub_dev * sc,struct ub_scsi_cmd * cmd)870 static int ub_scsi_cmd_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
871 {
872 	struct bulk_cb_wrap *bcb;
873 	int rc;
874 
875 	bcb = &sc->work_bcb;
876 
877 	/*
878 	 * ``If the allocation length is eighteen or greater, and a device
879 	 * server returns less than eithteen bytes of data, the application
880 	 * client should assume that the bytes not transferred would have been
881 	 * zeroes had the device server returned those bytes.''
882 	 *
883 	 * We zero sense for all commands so that when a packet request
884 	 * fails it does not return a stale sense.
885 	 */
886 	memset(&sc->top_sense, 0, UB_SENSE_SIZE);
887 
888 	/* set up the command wrapper */
889 	bcb->Signature = cpu_to_le32(US_BULK_CB_SIGN);
890 	bcb->Tag = cmd->tag;		/* Endianness is not important */
891 	bcb->DataTransferLength = cpu_to_le32(cmd->len);
892 	bcb->Flags = (cmd->dir == UB_DIR_READ) ? 0x80 : 0;
893 	bcb->Lun = (cmd->lun != NULL) ? cmd->lun->num : 0;
894 	bcb->Length = cmd->cdb_len;
895 
896 	/* copy the command payload */
897 	memcpy(bcb->CDB, cmd->cdb, UB_MAX_CDB_SIZE);
898 
899 	UB_INIT_COMPLETION(sc->work_done);
900 
901 	sc->last_pipe = sc->send_bulk_pipe;
902 	usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->send_bulk_pipe,
903 	    bcb, US_BULK_CB_WRAP_LEN, ub_urb_complete, sc);
904 
905 	if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
906 		/* XXX Clear stalls */
907 		ub_complete(&sc->work_done);
908 		return rc;
909 	}
910 
911 	sc->work_timer.expires = jiffies + UB_URB_TIMEOUT;
912 	add_timer(&sc->work_timer);
913 
914 	cmd->state = UB_CMDST_CMD;
915 	return 0;
916 }
917 
918 /*
919  * Timeout handler.
920  */
ub_urb_timeout(unsigned long arg)921 static void ub_urb_timeout(unsigned long arg)
922 {
923 	struct ub_dev *sc = (struct ub_dev *) arg;
924 	unsigned long flags;
925 
926 	spin_lock_irqsave(sc->lock, flags);
927 	if (!ub_is_completed(&sc->work_done))
928 		usb_unlink_urb(&sc->work_urb);
929 	spin_unlock_irqrestore(sc->lock, flags);
930 }
931 
932 /*
933  * Completion routine for the work URB.
934  *
935  * This can be called directly from usb_submit_urb (while we have
936  * the sc->lock taken) and from an interrupt (while we do NOT have
937  * the sc->lock taken). Therefore, bounce this off to a tasklet.
938  */
ub_urb_complete(struct urb * urb)939 static void ub_urb_complete(struct urb *urb)
940 {
941 	struct ub_dev *sc = urb->context;
942 
943 	ub_complete(&sc->work_done);
944 	tasklet_schedule(&sc->tasklet);
945 }
946 
ub_scsi_action(unsigned long _dev)947 static void ub_scsi_action(unsigned long _dev)
948 {
949 	struct ub_dev *sc = (struct ub_dev *) _dev;
950 	unsigned long flags;
951 
952 	spin_lock_irqsave(sc->lock, flags);
953 	ub_scsi_dispatch(sc);
954 	spin_unlock_irqrestore(sc->lock, flags);
955 }
956 
ub_scsi_dispatch(struct ub_dev * sc)957 static void ub_scsi_dispatch(struct ub_dev *sc)
958 {
959 	struct ub_scsi_cmd *cmd;
960 	int rc;
961 
962 	while (!sc->reset && (cmd = ub_cmdq_peek(sc)) != NULL) {
963 		if (cmd->state == UB_CMDST_DONE) {
964 			ub_cmdq_pop(sc);
965 			(*cmd->done)(sc, cmd);
966 		} else if (cmd->state == UB_CMDST_INIT) {
967 			if ((rc = ub_scsi_cmd_start(sc, cmd)) == 0)
968 				break;
969 			cmd->error = rc;
970 			cmd->state = UB_CMDST_DONE;
971 		} else {
972 			if (!ub_is_completed(&sc->work_done))
973 				break;
974 			del_timer(&sc->work_timer);
975 			ub_scsi_urb_compl(sc, cmd);
976 		}
977 	}
978 }
979 
ub_scsi_urb_compl(struct ub_dev * sc,struct ub_scsi_cmd * cmd)980 static void ub_scsi_urb_compl(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
981 {
982 	struct urb *urb = &sc->work_urb;
983 	struct bulk_cs_wrap *bcs;
984 	int endp;
985 	int len;
986 	int rc;
987 
988 	if (atomic_read(&sc->poison)) {
989 		ub_state_done(sc, cmd, -ENODEV);
990 		return;
991 	}
992 
993 	endp = usb_pipeendpoint(sc->last_pipe);
994 	if (usb_pipein(sc->last_pipe))
995 		endp |= USB_DIR_IN;
996 
997 	if (cmd->state == UB_CMDST_CLEAR) {
998 		if (urb->status == -EPIPE) {
999 			/*
1000 			 * STALL while clearning STALL.
1001 			 * The control pipe clears itself - nothing to do.
1002 			 */
1003 			printk(KERN_NOTICE "%s: stall on control pipe\n",
1004 			    sc->name);
1005 			goto Bad_End;
1006 		}
1007 
1008 		/*
1009 		 * We ignore the result for the halt clear.
1010 		 */
1011 
1012 		usb_reset_endpoint(sc->dev, endp);
1013 
1014 		ub_state_sense(sc, cmd);
1015 
1016 	} else if (cmd->state == UB_CMDST_CLR2STS) {
1017 		if (urb->status == -EPIPE) {
1018 			printk(KERN_NOTICE "%s: stall on control pipe\n",
1019 			    sc->name);
1020 			goto Bad_End;
1021 		}
1022 
1023 		/*
1024 		 * We ignore the result for the halt clear.
1025 		 */
1026 
1027 		usb_reset_endpoint(sc->dev, endp);
1028 
1029 		ub_state_stat(sc, cmd);
1030 
1031 	} else if (cmd->state == UB_CMDST_CLRRS) {
1032 		if (urb->status == -EPIPE) {
1033 			printk(KERN_NOTICE "%s: stall on control pipe\n",
1034 			    sc->name);
1035 			goto Bad_End;
1036 		}
1037 
1038 		/*
1039 		 * We ignore the result for the halt clear.
1040 		 */
1041 
1042 		usb_reset_endpoint(sc->dev, endp);
1043 
1044 		ub_state_stat_counted(sc, cmd);
1045 
1046 	} else if (cmd->state == UB_CMDST_CMD) {
1047 		switch (urb->status) {
1048 		case 0:
1049 			break;
1050 		case -EOVERFLOW:
1051 			goto Bad_End;
1052 		case -EPIPE:
1053 			rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1054 			if (rc != 0) {
1055 				printk(KERN_NOTICE "%s: "
1056 				    "unable to submit clear (%d)\n",
1057 				    sc->name, rc);
1058 				/*
1059 				 * This is typically ENOMEM or some other such shit.
1060 				 * Retrying is pointless. Just do Bad End on it...
1061 				 */
1062 				ub_state_done(sc, cmd, rc);
1063 				return;
1064 			}
1065 			cmd->state = UB_CMDST_CLEAR;
1066 			return;
1067 		case -ESHUTDOWN:	/* unplug */
1068 		case -EILSEQ:		/* unplug timeout on uhci */
1069 			ub_state_done(sc, cmd, -ENODEV);
1070 			return;
1071 		default:
1072 			goto Bad_End;
1073 		}
1074 		if (urb->actual_length != US_BULK_CB_WRAP_LEN) {
1075 			goto Bad_End;
1076 		}
1077 
1078 		if (cmd->dir == UB_DIR_NONE || cmd->nsg < 1) {
1079 			ub_state_stat(sc, cmd);
1080 			return;
1081 		}
1082 
1083 		// udelay(125);		// usb-storage has this
1084 		ub_data_start(sc, cmd);
1085 
1086 	} else if (cmd->state == UB_CMDST_DATA) {
1087 		if (urb->status == -EPIPE) {
1088 			rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1089 			if (rc != 0) {
1090 				printk(KERN_NOTICE "%s: "
1091 				    "unable to submit clear (%d)\n",
1092 				    sc->name, rc);
1093 				ub_state_done(sc, cmd, rc);
1094 				return;
1095 			}
1096 			cmd->state = UB_CMDST_CLR2STS;
1097 			return;
1098 		}
1099 		if (urb->status == -EOVERFLOW) {
1100 			/*
1101 			 * A babble? Failure, but we must transfer CSW now.
1102 			 */
1103 			cmd->error = -EOVERFLOW;	/* A cheap trick... */
1104 			ub_state_stat(sc, cmd);
1105 			return;
1106 		}
1107 
1108 		if (cmd->dir == UB_DIR_WRITE) {
1109 			/*
1110 			 * Do not continue writes in case of a failure.
1111 			 * Doing so would cause sectors to be mixed up,
1112 			 * which is worse than sectors lost.
1113 			 *
1114 			 * We must try to read the CSW, or many devices
1115 			 * get confused.
1116 			 */
1117 			len = urb->actual_length;
1118 			if (urb->status != 0 ||
1119 			    len != cmd->sgv[cmd->current_sg].length) {
1120 				cmd->act_len += len;
1121 
1122 				cmd->error = -EIO;
1123 				ub_state_stat(sc, cmd);
1124 				return;
1125 			}
1126 
1127 		} else {
1128 			/*
1129 			 * If an error occurs on read, we record it, and
1130 			 * continue to fetch data in order to avoid bubble.
1131 			 *
1132 			 * As a small shortcut, we stop if we detect that
1133 			 * a CSW mixed into data.
1134 			 */
1135 			if (urb->status != 0)
1136 				cmd->error = -EIO;
1137 
1138 			len = urb->actual_length;
1139 			if (urb->status != 0 ||
1140 			    len != cmd->sgv[cmd->current_sg].length) {
1141 				if ((len & 0x1FF) == US_BULK_CS_WRAP_LEN)
1142 					goto Bad_End;
1143 			}
1144 		}
1145 
1146 		cmd->act_len += urb->actual_length;
1147 
1148 		if (++cmd->current_sg < cmd->nsg) {
1149 			ub_data_start(sc, cmd);
1150 			return;
1151 		}
1152 		ub_state_stat(sc, cmd);
1153 
1154 	} else if (cmd->state == UB_CMDST_STAT) {
1155 		if (urb->status == -EPIPE) {
1156 			rc = ub_submit_clear_stall(sc, cmd, sc->last_pipe);
1157 			if (rc != 0) {
1158 				printk(KERN_NOTICE "%s: "
1159 				    "unable to submit clear (%d)\n",
1160 				    sc->name, rc);
1161 				ub_state_done(sc, cmd, rc);
1162 				return;
1163 			}
1164 
1165 			/*
1166 			 * Having a stall when getting CSW is an error, so
1167 			 * make sure uppper levels are not oblivious to it.
1168 			 */
1169 			cmd->error = -EIO;		/* A cheap trick... */
1170 
1171 			cmd->state = UB_CMDST_CLRRS;
1172 			return;
1173 		}
1174 
1175 		/* Catch everything, including -EOVERFLOW and other nasties. */
1176 		if (urb->status != 0)
1177 			goto Bad_End;
1178 
1179 		if (urb->actual_length == 0) {
1180 			ub_state_stat_counted(sc, cmd);
1181 			return;
1182 		}
1183 
1184 		/*
1185 		 * Check the returned Bulk protocol status.
1186 		 * The status block has to be validated first.
1187 		 */
1188 
1189 		bcs = &sc->work_bcs;
1190 
1191 		if (sc->signature == cpu_to_le32(0)) {
1192 			/*
1193 			 * This is the first reply, so do not perform the check.
1194 			 * Instead, remember the signature the device uses
1195 			 * for future checks. But do not allow a nul.
1196 			 */
1197 			sc->signature = bcs->Signature;
1198 			if (sc->signature == cpu_to_le32(0)) {
1199 				ub_state_stat_counted(sc, cmd);
1200 				return;
1201 			}
1202 		} else {
1203 			if (bcs->Signature != sc->signature) {
1204 				ub_state_stat_counted(sc, cmd);
1205 				return;
1206 			}
1207 		}
1208 
1209 		if (bcs->Tag != cmd->tag) {
1210 			/*
1211 			 * This usually happens when we disagree with the
1212 			 * device's microcode about something. For instance,
1213 			 * a few of them throw this after timeouts. They buffer
1214 			 * commands and reply at commands we timed out before.
1215 			 * Without flushing these replies we loop forever.
1216 			 */
1217 			ub_state_stat_counted(sc, cmd);
1218 			return;
1219 		}
1220 
1221 		if (!sc->bad_resid) {
1222 			len = le32_to_cpu(bcs->Residue);
1223 			if (len != cmd->len - cmd->act_len) {
1224 				/*
1225 				 * Only start ignoring if this cmd ended well.
1226 				 */
1227 				if (cmd->len == cmd->act_len) {
1228 					printk(KERN_NOTICE "%s: "
1229 					    "bad residual %d of %d, ignoring\n",
1230 					    sc->name, len, cmd->len);
1231 					sc->bad_resid = 1;
1232 				}
1233 			}
1234 		}
1235 
1236 		switch (bcs->Status) {
1237 		case US_BULK_STAT_OK:
1238 			break;
1239 		case US_BULK_STAT_FAIL:
1240 			ub_state_sense(sc, cmd);
1241 			return;
1242 		case US_BULK_STAT_PHASE:
1243 			goto Bad_End;
1244 		default:
1245 			printk(KERN_INFO "%s: unknown CSW status 0x%x\n",
1246 			    sc->name, bcs->Status);
1247 			ub_state_done(sc, cmd, -EINVAL);
1248 			return;
1249 		}
1250 
1251 		/* Not zeroing error to preserve a babble indicator */
1252 		if (cmd->error != 0) {
1253 			ub_state_sense(sc, cmd);
1254 			return;
1255 		}
1256 		cmd->state = UB_CMDST_DONE;
1257 		ub_cmdq_pop(sc);
1258 		(*cmd->done)(sc, cmd);
1259 
1260 	} else if (cmd->state == UB_CMDST_SENSE) {
1261 		ub_state_done(sc, cmd, -EIO);
1262 
1263 	} else {
1264 		printk(KERN_WARNING "%s: wrong command state %d\n",
1265 		    sc->name, cmd->state);
1266 		ub_state_done(sc, cmd, -EINVAL);
1267 		return;
1268 	}
1269 	return;
1270 
1271 Bad_End: /* Little Excel is dead */
1272 	ub_state_done(sc, cmd, -EIO);
1273 }
1274 
1275 /*
1276  * Factorization helper for the command state machine:
1277  * Initiate a data segment transfer.
1278  */
ub_data_start(struct ub_dev * sc,struct ub_scsi_cmd * cmd)1279 static void ub_data_start(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1280 {
1281 	struct scatterlist *sg = &cmd->sgv[cmd->current_sg];
1282 	int pipe;
1283 	int rc;
1284 
1285 	UB_INIT_COMPLETION(sc->work_done);
1286 
1287 	if (cmd->dir == UB_DIR_READ)
1288 		pipe = sc->recv_bulk_pipe;
1289 	else
1290 		pipe = sc->send_bulk_pipe;
1291 	sc->last_pipe = pipe;
1292 	usb_fill_bulk_urb(&sc->work_urb, sc->dev, pipe, sg_virt(sg),
1293 	    sg->length, ub_urb_complete, sc);
1294 
1295 	if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1296 		/* XXX Clear stalls */
1297 		ub_complete(&sc->work_done);
1298 		ub_state_done(sc, cmd, rc);
1299 		return;
1300 	}
1301 
1302 	if (cmd->timeo)
1303 		sc->work_timer.expires = jiffies + cmd->timeo;
1304 	else
1305 		sc->work_timer.expires = jiffies + UB_DATA_TIMEOUT;
1306 	add_timer(&sc->work_timer);
1307 
1308 	cmd->state = UB_CMDST_DATA;
1309 }
1310 
1311 /*
1312  * Factorization helper for the command state machine:
1313  * Finish the command.
1314  */
ub_state_done(struct ub_dev * sc,struct ub_scsi_cmd * cmd,int rc)1315 static void ub_state_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd, int rc)
1316 {
1317 
1318 	cmd->error = rc;
1319 	cmd->state = UB_CMDST_DONE;
1320 	ub_cmdq_pop(sc);
1321 	(*cmd->done)(sc, cmd);
1322 }
1323 
1324 /*
1325  * Factorization helper for the command state machine:
1326  * Submit a CSW read.
1327  */
__ub_state_stat(struct ub_dev * sc,struct ub_scsi_cmd * cmd)1328 static int __ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1329 {
1330 	int rc;
1331 
1332 	UB_INIT_COMPLETION(sc->work_done);
1333 
1334 	sc->last_pipe = sc->recv_bulk_pipe;
1335 	usb_fill_bulk_urb(&sc->work_urb, sc->dev, sc->recv_bulk_pipe,
1336 	    &sc->work_bcs, US_BULK_CS_WRAP_LEN, ub_urb_complete, sc);
1337 
1338 	if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1339 		/* XXX Clear stalls */
1340 		ub_complete(&sc->work_done);
1341 		ub_state_done(sc, cmd, rc);
1342 		return -1;
1343 	}
1344 
1345 	if (cmd->timeo)
1346 		sc->work_timer.expires = jiffies + cmd->timeo;
1347 	else
1348 		sc->work_timer.expires = jiffies + UB_STAT_TIMEOUT;
1349 	add_timer(&sc->work_timer);
1350 	return 0;
1351 }
1352 
1353 /*
1354  * Factorization helper for the command state machine:
1355  * Submit a CSW read and go to STAT state.
1356  */
ub_state_stat(struct ub_dev * sc,struct ub_scsi_cmd * cmd)1357 static void ub_state_stat(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1358 {
1359 
1360 	if (__ub_state_stat(sc, cmd) != 0)
1361 		return;
1362 
1363 	cmd->stat_count = 0;
1364 	cmd->state = UB_CMDST_STAT;
1365 }
1366 
1367 /*
1368  * Factorization helper for the command state machine:
1369  * Submit a CSW read and go to STAT state with counter (along [C] path).
1370  */
ub_state_stat_counted(struct ub_dev * sc,struct ub_scsi_cmd * cmd)1371 static void ub_state_stat_counted(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1372 {
1373 
1374 	if (++cmd->stat_count >= 4) {
1375 		ub_state_sense(sc, cmd);
1376 		return;
1377 	}
1378 
1379 	if (__ub_state_stat(sc, cmd) != 0)
1380 		return;
1381 
1382 	cmd->state = UB_CMDST_STAT;
1383 }
1384 
1385 /*
1386  * Factorization helper for the command state machine:
1387  * Submit a REQUEST SENSE and go to SENSE state.
1388  */
ub_state_sense(struct ub_dev * sc,struct ub_scsi_cmd * cmd)1389 static void ub_state_sense(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1390 {
1391 	struct ub_scsi_cmd *scmd;
1392 	struct scatterlist *sg;
1393 	int rc;
1394 
1395 	if (cmd->cdb[0] == REQUEST_SENSE) {
1396 		rc = -EPIPE;
1397 		goto error;
1398 	}
1399 
1400 	scmd = &sc->top_rqs_cmd;
1401 	memset(scmd, 0, sizeof(struct ub_scsi_cmd));
1402 	scmd->cdb[0] = REQUEST_SENSE;
1403 	scmd->cdb[4] = UB_SENSE_SIZE;
1404 	scmd->cdb_len = 6;
1405 	scmd->dir = UB_DIR_READ;
1406 	scmd->state = UB_CMDST_INIT;
1407 	scmd->nsg = 1;
1408 	sg = &scmd->sgv[0];
1409 	sg_init_table(sg, UB_MAX_REQ_SG);
1410 	sg_set_page(sg, virt_to_page(sc->top_sense), UB_SENSE_SIZE,
1411 			(unsigned long)sc->top_sense & (PAGE_SIZE-1));
1412 	scmd->len = UB_SENSE_SIZE;
1413 	scmd->lun = cmd->lun;
1414 	scmd->done = ub_top_sense_done;
1415 	scmd->back = cmd;
1416 
1417 	scmd->tag = sc->tagcnt++;
1418 
1419 	cmd->state = UB_CMDST_SENSE;
1420 
1421 	ub_cmdq_insert(sc, scmd);
1422 	return;
1423 
1424 error:
1425 	ub_state_done(sc, cmd, rc);
1426 }
1427 
1428 /*
1429  * A helper for the command's state machine:
1430  * Submit a stall clear.
1431  */
ub_submit_clear_stall(struct ub_dev * sc,struct ub_scsi_cmd * cmd,int stalled_pipe)1432 static int ub_submit_clear_stall(struct ub_dev *sc, struct ub_scsi_cmd *cmd,
1433     int stalled_pipe)
1434 {
1435 	int endp;
1436 	struct usb_ctrlrequest *cr;
1437 	int rc;
1438 
1439 	endp = usb_pipeendpoint(stalled_pipe);
1440 	if (usb_pipein (stalled_pipe))
1441 		endp |= USB_DIR_IN;
1442 
1443 	cr = &sc->work_cr;
1444 	cr->bRequestType = USB_RECIP_ENDPOINT;
1445 	cr->bRequest = USB_REQ_CLEAR_FEATURE;
1446 	cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
1447 	cr->wIndex = cpu_to_le16(endp);
1448 	cr->wLength = cpu_to_le16(0);
1449 
1450 	UB_INIT_COMPLETION(sc->work_done);
1451 
1452 	usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
1453 	    (unsigned char*) cr, NULL, 0, ub_urb_complete, sc);
1454 
1455 	if ((rc = usb_submit_urb(&sc->work_urb, GFP_ATOMIC)) != 0) {
1456 		ub_complete(&sc->work_done);
1457 		return rc;
1458 	}
1459 
1460 	sc->work_timer.expires = jiffies + UB_CTRL_TIMEOUT;
1461 	add_timer(&sc->work_timer);
1462 	return 0;
1463 }
1464 
1465 /*
1466  */
ub_top_sense_done(struct ub_dev * sc,struct ub_scsi_cmd * scmd)1467 static void ub_top_sense_done(struct ub_dev *sc, struct ub_scsi_cmd *scmd)
1468 {
1469 	unsigned char *sense = sc->top_sense;
1470 	struct ub_scsi_cmd *cmd;
1471 
1472 	/*
1473 	 * Find the command which triggered the unit attention or a check,
1474 	 * save the sense into it, and advance its state machine.
1475 	 */
1476 	if ((cmd = ub_cmdq_peek(sc)) == NULL) {
1477 		printk(KERN_WARNING "%s: sense done while idle\n", sc->name);
1478 		return;
1479 	}
1480 	if (cmd != scmd->back) {
1481 		printk(KERN_WARNING "%s: "
1482 		    "sense done for wrong command 0x%x\n",
1483 		    sc->name, cmd->tag);
1484 		return;
1485 	}
1486 	if (cmd->state != UB_CMDST_SENSE) {
1487 		printk(KERN_WARNING "%s: sense done with bad cmd state %d\n",
1488 		    sc->name, cmd->state);
1489 		return;
1490 	}
1491 
1492 	/*
1493 	 * Ignoring scmd->act_len, because the buffer was pre-zeroed.
1494 	 */
1495 	cmd->key = sense[2] & 0x0F;
1496 	cmd->asc = sense[12];
1497 	cmd->ascq = sense[13];
1498 
1499 	ub_scsi_urb_compl(sc, cmd);
1500 }
1501 
1502 /*
1503  * Reset management
1504  */
1505 
ub_reset_enter(struct ub_dev * sc,int try)1506 static void ub_reset_enter(struct ub_dev *sc, int try)
1507 {
1508 
1509 	if (sc->reset) {
1510 		/* This happens often on multi-LUN devices. */
1511 		return;
1512 	}
1513 	sc->reset = try + 1;
1514 
1515 #if 0 /* Not needed because the disconnect waits for us. */
1516 	unsigned long flags;
1517 	spin_lock_irqsave(&ub_lock, flags);
1518 	sc->openc++;
1519 	spin_unlock_irqrestore(&ub_lock, flags);
1520 #endif
1521 
1522 #if 0 /* We let them stop themselves. */
1523 	struct ub_lun *lun;
1524 	list_for_each_entry(lun, &sc->luns, link) {
1525 		blk_stop_queue(lun->disk->queue);
1526 	}
1527 #endif
1528 
1529 	schedule_work(&sc->reset_work);
1530 }
1531 
ub_reset_task(struct work_struct * work)1532 static void ub_reset_task(struct work_struct *work)
1533 {
1534 	struct ub_dev *sc = container_of(work, struct ub_dev, reset_work);
1535 	unsigned long flags;
1536 	struct ub_lun *lun;
1537 	int rc;
1538 
1539 	if (!sc->reset) {
1540 		printk(KERN_WARNING "%s: Running reset unrequested\n",
1541 		    sc->name);
1542 		return;
1543 	}
1544 
1545 	if (atomic_read(&sc->poison)) {
1546 		;
1547 	} else if ((sc->reset & 1) == 0) {
1548 		ub_sync_reset(sc);
1549 		msleep(700);	/* usb-storage sleeps 6s (!) */
1550 		ub_probe_clear_stall(sc, sc->recv_bulk_pipe);
1551 		ub_probe_clear_stall(sc, sc->send_bulk_pipe);
1552 	} else if (sc->dev->actconfig->desc.bNumInterfaces != 1) {
1553 		;
1554 	} else {
1555 		rc = usb_lock_device_for_reset(sc->dev, sc->intf);
1556 		if (rc < 0) {
1557 			printk(KERN_NOTICE
1558 			    "%s: usb_lock_device_for_reset failed (%d)\n",
1559 			    sc->name, rc);
1560 		} else {
1561 			rc = usb_reset_device(sc->dev);
1562 			if (rc < 0) {
1563 				printk(KERN_NOTICE "%s: "
1564 				    "usb_lock_device_for_reset failed (%d)\n",
1565 				    sc->name, rc);
1566 			}
1567 			usb_unlock_device(sc->dev);
1568 		}
1569 	}
1570 
1571 	/*
1572 	 * In theory, no commands can be running while reset is active,
1573 	 * so nobody can ask for another reset, and so we do not need any
1574 	 * queues of resets or anything. We do need a spinlock though,
1575 	 * to interact with block layer.
1576 	 */
1577 	spin_lock_irqsave(sc->lock, flags);
1578 	sc->reset = 0;
1579 	tasklet_schedule(&sc->tasklet);
1580 	list_for_each_entry(lun, &sc->luns, link) {
1581 		blk_start_queue(lun->disk->queue);
1582 	}
1583 	wake_up(&sc->reset_wait);
1584 	spin_unlock_irqrestore(sc->lock, flags);
1585 }
1586 
1587 /*
1588  * XXX Reset brackets are too much hassle to implement, so just stub them
1589  * in order to prevent forced unbinding (which deadlocks solid when our
1590  * ->disconnect method waits for the reset to complete and this kills keventd).
1591  *
1592  * XXX Tell Alan to move usb_unlock_device inside of usb_reset_device,
1593  * or else the post_reset is invoked, and restats I/O on a locked device.
1594  */
ub_pre_reset(struct usb_interface * iface)1595 static int ub_pre_reset(struct usb_interface *iface) {
1596 	return 0;
1597 }
1598 
ub_post_reset(struct usb_interface * iface)1599 static int ub_post_reset(struct usb_interface *iface) {
1600 	return 0;
1601 }
1602 
1603 /*
1604  * This is called from a process context.
1605  */
ub_revalidate(struct ub_dev * sc,struct ub_lun * lun)1606 static void ub_revalidate(struct ub_dev *sc, struct ub_lun *lun)
1607 {
1608 
1609 	lun->readonly = 0;	/* XXX Query this from the device */
1610 
1611 	lun->capacity.nsec = 0;
1612 	lun->capacity.bsize = 512;
1613 	lun->capacity.bshift = 0;
1614 
1615 	if (ub_sync_tur(sc, lun) != 0)
1616 		return;			/* Not ready */
1617 	lun->changed = 0;
1618 
1619 	if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) {
1620 		/*
1621 		 * The retry here means something is wrong, either with the
1622 		 * device, with the transport, or with our code.
1623 		 * We keep this because sd.c has retries for capacity.
1624 		 */
1625 		if (ub_sync_read_cap(sc, lun, &lun->capacity) != 0) {
1626 			lun->capacity.nsec = 0;
1627 			lun->capacity.bsize = 512;
1628 			lun->capacity.bshift = 0;
1629 		}
1630 	}
1631 }
1632 
1633 /*
1634  * The open funcion.
1635  * This is mostly needed to keep refcounting, but also to support
1636  * media checks on removable media drives.
1637  */
ub_bd_open(struct block_device * bdev,fmode_t mode)1638 static int ub_bd_open(struct block_device *bdev, fmode_t mode)
1639 {
1640 	struct ub_lun *lun = bdev->bd_disk->private_data;
1641 	struct ub_dev *sc = lun->udev;
1642 	unsigned long flags;
1643 	int rc;
1644 
1645 	spin_lock_irqsave(&ub_lock, flags);
1646 	if (atomic_read(&sc->poison)) {
1647 		spin_unlock_irqrestore(&ub_lock, flags);
1648 		return -ENXIO;
1649 	}
1650 	sc->openc++;
1651 	spin_unlock_irqrestore(&ub_lock, flags);
1652 
1653 	if (lun->removable || lun->readonly)
1654 		check_disk_change(bdev);
1655 
1656 	/*
1657 	 * The sd.c considers ->media_present and ->changed not equivalent,
1658 	 * under some pretty murky conditions (a failure of READ CAPACITY).
1659 	 * We may need it one day.
1660 	 */
1661 	if (lun->removable && lun->changed && !(mode & FMODE_NDELAY)) {
1662 		rc = -ENOMEDIUM;
1663 		goto err_open;
1664 	}
1665 
1666 	if (lun->readonly && (mode & FMODE_WRITE)) {
1667 		rc = -EROFS;
1668 		goto err_open;
1669 	}
1670 
1671 	return 0;
1672 
1673 err_open:
1674 	ub_put(sc);
1675 	return rc;
1676 }
1677 
ub_bd_unlocked_open(struct block_device * bdev,fmode_t mode)1678 static int ub_bd_unlocked_open(struct block_device *bdev, fmode_t mode)
1679 {
1680 	int ret;
1681 
1682 	mutex_lock(&ub_mutex);
1683 	ret = ub_bd_open(bdev, mode);
1684 	mutex_unlock(&ub_mutex);
1685 
1686 	return ret;
1687 }
1688 
1689 
1690 /*
1691  */
ub_bd_release(struct gendisk * disk,fmode_t mode)1692 static int ub_bd_release(struct gendisk *disk, fmode_t mode)
1693 {
1694 	struct ub_lun *lun = disk->private_data;
1695 	struct ub_dev *sc = lun->udev;
1696 
1697 	mutex_lock(&ub_mutex);
1698 	ub_put(sc);
1699 	mutex_unlock(&ub_mutex);
1700 
1701 	return 0;
1702 }
1703 
1704 /*
1705  * The ioctl interface.
1706  */
ub_bd_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)1707 static int ub_bd_ioctl(struct block_device *bdev, fmode_t mode,
1708     unsigned int cmd, unsigned long arg)
1709 {
1710 	void __user *usermem = (void __user *) arg;
1711 	int ret;
1712 
1713 	mutex_lock(&ub_mutex);
1714 	ret = scsi_cmd_blk_ioctl(bdev, mode, cmd, usermem);
1715 	mutex_unlock(&ub_mutex);
1716 
1717 	return ret;
1718 }
1719 
1720 /*
1721  * This is called by check_disk_change if we reported a media change.
1722  * The main onjective here is to discover the features of the media such as
1723  * the capacity, read-only status, etc. USB storage generally does not
1724  * need to be spun up, but if we needed it, this would be the place.
1725  *
1726  * This call can sleep.
1727  *
1728  * The return code is not used.
1729  */
ub_bd_revalidate(struct gendisk * disk)1730 static int ub_bd_revalidate(struct gendisk *disk)
1731 {
1732 	struct ub_lun *lun = disk->private_data;
1733 
1734 	ub_revalidate(lun->udev, lun);
1735 
1736 	/* XXX Support sector size switching like in sr.c */
1737 	blk_queue_logical_block_size(disk->queue, lun->capacity.bsize);
1738 	set_capacity(disk, lun->capacity.nsec);
1739 	// set_disk_ro(sdkp->disk, lun->readonly);
1740 
1741 	return 0;
1742 }
1743 
1744 /*
1745  * The check is called by the block layer to verify if the media
1746  * is still available. It is supposed to be harmless, lightweight and
1747  * non-intrusive in case the media was not changed.
1748  *
1749  * This call can sleep.
1750  *
1751  * The return code is bool!
1752  */
ub_bd_check_events(struct gendisk * disk,unsigned int clearing)1753 static unsigned int ub_bd_check_events(struct gendisk *disk,
1754 				       unsigned int clearing)
1755 {
1756 	struct ub_lun *lun = disk->private_data;
1757 
1758 	if (!lun->removable)
1759 		return 0;
1760 
1761 	/*
1762 	 * We clean checks always after every command, so this is not
1763 	 * as dangerous as it looks. If the TEST_UNIT_READY fails here,
1764 	 * the device is actually not ready with operator or software
1765 	 * intervention required. One dangerous item might be a drive which
1766 	 * spins itself down, and come the time to write dirty pages, this
1767 	 * will fail, then block layer discards the data. Since we never
1768 	 * spin drives up, such devices simply cannot be used with ub anyway.
1769 	 */
1770 	if (ub_sync_tur(lun->udev, lun) != 0) {
1771 		lun->changed = 1;
1772 		return DISK_EVENT_MEDIA_CHANGE;
1773 	}
1774 
1775 	return lun->changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1776 }
1777 
1778 static const struct block_device_operations ub_bd_fops = {
1779 	.owner		= THIS_MODULE,
1780 	.open		= ub_bd_unlocked_open,
1781 	.release	= ub_bd_release,
1782 	.ioctl		= ub_bd_ioctl,
1783 	.check_events	= ub_bd_check_events,
1784 	.revalidate_disk = ub_bd_revalidate,
1785 };
1786 
1787 /*
1788  * Common ->done routine for commands executed synchronously.
1789  */
ub_probe_done(struct ub_dev * sc,struct ub_scsi_cmd * cmd)1790 static void ub_probe_done(struct ub_dev *sc, struct ub_scsi_cmd *cmd)
1791 {
1792 	struct completion *cop = cmd->back;
1793 	complete(cop);
1794 }
1795 
1796 /*
1797  * Test if the device has a check condition on it, synchronously.
1798  */
ub_sync_tur(struct ub_dev * sc,struct ub_lun * lun)1799 static int ub_sync_tur(struct ub_dev *sc, struct ub_lun *lun)
1800 {
1801 	struct ub_scsi_cmd *cmd;
1802 	enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) };
1803 	unsigned long flags;
1804 	struct completion compl;
1805 	int rc;
1806 
1807 	init_completion(&compl);
1808 
1809 	rc = -ENOMEM;
1810 	if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
1811 		goto err_alloc;
1812 
1813 	cmd->cdb[0] = TEST_UNIT_READY;
1814 	cmd->cdb_len = 6;
1815 	cmd->dir = UB_DIR_NONE;
1816 	cmd->state = UB_CMDST_INIT;
1817 	cmd->lun = lun;			/* This may be NULL, but that's ok */
1818 	cmd->done = ub_probe_done;
1819 	cmd->back = &compl;
1820 
1821 	spin_lock_irqsave(sc->lock, flags);
1822 	cmd->tag = sc->tagcnt++;
1823 
1824 	rc = ub_submit_scsi(sc, cmd);
1825 	spin_unlock_irqrestore(sc->lock, flags);
1826 
1827 	if (rc != 0)
1828 		goto err_submit;
1829 
1830 	wait_for_completion(&compl);
1831 
1832 	rc = cmd->error;
1833 
1834 	if (rc == -EIO && cmd->key != 0)	/* Retries for benh's key */
1835 		rc = cmd->key;
1836 
1837 err_submit:
1838 	kfree(cmd);
1839 err_alloc:
1840 	return rc;
1841 }
1842 
1843 /*
1844  * Read the SCSI capacity synchronously (for probing).
1845  */
ub_sync_read_cap(struct ub_dev * sc,struct ub_lun * lun,struct ub_capacity * ret)1846 static int ub_sync_read_cap(struct ub_dev *sc, struct ub_lun *lun,
1847     struct ub_capacity *ret)
1848 {
1849 	struct ub_scsi_cmd *cmd;
1850 	struct scatterlist *sg;
1851 	char *p;
1852 	enum { ALLOC_SIZE = sizeof(struct ub_scsi_cmd) + 8 };
1853 	unsigned long flags;
1854 	unsigned int bsize, shift;
1855 	unsigned long nsec;
1856 	struct completion compl;
1857 	int rc;
1858 
1859 	init_completion(&compl);
1860 
1861 	rc = -ENOMEM;
1862 	if ((cmd = kzalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
1863 		goto err_alloc;
1864 	p = (char *)cmd + sizeof(struct ub_scsi_cmd);
1865 
1866 	cmd->cdb[0] = 0x25;
1867 	cmd->cdb_len = 10;
1868 	cmd->dir = UB_DIR_READ;
1869 	cmd->state = UB_CMDST_INIT;
1870 	cmd->nsg = 1;
1871 	sg = &cmd->sgv[0];
1872 	sg_init_table(sg, UB_MAX_REQ_SG);
1873 	sg_set_page(sg, virt_to_page(p), 8, (unsigned long)p & (PAGE_SIZE-1));
1874 	cmd->len = 8;
1875 	cmd->lun = lun;
1876 	cmd->done = ub_probe_done;
1877 	cmd->back = &compl;
1878 
1879 	spin_lock_irqsave(sc->lock, flags);
1880 	cmd->tag = sc->tagcnt++;
1881 
1882 	rc = ub_submit_scsi(sc, cmd);
1883 	spin_unlock_irqrestore(sc->lock, flags);
1884 
1885 	if (rc != 0)
1886 		goto err_submit;
1887 
1888 	wait_for_completion(&compl);
1889 
1890 	if (cmd->error != 0) {
1891 		rc = -EIO;
1892 		goto err_read;
1893 	}
1894 	if (cmd->act_len != 8) {
1895 		rc = -EIO;
1896 		goto err_read;
1897 	}
1898 
1899 	/* sd.c special-cases sector size of 0 to mean 512. Needed? Safe? */
1900 	nsec = be32_to_cpu(*(__be32 *)p) + 1;
1901 	bsize = be32_to_cpu(*(__be32 *)(p + 4));
1902 	switch (bsize) {
1903 	case 512:	shift = 0;	break;
1904 	case 1024:	shift = 1;	break;
1905 	case 2048:	shift = 2;	break;
1906 	case 4096:	shift = 3;	break;
1907 	default:
1908 		rc = -EDOM;
1909 		goto err_inv_bsize;
1910 	}
1911 
1912 	ret->bsize = bsize;
1913 	ret->bshift = shift;
1914 	ret->nsec = nsec << shift;
1915 	rc = 0;
1916 
1917 err_inv_bsize:
1918 err_read:
1919 err_submit:
1920 	kfree(cmd);
1921 err_alloc:
1922 	return rc;
1923 }
1924 
1925 /*
1926  */
ub_probe_urb_complete(struct urb * urb)1927 static void ub_probe_urb_complete(struct urb *urb)
1928 {
1929 	struct completion *cop = urb->context;
1930 	complete(cop);
1931 }
1932 
ub_probe_timeout(unsigned long arg)1933 static void ub_probe_timeout(unsigned long arg)
1934 {
1935 	struct completion *cop = (struct completion *) arg;
1936 	complete(cop);
1937 }
1938 
1939 /*
1940  * Reset with a Bulk reset.
1941  */
ub_sync_reset(struct ub_dev * sc)1942 static int ub_sync_reset(struct ub_dev *sc)
1943 {
1944 	int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber;
1945 	struct usb_ctrlrequest *cr;
1946 	struct completion compl;
1947 	struct timer_list timer;
1948 	int rc;
1949 
1950 	init_completion(&compl);
1951 
1952 	cr = &sc->work_cr;
1953 	cr->bRequestType = USB_TYPE_CLASS | USB_RECIP_INTERFACE;
1954 	cr->bRequest = US_BULK_RESET_REQUEST;
1955 	cr->wValue = cpu_to_le16(0);
1956 	cr->wIndex = cpu_to_le16(ifnum);
1957 	cr->wLength = cpu_to_le16(0);
1958 
1959 	usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
1960 	    (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl);
1961 
1962 	if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) {
1963 		printk(KERN_WARNING
1964 		     "%s: Unable to submit a bulk reset (%d)\n", sc->name, rc);
1965 		return rc;
1966 	}
1967 
1968 	init_timer(&timer);
1969 	timer.function = ub_probe_timeout;
1970 	timer.data = (unsigned long) &compl;
1971 	timer.expires = jiffies + UB_CTRL_TIMEOUT;
1972 	add_timer(&timer);
1973 
1974 	wait_for_completion(&compl);
1975 
1976 	del_timer_sync(&timer);
1977 	usb_kill_urb(&sc->work_urb);
1978 
1979 	return sc->work_urb.status;
1980 }
1981 
1982 /*
1983  * Get number of LUNs by the way of Bulk GetMaxLUN command.
1984  */
ub_sync_getmaxlun(struct ub_dev * sc)1985 static int ub_sync_getmaxlun(struct ub_dev *sc)
1986 {
1987 	int ifnum = sc->intf->cur_altsetting->desc.bInterfaceNumber;
1988 	unsigned char *p;
1989 	enum { ALLOC_SIZE = 1 };
1990 	struct usb_ctrlrequest *cr;
1991 	struct completion compl;
1992 	struct timer_list timer;
1993 	int nluns;
1994 	int rc;
1995 
1996 	init_completion(&compl);
1997 
1998 	rc = -ENOMEM;
1999 	if ((p = kmalloc(ALLOC_SIZE, GFP_KERNEL)) == NULL)
2000 		goto err_alloc;
2001 	*p = 55;
2002 
2003 	cr = &sc->work_cr;
2004 	cr->bRequestType = USB_DIR_IN | USB_TYPE_CLASS | USB_RECIP_INTERFACE;
2005 	cr->bRequest = US_BULK_GET_MAX_LUN;
2006 	cr->wValue = cpu_to_le16(0);
2007 	cr->wIndex = cpu_to_le16(ifnum);
2008 	cr->wLength = cpu_to_le16(1);
2009 
2010 	usb_fill_control_urb(&sc->work_urb, sc->dev, sc->recv_ctrl_pipe,
2011 	    (unsigned char*) cr, p, 1, ub_probe_urb_complete, &compl);
2012 
2013 	if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0)
2014 		goto err_submit;
2015 
2016 	init_timer(&timer);
2017 	timer.function = ub_probe_timeout;
2018 	timer.data = (unsigned long) &compl;
2019 	timer.expires = jiffies + UB_CTRL_TIMEOUT;
2020 	add_timer(&timer);
2021 
2022 	wait_for_completion(&compl);
2023 
2024 	del_timer_sync(&timer);
2025 	usb_kill_urb(&sc->work_urb);
2026 
2027 	if ((rc = sc->work_urb.status) < 0)
2028 		goto err_io;
2029 
2030 	if (sc->work_urb.actual_length != 1) {
2031 		nluns = 0;
2032 	} else {
2033 		if ((nluns = *p) == 55) {
2034 			nluns = 0;
2035 		} else {
2036   			/* GetMaxLUN returns the maximum LUN number */
2037 			nluns += 1;
2038 			if (nluns > UB_MAX_LUNS)
2039 				nluns = UB_MAX_LUNS;
2040 		}
2041 	}
2042 
2043 	kfree(p);
2044 	return nluns;
2045 
2046 err_io:
2047 err_submit:
2048 	kfree(p);
2049 err_alloc:
2050 	return rc;
2051 }
2052 
2053 /*
2054  * Clear initial stalls.
2055  */
ub_probe_clear_stall(struct ub_dev * sc,int stalled_pipe)2056 static int ub_probe_clear_stall(struct ub_dev *sc, int stalled_pipe)
2057 {
2058 	int endp;
2059 	struct usb_ctrlrequest *cr;
2060 	struct completion compl;
2061 	struct timer_list timer;
2062 	int rc;
2063 
2064 	init_completion(&compl);
2065 
2066 	endp = usb_pipeendpoint(stalled_pipe);
2067 	if (usb_pipein (stalled_pipe))
2068 		endp |= USB_DIR_IN;
2069 
2070 	cr = &sc->work_cr;
2071 	cr->bRequestType = USB_RECIP_ENDPOINT;
2072 	cr->bRequest = USB_REQ_CLEAR_FEATURE;
2073 	cr->wValue = cpu_to_le16(USB_ENDPOINT_HALT);
2074 	cr->wIndex = cpu_to_le16(endp);
2075 	cr->wLength = cpu_to_le16(0);
2076 
2077 	usb_fill_control_urb(&sc->work_urb, sc->dev, sc->send_ctrl_pipe,
2078 	    (unsigned char*) cr, NULL, 0, ub_probe_urb_complete, &compl);
2079 
2080 	if ((rc = usb_submit_urb(&sc->work_urb, GFP_KERNEL)) != 0) {
2081 		printk(KERN_WARNING
2082 		     "%s: Unable to submit a probe clear (%d)\n", sc->name, rc);
2083 		return rc;
2084 	}
2085 
2086 	init_timer(&timer);
2087 	timer.function = ub_probe_timeout;
2088 	timer.data = (unsigned long) &compl;
2089 	timer.expires = jiffies + UB_CTRL_TIMEOUT;
2090 	add_timer(&timer);
2091 
2092 	wait_for_completion(&compl);
2093 
2094 	del_timer_sync(&timer);
2095 	usb_kill_urb(&sc->work_urb);
2096 
2097 	usb_reset_endpoint(sc->dev, endp);
2098 
2099 	return 0;
2100 }
2101 
2102 /*
2103  * Get the pipe settings.
2104  */
ub_get_pipes(struct ub_dev * sc,struct usb_device * dev,struct usb_interface * intf)2105 static int ub_get_pipes(struct ub_dev *sc, struct usb_device *dev,
2106     struct usb_interface *intf)
2107 {
2108 	struct usb_host_interface *altsetting = intf->cur_altsetting;
2109 	struct usb_endpoint_descriptor *ep_in = NULL;
2110 	struct usb_endpoint_descriptor *ep_out = NULL;
2111 	struct usb_endpoint_descriptor *ep;
2112 	int i;
2113 
2114 	/*
2115 	 * Find the endpoints we need.
2116 	 * We are expecting a minimum of 2 endpoints - in and out (bulk).
2117 	 * We will ignore any others.
2118 	 */
2119 	for (i = 0; i < altsetting->desc.bNumEndpoints; i++) {
2120 		ep = &altsetting->endpoint[i].desc;
2121 
2122 		/* Is it a BULK endpoint? */
2123 		if (usb_endpoint_xfer_bulk(ep)) {
2124 			/* BULK in or out? */
2125 			if (usb_endpoint_dir_in(ep)) {
2126 				if (ep_in == NULL)
2127 					ep_in = ep;
2128 			} else {
2129 				if (ep_out == NULL)
2130 					ep_out = ep;
2131 			}
2132 		}
2133 	}
2134 
2135 	if (ep_in == NULL || ep_out == NULL) {
2136 		printk(KERN_NOTICE "%s: failed endpoint check\n", sc->name);
2137 		return -ENODEV;
2138 	}
2139 
2140 	/* Calculate and store the pipe values */
2141 	sc->send_ctrl_pipe = usb_sndctrlpipe(dev, 0);
2142 	sc->recv_ctrl_pipe = usb_rcvctrlpipe(dev, 0);
2143 	sc->send_bulk_pipe = usb_sndbulkpipe(dev,
2144 		usb_endpoint_num(ep_out));
2145 	sc->recv_bulk_pipe = usb_rcvbulkpipe(dev,
2146 		usb_endpoint_num(ep_in));
2147 
2148 	return 0;
2149 }
2150 
2151 /*
2152  * Probing is done in the process context, which allows us to cheat
2153  * and not to build a state machine for the discovery.
2154  */
ub_probe(struct usb_interface * intf,const struct usb_device_id * dev_id)2155 static int ub_probe(struct usb_interface *intf,
2156     const struct usb_device_id *dev_id)
2157 {
2158 	struct ub_dev *sc;
2159 	int nluns;
2160 	int rc;
2161 	int i;
2162 
2163 	if (usb_usual_check_type(dev_id, USB_US_TYPE_UB))
2164 		return -ENXIO;
2165 
2166 	rc = -ENOMEM;
2167 	if ((sc = kzalloc(sizeof(struct ub_dev), GFP_KERNEL)) == NULL)
2168 		goto err_core;
2169 	sc->lock = ub_next_lock();
2170 	INIT_LIST_HEAD(&sc->luns);
2171 	usb_init_urb(&sc->work_urb);
2172 	tasklet_init(&sc->tasklet, ub_scsi_action, (unsigned long)sc);
2173 	atomic_set(&sc->poison, 0);
2174 	INIT_WORK(&sc->reset_work, ub_reset_task);
2175 	init_waitqueue_head(&sc->reset_wait);
2176 
2177 	init_timer(&sc->work_timer);
2178 	sc->work_timer.data = (unsigned long) sc;
2179 	sc->work_timer.function = ub_urb_timeout;
2180 
2181 	ub_init_completion(&sc->work_done);
2182 	sc->work_done.done = 1;		/* A little yuk, but oh well... */
2183 
2184 	sc->dev = interface_to_usbdev(intf);
2185 	sc->intf = intf;
2186 	// sc->ifnum = intf->cur_altsetting->desc.bInterfaceNumber;
2187 	usb_set_intfdata(intf, sc);
2188 	usb_get_dev(sc->dev);
2189 	/*
2190 	 * Since we give the interface struct to the block level through
2191 	 * disk->driverfs_dev, we have to pin it. Otherwise, block_uevent
2192 	 * oopses on close after a disconnect (kernels 2.6.16 and up).
2193 	 */
2194 	usb_get_intf(sc->intf);
2195 
2196 	snprintf(sc->name, 12, DRV_NAME "(%d.%d)",
2197 	    sc->dev->bus->busnum, sc->dev->devnum);
2198 
2199 	/* XXX Verify that we can handle the device (from descriptors) */
2200 
2201 	if (ub_get_pipes(sc, sc->dev, intf) != 0)
2202 		goto err_dev_desc;
2203 
2204 	/*
2205 	 * At this point, all USB initialization is done, do upper layer.
2206 	 * We really hate halfway initialized structures, so from the
2207 	 * invariants perspective, this ub_dev is fully constructed at
2208 	 * this point.
2209 	 */
2210 
2211 	/*
2212 	 * This is needed to clear toggles. It is a problem only if we do
2213 	 * `rmmod ub && modprobe ub` without disconnects, but we like that.
2214 	 */
2215 #if 0 /* iPod Mini fails if we do this (big white iPod works) */
2216 	ub_probe_clear_stall(sc, sc->recv_bulk_pipe);
2217 	ub_probe_clear_stall(sc, sc->send_bulk_pipe);
2218 #endif
2219 
2220 	/*
2221 	 * The way this is used by the startup code is a little specific.
2222 	 * A SCSI check causes a USB stall. Our common case code sees it
2223 	 * and clears the check, after which the device is ready for use.
2224 	 * But if a check was not present, any command other than
2225 	 * TEST_UNIT_READY ends with a lockup (including REQUEST_SENSE).
2226 	 *
2227 	 * If we neglect to clear the SCSI check, the first real command fails
2228 	 * (which is the capacity readout). We clear that and retry, but why
2229 	 * causing spurious retries for no reason.
2230 	 *
2231 	 * Revalidation may start with its own TEST_UNIT_READY, but that one
2232 	 * has to succeed, so we clear checks with an additional one here.
2233 	 * In any case it's not our business how revaliadation is implemented.
2234 	 */
2235 	for (i = 0; i < 3; i++) {  /* Retries for the schwag key from KS'04 */
2236 		if ((rc = ub_sync_tur(sc, NULL)) <= 0) break;
2237 		if (rc != 0x6) break;
2238 		msleep(10);
2239 	}
2240 
2241 	nluns = 1;
2242 	for (i = 0; i < 3; i++) {
2243 		if ((rc = ub_sync_getmaxlun(sc)) < 0)
2244 			break;
2245 		if (rc != 0) {
2246 			nluns = rc;
2247 			break;
2248 		}
2249 		msleep(100);
2250 	}
2251 
2252 	for (i = 0; i < nluns; i++) {
2253 		ub_probe_lun(sc, i);
2254 	}
2255 	return 0;
2256 
2257 err_dev_desc:
2258 	usb_set_intfdata(intf, NULL);
2259 	usb_put_intf(sc->intf);
2260 	usb_put_dev(sc->dev);
2261 	kfree(sc);
2262 err_core:
2263 	return rc;
2264 }
2265 
ub_probe_lun(struct ub_dev * sc,int lnum)2266 static int ub_probe_lun(struct ub_dev *sc, int lnum)
2267 {
2268 	struct ub_lun *lun;
2269 	struct request_queue *q;
2270 	struct gendisk *disk;
2271 	int rc;
2272 
2273 	rc = -ENOMEM;
2274 	if ((lun = kzalloc(sizeof(struct ub_lun), GFP_KERNEL)) == NULL)
2275 		goto err_alloc;
2276 	lun->num = lnum;
2277 
2278 	rc = -ENOSR;
2279 	if ((lun->id = ub_id_get()) == -1)
2280 		goto err_id;
2281 
2282 	lun->udev = sc;
2283 
2284 	snprintf(lun->name, 16, DRV_NAME "%c(%d.%d.%d)",
2285 	    lun->id + 'a', sc->dev->bus->busnum, sc->dev->devnum, lun->num);
2286 
2287 	lun->removable = 1;		/* XXX Query this from the device */
2288 	lun->changed = 1;		/* ub_revalidate clears only */
2289 	ub_revalidate(sc, lun);
2290 
2291 	rc = -ENOMEM;
2292 	if ((disk = alloc_disk(UB_PARTS_PER_LUN)) == NULL)
2293 		goto err_diskalloc;
2294 
2295 	sprintf(disk->disk_name, DRV_NAME "%c", lun->id + 'a');
2296 	disk->major = UB_MAJOR;
2297 	disk->first_minor = lun->id * UB_PARTS_PER_LUN;
2298 	disk->fops = &ub_bd_fops;
2299 	disk->private_data = lun;
2300 	disk->driverfs_dev = &sc->intf->dev;
2301 
2302 	rc = -ENOMEM;
2303 	if ((q = blk_init_queue(ub_request_fn, sc->lock)) == NULL)
2304 		goto err_blkqinit;
2305 
2306 	disk->queue = q;
2307 
2308 	blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
2309 	blk_queue_max_segments(q, UB_MAX_REQ_SG);
2310 	blk_queue_segment_boundary(q, 0xffffffff);	/* Dubious. */
2311 	blk_queue_max_hw_sectors(q, UB_MAX_SECTORS);
2312 	blk_queue_logical_block_size(q, lun->capacity.bsize);
2313 
2314 	lun->disk = disk;
2315 	q->queuedata = lun;
2316 	list_add(&lun->link, &sc->luns);
2317 
2318 	set_capacity(disk, lun->capacity.nsec);
2319 	if (lun->removable)
2320 		disk->flags |= GENHD_FL_REMOVABLE;
2321 
2322 	add_disk(disk);
2323 
2324 	return 0;
2325 
2326 err_blkqinit:
2327 	put_disk(disk);
2328 err_diskalloc:
2329 	ub_id_put(lun->id);
2330 err_id:
2331 	kfree(lun);
2332 err_alloc:
2333 	return rc;
2334 }
2335 
ub_disconnect(struct usb_interface * intf)2336 static void ub_disconnect(struct usb_interface *intf)
2337 {
2338 	struct ub_dev *sc = usb_get_intfdata(intf);
2339 	struct ub_lun *lun;
2340 	unsigned long flags;
2341 
2342 	/*
2343 	 * Prevent ub_bd_release from pulling the rug from under us.
2344 	 * XXX This is starting to look like a kref.
2345 	 * XXX Why not to take this ref at probe time?
2346 	 */
2347 	spin_lock_irqsave(&ub_lock, flags);
2348 	sc->openc++;
2349 	spin_unlock_irqrestore(&ub_lock, flags);
2350 
2351 	/*
2352 	 * Fence stall clearings, operations triggered by unlinkings and so on.
2353 	 * We do not attempt to unlink any URBs, because we do not trust the
2354 	 * unlink paths in HC drivers. Also, we get -84 upon disconnect anyway.
2355 	 */
2356 	atomic_set(&sc->poison, 1);
2357 
2358 	/*
2359 	 * Wait for reset to end, if any.
2360 	 */
2361 	wait_event(sc->reset_wait, !sc->reset);
2362 
2363 	/*
2364 	 * Blow away queued commands.
2365 	 *
2366 	 * Actually, this never works, because before we get here
2367 	 * the HCD terminates outstanding URB(s). It causes our
2368 	 * SCSI command queue to advance, commands fail to submit,
2369 	 * and the whole queue drains. So, we just use this code to
2370 	 * print warnings.
2371 	 */
2372 	spin_lock_irqsave(sc->lock, flags);
2373 	{
2374 		struct ub_scsi_cmd *cmd;
2375 		int cnt = 0;
2376 		while ((cmd = ub_cmdq_peek(sc)) != NULL) {
2377 			cmd->error = -ENOTCONN;
2378 			cmd->state = UB_CMDST_DONE;
2379 			ub_cmdq_pop(sc);
2380 			(*cmd->done)(sc, cmd);
2381 			cnt++;
2382 		}
2383 		if (cnt != 0) {
2384 			printk(KERN_WARNING "%s: "
2385 			    "%d was queued after shutdown\n", sc->name, cnt);
2386 		}
2387 	}
2388 	spin_unlock_irqrestore(sc->lock, flags);
2389 
2390 	/*
2391 	 * Unregister the upper layer.
2392 	 */
2393 	list_for_each_entry(lun, &sc->luns, link) {
2394 		del_gendisk(lun->disk);
2395 		/*
2396 		 * I wish I could do:
2397 		 *    queue_flag_set(QUEUE_FLAG_DEAD, q);
2398 		 * As it is, we rely on our internal poisoning and let
2399 		 * the upper levels to spin furiously failing all the I/O.
2400 		 */
2401 	}
2402 
2403 	/*
2404 	 * Testing for -EINPROGRESS is always a bug, so we are bending
2405 	 * the rules a little.
2406 	 */
2407 	spin_lock_irqsave(sc->lock, flags);
2408 	if (sc->work_urb.status == -EINPROGRESS) {	/* janitors: ignore */
2409 		printk(KERN_WARNING "%s: "
2410 		    "URB is active after disconnect\n", sc->name);
2411 	}
2412 	spin_unlock_irqrestore(sc->lock, flags);
2413 
2414 	/*
2415 	 * There is virtually no chance that other CPU runs a timeout so long
2416 	 * after ub_urb_complete should have called del_timer, but only if HCD
2417 	 * didn't forget to deliver a callback on unlink.
2418 	 */
2419 	del_timer_sync(&sc->work_timer);
2420 
2421 	/*
2422 	 * At this point there must be no commands coming from anyone
2423 	 * and no URBs left in transit.
2424 	 */
2425 
2426 	ub_put(sc);
2427 }
2428 
2429 static struct usb_driver ub_driver = {
2430 	.name =		"ub",
2431 	.probe =	ub_probe,
2432 	.disconnect =	ub_disconnect,
2433 	.id_table =	ub_usb_ids,
2434 	.pre_reset =	ub_pre_reset,
2435 	.post_reset =	ub_post_reset,
2436 };
2437 
ub_init(void)2438 static int __init ub_init(void)
2439 {
2440 	int rc;
2441 	int i;
2442 
2443 	pr_info("'Low Performance USB Block' driver is deprecated. "
2444 			"Please switch to usb-storage\n");
2445 	for (i = 0; i < UB_QLOCK_NUM; i++)
2446 		spin_lock_init(&ub_qlockv[i]);
2447 
2448 	if ((rc = register_blkdev(UB_MAJOR, DRV_NAME)) != 0)
2449 		goto err_regblkdev;
2450 
2451 	if ((rc = usb_register(&ub_driver)) != 0)
2452 		goto err_register;
2453 
2454 	usb_usual_set_present(USB_US_TYPE_UB);
2455 	return 0;
2456 
2457 err_register:
2458 	unregister_blkdev(UB_MAJOR, DRV_NAME);
2459 err_regblkdev:
2460 	return rc;
2461 }
2462 
ub_exit(void)2463 static void __exit ub_exit(void)
2464 {
2465 	usb_deregister(&ub_driver);
2466 
2467 	unregister_blkdev(UB_MAJOR, DRV_NAME);
2468 	usb_usual_clear_present(USB_US_TYPE_UB);
2469 }
2470 
2471 module_init(ub_init);
2472 module_exit(ub_exit);
2473 
2474 MODULE_LICENSE("GPL");
2475