• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * acpi-cpufreq.c - ACPI Processor P-States Driver
3  *
4  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6  *  Copyright (C) 2002 - 2004 Dominik Brodowski <linux@brodo.de>
7  *  Copyright (C) 2006       Denis Sadykov <denis.m.sadykov@intel.com>
8  *
9  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; either version 2 of the License, or (at
14  *  your option) any later version.
15  *
16  *  This program is distributed in the hope that it will be useful, but
17  *  WITHOUT ANY WARRANTY; without even the implied warranty of
18  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  *  General Public License for more details.
20  *
21  *  You should have received a copy of the GNU General Public License along
22  *  with this program; if not, write to the Free Software Foundation, Inc.,
23  *  59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
24  *
25  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
26  */
27 
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/init.h>
31 #include <linux/smp.h>
32 #include <linux/sched.h>
33 #include <linux/cpufreq.h>
34 #include <linux/compiler.h>
35 #include <linux/dmi.h>
36 #include <linux/slab.h>
37 
38 #include <linux/acpi.h>
39 #include <linux/io.h>
40 #include <linux/delay.h>
41 #include <linux/uaccess.h>
42 
43 #include <acpi/processor.h>
44 
45 #include <asm/msr.h>
46 #include <asm/processor.h>
47 #include <asm/cpufeature.h>
48 #include "mperf.h"
49 
50 MODULE_AUTHOR("Paul Diefenbaugh, Dominik Brodowski");
51 MODULE_DESCRIPTION("ACPI Processor P-States Driver");
52 MODULE_LICENSE("GPL");
53 
54 enum {
55 	UNDEFINED_CAPABLE = 0,
56 	SYSTEM_INTEL_MSR_CAPABLE,
57 	SYSTEM_IO_CAPABLE,
58 };
59 
60 #define INTEL_MSR_RANGE		(0xffff)
61 
62 struct acpi_cpufreq_data {
63 	struct acpi_processor_performance *acpi_data;
64 	struct cpufreq_frequency_table *freq_table;
65 	unsigned int resume;
66 	unsigned int cpu_feature;
67 };
68 
69 static DEFINE_PER_CPU(struct acpi_cpufreq_data *, acfreq_data);
70 
71 /* acpi_perf_data is a pointer to percpu data. */
72 static struct acpi_processor_performance __percpu *acpi_perf_data;
73 
74 static struct cpufreq_driver acpi_cpufreq_driver;
75 
76 static unsigned int acpi_pstate_strict;
77 
check_est_cpu(unsigned int cpuid)78 static int check_est_cpu(unsigned int cpuid)
79 {
80 	struct cpuinfo_x86 *cpu = &cpu_data(cpuid);
81 
82 	return cpu_has(cpu, X86_FEATURE_EST);
83 }
84 
extract_io(u32 value,struct acpi_cpufreq_data * data)85 static unsigned extract_io(u32 value, struct acpi_cpufreq_data *data)
86 {
87 	struct acpi_processor_performance *perf;
88 	int i;
89 
90 	perf = data->acpi_data;
91 
92 	for (i = 0; i < perf->state_count; i++) {
93 		if (value == perf->states[i].status)
94 			return data->freq_table[i].frequency;
95 	}
96 	return 0;
97 }
98 
extract_msr(u32 msr,struct acpi_cpufreq_data * data)99 static unsigned extract_msr(u32 msr, struct acpi_cpufreq_data *data)
100 {
101 	int i;
102 	struct acpi_processor_performance *perf;
103 
104 	msr &= INTEL_MSR_RANGE;
105 	perf = data->acpi_data;
106 
107 	for (i = 0; data->freq_table[i].frequency != CPUFREQ_TABLE_END; i++) {
108 		if (msr == perf->states[data->freq_table[i].index].status)
109 			return data->freq_table[i].frequency;
110 	}
111 	return data->freq_table[0].frequency;
112 }
113 
extract_freq(u32 val,struct acpi_cpufreq_data * data)114 static unsigned extract_freq(u32 val, struct acpi_cpufreq_data *data)
115 {
116 	switch (data->cpu_feature) {
117 	case SYSTEM_INTEL_MSR_CAPABLE:
118 		return extract_msr(val, data);
119 	case SYSTEM_IO_CAPABLE:
120 		return extract_io(val, data);
121 	default:
122 		return 0;
123 	}
124 }
125 
126 struct msr_addr {
127 	u32 reg;
128 };
129 
130 struct io_addr {
131 	u16 port;
132 	u8 bit_width;
133 };
134 
135 struct drv_cmd {
136 	unsigned int type;
137 	const struct cpumask *mask;
138 	union {
139 		struct msr_addr msr;
140 		struct io_addr io;
141 	} addr;
142 	u32 val;
143 };
144 
145 /* Called via smp_call_function_single(), on the target CPU */
do_drv_read(void * _cmd)146 static void do_drv_read(void *_cmd)
147 {
148 	struct drv_cmd *cmd = _cmd;
149 	u32 h;
150 
151 	switch (cmd->type) {
152 	case SYSTEM_INTEL_MSR_CAPABLE:
153 		rdmsr(cmd->addr.msr.reg, cmd->val, h);
154 		break;
155 	case SYSTEM_IO_CAPABLE:
156 		acpi_os_read_port((acpi_io_address)cmd->addr.io.port,
157 				&cmd->val,
158 				(u32)cmd->addr.io.bit_width);
159 		break;
160 	default:
161 		break;
162 	}
163 }
164 
165 /* Called via smp_call_function_many(), on the target CPUs */
do_drv_write(void * _cmd)166 static void do_drv_write(void *_cmd)
167 {
168 	struct drv_cmd *cmd = _cmd;
169 	u32 lo, hi;
170 
171 	switch (cmd->type) {
172 	case SYSTEM_INTEL_MSR_CAPABLE:
173 		rdmsr(cmd->addr.msr.reg, lo, hi);
174 		lo = (lo & ~INTEL_MSR_RANGE) | (cmd->val & INTEL_MSR_RANGE);
175 		wrmsr(cmd->addr.msr.reg, lo, hi);
176 		break;
177 	case SYSTEM_IO_CAPABLE:
178 		acpi_os_write_port((acpi_io_address)cmd->addr.io.port,
179 				cmd->val,
180 				(u32)cmd->addr.io.bit_width);
181 		break;
182 	default:
183 		break;
184 	}
185 }
186 
drv_read(struct drv_cmd * cmd)187 static void drv_read(struct drv_cmd *cmd)
188 {
189 	int err;
190 	cmd->val = 0;
191 
192 	err = smp_call_function_any(cmd->mask, do_drv_read, cmd, 1);
193 	WARN_ON_ONCE(err);	/* smp_call_function_any() was buggy? */
194 }
195 
drv_write(struct drv_cmd * cmd)196 static void drv_write(struct drv_cmd *cmd)
197 {
198 	int this_cpu;
199 
200 	this_cpu = get_cpu();
201 	if (cpumask_test_cpu(this_cpu, cmd->mask))
202 		do_drv_write(cmd);
203 	smp_call_function_many(cmd->mask, do_drv_write, cmd, 1);
204 	put_cpu();
205 }
206 
get_cur_val(const struct cpumask * mask)207 static u32 get_cur_val(const struct cpumask *mask)
208 {
209 	struct acpi_processor_performance *perf;
210 	struct drv_cmd cmd;
211 
212 	if (unlikely(cpumask_empty(mask)))
213 		return 0;
214 
215 	switch (per_cpu(acfreq_data, cpumask_first(mask))->cpu_feature) {
216 	case SYSTEM_INTEL_MSR_CAPABLE:
217 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
218 		cmd.addr.msr.reg = MSR_IA32_PERF_STATUS;
219 		break;
220 	case SYSTEM_IO_CAPABLE:
221 		cmd.type = SYSTEM_IO_CAPABLE;
222 		perf = per_cpu(acfreq_data, cpumask_first(mask))->acpi_data;
223 		cmd.addr.io.port = perf->control_register.address;
224 		cmd.addr.io.bit_width = perf->control_register.bit_width;
225 		break;
226 	default:
227 		return 0;
228 	}
229 
230 	cmd.mask = mask;
231 	drv_read(&cmd);
232 
233 	pr_debug("get_cur_val = %u\n", cmd.val);
234 
235 	return cmd.val;
236 }
237 
get_cur_freq_on_cpu(unsigned int cpu)238 static unsigned int get_cur_freq_on_cpu(unsigned int cpu)
239 {
240 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, cpu);
241 	unsigned int freq;
242 	unsigned int cached_freq;
243 
244 	pr_debug("get_cur_freq_on_cpu (%d)\n", cpu);
245 
246 	if (unlikely(data == NULL ||
247 		     data->acpi_data == NULL || data->freq_table == NULL)) {
248 		return 0;
249 	}
250 
251 	cached_freq = data->freq_table[data->acpi_data->state].frequency;
252 	freq = extract_freq(get_cur_val(cpumask_of(cpu)), data);
253 	if (freq != cached_freq) {
254 		/*
255 		 * The dreaded BIOS frequency change behind our back.
256 		 * Force set the frequency on next target call.
257 		 */
258 		data->resume = 1;
259 	}
260 
261 	pr_debug("cur freq = %u\n", freq);
262 
263 	return freq;
264 }
265 
check_freqs(const struct cpumask * mask,unsigned int freq,struct acpi_cpufreq_data * data)266 static unsigned int check_freqs(const struct cpumask *mask, unsigned int freq,
267 				struct acpi_cpufreq_data *data)
268 {
269 	unsigned int cur_freq;
270 	unsigned int i;
271 
272 	for (i = 0; i < 100; i++) {
273 		cur_freq = extract_freq(get_cur_val(mask), data);
274 		if (cur_freq == freq)
275 			return 1;
276 		udelay(10);
277 	}
278 	return 0;
279 }
280 
acpi_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)281 static int acpi_cpufreq_target(struct cpufreq_policy *policy,
282 			       unsigned int target_freq, unsigned int relation)
283 {
284 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
285 	struct acpi_processor_performance *perf;
286 	struct cpufreq_freqs freqs;
287 	struct drv_cmd cmd;
288 	unsigned int next_state = 0; /* Index into freq_table */
289 	unsigned int next_perf_state = 0; /* Index into perf table */
290 	unsigned int i;
291 	int result = 0;
292 
293 	pr_debug("acpi_cpufreq_target %d (%d)\n", target_freq, policy->cpu);
294 
295 	if (unlikely(data == NULL ||
296 	     data->acpi_data == NULL || data->freq_table == NULL)) {
297 		return -ENODEV;
298 	}
299 
300 	perf = data->acpi_data;
301 	result = cpufreq_frequency_table_target(policy,
302 						data->freq_table,
303 						target_freq,
304 						relation, &next_state);
305 	if (unlikely(result)) {
306 		result = -ENODEV;
307 		goto out;
308 	}
309 
310 	next_perf_state = data->freq_table[next_state].index;
311 	if (perf->state == next_perf_state) {
312 		if (unlikely(data->resume)) {
313 			pr_debug("Called after resume, resetting to P%d\n",
314 				next_perf_state);
315 			data->resume = 0;
316 		} else {
317 			pr_debug("Already at target state (P%d)\n",
318 				next_perf_state);
319 			goto out;
320 		}
321 	}
322 
323 	switch (data->cpu_feature) {
324 	case SYSTEM_INTEL_MSR_CAPABLE:
325 		cmd.type = SYSTEM_INTEL_MSR_CAPABLE;
326 		cmd.addr.msr.reg = MSR_IA32_PERF_CTL;
327 		cmd.val = (u32) perf->states[next_perf_state].control;
328 		break;
329 	case SYSTEM_IO_CAPABLE:
330 		cmd.type = SYSTEM_IO_CAPABLE;
331 		cmd.addr.io.port = perf->control_register.address;
332 		cmd.addr.io.bit_width = perf->control_register.bit_width;
333 		cmd.val = (u32) perf->states[next_perf_state].control;
334 		break;
335 	default:
336 		result = -ENODEV;
337 		goto out;
338 	}
339 
340 	/* cpufreq holds the hotplug lock, so we are safe from here on */
341 	if (policy->shared_type != CPUFREQ_SHARED_TYPE_ANY)
342 		cmd.mask = policy->cpus;
343 	else
344 		cmd.mask = cpumask_of(policy->cpu);
345 
346 	freqs.old = perf->states[perf->state].core_frequency * 1000;
347 	freqs.new = data->freq_table[next_state].frequency;
348 	for_each_cpu(i, policy->cpus) {
349 		freqs.cpu = i;
350 		cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
351 	}
352 
353 	drv_write(&cmd);
354 
355 	if (acpi_pstate_strict) {
356 		if (!check_freqs(cmd.mask, freqs.new, data)) {
357 			pr_debug("acpi_cpufreq_target failed (%d)\n",
358 				policy->cpu);
359 			result = -EAGAIN;
360 			goto out;
361 		}
362 	}
363 
364 	for_each_cpu(i, policy->cpus) {
365 		freqs.cpu = i;
366 		cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
367 	}
368 	perf->state = next_perf_state;
369 
370 out:
371 	return result;
372 }
373 
acpi_cpufreq_verify(struct cpufreq_policy * policy)374 static int acpi_cpufreq_verify(struct cpufreq_policy *policy)
375 {
376 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
377 
378 	pr_debug("acpi_cpufreq_verify\n");
379 
380 	return cpufreq_frequency_table_verify(policy, data->freq_table);
381 }
382 
383 static unsigned long
acpi_cpufreq_guess_freq(struct acpi_cpufreq_data * data,unsigned int cpu)384 acpi_cpufreq_guess_freq(struct acpi_cpufreq_data *data, unsigned int cpu)
385 {
386 	struct acpi_processor_performance *perf = data->acpi_data;
387 
388 	if (cpu_khz) {
389 		/* search the closest match to cpu_khz */
390 		unsigned int i;
391 		unsigned long freq;
392 		unsigned long freqn = perf->states[0].core_frequency * 1000;
393 
394 		for (i = 0; i < (perf->state_count-1); i++) {
395 			freq = freqn;
396 			freqn = perf->states[i+1].core_frequency * 1000;
397 			if ((2 * cpu_khz) > (freqn + freq)) {
398 				perf->state = i;
399 				return freq;
400 			}
401 		}
402 		perf->state = perf->state_count-1;
403 		return freqn;
404 	} else {
405 		/* assume CPU is at P0... */
406 		perf->state = 0;
407 		return perf->states[0].core_frequency * 1000;
408 	}
409 }
410 
free_acpi_perf_data(void)411 static void free_acpi_perf_data(void)
412 {
413 	unsigned int i;
414 
415 	/* Freeing a NULL pointer is OK, and alloc_percpu zeroes. */
416 	for_each_possible_cpu(i)
417 		free_cpumask_var(per_cpu_ptr(acpi_perf_data, i)
418 				 ->shared_cpu_map);
419 	free_percpu(acpi_perf_data);
420 }
421 
422 /*
423  * acpi_cpufreq_early_init - initialize ACPI P-States library
424  *
425  * Initialize the ACPI P-States library (drivers/acpi/processor_perflib.c)
426  * in order to determine correct frequency and voltage pairings. We can
427  * do _PDC and _PSD and find out the processor dependency for the
428  * actual init that will happen later...
429  */
acpi_cpufreq_early_init(void)430 static int __init acpi_cpufreq_early_init(void)
431 {
432 	unsigned int i;
433 	pr_debug("acpi_cpufreq_early_init\n");
434 
435 	acpi_perf_data = alloc_percpu(struct acpi_processor_performance);
436 	if (!acpi_perf_data) {
437 		pr_debug("Memory allocation error for acpi_perf_data.\n");
438 		return -ENOMEM;
439 	}
440 	for_each_possible_cpu(i) {
441 		if (!zalloc_cpumask_var_node(
442 			&per_cpu_ptr(acpi_perf_data, i)->shared_cpu_map,
443 			GFP_KERNEL, cpu_to_node(i))) {
444 
445 			/* Freeing a NULL pointer is OK: alloc_percpu zeroes. */
446 			free_acpi_perf_data();
447 			return -ENOMEM;
448 		}
449 	}
450 
451 	/* Do initialization in ACPI core */
452 	acpi_processor_preregister_performance(acpi_perf_data);
453 	return 0;
454 }
455 
456 #ifdef CONFIG_SMP
457 /*
458  * Some BIOSes do SW_ANY coordination internally, either set it up in hw
459  * or do it in BIOS firmware and won't inform about it to OS. If not
460  * detected, this has a side effect of making CPU run at a different speed
461  * than OS intended it to run at. Detect it and handle it cleanly.
462  */
463 static int bios_with_sw_any_bug;
464 
sw_any_bug_found(const struct dmi_system_id * d)465 static int sw_any_bug_found(const struct dmi_system_id *d)
466 {
467 	bios_with_sw_any_bug = 1;
468 	return 0;
469 }
470 
471 static const struct dmi_system_id sw_any_bug_dmi_table[] = {
472 	{
473 		.callback = sw_any_bug_found,
474 		.ident = "Supermicro Server X6DLP",
475 		.matches = {
476 			DMI_MATCH(DMI_SYS_VENDOR, "Supermicro"),
477 			DMI_MATCH(DMI_BIOS_VERSION, "080010"),
478 			DMI_MATCH(DMI_PRODUCT_NAME, "X6DLP"),
479 		},
480 	},
481 	{ }
482 };
483 
acpi_cpufreq_blacklist(struct cpuinfo_x86 * c)484 static int acpi_cpufreq_blacklist(struct cpuinfo_x86 *c)
485 {
486 	/* Intel Xeon Processor 7100 Series Specification Update
487 	 * http://www.intel.com/Assets/PDF/specupdate/314554.pdf
488 	 * AL30: A Machine Check Exception (MCE) Occurring during an
489 	 * Enhanced Intel SpeedStep Technology Ratio Change May Cause
490 	 * Both Processor Cores to Lock Up. */
491 	if (c->x86_vendor == X86_VENDOR_INTEL) {
492 		if ((c->x86 == 15) &&
493 		    (c->x86_model == 6) &&
494 		    (c->x86_mask == 8)) {
495 			printk(KERN_INFO "acpi-cpufreq: Intel(R) "
496 			    "Xeon(R) 7100 Errata AL30, processors may "
497 			    "lock up on frequency changes: disabling "
498 			    "acpi-cpufreq.\n");
499 			return -ENODEV;
500 		    }
501 		}
502 	return 0;
503 }
504 #endif
505 
acpi_cpufreq_cpu_init(struct cpufreq_policy * policy)506 static int acpi_cpufreq_cpu_init(struct cpufreq_policy *policy)
507 {
508 	unsigned int i;
509 	unsigned int valid_states = 0;
510 	unsigned int cpu = policy->cpu;
511 	struct acpi_cpufreq_data *data;
512 	unsigned int result = 0;
513 	struct cpuinfo_x86 *c = &cpu_data(policy->cpu);
514 	struct acpi_processor_performance *perf;
515 #ifdef CONFIG_SMP
516 	static int blacklisted;
517 #endif
518 
519 	pr_debug("acpi_cpufreq_cpu_init\n");
520 
521 #ifdef CONFIG_SMP
522 	if (blacklisted)
523 		return blacklisted;
524 	blacklisted = acpi_cpufreq_blacklist(c);
525 	if (blacklisted)
526 		return blacklisted;
527 #endif
528 
529 	data = kzalloc(sizeof(struct acpi_cpufreq_data), GFP_KERNEL);
530 	if (!data)
531 		return -ENOMEM;
532 
533 	data->acpi_data = per_cpu_ptr(acpi_perf_data, cpu);
534 	per_cpu(acfreq_data, cpu) = data;
535 
536 	if (cpu_has(c, X86_FEATURE_CONSTANT_TSC))
537 		acpi_cpufreq_driver.flags |= CPUFREQ_CONST_LOOPS;
538 
539 	result = acpi_processor_register_performance(data->acpi_data, cpu);
540 	if (result)
541 		goto err_free;
542 
543 	perf = data->acpi_data;
544 	policy->shared_type = perf->shared_type;
545 
546 	/*
547 	 * Will let policy->cpus know about dependency only when software
548 	 * coordination is required.
549 	 */
550 	if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL ||
551 	    policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
552 		cpumask_copy(policy->cpus, perf->shared_cpu_map);
553 	}
554 	cpumask_copy(policy->related_cpus, perf->shared_cpu_map);
555 
556 #ifdef CONFIG_SMP
557 	dmi_check_system(sw_any_bug_dmi_table);
558 	if (bios_with_sw_any_bug && cpumask_weight(policy->cpus) == 1) {
559 		policy->shared_type = CPUFREQ_SHARED_TYPE_ALL;
560 		cpumask_copy(policy->cpus, cpu_core_mask(cpu));
561 	}
562 #endif
563 
564 	/* capability check */
565 	if (perf->state_count <= 1) {
566 		pr_debug("No P-States\n");
567 		result = -ENODEV;
568 		goto err_unreg;
569 	}
570 
571 	if (perf->control_register.space_id != perf->status_register.space_id) {
572 		result = -ENODEV;
573 		goto err_unreg;
574 	}
575 
576 	switch (perf->control_register.space_id) {
577 	case ACPI_ADR_SPACE_SYSTEM_IO:
578 		pr_debug("SYSTEM IO addr space\n");
579 		data->cpu_feature = SYSTEM_IO_CAPABLE;
580 		break;
581 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
582 		pr_debug("HARDWARE addr space\n");
583 		if (!check_est_cpu(cpu)) {
584 			result = -ENODEV;
585 			goto err_unreg;
586 		}
587 		data->cpu_feature = SYSTEM_INTEL_MSR_CAPABLE;
588 		break;
589 	default:
590 		pr_debug("Unknown addr space %d\n",
591 			(u32) (perf->control_register.space_id));
592 		result = -ENODEV;
593 		goto err_unreg;
594 	}
595 
596 	data->freq_table = kmalloc(sizeof(struct cpufreq_frequency_table) *
597 		    (perf->state_count+1), GFP_KERNEL);
598 	if (!data->freq_table) {
599 		result = -ENOMEM;
600 		goto err_unreg;
601 	}
602 
603 	/* detect transition latency */
604 	policy->cpuinfo.transition_latency = 0;
605 	for (i = 0; i < perf->state_count; i++) {
606 		if ((perf->states[i].transition_latency * 1000) >
607 		    policy->cpuinfo.transition_latency)
608 			policy->cpuinfo.transition_latency =
609 			    perf->states[i].transition_latency * 1000;
610 	}
611 
612 	/* Check for high latency (>20uS) from buggy BIOSes, like on T42 */
613 	if (perf->control_register.space_id == ACPI_ADR_SPACE_FIXED_HARDWARE &&
614 	    policy->cpuinfo.transition_latency > 20 * 1000) {
615 		policy->cpuinfo.transition_latency = 20 * 1000;
616 		printk_once(KERN_INFO
617 			    "P-state transition latency capped at 20 uS\n");
618 	}
619 
620 	/* table init */
621 	for (i = 0; i < perf->state_count; i++) {
622 		if (i > 0 && perf->states[i].core_frequency >=
623 		    data->freq_table[valid_states-1].frequency / 1000)
624 			continue;
625 
626 		data->freq_table[valid_states].index = i;
627 		data->freq_table[valid_states].frequency =
628 		    perf->states[i].core_frequency * 1000;
629 		valid_states++;
630 	}
631 	data->freq_table[valid_states].frequency = CPUFREQ_TABLE_END;
632 	perf->state = 0;
633 
634 	result = cpufreq_frequency_table_cpuinfo(policy, data->freq_table);
635 	if (result)
636 		goto err_freqfree;
637 
638 	if (perf->states[0].core_frequency * 1000 != policy->cpuinfo.max_freq)
639 		printk(KERN_WARNING FW_WARN "P-state 0 is not max freq\n");
640 
641 	switch (perf->control_register.space_id) {
642 	case ACPI_ADR_SPACE_SYSTEM_IO:
643 		/* Current speed is unknown and not detectable by IO port */
644 		policy->cur = acpi_cpufreq_guess_freq(data, policy->cpu);
645 		break;
646 	case ACPI_ADR_SPACE_FIXED_HARDWARE:
647 		acpi_cpufreq_driver.get = get_cur_freq_on_cpu;
648 		policy->cur = get_cur_freq_on_cpu(cpu);
649 		break;
650 	default:
651 		break;
652 	}
653 
654 	/* notify BIOS that we exist */
655 	acpi_processor_notify_smm(THIS_MODULE);
656 
657 	/* Check for APERF/MPERF support in hardware */
658 	if (boot_cpu_has(X86_FEATURE_APERFMPERF))
659 		acpi_cpufreq_driver.getavg = cpufreq_get_measured_perf;
660 
661 	pr_debug("CPU%u - ACPI performance management activated.\n", cpu);
662 	for (i = 0; i < perf->state_count; i++)
663 		pr_debug("     %cP%d: %d MHz, %d mW, %d uS\n",
664 			(i == perf->state ? '*' : ' '), i,
665 			(u32) perf->states[i].core_frequency,
666 			(u32) perf->states[i].power,
667 			(u32) perf->states[i].transition_latency);
668 
669 	cpufreq_frequency_table_get_attr(data->freq_table, policy->cpu);
670 
671 	/*
672 	 * the first call to ->target() should result in us actually
673 	 * writing something to the appropriate registers.
674 	 */
675 	data->resume = 1;
676 
677 	return result;
678 
679 err_freqfree:
680 	kfree(data->freq_table);
681 err_unreg:
682 	acpi_processor_unregister_performance(perf, cpu);
683 err_free:
684 	kfree(data);
685 	per_cpu(acfreq_data, cpu) = NULL;
686 
687 	return result;
688 }
689 
acpi_cpufreq_cpu_exit(struct cpufreq_policy * policy)690 static int acpi_cpufreq_cpu_exit(struct cpufreq_policy *policy)
691 {
692 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
693 
694 	pr_debug("acpi_cpufreq_cpu_exit\n");
695 
696 	if (data) {
697 		cpufreq_frequency_table_put_attr(policy->cpu);
698 		per_cpu(acfreq_data, policy->cpu) = NULL;
699 		acpi_processor_unregister_performance(data->acpi_data,
700 						      policy->cpu);
701 		kfree(data->freq_table);
702 		kfree(data);
703 	}
704 
705 	return 0;
706 }
707 
acpi_cpufreq_resume(struct cpufreq_policy * policy)708 static int acpi_cpufreq_resume(struct cpufreq_policy *policy)
709 {
710 	struct acpi_cpufreq_data *data = per_cpu(acfreq_data, policy->cpu);
711 
712 	pr_debug("acpi_cpufreq_resume\n");
713 
714 	data->resume = 1;
715 
716 	return 0;
717 }
718 
719 static struct freq_attr *acpi_cpufreq_attr[] = {
720 	&cpufreq_freq_attr_scaling_available_freqs,
721 	NULL,
722 };
723 
724 static struct cpufreq_driver acpi_cpufreq_driver = {
725 	.verify		= acpi_cpufreq_verify,
726 	.target		= acpi_cpufreq_target,
727 	.bios_limit	= acpi_processor_get_bios_limit,
728 	.init		= acpi_cpufreq_cpu_init,
729 	.exit		= acpi_cpufreq_cpu_exit,
730 	.resume		= acpi_cpufreq_resume,
731 	.name		= "acpi-cpufreq",
732 	.owner		= THIS_MODULE,
733 	.attr		= acpi_cpufreq_attr,
734 };
735 
acpi_cpufreq_init(void)736 static int __init acpi_cpufreq_init(void)
737 {
738 	int ret;
739 
740 	if (acpi_disabled)
741 		return 0;
742 
743 	pr_debug("acpi_cpufreq_init\n");
744 
745 	ret = acpi_cpufreq_early_init();
746 	if (ret)
747 		return ret;
748 
749 	ret = cpufreq_register_driver(&acpi_cpufreq_driver);
750 	if (ret)
751 		free_acpi_perf_data();
752 
753 	return ret;
754 }
755 
acpi_cpufreq_exit(void)756 static void __exit acpi_cpufreq_exit(void)
757 {
758 	pr_debug("acpi_cpufreq_exit\n");
759 
760 	cpufreq_unregister_driver(&acpi_cpufreq_driver);
761 
762 	free_acpi_perf_data();
763 }
764 
765 module_param(acpi_pstate_strict, uint, 0644);
766 MODULE_PARM_DESC(acpi_pstate_strict,
767 	"value 0 or non-zero. non-zero -> strict ACPI checks are "
768 	"performed during frequency changes.");
769 
770 late_initcall(acpi_cpufreq_init);
771 module_exit(acpi_cpufreq_exit);
772 
773 MODULE_ALIAS("acpi");
774