• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8 
9 #include <linux/bug.h>
10 #include <linux/compiler.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/ethtool.h>
14 #include <linux/firewire.h>
15 #include <linux/firewire-constants.h>
16 #include <linux/highmem.h>
17 #include <linux/in.h>
18 #include <linux/ip.h>
19 #include <linux/jiffies.h>
20 #include <linux/mod_devicetable.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mutex.h>
24 #include <linux/netdevice.h>
25 #include <linux/skbuff.h>
26 #include <linux/slab.h>
27 #include <linux/spinlock.h>
28 
29 #include <asm/unaligned.h>
30 #include <net/arp.h>
31 
32 /* rx limits */
33 #define FWNET_MAX_FRAGMENTS		30 /* arbitrary, > TX queue depth */
34 #define FWNET_ISO_PAGE_COUNT		(PAGE_SIZE < 16*1024 ? 4 : 2)
35 
36 /* tx limits */
37 #define FWNET_MAX_QUEUED_DATAGRAMS	20 /* < 64 = number of tlabels */
38 #define FWNET_MIN_QUEUED_DATAGRAMS	10 /* should keep AT DMA busy enough */
39 #define FWNET_TX_QUEUE_LEN		FWNET_MAX_QUEUED_DATAGRAMS /* ? */
40 
41 #define IEEE1394_BROADCAST_CHANNEL	31
42 #define IEEE1394_ALL_NODES		(0xffc0 | 0x003f)
43 #define IEEE1394_MAX_PAYLOAD_S100	512
44 #define FWNET_NO_FIFO_ADDR		(~0ULL)
45 
46 #define IANA_SPECIFIER_ID		0x00005eU
47 #define RFC2734_SW_VERSION		0x000001U
48 
49 #define IEEE1394_GASP_HDR_SIZE	8
50 
51 #define RFC2374_UNFRAG_HDR_SIZE	4
52 #define RFC2374_FRAG_HDR_SIZE	8
53 #define RFC2374_FRAG_OVERHEAD	4
54 
55 #define RFC2374_HDR_UNFRAG	0	/* unfragmented		*/
56 #define RFC2374_HDR_FIRSTFRAG	1	/* first fragment	*/
57 #define RFC2374_HDR_LASTFRAG	2	/* last fragment	*/
58 #define RFC2374_HDR_INTFRAG	3	/* interior fragment	*/
59 
60 #define RFC2734_HW_ADDR_LEN	16
61 
62 struct rfc2734_arp {
63 	__be16 hw_type;		/* 0x0018	*/
64 	__be16 proto_type;	/* 0x0806       */
65 	u8 hw_addr_len;		/* 16		*/
66 	u8 ip_addr_len;		/* 4		*/
67 	__be16 opcode;		/* ARP Opcode	*/
68 	/* Above is exactly the same format as struct arphdr */
69 
70 	__be64 s_uniq_id;	/* Sender's 64bit EUI			*/
71 	u8 max_rec;		/* Sender's max packet size		*/
72 	u8 sspd;		/* Sender's max speed			*/
73 	__be16 fifo_hi;		/* hi 16bits of sender's FIFO addr	*/
74 	__be32 fifo_lo;		/* lo 32bits of sender's FIFO addr	*/
75 	__be32 sip;		/* Sender's IP Address			*/
76 	__be32 tip;		/* IP Address of requested hw addr	*/
77 } __packed;
78 
79 /* This header format is specific to this driver implementation. */
80 #define FWNET_ALEN	8
81 #define FWNET_HLEN	10
82 struct fwnet_header {
83 	u8 h_dest[FWNET_ALEN];	/* destination address */
84 	__be16 h_proto;		/* packet type ID field */
85 } __packed;
86 
87 /* IPv4 and IPv6 encapsulation header */
88 struct rfc2734_header {
89 	u32 w0;
90 	u32 w1;
91 };
92 
93 #define fwnet_get_hdr_lf(h)		(((h)->w0 & 0xc0000000) >> 30)
94 #define fwnet_get_hdr_ether_type(h)	(((h)->w0 & 0x0000ffff))
95 #define fwnet_get_hdr_dg_size(h)	(((h)->w0 & 0x0fff0000) >> 16)
96 #define fwnet_get_hdr_fg_off(h)		(((h)->w0 & 0x00000fff))
97 #define fwnet_get_hdr_dgl(h)		(((h)->w1 & 0xffff0000) >> 16)
98 
99 #define fwnet_set_hdr_lf(lf)		((lf)  << 30)
100 #define fwnet_set_hdr_ether_type(et)	(et)
101 #define fwnet_set_hdr_dg_size(dgs)	((dgs) << 16)
102 #define fwnet_set_hdr_fg_off(fgo)	(fgo)
103 
104 #define fwnet_set_hdr_dgl(dgl)		((dgl) << 16)
105 
fwnet_make_uf_hdr(struct rfc2734_header * hdr,unsigned ether_type)106 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
107 		unsigned ether_type)
108 {
109 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
110 		  | fwnet_set_hdr_ether_type(ether_type);
111 }
112 
fwnet_make_ff_hdr(struct rfc2734_header * hdr,unsigned ether_type,unsigned dg_size,unsigned dgl)113 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
114 		unsigned ether_type, unsigned dg_size, unsigned dgl)
115 {
116 	hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
117 		  | fwnet_set_hdr_dg_size(dg_size)
118 		  | fwnet_set_hdr_ether_type(ether_type);
119 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121 
fwnet_make_sf_hdr(struct rfc2734_header * hdr,unsigned lf,unsigned dg_size,unsigned fg_off,unsigned dgl)122 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
123 		unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
124 {
125 	hdr->w0 = fwnet_set_hdr_lf(lf)
126 		  | fwnet_set_hdr_dg_size(dg_size)
127 		  | fwnet_set_hdr_fg_off(fg_off);
128 	hdr->w1 = fwnet_set_hdr_dgl(dgl);
129 }
130 
131 /* This list keeps track of what parts of the datagram have been filled in */
132 struct fwnet_fragment_info {
133 	struct list_head fi_link;
134 	u16 offset;
135 	u16 len;
136 };
137 
138 struct fwnet_partial_datagram {
139 	struct list_head pd_link;
140 	struct list_head fi_list;
141 	struct sk_buff *skb;
142 	/* FIXME Why not use skb->data? */
143 	char *pbuf;
144 	u16 datagram_label;
145 	u16 ether_type;
146 	u16 datagram_size;
147 };
148 
149 static DEFINE_MUTEX(fwnet_device_mutex);
150 static LIST_HEAD(fwnet_device_list);
151 
152 struct fwnet_device {
153 	struct list_head dev_link;
154 	spinlock_t lock;
155 	enum {
156 		FWNET_BROADCAST_ERROR,
157 		FWNET_BROADCAST_RUNNING,
158 		FWNET_BROADCAST_STOPPED,
159 	} broadcast_state;
160 	struct fw_iso_context *broadcast_rcv_context;
161 	struct fw_iso_buffer broadcast_rcv_buffer;
162 	void **broadcast_rcv_buffer_ptrs;
163 	unsigned broadcast_rcv_next_ptr;
164 	unsigned num_broadcast_rcv_ptrs;
165 	unsigned rcv_buffer_size;
166 	/*
167 	 * This value is the maximum unfragmented datagram size that can be
168 	 * sent by the hardware.  It already has the GASP overhead and the
169 	 * unfragmented datagram header overhead calculated into it.
170 	 */
171 	unsigned broadcast_xmt_max_payload;
172 	u16 broadcast_xmt_datagramlabel;
173 
174 	/*
175 	 * The CSR address that remote nodes must send datagrams to for us to
176 	 * receive them.
177 	 */
178 	struct fw_address_handler handler;
179 	u64 local_fifo;
180 
181 	/* Number of tx datagrams that have been queued but not yet acked */
182 	int queued_datagrams;
183 
184 	int peer_count;
185 	struct list_head peer_list;
186 	struct fw_card *card;
187 	struct net_device *netdev;
188 };
189 
190 struct fwnet_peer {
191 	struct list_head peer_link;
192 	struct fwnet_device *dev;
193 	u64 guid;
194 	u64 fifo;
195 	__be32 ip;
196 
197 	/* guarded by dev->lock */
198 	struct list_head pd_list; /* received partial datagrams */
199 	unsigned pdg_size;        /* pd_list size */
200 
201 	u16 datagram_label;       /* outgoing datagram label */
202 	u16 max_payload;          /* includes RFC2374_FRAG_HDR_SIZE overhead */
203 	int node_id;
204 	int generation;
205 	unsigned speed;
206 };
207 
208 /* This is our task struct. It's used for the packet complete callback.  */
209 struct fwnet_packet_task {
210 	struct fw_transaction transaction;
211 	struct rfc2734_header hdr;
212 	struct sk_buff *skb;
213 	struct fwnet_device *dev;
214 
215 	int outstanding_pkts;
216 	u64 fifo_addr;
217 	u16 dest_node;
218 	u16 max_payload;
219 	u8 generation;
220 	u8 speed;
221 	u8 enqueued;
222 };
223 
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
fwnet_header_create(struct sk_buff * skb,struct net_device * net,unsigned short type,const void * daddr,const void * saddr,unsigned len)228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229 			unsigned short type, const void *daddr,
230 			const void *saddr, unsigned len)
231 {
232 	struct fwnet_header *h;
233 
234 	h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235 	put_unaligned_be16(type, &h->h_proto);
236 
237 	if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238 		memset(h->h_dest, 0, net->addr_len);
239 
240 		return net->hard_header_len;
241 	}
242 
243 	if (daddr) {
244 		memcpy(h->h_dest, daddr, net->addr_len);
245 
246 		return net->hard_header_len;
247 	}
248 
249 	return -net->hard_header_len;
250 }
251 
fwnet_header_rebuild(struct sk_buff * skb)252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254 	struct fwnet_header *h = (struct fwnet_header *)skb->data;
255 
256 	if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257 		return arp_find((unsigned char *)&h->h_dest, skb);
258 
259 	dev_notice(&skb->dev->dev, "unable to resolve type %04x addresses\n",
260 		   be16_to_cpu(h->h_proto));
261 	return 0;
262 }
263 
fwnet_header_cache(const struct neighbour * neigh,struct hh_cache * hh,__be16 type)264 static int fwnet_header_cache(const struct neighbour *neigh,
265 			      struct hh_cache *hh, __be16 type)
266 {
267 	struct net_device *net;
268 	struct fwnet_header *h;
269 
270 	if (type == cpu_to_be16(ETH_P_802_3))
271 		return -1;
272 	net = neigh->dev;
273 	h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274 	h->h_proto = type;
275 	memcpy(h->h_dest, neigh->ha, net->addr_len);
276 	hh->hh_len = FWNET_HLEN;
277 
278 	return 0;
279 }
280 
281 /* Called by Address Resolution module to notify changes in address. */
fwnet_header_cache_update(struct hh_cache * hh,const struct net_device * net,const unsigned char * haddr)282 static void fwnet_header_cache_update(struct hh_cache *hh,
283 		const struct net_device *net, const unsigned char *haddr)
284 {
285 	memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287 
fwnet_header_parse(const struct sk_buff * skb,unsigned char * haddr)288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290 	memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291 
292 	return FWNET_ALEN;
293 }
294 
295 static const struct header_ops fwnet_header_ops = {
296 	.create         = fwnet_header_create,
297 	.rebuild        = fwnet_header_rebuild,
298 	.cache		= fwnet_header_cache,
299 	.cache_update	= fwnet_header_cache_update,
300 	.parse          = fwnet_header_parse,
301 };
302 
303 /* FIXME: is this correct for all cases? */
fwnet_frag_overlap(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305 			       unsigned offset, unsigned len)
306 {
307 	struct fwnet_fragment_info *fi;
308 	unsigned end = offset + len;
309 
310 	list_for_each_entry(fi, &pd->fi_list, fi_link)
311 		if (offset < fi->offset + fi->len && end > fi->offset)
312 			return true;
313 
314 	return false;
315 }
316 
317 /* Assumes that new fragment does not overlap any existing fragments */
fwnet_frag_new(struct fwnet_partial_datagram * pd,unsigned offset,unsigned len)318 static struct fwnet_fragment_info *fwnet_frag_new(
319 	struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321 	struct fwnet_fragment_info *fi, *fi2, *new;
322 	struct list_head *list;
323 
324 	list = &pd->fi_list;
325 	list_for_each_entry(fi, &pd->fi_list, fi_link) {
326 		if (fi->offset + fi->len == offset) {
327 			/* The new fragment can be tacked on to the end */
328 			/* Did the new fragment plug a hole? */
329 			fi2 = list_entry(fi->fi_link.next,
330 					 struct fwnet_fragment_info, fi_link);
331 			if (fi->offset + fi->len == fi2->offset) {
332 				/* glue fragments together */
333 				fi->len += len + fi2->len;
334 				list_del(&fi2->fi_link);
335 				kfree(fi2);
336 			} else {
337 				fi->len += len;
338 			}
339 
340 			return fi;
341 		}
342 		if (offset + len == fi->offset) {
343 			/* The new fragment can be tacked on to the beginning */
344 			/* Did the new fragment plug a hole? */
345 			fi2 = list_entry(fi->fi_link.prev,
346 					 struct fwnet_fragment_info, fi_link);
347 			if (fi2->offset + fi2->len == fi->offset) {
348 				/* glue fragments together */
349 				fi2->len += fi->len + len;
350 				list_del(&fi->fi_link);
351 				kfree(fi);
352 
353 				return fi2;
354 			}
355 			fi->offset = offset;
356 			fi->len += len;
357 
358 			return fi;
359 		}
360 		if (offset > fi->offset + fi->len) {
361 			list = &fi->fi_link;
362 			break;
363 		}
364 		if (offset + len < fi->offset) {
365 			list = fi->fi_link.prev;
366 			break;
367 		}
368 	}
369 
370 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
371 	if (!new) {
372 		dev_err(&pd->skb->dev->dev, "out of memory\n");
373 		return NULL;
374 	}
375 
376 	new->offset = offset;
377 	new->len = len;
378 	list_add(&new->fi_link, list);
379 
380 	return new;
381 }
382 
fwnet_pd_new(struct net_device * net,struct fwnet_peer * peer,u16 datagram_label,unsigned dg_size,void * frag_buf,unsigned frag_off,unsigned frag_len)383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384 		struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385 		void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387 	struct fwnet_partial_datagram *new;
388 	struct fwnet_fragment_info *fi;
389 
390 	new = kmalloc(sizeof(*new), GFP_ATOMIC);
391 	if (!new)
392 		goto fail;
393 
394 	INIT_LIST_HEAD(&new->fi_list);
395 	fi = fwnet_frag_new(new, frag_off, frag_len);
396 	if (fi == NULL)
397 		goto fail_w_new;
398 
399 	new->datagram_label = datagram_label;
400 	new->datagram_size = dg_size;
401 	new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402 	if (new->skb == NULL)
403 		goto fail_w_fi;
404 
405 	skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406 	new->pbuf = skb_put(new->skb, dg_size);
407 	memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408 	list_add_tail(&new->pd_link, &peer->pd_list);
409 
410 	return new;
411 
412 fail_w_fi:
413 	kfree(fi);
414 fail_w_new:
415 	kfree(new);
416 fail:
417 	dev_err(&net->dev, "out of memory\n");
418 
419 	return NULL;
420 }
421 
fwnet_pd_find(struct fwnet_peer * peer,u16 datagram_label)422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423 						    u16 datagram_label)
424 {
425 	struct fwnet_partial_datagram *pd;
426 
427 	list_for_each_entry(pd, &peer->pd_list, pd_link)
428 		if (pd->datagram_label == datagram_label)
429 			return pd;
430 
431 	return NULL;
432 }
433 
434 
fwnet_pd_delete(struct fwnet_partial_datagram * old)435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437 	struct fwnet_fragment_info *fi, *n;
438 
439 	list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440 		kfree(fi);
441 
442 	list_del(&old->pd_link);
443 	dev_kfree_skb_any(old->skb);
444 	kfree(old);
445 }
446 
fwnet_pd_update(struct fwnet_peer * peer,struct fwnet_partial_datagram * pd,void * frag_buf,unsigned frag_off,unsigned frag_len)447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448 		struct fwnet_partial_datagram *pd, void *frag_buf,
449 		unsigned frag_off, unsigned frag_len)
450 {
451 	if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452 		return false;
453 
454 	memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455 
456 	/*
457 	 * Move list entry to beginning of list so that oldest partial
458 	 * datagrams percolate to the end of the list
459 	 */
460 	list_move_tail(&pd->pd_link, &peer->pd_list);
461 
462 	return true;
463 }
464 
fwnet_pd_is_complete(struct fwnet_partial_datagram * pd)465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467 	struct fwnet_fragment_info *fi;
468 
469 	fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470 
471 	return fi->len == pd->datagram_size;
472 }
473 
474 /* caller must hold dev->lock */
fwnet_peer_find_by_guid(struct fwnet_device * dev,u64 guid)475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476 						  u64 guid)
477 {
478 	struct fwnet_peer *peer;
479 
480 	list_for_each_entry(peer, &dev->peer_list, peer_link)
481 		if (peer->guid == guid)
482 			return peer;
483 
484 	return NULL;
485 }
486 
487 /* caller must hold dev->lock */
fwnet_peer_find_by_node_id(struct fwnet_device * dev,int node_id,int generation)488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489 						int node_id, int generation)
490 {
491 	struct fwnet_peer *peer;
492 
493 	list_for_each_entry(peer, &dev->peer_list, peer_link)
494 		if (peer->node_id    == node_id &&
495 		    peer->generation == generation)
496 			return peer;
497 
498 	return NULL;
499 }
500 
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
fwnet_max_payload(unsigned max_rec,unsigned speed)502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504 	max_rec = min(max_rec, speed + 8);
505 	max_rec = clamp(max_rec, 8U, 11U); /* 512...4096 */
506 
507 	return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
508 }
509 
510 
fwnet_finish_incoming_packet(struct net_device * net,struct sk_buff * skb,u16 source_node_id,bool is_broadcast,u16 ether_type)511 static int fwnet_finish_incoming_packet(struct net_device *net,
512 					struct sk_buff *skb, u16 source_node_id,
513 					bool is_broadcast, u16 ether_type)
514 {
515 	struct fwnet_device *dev;
516 	static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
517 	int status;
518 	__be64 guid;
519 
520 	dev = netdev_priv(net);
521 	/* Write metadata, and then pass to the receive level */
522 	skb->dev = net;
523 	skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
524 
525 	/*
526 	 * Parse the encapsulation header. This actually does the job of
527 	 * converting to an ethernet frame header, as well as arp
528 	 * conversion if needed. ARP conversion is easier in this
529 	 * direction, since we are using ethernet as our backend.
530 	 */
531 	/*
532 	 * If this is an ARP packet, convert it. First, we want to make
533 	 * use of some of the fields, since they tell us a little bit
534 	 * about the sending machine.
535 	 */
536 	if (ether_type == ETH_P_ARP) {
537 		struct rfc2734_arp *arp1394;
538 		struct arphdr *arp;
539 		unsigned char *arp_ptr;
540 		u64 fifo_addr;
541 		u64 peer_guid;
542 		unsigned sspd;
543 		u16 max_payload;
544 		struct fwnet_peer *peer;
545 		unsigned long flags;
546 
547 		arp1394   = (struct rfc2734_arp *)skb->data;
548 		arp       = (struct arphdr *)skb->data;
549 		arp_ptr   = (unsigned char *)(arp + 1);
550 		peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
551 		fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
552 				| get_unaligned_be32(&arp1394->fifo_lo);
553 
554 		sspd = arp1394->sspd;
555 		/* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
556 		if (sspd > SCODE_3200) {
557 			dev_notice(&net->dev, "sspd %x out of range\n", sspd);
558 			sspd = SCODE_3200;
559 		}
560 		max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
561 
562 		spin_lock_irqsave(&dev->lock, flags);
563 		peer = fwnet_peer_find_by_guid(dev, peer_guid);
564 		if (peer) {
565 			peer->fifo = fifo_addr;
566 
567 			if (peer->speed > sspd)
568 				peer->speed = sspd;
569 			if (peer->max_payload > max_payload)
570 				peer->max_payload = max_payload;
571 
572 			peer->ip = arp1394->sip;
573 		}
574 		spin_unlock_irqrestore(&dev->lock, flags);
575 
576 		if (!peer) {
577 			dev_notice(&net->dev,
578 				   "no peer for ARP packet from %016llx\n",
579 				   (unsigned long long)peer_guid);
580 			goto no_peer;
581 		}
582 
583 		/*
584 		 * Now that we're done with the 1394 specific stuff, we'll
585 		 * need to alter some of the data.  Believe it or not, all
586 		 * that needs to be done is sender_IP_address needs to be
587 		 * moved, the destination hardware address get stuffed
588 		 * in and the hardware address length set to 8.
589 		 *
590 		 * IMPORTANT: The code below overwrites 1394 specific data
591 		 * needed above so keep the munging of the data for the
592 		 * higher level IP stack last.
593 		 */
594 
595 		arp->ar_hln = 8;
596 		/* skip over sender unique id */
597 		arp_ptr += arp->ar_hln;
598 		/* move sender IP addr */
599 		put_unaligned(arp1394->sip, (u32 *)arp_ptr);
600 		/* skip over sender IP addr */
601 		arp_ptr += arp->ar_pln;
602 
603 		if (arp->ar_op == htons(ARPOP_REQUEST))
604 			memset(arp_ptr, 0, sizeof(u64));
605 		else
606 			memcpy(arp_ptr, net->dev_addr, sizeof(u64));
607 	}
608 
609 	/* Now add the ethernet header. */
610 	guid = cpu_to_be64(dev->card->guid);
611 	if (dev_hard_header(skb, net, ether_type,
612 			   is_broadcast ? &broadcast_hw : &guid,
613 			   NULL, skb->len) >= 0) {
614 		struct fwnet_header *eth;
615 		u16 *rawp;
616 		__be16 protocol;
617 
618 		skb_reset_mac_header(skb);
619 		skb_pull(skb, sizeof(*eth));
620 		eth = (struct fwnet_header *)skb_mac_header(skb);
621 		if (*eth->h_dest & 1) {
622 			if (memcmp(eth->h_dest, net->broadcast,
623 				   net->addr_len) == 0)
624 				skb->pkt_type = PACKET_BROADCAST;
625 #if 0
626 			else
627 				skb->pkt_type = PACKET_MULTICAST;
628 #endif
629 		} else {
630 			if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
631 				skb->pkt_type = PACKET_OTHERHOST;
632 		}
633 		if (ntohs(eth->h_proto) >= 1536) {
634 			protocol = eth->h_proto;
635 		} else {
636 			rawp = (u16 *)skb->data;
637 			if (*rawp == 0xffff)
638 				protocol = htons(ETH_P_802_3);
639 			else
640 				protocol = htons(ETH_P_802_2);
641 		}
642 		skb->protocol = protocol;
643 	}
644 	status = netif_rx(skb);
645 	if (status == NET_RX_DROP) {
646 		net->stats.rx_errors++;
647 		net->stats.rx_dropped++;
648 	} else {
649 		net->stats.rx_packets++;
650 		net->stats.rx_bytes += skb->len;
651 	}
652 
653 	return 0;
654 
655  no_peer:
656 	net->stats.rx_errors++;
657 	net->stats.rx_dropped++;
658 
659 	dev_kfree_skb_any(skb);
660 
661 	return -ENOENT;
662 }
663 
fwnet_incoming_packet(struct fwnet_device * dev,__be32 * buf,int len,int source_node_id,int generation,bool is_broadcast)664 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
665 				 int source_node_id, int generation,
666 				 bool is_broadcast)
667 {
668 	struct sk_buff *skb;
669 	struct net_device *net = dev->netdev;
670 	struct rfc2734_header hdr;
671 	unsigned lf;
672 	unsigned long flags;
673 	struct fwnet_peer *peer;
674 	struct fwnet_partial_datagram *pd;
675 	int fg_off;
676 	int dg_size;
677 	u16 datagram_label;
678 	int retval;
679 	u16 ether_type;
680 
681 	hdr.w0 = be32_to_cpu(buf[0]);
682 	lf = fwnet_get_hdr_lf(&hdr);
683 	if (lf == RFC2374_HDR_UNFRAG) {
684 		/*
685 		 * An unfragmented datagram has been received by the ieee1394
686 		 * bus. Build an skbuff around it so we can pass it to the
687 		 * high level network layer.
688 		 */
689 		ether_type = fwnet_get_hdr_ether_type(&hdr);
690 		buf++;
691 		len -= RFC2374_UNFRAG_HDR_SIZE;
692 
693 		skb = dev_alloc_skb(len + net->hard_header_len + 15);
694 		if (unlikely(!skb)) {
695 			dev_err(&net->dev, "out of memory\n");
696 			net->stats.rx_dropped++;
697 
698 			return -ENOMEM;
699 		}
700 		skb_reserve(skb, (net->hard_header_len + 15) & ~15);
701 		memcpy(skb_put(skb, len), buf, len);
702 
703 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
704 						    is_broadcast, ether_type);
705 	}
706 	/* A datagram fragment has been received, now the fun begins. */
707 	hdr.w1 = ntohl(buf[1]);
708 	buf += 2;
709 	len -= RFC2374_FRAG_HDR_SIZE;
710 	if (lf == RFC2374_HDR_FIRSTFRAG) {
711 		ether_type = fwnet_get_hdr_ether_type(&hdr);
712 		fg_off = 0;
713 	} else {
714 		ether_type = 0;
715 		fg_off = fwnet_get_hdr_fg_off(&hdr);
716 	}
717 	datagram_label = fwnet_get_hdr_dgl(&hdr);
718 	dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
719 
720 	spin_lock_irqsave(&dev->lock, flags);
721 
722 	peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
723 	if (!peer) {
724 		retval = -ENOENT;
725 		goto fail;
726 	}
727 
728 	pd = fwnet_pd_find(peer, datagram_label);
729 	if (pd == NULL) {
730 		while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
731 			/* remove the oldest */
732 			fwnet_pd_delete(list_first_entry(&peer->pd_list,
733 				struct fwnet_partial_datagram, pd_link));
734 			peer->pdg_size--;
735 		}
736 		pd = fwnet_pd_new(net, peer, datagram_label,
737 				  dg_size, buf, fg_off, len);
738 		if (pd == NULL) {
739 			retval = -ENOMEM;
740 			goto fail;
741 		}
742 		peer->pdg_size++;
743 	} else {
744 		if (fwnet_frag_overlap(pd, fg_off, len) ||
745 		    pd->datagram_size != dg_size) {
746 			/*
747 			 * Differing datagram sizes or overlapping fragments,
748 			 * discard old datagram and start a new one.
749 			 */
750 			fwnet_pd_delete(pd);
751 			pd = fwnet_pd_new(net, peer, datagram_label,
752 					  dg_size, buf, fg_off, len);
753 			if (pd == NULL) {
754 				peer->pdg_size--;
755 				retval = -ENOMEM;
756 				goto fail;
757 			}
758 		} else {
759 			if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
760 				/*
761 				 * Couldn't save off fragment anyway
762 				 * so might as well obliterate the
763 				 * datagram now.
764 				 */
765 				fwnet_pd_delete(pd);
766 				peer->pdg_size--;
767 				retval = -ENOMEM;
768 				goto fail;
769 			}
770 		}
771 	} /* new datagram or add to existing one */
772 
773 	if (lf == RFC2374_HDR_FIRSTFRAG)
774 		pd->ether_type = ether_type;
775 
776 	if (fwnet_pd_is_complete(pd)) {
777 		ether_type = pd->ether_type;
778 		peer->pdg_size--;
779 		skb = skb_get(pd->skb);
780 		fwnet_pd_delete(pd);
781 
782 		spin_unlock_irqrestore(&dev->lock, flags);
783 
784 		return fwnet_finish_incoming_packet(net, skb, source_node_id,
785 						    false, ether_type);
786 	}
787 	/*
788 	 * Datagram is not complete, we're done for the
789 	 * moment.
790 	 */
791 	retval = 0;
792  fail:
793 	spin_unlock_irqrestore(&dev->lock, flags);
794 
795 	return retval;
796 }
797 
fwnet_receive_packet(struct fw_card * card,struct fw_request * r,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)798 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
799 		int tcode, int destination, int source, int generation,
800 		unsigned long long offset, void *payload, size_t length,
801 		void *callback_data)
802 {
803 	struct fwnet_device *dev = callback_data;
804 	int rcode;
805 
806 	if (destination == IEEE1394_ALL_NODES) {
807 		kfree(r);
808 
809 		return;
810 	}
811 
812 	if (offset != dev->handler.offset)
813 		rcode = RCODE_ADDRESS_ERROR;
814 	else if (tcode != TCODE_WRITE_BLOCK_REQUEST)
815 		rcode = RCODE_TYPE_ERROR;
816 	else if (fwnet_incoming_packet(dev, payload, length,
817 				       source, generation, false) != 0) {
818 		dev_err(&dev->netdev->dev, "incoming packet failure\n");
819 		rcode = RCODE_CONFLICT_ERROR;
820 	} else
821 		rcode = RCODE_COMPLETE;
822 
823 	fw_send_response(card, r, rcode);
824 }
825 
fwnet_receive_broadcast(struct fw_iso_context * context,u32 cycle,size_t header_length,void * header,void * data)826 static void fwnet_receive_broadcast(struct fw_iso_context *context,
827 		u32 cycle, size_t header_length, void *header, void *data)
828 {
829 	struct fwnet_device *dev;
830 	struct fw_iso_packet packet;
831 	struct fw_card *card;
832 	__be16 *hdr_ptr;
833 	__be32 *buf_ptr;
834 	int retval;
835 	u32 length;
836 	u16 source_node_id;
837 	u32 specifier_id;
838 	u32 ver;
839 	unsigned long offset;
840 	unsigned long flags;
841 
842 	dev = data;
843 	card = dev->card;
844 	hdr_ptr = header;
845 	length = be16_to_cpup(hdr_ptr);
846 
847 	spin_lock_irqsave(&dev->lock, flags);
848 
849 	offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
850 	buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
851 	if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
852 		dev->broadcast_rcv_next_ptr = 0;
853 
854 	spin_unlock_irqrestore(&dev->lock, flags);
855 
856 	specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
857 			| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
858 	ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
859 	source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
860 
861 	if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
862 		buf_ptr += 2;
863 		length -= IEEE1394_GASP_HDR_SIZE;
864 		fwnet_incoming_packet(dev, buf_ptr, length, source_node_id,
865 				      context->card->generation, true);
866 	}
867 
868 	packet.payload_length = dev->rcv_buffer_size;
869 	packet.interrupt = 1;
870 	packet.skip = 0;
871 	packet.tag = 3;
872 	packet.sy = 0;
873 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
874 
875 	spin_lock_irqsave(&dev->lock, flags);
876 
877 	retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
878 				      &dev->broadcast_rcv_buffer, offset);
879 
880 	spin_unlock_irqrestore(&dev->lock, flags);
881 
882 	if (retval >= 0)
883 		fw_iso_context_queue_flush(dev->broadcast_rcv_context);
884 	else
885 		dev_err(&dev->netdev->dev, "requeue failed\n");
886 }
887 
888 static struct kmem_cache *fwnet_packet_task_cache;
889 
fwnet_free_ptask(struct fwnet_packet_task * ptask)890 static void fwnet_free_ptask(struct fwnet_packet_task *ptask)
891 {
892 	dev_kfree_skb_any(ptask->skb);
893 	kmem_cache_free(fwnet_packet_task_cache, ptask);
894 }
895 
896 /* Caller must hold dev->lock. */
dec_queued_datagrams(struct fwnet_device * dev)897 static void dec_queued_datagrams(struct fwnet_device *dev)
898 {
899 	if (--dev->queued_datagrams == FWNET_MIN_QUEUED_DATAGRAMS)
900 		netif_wake_queue(dev->netdev);
901 }
902 
903 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
904 
fwnet_transmit_packet_done(struct fwnet_packet_task * ptask)905 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
906 {
907 	struct fwnet_device *dev = ptask->dev;
908 	struct sk_buff *skb = ptask->skb;
909 	unsigned long flags;
910 	bool free;
911 
912 	spin_lock_irqsave(&dev->lock, flags);
913 
914 	ptask->outstanding_pkts--;
915 
916 	/* Check whether we or the networking TX soft-IRQ is last user. */
917 	free = (ptask->outstanding_pkts == 0 && ptask->enqueued);
918 	if (free)
919 		dec_queued_datagrams(dev);
920 
921 	if (ptask->outstanding_pkts == 0) {
922 		dev->netdev->stats.tx_packets++;
923 		dev->netdev->stats.tx_bytes += skb->len;
924 	}
925 
926 	spin_unlock_irqrestore(&dev->lock, flags);
927 
928 	if (ptask->outstanding_pkts > 0) {
929 		u16 dg_size;
930 		u16 fg_off;
931 		u16 datagram_label;
932 		u16 lf;
933 
934 		/* Update the ptask to point to the next fragment and send it */
935 		lf = fwnet_get_hdr_lf(&ptask->hdr);
936 		switch (lf) {
937 		case RFC2374_HDR_LASTFRAG:
938 		case RFC2374_HDR_UNFRAG:
939 		default:
940 			dev_err(&dev->netdev->dev,
941 				"outstanding packet %x lf %x, header %x,%x\n",
942 				ptask->outstanding_pkts, lf, ptask->hdr.w0,
943 				ptask->hdr.w1);
944 			BUG();
945 
946 		case RFC2374_HDR_FIRSTFRAG:
947 			/* Set frag type here for future interior fragments */
948 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
949 			fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
950 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
951 			break;
952 
953 		case RFC2374_HDR_INTFRAG:
954 			dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
955 			fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
956 				  + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
957 			datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
958 			break;
959 		}
960 
961 		if (ptask->dest_node == IEEE1394_ALL_NODES) {
962 			skb_pull(skb,
963 				 ptask->max_payload + IEEE1394_GASP_HDR_SIZE);
964 		} else {
965 			skb_pull(skb, ptask->max_payload);
966 		}
967 		if (ptask->outstanding_pkts > 1) {
968 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
969 					  dg_size, fg_off, datagram_label);
970 		} else {
971 			fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
972 					  dg_size, fg_off, datagram_label);
973 			ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
974 		}
975 		fwnet_send_packet(ptask);
976 	}
977 
978 	if (free)
979 		fwnet_free_ptask(ptask);
980 }
981 
fwnet_transmit_packet_failed(struct fwnet_packet_task * ptask)982 static void fwnet_transmit_packet_failed(struct fwnet_packet_task *ptask)
983 {
984 	struct fwnet_device *dev = ptask->dev;
985 	unsigned long flags;
986 	bool free;
987 
988 	spin_lock_irqsave(&dev->lock, flags);
989 
990 	/* One fragment failed; don't try to send remaining fragments. */
991 	ptask->outstanding_pkts = 0;
992 
993 	/* Check whether we or the networking TX soft-IRQ is last user. */
994 	free = ptask->enqueued;
995 	if (free)
996 		dec_queued_datagrams(dev);
997 
998 	dev->netdev->stats.tx_dropped++;
999 	dev->netdev->stats.tx_errors++;
1000 
1001 	spin_unlock_irqrestore(&dev->lock, flags);
1002 
1003 	if (free)
1004 		fwnet_free_ptask(ptask);
1005 }
1006 
fwnet_write_complete(struct fw_card * card,int rcode,void * payload,size_t length,void * data)1007 static void fwnet_write_complete(struct fw_card *card, int rcode,
1008 				 void *payload, size_t length, void *data)
1009 {
1010 	struct fwnet_packet_task *ptask = data;
1011 	static unsigned long j;
1012 	static int last_rcode, errors_skipped;
1013 
1014 	if (rcode == RCODE_COMPLETE) {
1015 		fwnet_transmit_packet_done(ptask);
1016 	} else {
1017 		fwnet_transmit_packet_failed(ptask);
1018 
1019 		if (printk_timed_ratelimit(&j,  1000) || rcode != last_rcode) {
1020 			dev_err(&ptask->dev->netdev->dev,
1021 				"fwnet_write_complete failed: %x (skipped %d)\n",
1022 				rcode, errors_skipped);
1023 
1024 			errors_skipped = 0;
1025 			last_rcode = rcode;
1026 		} else
1027 			errors_skipped++;
1028 	}
1029 }
1030 
fwnet_send_packet(struct fwnet_packet_task * ptask)1031 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
1032 {
1033 	struct fwnet_device *dev;
1034 	unsigned tx_len;
1035 	struct rfc2734_header *bufhdr;
1036 	unsigned long flags;
1037 	bool free;
1038 
1039 	dev = ptask->dev;
1040 	tx_len = ptask->max_payload;
1041 	switch (fwnet_get_hdr_lf(&ptask->hdr)) {
1042 	case RFC2374_HDR_UNFRAG:
1043 		bufhdr = (struct rfc2734_header *)
1044 				skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
1045 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1046 		break;
1047 
1048 	case RFC2374_HDR_FIRSTFRAG:
1049 	case RFC2374_HDR_INTFRAG:
1050 	case RFC2374_HDR_LASTFRAG:
1051 		bufhdr = (struct rfc2734_header *)
1052 				skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
1053 		put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1054 		put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1055 		break;
1056 
1057 	default:
1058 		BUG();
1059 	}
1060 	if (ptask->dest_node == IEEE1394_ALL_NODES) {
1061 		u8 *p;
1062 		int generation;
1063 		int node_id;
1064 
1065 		/* ptask->generation may not have been set yet */
1066 		generation = dev->card->generation;
1067 		smp_rmb();
1068 		node_id = dev->card->node_id;
1069 
1070 		p = skb_push(ptask->skb, IEEE1394_GASP_HDR_SIZE);
1071 		put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1072 		put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1073 						| RFC2734_SW_VERSION, &p[4]);
1074 
1075 		/* We should not transmit if broadcast_channel.valid == 0. */
1076 		fw_send_request(dev->card, &ptask->transaction,
1077 				TCODE_STREAM_DATA,
1078 				fw_stream_packet_destination_id(3,
1079 						IEEE1394_BROADCAST_CHANNEL, 0),
1080 				generation, SCODE_100, 0ULL, ptask->skb->data,
1081 				tx_len + 8, fwnet_write_complete, ptask);
1082 
1083 		spin_lock_irqsave(&dev->lock, flags);
1084 
1085 		/* If the AT tasklet already ran, we may be last user. */
1086 		free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1087 		if (!free)
1088 			ptask->enqueued = true;
1089 		else
1090 			dec_queued_datagrams(dev);
1091 
1092 		spin_unlock_irqrestore(&dev->lock, flags);
1093 
1094 		goto out;
1095 	}
1096 
1097 	fw_send_request(dev->card, &ptask->transaction,
1098 			TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1099 			ptask->generation, ptask->speed, ptask->fifo_addr,
1100 			ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1101 
1102 	spin_lock_irqsave(&dev->lock, flags);
1103 
1104 	/* If the AT tasklet already ran, we may be last user. */
1105 	free = (ptask->outstanding_pkts == 0 && !ptask->enqueued);
1106 	if (!free)
1107 		ptask->enqueued = true;
1108 	else
1109 		dec_queued_datagrams(dev);
1110 
1111 	spin_unlock_irqrestore(&dev->lock, flags);
1112 
1113 	dev->netdev->trans_start = jiffies;
1114  out:
1115 	if (free)
1116 		fwnet_free_ptask(ptask);
1117 
1118 	return 0;
1119 }
1120 
fwnet_broadcast_start(struct fwnet_device * dev)1121 static int fwnet_broadcast_start(struct fwnet_device *dev)
1122 {
1123 	struct fw_iso_context *context;
1124 	int retval;
1125 	unsigned num_packets;
1126 	unsigned max_receive;
1127 	struct fw_iso_packet packet;
1128 	unsigned long offset;
1129 	unsigned u;
1130 
1131 	if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1132 		dev->handler.length = 4096;
1133 		dev->handler.address_callback = fwnet_receive_packet;
1134 		dev->handler.callback_data = dev;
1135 
1136 		retval = fw_core_add_address_handler(&dev->handler,
1137 					&fw_high_memory_region);
1138 		if (retval < 0)
1139 			goto failed_initial;
1140 
1141 		dev->local_fifo = dev->handler.offset;
1142 	}
1143 
1144 	max_receive = 1U << (dev->card->max_receive + 1);
1145 	num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1146 
1147 	if (!dev->broadcast_rcv_context) {
1148 		void **ptrptr;
1149 
1150 		context = fw_iso_context_create(dev->card,
1151 		    FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1152 		    dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1153 		if (IS_ERR(context)) {
1154 			retval = PTR_ERR(context);
1155 			goto failed_context_create;
1156 		}
1157 
1158 		retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1159 		    dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1160 		if (retval < 0)
1161 			goto failed_buffer_init;
1162 
1163 		ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1164 		if (!ptrptr) {
1165 			retval = -ENOMEM;
1166 			goto failed_ptrs_alloc;
1167 		}
1168 
1169 		dev->broadcast_rcv_buffer_ptrs = ptrptr;
1170 		for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1171 			void *ptr;
1172 			unsigned v;
1173 
1174 			ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1175 			for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1176 				*ptrptr++ = (void *)
1177 						((char *)ptr + v * max_receive);
1178 		}
1179 		dev->broadcast_rcv_context = context;
1180 	} else {
1181 		context = dev->broadcast_rcv_context;
1182 	}
1183 
1184 	packet.payload_length = max_receive;
1185 	packet.interrupt = 1;
1186 	packet.skip = 0;
1187 	packet.tag = 3;
1188 	packet.sy = 0;
1189 	packet.header_length = IEEE1394_GASP_HDR_SIZE;
1190 	offset = 0;
1191 
1192 	for (u = 0; u < num_packets; u++) {
1193 		retval = fw_iso_context_queue(context, &packet,
1194 				&dev->broadcast_rcv_buffer, offset);
1195 		if (retval < 0)
1196 			goto failed_rcv_queue;
1197 
1198 		offset += max_receive;
1199 	}
1200 	dev->num_broadcast_rcv_ptrs = num_packets;
1201 	dev->rcv_buffer_size = max_receive;
1202 	dev->broadcast_rcv_next_ptr = 0U;
1203 	retval = fw_iso_context_start(context, -1, 0,
1204 			FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1205 	if (retval < 0)
1206 		goto failed_rcv_queue;
1207 
1208 	/* FIXME: adjust it according to the min. speed of all known peers? */
1209 	dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1210 			- IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1211 	dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1212 
1213 	return 0;
1214 
1215  failed_rcv_queue:
1216 	kfree(dev->broadcast_rcv_buffer_ptrs);
1217 	dev->broadcast_rcv_buffer_ptrs = NULL;
1218  failed_ptrs_alloc:
1219 	fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1220  failed_buffer_init:
1221 	fw_iso_context_destroy(context);
1222 	dev->broadcast_rcv_context = NULL;
1223  failed_context_create:
1224 	fw_core_remove_address_handler(&dev->handler);
1225  failed_initial:
1226 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1227 
1228 	return retval;
1229 }
1230 
set_carrier_state(struct fwnet_device * dev)1231 static void set_carrier_state(struct fwnet_device *dev)
1232 {
1233 	if (dev->peer_count > 1)
1234 		netif_carrier_on(dev->netdev);
1235 	else
1236 		netif_carrier_off(dev->netdev);
1237 }
1238 
1239 /* ifup */
fwnet_open(struct net_device * net)1240 static int fwnet_open(struct net_device *net)
1241 {
1242 	struct fwnet_device *dev = netdev_priv(net);
1243 	int ret;
1244 
1245 	if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1246 		ret = fwnet_broadcast_start(dev);
1247 		if (ret)
1248 			return ret;
1249 	}
1250 	netif_start_queue(net);
1251 
1252 	spin_lock_irq(&dev->lock);
1253 	set_carrier_state(dev);
1254 	spin_unlock_irq(&dev->lock);
1255 
1256 	return 0;
1257 }
1258 
1259 /* ifdown */
fwnet_stop(struct net_device * net)1260 static int fwnet_stop(struct net_device *net)
1261 {
1262 	netif_stop_queue(net);
1263 
1264 	/* Deallocate iso context for use by other applications? */
1265 
1266 	return 0;
1267 }
1268 
fwnet_tx(struct sk_buff * skb,struct net_device * net)1269 static netdev_tx_t fwnet_tx(struct sk_buff *skb, struct net_device *net)
1270 {
1271 	struct fwnet_header hdr_buf;
1272 	struct fwnet_device *dev = netdev_priv(net);
1273 	__be16 proto;
1274 	u16 dest_node;
1275 	unsigned max_payload;
1276 	u16 dg_size;
1277 	u16 *datagram_label_ptr;
1278 	struct fwnet_packet_task *ptask;
1279 	struct fwnet_peer *peer;
1280 	unsigned long flags;
1281 
1282 	spin_lock_irqsave(&dev->lock, flags);
1283 
1284 	/* Can this happen? */
1285 	if (netif_queue_stopped(dev->netdev)) {
1286 		spin_unlock_irqrestore(&dev->lock, flags);
1287 
1288 		return NETDEV_TX_BUSY;
1289 	}
1290 
1291 	ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1292 	if (ptask == NULL)
1293 		goto fail;
1294 
1295 	skb = skb_share_check(skb, GFP_ATOMIC);
1296 	if (!skb)
1297 		goto fail;
1298 
1299 	/*
1300 	 * Make a copy of the driver-specific header.
1301 	 * We might need to rebuild the header on tx failure.
1302 	 */
1303 	memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1304 	skb_pull(skb, sizeof(hdr_buf));
1305 
1306 	proto = hdr_buf.h_proto;
1307 	dg_size = skb->len;
1308 
1309 	/*
1310 	 * Set the transmission type for the packet.  ARP packets and IP
1311 	 * broadcast packets are sent via GASP.
1312 	 */
1313 	if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1314 	    || proto == htons(ETH_P_ARP)
1315 	    || (proto == htons(ETH_P_IP)
1316 		&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1317 		max_payload        = dev->broadcast_xmt_max_payload;
1318 		datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1319 
1320 		ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1321 		ptask->generation  = 0;
1322 		ptask->dest_node   = IEEE1394_ALL_NODES;
1323 		ptask->speed       = SCODE_100;
1324 	} else {
1325 		__be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1326 		u8 generation;
1327 
1328 		peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1329 		if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1330 			goto fail;
1331 
1332 		generation         = peer->generation;
1333 		dest_node          = peer->node_id;
1334 		max_payload        = peer->max_payload;
1335 		datagram_label_ptr = &peer->datagram_label;
1336 
1337 		ptask->fifo_addr   = peer->fifo;
1338 		ptask->generation  = generation;
1339 		ptask->dest_node   = dest_node;
1340 		ptask->speed       = peer->speed;
1341 	}
1342 
1343 	/* If this is an ARP packet, convert it */
1344 	if (proto == htons(ETH_P_ARP)) {
1345 		struct arphdr *arp = (struct arphdr *)skb->data;
1346 		unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1347 		struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1348 		__be32 ipaddr;
1349 
1350 		ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1351 
1352 		arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1353 		arp1394->max_rec        = dev->card->max_receive;
1354 		arp1394->sspd		= dev->card->link_speed;
1355 
1356 		put_unaligned_be16(dev->local_fifo >> 32,
1357 				   &arp1394->fifo_hi);
1358 		put_unaligned_be32(dev->local_fifo & 0xffffffff,
1359 				   &arp1394->fifo_lo);
1360 		put_unaligned(ipaddr, &arp1394->sip);
1361 	}
1362 
1363 	ptask->hdr.w0 = 0;
1364 	ptask->hdr.w1 = 0;
1365 	ptask->skb = skb;
1366 	ptask->dev = dev;
1367 
1368 	/* Does it all fit in one packet? */
1369 	if (dg_size <= max_payload) {
1370 		fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1371 		ptask->outstanding_pkts = 1;
1372 		max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1373 	} else {
1374 		u16 datagram_label;
1375 
1376 		max_payload -= RFC2374_FRAG_OVERHEAD;
1377 		datagram_label = (*datagram_label_ptr)++;
1378 		fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1379 				  datagram_label);
1380 		ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1381 		max_payload += RFC2374_FRAG_HDR_SIZE;
1382 	}
1383 
1384 	if (++dev->queued_datagrams == FWNET_MAX_QUEUED_DATAGRAMS)
1385 		netif_stop_queue(dev->netdev);
1386 
1387 	spin_unlock_irqrestore(&dev->lock, flags);
1388 
1389 	ptask->max_payload = max_payload;
1390 	ptask->enqueued    = 0;
1391 
1392 	fwnet_send_packet(ptask);
1393 
1394 	return NETDEV_TX_OK;
1395 
1396  fail:
1397 	spin_unlock_irqrestore(&dev->lock, flags);
1398 
1399 	if (ptask)
1400 		kmem_cache_free(fwnet_packet_task_cache, ptask);
1401 
1402 	if (skb != NULL)
1403 		dev_kfree_skb(skb);
1404 
1405 	net->stats.tx_dropped++;
1406 	net->stats.tx_errors++;
1407 
1408 	/*
1409 	 * FIXME: According to a patch from 2003-02-26, "returning non-zero
1410 	 * causes serious problems" here, allegedly.  Before that patch,
1411 	 * -ERRNO was returned which is not appropriate under Linux 2.6.
1412 	 * Perhaps more needs to be done?  Stop the queue in serious
1413 	 * conditions and restart it elsewhere?
1414 	 */
1415 	return NETDEV_TX_OK;
1416 }
1417 
fwnet_change_mtu(struct net_device * net,int new_mtu)1418 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1419 {
1420 	if (new_mtu < 68)
1421 		return -EINVAL;
1422 
1423 	net->mtu = new_mtu;
1424 	return 0;
1425 }
1426 
1427 static const struct ethtool_ops fwnet_ethtool_ops = {
1428 	.get_link	= ethtool_op_get_link,
1429 };
1430 
1431 static const struct net_device_ops fwnet_netdev_ops = {
1432 	.ndo_open       = fwnet_open,
1433 	.ndo_stop	= fwnet_stop,
1434 	.ndo_start_xmit = fwnet_tx,
1435 	.ndo_change_mtu = fwnet_change_mtu,
1436 };
1437 
fwnet_init_dev(struct net_device * net)1438 static void fwnet_init_dev(struct net_device *net)
1439 {
1440 	net->header_ops		= &fwnet_header_ops;
1441 	net->netdev_ops		= &fwnet_netdev_ops;
1442 	net->watchdog_timeo	= 2 * HZ;
1443 	net->flags		= IFF_BROADCAST | IFF_MULTICAST;
1444 	net->features		= NETIF_F_HIGHDMA;
1445 	net->addr_len		= FWNET_ALEN;
1446 	net->hard_header_len	= FWNET_HLEN;
1447 	net->type		= ARPHRD_IEEE1394;
1448 	net->tx_queue_len	= FWNET_TX_QUEUE_LEN;
1449 	net->ethtool_ops	= &fwnet_ethtool_ops;
1450 }
1451 
1452 /* caller must hold fwnet_device_mutex */
fwnet_dev_find(struct fw_card * card)1453 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1454 {
1455 	struct fwnet_device *dev;
1456 
1457 	list_for_each_entry(dev, &fwnet_device_list, dev_link)
1458 		if (dev->card == card)
1459 			return dev;
1460 
1461 	return NULL;
1462 }
1463 
fwnet_add_peer(struct fwnet_device * dev,struct fw_unit * unit,struct fw_device * device)1464 static int fwnet_add_peer(struct fwnet_device *dev,
1465 			  struct fw_unit *unit, struct fw_device *device)
1466 {
1467 	struct fwnet_peer *peer;
1468 
1469 	peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1470 	if (!peer)
1471 		return -ENOMEM;
1472 
1473 	dev_set_drvdata(&unit->device, peer);
1474 
1475 	peer->dev = dev;
1476 	peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1477 	peer->fifo = FWNET_NO_FIFO_ADDR;
1478 	peer->ip = 0;
1479 	INIT_LIST_HEAD(&peer->pd_list);
1480 	peer->pdg_size = 0;
1481 	peer->datagram_label = 0;
1482 	peer->speed = device->max_speed;
1483 	peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1484 
1485 	peer->generation = device->generation;
1486 	smp_rmb();
1487 	peer->node_id = device->node_id;
1488 
1489 	spin_lock_irq(&dev->lock);
1490 	list_add_tail(&peer->peer_link, &dev->peer_list);
1491 	dev->peer_count++;
1492 	set_carrier_state(dev);
1493 	spin_unlock_irq(&dev->lock);
1494 
1495 	return 0;
1496 }
1497 
fwnet_probe(struct device * _dev)1498 static int fwnet_probe(struct device *_dev)
1499 {
1500 	struct fw_unit *unit = fw_unit(_dev);
1501 	struct fw_device *device = fw_parent_device(unit);
1502 	struct fw_card *card = device->card;
1503 	struct net_device *net;
1504 	bool allocated_netdev = false;
1505 	struct fwnet_device *dev;
1506 	unsigned max_mtu;
1507 	int ret;
1508 
1509 	mutex_lock(&fwnet_device_mutex);
1510 
1511 	dev = fwnet_dev_find(card);
1512 	if (dev) {
1513 		net = dev->netdev;
1514 		goto have_dev;
1515 	}
1516 
1517 	net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1518 	if (net == NULL) {
1519 		ret = -ENOMEM;
1520 		goto out;
1521 	}
1522 
1523 	allocated_netdev = true;
1524 	SET_NETDEV_DEV(net, card->device);
1525 	dev = netdev_priv(net);
1526 
1527 	spin_lock_init(&dev->lock);
1528 	dev->broadcast_state = FWNET_BROADCAST_ERROR;
1529 	dev->broadcast_rcv_context = NULL;
1530 	dev->broadcast_xmt_max_payload = 0;
1531 	dev->broadcast_xmt_datagramlabel = 0;
1532 	dev->local_fifo = FWNET_NO_FIFO_ADDR;
1533 	dev->queued_datagrams = 0;
1534 	INIT_LIST_HEAD(&dev->peer_list);
1535 	dev->card = card;
1536 	dev->netdev = net;
1537 
1538 	/*
1539 	 * Use the RFC 2734 default 1500 octets or the maximum payload
1540 	 * as initial MTU
1541 	 */
1542 	max_mtu = (1 << (card->max_receive + 1))
1543 		  - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1544 	net->mtu = min(1500U, max_mtu);
1545 
1546 	/* Set our hardware address while we're at it */
1547 	put_unaligned_be64(card->guid, net->dev_addr);
1548 	put_unaligned_be64(~0ULL, net->broadcast);
1549 	ret = register_netdev(net);
1550 	if (ret)
1551 		goto out;
1552 
1553 	list_add_tail(&dev->dev_link, &fwnet_device_list);
1554 	dev_notice(&net->dev, "IPv4 over IEEE 1394 on card %s\n",
1555 		   dev_name(card->device));
1556  have_dev:
1557 	ret = fwnet_add_peer(dev, unit, device);
1558 	if (ret && allocated_netdev) {
1559 		unregister_netdev(net);
1560 		list_del(&dev->dev_link);
1561 	}
1562  out:
1563 	if (ret && allocated_netdev)
1564 		free_netdev(net);
1565 
1566 	mutex_unlock(&fwnet_device_mutex);
1567 
1568 	return ret;
1569 }
1570 
fwnet_remove_peer(struct fwnet_peer * peer,struct fwnet_device * dev)1571 static void fwnet_remove_peer(struct fwnet_peer *peer, struct fwnet_device *dev)
1572 {
1573 	struct fwnet_partial_datagram *pd, *pd_next;
1574 
1575 	spin_lock_irq(&dev->lock);
1576 	list_del(&peer->peer_link);
1577 	dev->peer_count--;
1578 	set_carrier_state(dev);
1579 	spin_unlock_irq(&dev->lock);
1580 
1581 	list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1582 		fwnet_pd_delete(pd);
1583 
1584 	kfree(peer);
1585 }
1586 
fwnet_remove(struct device * _dev)1587 static int fwnet_remove(struct device *_dev)
1588 {
1589 	struct fwnet_peer *peer = dev_get_drvdata(_dev);
1590 	struct fwnet_device *dev = peer->dev;
1591 	struct net_device *net;
1592 	int i;
1593 
1594 	mutex_lock(&fwnet_device_mutex);
1595 
1596 	net = dev->netdev;
1597 	if (net && peer->ip)
1598 		arp_invalidate(net, peer->ip);
1599 
1600 	fwnet_remove_peer(peer, dev);
1601 
1602 	if (list_empty(&dev->peer_list)) {
1603 		unregister_netdev(net);
1604 
1605 		if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1606 			fw_core_remove_address_handler(&dev->handler);
1607 		if (dev->broadcast_rcv_context) {
1608 			fw_iso_context_stop(dev->broadcast_rcv_context);
1609 			fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1610 					      dev->card);
1611 			fw_iso_context_destroy(dev->broadcast_rcv_context);
1612 		}
1613 		for (i = 0; dev->queued_datagrams && i < 5; i++)
1614 			ssleep(1);
1615 		WARN_ON(dev->queued_datagrams);
1616 		list_del(&dev->dev_link);
1617 
1618 		free_netdev(net);
1619 	}
1620 
1621 	mutex_unlock(&fwnet_device_mutex);
1622 
1623 	return 0;
1624 }
1625 
1626 /*
1627  * FIXME abort partially sent fragmented datagrams,
1628  * discard partially received fragmented datagrams
1629  */
fwnet_update(struct fw_unit * unit)1630 static void fwnet_update(struct fw_unit *unit)
1631 {
1632 	struct fw_device *device = fw_parent_device(unit);
1633 	struct fwnet_peer *peer = dev_get_drvdata(&unit->device);
1634 	int generation;
1635 
1636 	generation = device->generation;
1637 
1638 	spin_lock_irq(&peer->dev->lock);
1639 	peer->node_id    = device->node_id;
1640 	peer->generation = generation;
1641 	spin_unlock_irq(&peer->dev->lock);
1642 }
1643 
1644 static const struct ieee1394_device_id fwnet_id_table[] = {
1645 	{
1646 		.match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1647 				IEEE1394_MATCH_VERSION,
1648 		.specifier_id = IANA_SPECIFIER_ID,
1649 		.version      = RFC2734_SW_VERSION,
1650 	},
1651 	{ }
1652 };
1653 
1654 static struct fw_driver fwnet_driver = {
1655 	.driver = {
1656 		.owner  = THIS_MODULE,
1657 		.name   = KBUILD_MODNAME,
1658 		.bus    = &fw_bus_type,
1659 		.probe  = fwnet_probe,
1660 		.remove = fwnet_remove,
1661 	},
1662 	.update   = fwnet_update,
1663 	.id_table = fwnet_id_table,
1664 };
1665 
1666 static const u32 rfc2374_unit_directory_data[] = {
1667 	0x00040000,	/* directory_length		*/
1668 	0x1200005e,	/* unit_specifier_id: IANA	*/
1669 	0x81000003,	/* textual descriptor offset	*/
1670 	0x13000001,	/* unit_sw_version: RFC 2734	*/
1671 	0x81000005,	/* textual descriptor offset	*/
1672 	0x00030000,	/* descriptor_length		*/
1673 	0x00000000,	/* text				*/
1674 	0x00000000,	/* minimal ASCII, en		*/
1675 	0x49414e41,	/* I A N A			*/
1676 	0x00030000,	/* descriptor_length		*/
1677 	0x00000000,	/* text				*/
1678 	0x00000000,	/* minimal ASCII, en		*/
1679 	0x49507634,	/* I P v 4			*/
1680 };
1681 
1682 static struct fw_descriptor rfc2374_unit_directory = {
1683 	.length = ARRAY_SIZE(rfc2374_unit_directory_data),
1684 	.key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1685 	.data   = rfc2374_unit_directory_data
1686 };
1687 
fwnet_init(void)1688 static int __init fwnet_init(void)
1689 {
1690 	int err;
1691 
1692 	err = fw_core_add_descriptor(&rfc2374_unit_directory);
1693 	if (err)
1694 		return err;
1695 
1696 	fwnet_packet_task_cache = kmem_cache_create("packet_task",
1697 			sizeof(struct fwnet_packet_task), 0, 0, NULL);
1698 	if (!fwnet_packet_task_cache) {
1699 		err = -ENOMEM;
1700 		goto out;
1701 	}
1702 
1703 	err = driver_register(&fwnet_driver.driver);
1704 	if (!err)
1705 		return 0;
1706 
1707 	kmem_cache_destroy(fwnet_packet_task_cache);
1708 out:
1709 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1710 
1711 	return err;
1712 }
1713 module_init(fwnet_init);
1714 
fwnet_cleanup(void)1715 static void __exit fwnet_cleanup(void)
1716 {
1717 	driver_unregister(&fwnet_driver.driver);
1718 	kmem_cache_destroy(fwnet_packet_task_cache);
1719 	fw_core_remove_descriptor(&rfc2374_unit_directory);
1720 }
1721 module_exit(fwnet_cleanup);
1722 
1723 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1724 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1725 MODULE_LICENSE("GPL");
1726 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);
1727