• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Support for IDE interfaces on PowerMacs.
3  *
4  * These IDE interfaces are memory-mapped and have a DBDMA channel
5  * for doing DMA.
6  *
7  *  Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
8  *  Copyright (C) 2007-2008 Bartlomiej Zolnierkiewicz
9  *
10  *  This program is free software; you can redistribute it and/or
11  *  modify it under the terms of the GNU General Public License
12  *  as published by the Free Software Foundation; either version
13  *  2 of the License, or (at your option) any later version.
14  *
15  * Some code taken from drivers/ide/ide-dma.c:
16  *
17  *  Copyright (c) 1995-1998  Mark Lord
18  *
19  * TODO: - Use pre-calculated (kauai) timing tables all the time and
20  * get rid of the "rounded" tables used previously, so we have the
21  * same table format for all controllers and can then just have one
22  * big table
23  *
24  */
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/delay.h>
29 #include <linux/ide.h>
30 #include <linux/notifier.h>
31 #include <linux/module.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 
39 #include <asm/prom.h>
40 #include <asm/io.h>
41 #include <asm/dbdma.h>
42 #include <asm/ide.h>
43 #include <asm/pci-bridge.h>
44 #include <asm/machdep.h>
45 #include <asm/pmac_feature.h>
46 #include <asm/sections.h>
47 #include <asm/irq.h>
48 #include <asm/mediabay.h>
49 
50 #define DRV_NAME "ide-pmac"
51 
52 #undef IDE_PMAC_DEBUG
53 
54 #define DMA_WAIT_TIMEOUT	50
55 
56 typedef struct pmac_ide_hwif {
57 	unsigned long			regbase;
58 	int				irq;
59 	int				kind;
60 	int				aapl_bus_id;
61 	unsigned			broken_dma : 1;
62 	unsigned			broken_dma_warn : 1;
63 	struct device_node*		node;
64 	struct macio_dev		*mdev;
65 	u32				timings[4];
66 	volatile u32 __iomem *		*kauai_fcr;
67 	ide_hwif_t			*hwif;
68 
69 	/* Those fields are duplicating what is in hwif. We currently
70 	 * can't use the hwif ones because of some assumptions that are
71 	 * beeing done by the generic code about the kind of dma controller
72 	 * and format of the dma table. This will have to be fixed though.
73 	 */
74 	volatile struct dbdma_regs __iomem *	dma_regs;
75 	struct dbdma_cmd*		dma_table_cpu;
76 } pmac_ide_hwif_t;
77 
78 enum {
79 	controller_ohare,	/* OHare based */
80 	controller_heathrow,	/* Heathrow/Paddington */
81 	controller_kl_ata3,	/* KeyLargo ATA-3 */
82 	controller_kl_ata4,	/* KeyLargo ATA-4 */
83 	controller_un_ata6,	/* UniNorth2 ATA-6 */
84 	controller_k2_ata6,	/* K2 ATA-6 */
85 	controller_sh_ata6,	/* Shasta ATA-6 */
86 };
87 
88 static const char* model_name[] = {
89 	"OHare ATA",		/* OHare based */
90 	"Heathrow ATA",		/* Heathrow/Paddington */
91 	"KeyLargo ATA-3",	/* KeyLargo ATA-3 (MDMA only) */
92 	"KeyLargo ATA-4",	/* KeyLargo ATA-4 (UDMA/66) */
93 	"UniNorth ATA-6",	/* UniNorth2 ATA-6 (UDMA/100) */
94 	"K2 ATA-6",		/* K2 ATA-6 (UDMA/100) */
95 	"Shasta ATA-6",		/* Shasta ATA-6 (UDMA/133) */
96 };
97 
98 /*
99  * Extra registers, both 32-bit little-endian
100  */
101 #define IDE_TIMING_CONFIG	0x200
102 #define IDE_INTERRUPT		0x300
103 
104 /* Kauai (U2) ATA has different register setup */
105 #define IDE_KAUAI_PIO_CONFIG	0x200
106 #define IDE_KAUAI_ULTRA_CONFIG	0x210
107 #define IDE_KAUAI_POLL_CONFIG	0x220
108 
109 /*
110  * Timing configuration register definitions
111  */
112 
113 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
114 #define SYSCLK_TICKS(t)		(((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
115 #define SYSCLK_TICKS_66(t)	(((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
116 #define IDE_SYSCLK_NS		30	/* 33Mhz cell */
117 #define IDE_SYSCLK_66_NS	15	/* 66Mhz cell */
118 
119 /* 133Mhz cell, found in shasta.
120  * See comments about 100 Mhz Uninorth 2...
121  * Note that PIO_MASK and MDMA_MASK seem to overlap
122  */
123 #define TR_133_PIOREG_PIO_MASK		0xff000fff
124 #define TR_133_PIOREG_MDMA_MASK		0x00fff800
125 #define TR_133_UDMAREG_UDMA_MASK	0x0003ffff
126 #define TR_133_UDMAREG_UDMA_EN		0x00000001
127 
128 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
129  * this one yet, it appears as a pci device (106b/0033) on uninorth
130  * internal PCI bus and it's clock is controlled like gem or fw. It
131  * appears to be an evolution of keylargo ATA4 with a timing register
132  * extended to 2 32bits registers and a similar DBDMA channel. Other
133  * registers seem to exist but I can't tell much about them.
134  *
135  * So far, I'm using pre-calculated tables for this extracted from
136  * the values used by the MacOS X driver.
137  *
138  * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
139  * register controls the UDMA timings. At least, it seems bit 0
140  * of this one enables UDMA vs. MDMA, and bits 4..7 are the
141  * cycle time in units of 10ns. Bits 8..15 are used by I don't
142  * know their meaning yet
143  */
144 #define TR_100_PIOREG_PIO_MASK		0xff000fff
145 #define TR_100_PIOREG_MDMA_MASK		0x00fff000
146 #define TR_100_UDMAREG_UDMA_MASK	0x0000ffff
147 #define TR_100_UDMAREG_UDMA_EN		0x00000001
148 
149 
150 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
151  * 40 connector cable and to 4 on 80 connector one.
152  * Clock unit is 15ns (66Mhz)
153  *
154  * 3 Values can be programmed:
155  *  - Write data setup, which appears to match the cycle time. They
156  *    also call it DIOW setup.
157  *  - Ready to pause time (from spec)
158  *  - Address setup. That one is weird. I don't see where exactly
159  *    it fits in UDMA cycles, I got it's name from an obscure piece
160  *    of commented out code in Darwin. They leave it to 0, we do as
161  *    well, despite a comment that would lead to think it has a
162  *    min value of 45ns.
163  * Apple also add 60ns to the write data setup (or cycle time ?) on
164  * reads.
165  */
166 #define TR_66_UDMA_MASK			0xfff00000
167 #define TR_66_UDMA_EN			0x00100000 /* Enable Ultra mode for DMA */
168 #define TR_66_UDMA_ADDRSETUP_MASK	0xe0000000 /* Address setup */
169 #define TR_66_UDMA_ADDRSETUP_SHIFT	29
170 #define TR_66_UDMA_RDY2PAUS_MASK	0x1e000000 /* Ready 2 pause time */
171 #define TR_66_UDMA_RDY2PAUS_SHIFT	25
172 #define TR_66_UDMA_WRDATASETUP_MASK	0x01e00000 /* Write data setup time */
173 #define TR_66_UDMA_WRDATASETUP_SHIFT	21
174 #define TR_66_MDMA_MASK			0x000ffc00
175 #define TR_66_MDMA_RECOVERY_MASK	0x000f8000
176 #define TR_66_MDMA_RECOVERY_SHIFT	15
177 #define TR_66_MDMA_ACCESS_MASK		0x00007c00
178 #define TR_66_MDMA_ACCESS_SHIFT		10
179 #define TR_66_PIO_MASK			0x000003ff
180 #define TR_66_PIO_RECOVERY_MASK		0x000003e0
181 #define TR_66_PIO_RECOVERY_SHIFT	5
182 #define TR_66_PIO_ACCESS_MASK		0x0000001f
183 #define TR_66_PIO_ACCESS_SHIFT		0
184 
185 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
186  * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
187  *
188  * The access time and recovery time can be programmed. Some older
189  * Darwin code base limit OHare to 150ns cycle time. I decided to do
190  * the same here fore safety against broken old hardware ;)
191  * The HalfTick bit, when set, adds half a clock (15ns) to the access
192  * time and removes one from recovery. It's not supported on KeyLargo
193  * implementation afaik. The E bit appears to be set for PIO mode 0 and
194  * is used to reach long timings used in this mode.
195  */
196 #define TR_33_MDMA_MASK			0x003ff800
197 #define TR_33_MDMA_RECOVERY_MASK	0x001f0000
198 #define TR_33_MDMA_RECOVERY_SHIFT	16
199 #define TR_33_MDMA_ACCESS_MASK		0x0000f800
200 #define TR_33_MDMA_ACCESS_SHIFT		11
201 #define TR_33_MDMA_HALFTICK		0x00200000
202 #define TR_33_PIO_MASK			0x000007ff
203 #define TR_33_PIO_E			0x00000400
204 #define TR_33_PIO_RECOVERY_MASK		0x000003e0
205 #define TR_33_PIO_RECOVERY_SHIFT	5
206 #define TR_33_PIO_ACCESS_MASK		0x0000001f
207 #define TR_33_PIO_ACCESS_SHIFT		0
208 
209 /*
210  * Interrupt register definitions
211  */
212 #define IDE_INTR_DMA			0x80000000
213 #define IDE_INTR_DEVICE			0x40000000
214 
215 /*
216  * FCR Register on Kauai. Not sure what bit 0x4 is  ...
217  */
218 #define KAUAI_FCR_UATA_MAGIC		0x00000004
219 #define KAUAI_FCR_UATA_RESET_N		0x00000002
220 #define KAUAI_FCR_UATA_ENABLE		0x00000001
221 
222 /* Rounded Multiword DMA timings
223  *
224  * I gave up finding a generic formula for all controller
225  * types and instead, built tables based on timing values
226  * used by Apple in Darwin's implementation.
227  */
228 struct mdma_timings_t {
229 	int	accessTime;
230 	int	recoveryTime;
231 	int	cycleTime;
232 };
233 
234 struct mdma_timings_t mdma_timings_33[] =
235 {
236     { 240, 240, 480 },
237     { 180, 180, 360 },
238     { 135, 135, 270 },
239     { 120, 120, 240 },
240     { 105, 105, 210 },
241     {  90,  90, 180 },
242     {  75,  75, 150 },
243     {  75,  45, 120 },
244     {   0,   0,   0 }
245 };
246 
247 struct mdma_timings_t mdma_timings_33k[] =
248 {
249     { 240, 240, 480 },
250     { 180, 180, 360 },
251     { 150, 150, 300 },
252     { 120, 120, 240 },
253     {  90, 120, 210 },
254     {  90,  90, 180 },
255     {  90,  60, 150 },
256     {  90,  30, 120 },
257     {   0,   0,   0 }
258 };
259 
260 struct mdma_timings_t mdma_timings_66[] =
261 {
262     { 240, 240, 480 },
263     { 180, 180, 360 },
264     { 135, 135, 270 },
265     { 120, 120, 240 },
266     { 105, 105, 210 },
267     {  90,  90, 180 },
268     {  90,  75, 165 },
269     {  75,  45, 120 },
270     {   0,   0,   0 }
271 };
272 
273 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
274 struct {
275 	int	addrSetup; /* ??? */
276 	int	rdy2pause;
277 	int	wrDataSetup;
278 } kl66_udma_timings[] =
279 {
280     {   0, 180,  120 },	/* Mode 0 */
281     {   0, 150,  90 },	/*      1 */
282     {   0, 120,  60 },	/*      2 */
283     {   0, 90,   45 },	/*      3 */
284     {   0, 90,   30 }	/*      4 */
285 };
286 
287 /* UniNorth 2 ATA/100 timings */
288 struct kauai_timing {
289 	int	cycle_time;
290 	u32	timing_reg;
291 };
292 
293 static struct kauai_timing	kauai_pio_timings[] =
294 {
295 	{ 930	, 0x08000fff },
296 	{ 600	, 0x08000a92 },
297 	{ 383	, 0x0800060f },
298 	{ 360	, 0x08000492 },
299 	{ 330	, 0x0800048f },
300 	{ 300	, 0x080003cf },
301 	{ 270	, 0x080003cc },
302 	{ 240	, 0x0800038b },
303 	{ 239	, 0x0800030c },
304 	{ 180	, 0x05000249 },
305 	{ 120	, 0x04000148 },
306 	{ 0	, 0 },
307 };
308 
309 static struct kauai_timing	kauai_mdma_timings[] =
310 {
311 	{ 1260	, 0x00fff000 },
312 	{ 480	, 0x00618000 },
313 	{ 360	, 0x00492000 },
314 	{ 270	, 0x0038e000 },
315 	{ 240	, 0x0030c000 },
316 	{ 210	, 0x002cb000 },
317 	{ 180	, 0x00249000 },
318 	{ 150	, 0x00209000 },
319 	{ 120	, 0x00148000 },
320 	{ 0	, 0 },
321 };
322 
323 static struct kauai_timing	kauai_udma_timings[] =
324 {
325 	{ 120	, 0x000070c0 },
326 	{ 90	, 0x00005d80 },
327 	{ 60	, 0x00004a60 },
328 	{ 45	, 0x00003a50 },
329 	{ 30	, 0x00002a30 },
330 	{ 20	, 0x00002921 },
331 	{ 0	, 0 },
332 };
333 
334 static struct kauai_timing	shasta_pio_timings[] =
335 {
336 	{ 930	, 0x08000fff },
337 	{ 600	, 0x0A000c97 },
338 	{ 383	, 0x07000712 },
339 	{ 360	, 0x040003cd },
340 	{ 330	, 0x040003cd },
341 	{ 300	, 0x040003cd },
342 	{ 270	, 0x040003cd },
343 	{ 240	, 0x040003cd },
344 	{ 239	, 0x040003cd },
345 	{ 180	, 0x0400028b },
346 	{ 120	, 0x0400010a },
347 	{ 0	, 0 },
348 };
349 
350 static struct kauai_timing	shasta_mdma_timings[] =
351 {
352 	{ 1260	, 0x00fff000 },
353 	{ 480	, 0x00820800 },
354 	{ 360	, 0x00820800 },
355 	{ 270	, 0x00820800 },
356 	{ 240	, 0x00820800 },
357 	{ 210	, 0x00820800 },
358 	{ 180	, 0x00820800 },
359 	{ 150	, 0x0028b000 },
360 	{ 120	, 0x001ca000 },
361 	{ 0	, 0 },
362 };
363 
364 static struct kauai_timing	shasta_udma133_timings[] =
365 {
366 	{ 120   , 0x00035901, },
367 	{ 90    , 0x000348b1, },
368 	{ 60    , 0x00033881, },
369 	{ 45    , 0x00033861, },
370 	{ 30    , 0x00033841, },
371 	{ 20    , 0x00033031, },
372 	{ 15    , 0x00033021, },
373 	{ 0	, 0 },
374 };
375 
376 
377 static inline u32
kauai_lookup_timing(struct kauai_timing * table,int cycle_time)378 kauai_lookup_timing(struct kauai_timing* table, int cycle_time)
379 {
380 	int i;
381 
382 	for (i=0; table[i].cycle_time; i++)
383 		if (cycle_time > table[i+1].cycle_time)
384 			return table[i].timing_reg;
385 	BUG();
386 	return 0;
387 }
388 
389 /* allow up to 256 DBDMA commands per xfer */
390 #define MAX_DCMDS		256
391 
392 /*
393  * Wait 1s for disk to answer on IDE bus after a hard reset
394  * of the device (via GPIO/FCR).
395  *
396  * Some devices seem to "pollute" the bus even after dropping
397  * the BSY bit (typically some combo drives slave on the UDMA
398  * bus) after a hard reset. Since we hard reset all drives on
399  * KeyLargo ATA66, we have to keep that delay around. I may end
400  * up not hard resetting anymore on these and keep the delay only
401  * for older interfaces instead (we have to reset when coming
402  * from MacOS...) --BenH.
403  */
404 #define IDE_WAKEUP_DELAY	(1*HZ)
405 
406 static int pmac_ide_init_dma(ide_hwif_t *, const struct ide_port_info *);
407 
408 #define PMAC_IDE_REG(x) \
409 	((void __iomem *)((drive)->hwif->io_ports.data_addr + (x)))
410 
411 /*
412  * Apply the timings of the proper unit (master/slave) to the shared
413  * timing register when selecting that unit. This version is for
414  * ASICs with a single timing register
415  */
pmac_ide_apply_timings(ide_drive_t * drive)416 static void pmac_ide_apply_timings(ide_drive_t *drive)
417 {
418 	ide_hwif_t *hwif = drive->hwif;
419 	pmac_ide_hwif_t *pmif =
420 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
421 
422 	if (drive->dn & 1)
423 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_TIMING_CONFIG));
424 	else
425 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_TIMING_CONFIG));
426 	(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
427 }
428 
429 /*
430  * Apply the timings of the proper unit (master/slave) to the shared
431  * timing register when selecting that unit. This version is for
432  * ASICs with a dual timing register (Kauai)
433  */
pmac_ide_kauai_apply_timings(ide_drive_t * drive)434 static void pmac_ide_kauai_apply_timings(ide_drive_t *drive)
435 {
436 	ide_hwif_t *hwif = drive->hwif;
437 	pmac_ide_hwif_t *pmif =
438 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
439 
440 	if (drive->dn & 1) {
441 		writel(pmif->timings[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
442 		writel(pmif->timings[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
443 	} else {
444 		writel(pmif->timings[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
445 		writel(pmif->timings[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG));
446 	}
447 	(void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG));
448 }
449 
450 /*
451  * Force an update of controller timing values for a given drive
452  */
453 static void
pmac_ide_do_update_timings(ide_drive_t * drive)454 pmac_ide_do_update_timings(ide_drive_t *drive)
455 {
456 	ide_hwif_t *hwif = drive->hwif;
457 	pmac_ide_hwif_t *pmif =
458 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
459 
460 	if (pmif->kind == controller_sh_ata6 ||
461 	    pmif->kind == controller_un_ata6 ||
462 	    pmif->kind == controller_k2_ata6)
463 		pmac_ide_kauai_apply_timings(drive);
464 	else
465 		pmac_ide_apply_timings(drive);
466 }
467 
pmac_dev_select(ide_drive_t * drive)468 static void pmac_dev_select(ide_drive_t *drive)
469 {
470 	pmac_ide_apply_timings(drive);
471 
472 	writeb(drive->select | ATA_DEVICE_OBS,
473 	       (void __iomem *)drive->hwif->io_ports.device_addr);
474 }
475 
pmac_kauai_dev_select(ide_drive_t * drive)476 static void pmac_kauai_dev_select(ide_drive_t *drive)
477 {
478 	pmac_ide_kauai_apply_timings(drive);
479 
480 	writeb(drive->select | ATA_DEVICE_OBS,
481 	       (void __iomem *)drive->hwif->io_ports.device_addr);
482 }
483 
pmac_exec_command(ide_hwif_t * hwif,u8 cmd)484 static void pmac_exec_command(ide_hwif_t *hwif, u8 cmd)
485 {
486 	writeb(cmd, (void __iomem *)hwif->io_ports.command_addr);
487 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
488 				     + IDE_TIMING_CONFIG));
489 }
490 
pmac_write_devctl(ide_hwif_t * hwif,u8 ctl)491 static void pmac_write_devctl(ide_hwif_t *hwif, u8 ctl)
492 {
493 	writeb(ctl, (void __iomem *)hwif->io_ports.ctl_addr);
494 	(void)readl((void __iomem *)(hwif->io_ports.data_addr
495 				     + IDE_TIMING_CONFIG));
496 }
497 
498 /*
499  * Old tuning functions (called on hdparm -p), sets up drive PIO timings
500  */
pmac_ide_set_pio_mode(ide_hwif_t * hwif,ide_drive_t * drive)501 static void pmac_ide_set_pio_mode(ide_hwif_t *hwif, ide_drive_t *drive)
502 {
503 	pmac_ide_hwif_t *pmif =
504 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
505 	const u8 pio = drive->pio_mode - XFER_PIO_0;
506 	struct ide_timing *tim = ide_timing_find_mode(XFER_PIO_0 + pio);
507 	u32 *timings, t;
508 	unsigned accessTicks, recTicks;
509 	unsigned accessTime, recTime;
510 	unsigned int cycle_time;
511 
512 	/* which drive is it ? */
513 	timings = &pmif->timings[drive->dn & 1];
514 	t = *timings;
515 
516 	cycle_time = ide_pio_cycle_time(drive, pio);
517 
518 	switch (pmif->kind) {
519 	case controller_sh_ata6: {
520 		/* 133Mhz cell */
521 		u32 tr = kauai_lookup_timing(shasta_pio_timings, cycle_time);
522 		t = (t & ~TR_133_PIOREG_PIO_MASK) | tr;
523 		break;
524 		}
525 	case controller_un_ata6:
526 	case controller_k2_ata6: {
527 		/* 100Mhz cell */
528 		u32 tr = kauai_lookup_timing(kauai_pio_timings, cycle_time);
529 		t = (t & ~TR_100_PIOREG_PIO_MASK) | tr;
530 		break;
531 		}
532 	case controller_kl_ata4:
533 		/* 66Mhz cell */
534 		recTime = cycle_time - tim->active - tim->setup;
535 		recTime = max(recTime, 150U);
536 		accessTime = tim->active;
537 		accessTime = max(accessTime, 150U);
538 		accessTicks = SYSCLK_TICKS_66(accessTime);
539 		accessTicks = min(accessTicks, 0x1fU);
540 		recTicks = SYSCLK_TICKS_66(recTime);
541 		recTicks = min(recTicks, 0x1fU);
542 		t = (t & ~TR_66_PIO_MASK) |
543 			(accessTicks << TR_66_PIO_ACCESS_SHIFT) |
544 			(recTicks << TR_66_PIO_RECOVERY_SHIFT);
545 		break;
546 	default: {
547 		/* 33Mhz cell */
548 		int ebit = 0;
549 		recTime = cycle_time - tim->active - tim->setup;
550 		recTime = max(recTime, 150U);
551 		accessTime = tim->active;
552 		accessTime = max(accessTime, 150U);
553 		accessTicks = SYSCLK_TICKS(accessTime);
554 		accessTicks = min(accessTicks, 0x1fU);
555 		accessTicks = max(accessTicks, 4U);
556 		recTicks = SYSCLK_TICKS(recTime);
557 		recTicks = min(recTicks, 0x1fU);
558 		recTicks = max(recTicks, 5U) - 4;
559 		if (recTicks > 9) {
560 			recTicks--; /* guess, but it's only for PIO0, so... */
561 			ebit = 1;
562 		}
563 		t = (t & ~TR_33_PIO_MASK) |
564 				(accessTicks << TR_33_PIO_ACCESS_SHIFT) |
565 				(recTicks << TR_33_PIO_RECOVERY_SHIFT);
566 		if (ebit)
567 			t |= TR_33_PIO_E;
568 		break;
569 		}
570 	}
571 
572 #ifdef IDE_PMAC_DEBUG
573 	printk(KERN_ERR "%s: Set PIO timing for mode %d, reg: 0x%08x\n",
574 		drive->name, pio,  *timings);
575 #endif
576 
577 	*timings = t;
578 	pmac_ide_do_update_timings(drive);
579 }
580 
581 /*
582  * Calculate KeyLargo ATA/66 UDMA timings
583  */
584 static int
set_timings_udma_ata4(u32 * timings,u8 speed)585 set_timings_udma_ata4(u32 *timings, u8 speed)
586 {
587 	unsigned rdyToPauseTicks, wrDataSetupTicks, addrTicks;
588 
589 	if (speed > XFER_UDMA_4)
590 		return 1;
591 
592 	rdyToPauseTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].rdy2pause);
593 	wrDataSetupTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].wrDataSetup);
594 	addrTicks = SYSCLK_TICKS_66(kl66_udma_timings[speed & 0xf].addrSetup);
595 
596 	*timings = ((*timings) & ~(TR_66_UDMA_MASK | TR_66_MDMA_MASK)) |
597 			(wrDataSetupTicks << TR_66_UDMA_WRDATASETUP_SHIFT) |
598 			(rdyToPauseTicks << TR_66_UDMA_RDY2PAUS_SHIFT) |
599 			(addrTicks <<TR_66_UDMA_ADDRSETUP_SHIFT) |
600 			TR_66_UDMA_EN;
601 #ifdef IDE_PMAC_DEBUG
602 	printk(KERN_ERR "ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
603 		speed & 0xf,  *timings);
604 #endif
605 
606 	return 0;
607 }
608 
609 /*
610  * Calculate Kauai ATA/100 UDMA timings
611  */
612 static int
set_timings_udma_ata6(u32 * pio_timings,u32 * ultra_timings,u8 speed)613 set_timings_udma_ata6(u32 *pio_timings, u32 *ultra_timings, u8 speed)
614 {
615 	struct ide_timing *t = ide_timing_find_mode(speed);
616 	u32 tr;
617 
618 	if (speed > XFER_UDMA_5 || t == NULL)
619 		return 1;
620 	tr = kauai_lookup_timing(kauai_udma_timings, (int)t->udma);
621 	*ultra_timings = ((*ultra_timings) & ~TR_100_UDMAREG_UDMA_MASK) | tr;
622 	*ultra_timings = (*ultra_timings) | TR_100_UDMAREG_UDMA_EN;
623 
624 	return 0;
625 }
626 
627 /*
628  * Calculate Shasta ATA/133 UDMA timings
629  */
630 static int
set_timings_udma_shasta(u32 * pio_timings,u32 * ultra_timings,u8 speed)631 set_timings_udma_shasta(u32 *pio_timings, u32 *ultra_timings, u8 speed)
632 {
633 	struct ide_timing *t = ide_timing_find_mode(speed);
634 	u32 tr;
635 
636 	if (speed > XFER_UDMA_6 || t == NULL)
637 		return 1;
638 	tr = kauai_lookup_timing(shasta_udma133_timings, (int)t->udma);
639 	*ultra_timings = ((*ultra_timings) & ~TR_133_UDMAREG_UDMA_MASK) | tr;
640 	*ultra_timings = (*ultra_timings) | TR_133_UDMAREG_UDMA_EN;
641 
642 	return 0;
643 }
644 
645 /*
646  * Calculate MDMA timings for all cells
647  */
648 static void
set_timings_mdma(ide_drive_t * drive,int intf_type,u32 * timings,u32 * timings2,u8 speed)649 set_timings_mdma(ide_drive_t *drive, int intf_type, u32 *timings, u32 *timings2,
650 		 	u8 speed)
651 {
652 	u16 *id = drive->id;
653 	int cycleTime, accessTime = 0, recTime = 0;
654 	unsigned accessTicks, recTicks;
655 	struct mdma_timings_t* tm = NULL;
656 	int i;
657 
658 	/* Get default cycle time for mode */
659 	switch(speed & 0xf) {
660 		case 0: cycleTime = 480; break;
661 		case 1: cycleTime = 150; break;
662 		case 2: cycleTime = 120; break;
663 		default:
664 			BUG();
665 			break;
666 	}
667 
668 	/* Check if drive provides explicit DMA cycle time */
669 	if ((id[ATA_ID_FIELD_VALID] & 2) && id[ATA_ID_EIDE_DMA_TIME])
670 		cycleTime = max_t(int, id[ATA_ID_EIDE_DMA_TIME], cycleTime);
671 
672 	/* OHare limits according to some old Apple sources */
673 	if ((intf_type == controller_ohare) && (cycleTime < 150))
674 		cycleTime = 150;
675 	/* Get the proper timing array for this controller */
676 	switch(intf_type) {
677 	        case controller_sh_ata6:
678 		case controller_un_ata6:
679 		case controller_k2_ata6:
680 			break;
681 		case controller_kl_ata4:
682 			tm = mdma_timings_66;
683 			break;
684 		case controller_kl_ata3:
685 			tm = mdma_timings_33k;
686 			break;
687 		default:
688 			tm = mdma_timings_33;
689 			break;
690 	}
691 	if (tm != NULL) {
692 		/* Lookup matching access & recovery times */
693 		i = -1;
694 		for (;;) {
695 			if (tm[i+1].cycleTime < cycleTime)
696 				break;
697 			i++;
698 		}
699 		cycleTime = tm[i].cycleTime;
700 		accessTime = tm[i].accessTime;
701 		recTime = tm[i].recoveryTime;
702 
703 #ifdef IDE_PMAC_DEBUG
704 		printk(KERN_ERR "%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
705 			drive->name, cycleTime, accessTime, recTime);
706 #endif
707 	}
708 	switch(intf_type) {
709 	case controller_sh_ata6: {
710 		/* 133Mhz cell */
711 		u32 tr = kauai_lookup_timing(shasta_mdma_timings, cycleTime);
712 		*timings = ((*timings) & ~TR_133_PIOREG_MDMA_MASK) | tr;
713 		*timings2 = (*timings2) & ~TR_133_UDMAREG_UDMA_EN;
714 		}
715 	case controller_un_ata6:
716 	case controller_k2_ata6: {
717 		/* 100Mhz cell */
718 		u32 tr = kauai_lookup_timing(kauai_mdma_timings, cycleTime);
719 		*timings = ((*timings) & ~TR_100_PIOREG_MDMA_MASK) | tr;
720 		*timings2 = (*timings2) & ~TR_100_UDMAREG_UDMA_EN;
721 		}
722 		break;
723 	case controller_kl_ata4:
724 		/* 66Mhz cell */
725 		accessTicks = SYSCLK_TICKS_66(accessTime);
726 		accessTicks = min(accessTicks, 0x1fU);
727 		accessTicks = max(accessTicks, 0x1U);
728 		recTicks = SYSCLK_TICKS_66(recTime);
729 		recTicks = min(recTicks, 0x1fU);
730 		recTicks = max(recTicks, 0x3U);
731 		/* Clear out mdma bits and disable udma */
732 		*timings = ((*timings) & ~(TR_66_MDMA_MASK | TR_66_UDMA_MASK)) |
733 			(accessTicks << TR_66_MDMA_ACCESS_SHIFT) |
734 			(recTicks << TR_66_MDMA_RECOVERY_SHIFT);
735 		break;
736 	case controller_kl_ata3:
737 		/* 33Mhz cell on KeyLargo */
738 		accessTicks = SYSCLK_TICKS(accessTime);
739 		accessTicks = max(accessTicks, 1U);
740 		accessTicks = min(accessTicks, 0x1fU);
741 		accessTime = accessTicks * IDE_SYSCLK_NS;
742 		recTicks = SYSCLK_TICKS(recTime);
743 		recTicks = max(recTicks, 1U);
744 		recTicks = min(recTicks, 0x1fU);
745 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
746 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
747 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
748 		break;
749 	default: {
750 		/* 33Mhz cell on others */
751 		int halfTick = 0;
752 		int origAccessTime = accessTime;
753 		int origRecTime = recTime;
754 
755 		accessTicks = SYSCLK_TICKS(accessTime);
756 		accessTicks = max(accessTicks, 1U);
757 		accessTicks = min(accessTicks, 0x1fU);
758 		accessTime = accessTicks * IDE_SYSCLK_NS;
759 		recTicks = SYSCLK_TICKS(recTime);
760 		recTicks = max(recTicks, 2U) - 1;
761 		recTicks = min(recTicks, 0x1fU);
762 		recTime = (recTicks + 1) * IDE_SYSCLK_NS;
763 		if ((accessTicks > 1) &&
764 		    ((accessTime - IDE_SYSCLK_NS/2) >= origAccessTime) &&
765 		    ((recTime - IDE_SYSCLK_NS/2) >= origRecTime)) {
766             		halfTick = 1;
767 			accessTicks--;
768 		}
769 		*timings = ((*timings) & ~TR_33_MDMA_MASK) |
770 				(accessTicks << TR_33_MDMA_ACCESS_SHIFT) |
771 				(recTicks << TR_33_MDMA_RECOVERY_SHIFT);
772 		if (halfTick)
773 			*timings |= TR_33_MDMA_HALFTICK;
774 		}
775 	}
776 #ifdef IDE_PMAC_DEBUG
777 	printk(KERN_ERR "%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
778 		drive->name, speed & 0xf,  *timings);
779 #endif
780 }
781 
pmac_ide_set_dma_mode(ide_hwif_t * hwif,ide_drive_t * drive)782 static void pmac_ide_set_dma_mode(ide_hwif_t *hwif, ide_drive_t *drive)
783 {
784 	pmac_ide_hwif_t *pmif =
785 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
786 	int ret = 0;
787 	u32 *timings, *timings2, tl[2];
788 	u8 unit = drive->dn & 1;
789 	const u8 speed = drive->dma_mode;
790 
791 	timings = &pmif->timings[unit];
792 	timings2 = &pmif->timings[unit+2];
793 
794 	/* Copy timings to local image */
795 	tl[0] = *timings;
796 	tl[1] = *timings2;
797 
798 	if (speed >= XFER_UDMA_0) {
799 		if (pmif->kind == controller_kl_ata4)
800 			ret = set_timings_udma_ata4(&tl[0], speed);
801 		else if (pmif->kind == controller_un_ata6
802 			 || pmif->kind == controller_k2_ata6)
803 			ret = set_timings_udma_ata6(&tl[0], &tl[1], speed);
804 		else if (pmif->kind == controller_sh_ata6)
805 			ret = set_timings_udma_shasta(&tl[0], &tl[1], speed);
806 		else
807 			ret = -1;
808 	} else
809 		set_timings_mdma(drive, pmif->kind, &tl[0], &tl[1], speed);
810 
811 	if (ret)
812 		return;
813 
814 	/* Apply timings to controller */
815 	*timings = tl[0];
816 	*timings2 = tl[1];
817 
818 	pmac_ide_do_update_timings(drive);
819 }
820 
821 /*
822  * Blast some well known "safe" values to the timing registers at init or
823  * wakeup from sleep time, before we do real calculation
824  */
825 static void
sanitize_timings(pmac_ide_hwif_t * pmif)826 sanitize_timings(pmac_ide_hwif_t *pmif)
827 {
828 	unsigned int value, value2 = 0;
829 
830 	switch(pmif->kind) {
831 		case controller_sh_ata6:
832 			value = 0x0a820c97;
833 			value2 = 0x00033031;
834 			break;
835 		case controller_un_ata6:
836 		case controller_k2_ata6:
837 			value = 0x08618a92;
838 			value2 = 0x00002921;
839 			break;
840 		case controller_kl_ata4:
841 			value = 0x0008438c;
842 			break;
843 		case controller_kl_ata3:
844 			value = 0x00084526;
845 			break;
846 		case controller_heathrow:
847 		case controller_ohare:
848 		default:
849 			value = 0x00074526;
850 			break;
851 	}
852 	pmif->timings[0] = pmif->timings[1] = value;
853 	pmif->timings[2] = pmif->timings[3] = value2;
854 }
855 
on_media_bay(pmac_ide_hwif_t * pmif)856 static int on_media_bay(pmac_ide_hwif_t *pmif)
857 {
858 	return pmif->mdev && pmif->mdev->media_bay != NULL;
859 }
860 
861 /* Suspend call back, should be called after the child devices
862  * have actually been suspended
863  */
pmac_ide_do_suspend(pmac_ide_hwif_t * pmif)864 static int pmac_ide_do_suspend(pmac_ide_hwif_t *pmif)
865 {
866 	/* We clear the timings */
867 	pmif->timings[0] = 0;
868 	pmif->timings[1] = 0;
869 
870 	disable_irq(pmif->irq);
871 
872 	/* The media bay will handle itself just fine */
873 	if (on_media_bay(pmif))
874 		return 0;
875 
876 	/* Kauai has bus control FCRs directly here */
877 	if (pmif->kauai_fcr) {
878 		u32 fcr = readl(pmif->kauai_fcr);
879 		fcr &= ~(KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE);
880 		writel(fcr, pmif->kauai_fcr);
881 	}
882 
883 	/* Disable the bus on older machines and the cell on kauai */
884 	ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id,
885 			    0);
886 
887 	return 0;
888 }
889 
890 /* Resume call back, should be called before the child devices
891  * are resumed
892  */
pmac_ide_do_resume(pmac_ide_hwif_t * pmif)893 static int pmac_ide_do_resume(pmac_ide_hwif_t *pmif)
894 {
895 	/* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
896 	if (!on_media_bay(pmif)) {
897 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 1);
898 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, pmif->node, pmif->aapl_bus_id, 1);
899 		msleep(10);
900 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, pmif->node, pmif->aapl_bus_id, 0);
901 
902 		/* Kauai has it different */
903 		if (pmif->kauai_fcr) {
904 			u32 fcr = readl(pmif->kauai_fcr);
905 			fcr |= KAUAI_FCR_UATA_RESET_N | KAUAI_FCR_UATA_ENABLE;
906 			writel(fcr, pmif->kauai_fcr);
907 		}
908 
909 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
910 	}
911 
912 	/* Sanitize drive timings */
913 	sanitize_timings(pmif);
914 
915 	enable_irq(pmif->irq);
916 
917 	return 0;
918 }
919 
pmac_ide_cable_detect(ide_hwif_t * hwif)920 static u8 pmac_ide_cable_detect(ide_hwif_t *hwif)
921 {
922 	pmac_ide_hwif_t *pmif =
923 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
924 	struct device_node *np = pmif->node;
925 	const char *cable = of_get_property(np, "cable-type", NULL);
926 	struct device_node *root = of_find_node_by_path("/");
927 	const char *model = of_get_property(root, "model", NULL);
928 
929 	/* Get cable type from device-tree. */
930 	if (cable && !strncmp(cable, "80-", 3)) {
931 		/* Some drives fail to detect 80c cable in PowerBook */
932 		/* These machine use proprietary short IDE cable anyway */
933 		if (!strncmp(model, "PowerBook", 9))
934 			return ATA_CBL_PATA40_SHORT;
935 		else
936 			return ATA_CBL_PATA80;
937 	}
938 
939 	/*
940 	 * G5's seem to have incorrect cable type in device-tree.
941 	 * Let's assume they have a 80 conductor cable, this seem
942 	 * to be always the case unless the user mucked around.
943 	 */
944 	if (of_device_is_compatible(np, "K2-UATA") ||
945 	    of_device_is_compatible(np, "shasta-ata"))
946 		return ATA_CBL_PATA80;
947 
948 	return ATA_CBL_PATA40;
949 }
950 
pmac_ide_init_dev(ide_drive_t * drive)951 static void pmac_ide_init_dev(ide_drive_t *drive)
952 {
953 	ide_hwif_t *hwif = drive->hwif;
954 	pmac_ide_hwif_t *pmif =
955 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
956 
957 	if (on_media_bay(pmif)) {
958 		if (check_media_bay(pmif->mdev->media_bay) == MB_CD) {
959 			drive->dev_flags &= ~IDE_DFLAG_NOPROBE;
960 			return;
961 		}
962 		drive->dev_flags |= IDE_DFLAG_NOPROBE;
963 	}
964 }
965 
966 static const struct ide_tp_ops pmac_tp_ops = {
967 	.exec_command		= pmac_exec_command,
968 	.read_status		= ide_read_status,
969 	.read_altstatus		= ide_read_altstatus,
970 	.write_devctl		= pmac_write_devctl,
971 
972 	.dev_select		= pmac_dev_select,
973 	.tf_load		= ide_tf_load,
974 	.tf_read		= ide_tf_read,
975 
976 	.input_data		= ide_input_data,
977 	.output_data		= ide_output_data,
978 };
979 
980 static const struct ide_tp_ops pmac_ata6_tp_ops = {
981 	.exec_command		= pmac_exec_command,
982 	.read_status		= ide_read_status,
983 	.read_altstatus		= ide_read_altstatus,
984 	.write_devctl		= pmac_write_devctl,
985 
986 	.dev_select		= pmac_kauai_dev_select,
987 	.tf_load		= ide_tf_load,
988 	.tf_read		= ide_tf_read,
989 
990 	.input_data		= ide_input_data,
991 	.output_data		= ide_output_data,
992 };
993 
994 static const struct ide_port_ops pmac_ide_ata4_port_ops = {
995 	.init_dev		= pmac_ide_init_dev,
996 	.set_pio_mode		= pmac_ide_set_pio_mode,
997 	.set_dma_mode		= pmac_ide_set_dma_mode,
998 	.cable_detect		= pmac_ide_cable_detect,
999 };
1000 
1001 static const struct ide_port_ops pmac_ide_port_ops = {
1002 	.init_dev		= pmac_ide_init_dev,
1003 	.set_pio_mode		= pmac_ide_set_pio_mode,
1004 	.set_dma_mode		= pmac_ide_set_dma_mode,
1005 };
1006 
1007 static const struct ide_dma_ops pmac_dma_ops;
1008 
1009 static const struct ide_port_info pmac_port_info = {
1010 	.name			= DRV_NAME,
1011 	.init_dma		= pmac_ide_init_dma,
1012 	.chipset		= ide_pmac,
1013 	.tp_ops			= &pmac_tp_ops,
1014 	.port_ops		= &pmac_ide_port_ops,
1015 	.dma_ops		= &pmac_dma_ops,
1016 	.host_flags		= IDE_HFLAG_SET_PIO_MODE_KEEP_DMA |
1017 				  IDE_HFLAG_POST_SET_MODE |
1018 				  IDE_HFLAG_MMIO |
1019 				  IDE_HFLAG_UNMASK_IRQS,
1020 	.pio_mask		= ATA_PIO4,
1021 	.mwdma_mask		= ATA_MWDMA2,
1022 };
1023 
1024 /*
1025  * Setup, register & probe an IDE channel driven by this driver, this is
1026  * called by one of the 2 probe functions (macio or PCI).
1027  */
pmac_ide_setup_device(pmac_ide_hwif_t * pmif,struct ide_hw * hw)1028 static int __devinit pmac_ide_setup_device(pmac_ide_hwif_t *pmif,
1029 					   struct ide_hw *hw)
1030 {
1031 	struct device_node *np = pmif->node;
1032 	const int *bidp;
1033 	struct ide_host *host;
1034 	ide_hwif_t *hwif;
1035 	struct ide_hw *hws[] = { hw };
1036 	struct ide_port_info d = pmac_port_info;
1037 	int rc;
1038 
1039 	pmif->broken_dma = pmif->broken_dma_warn = 0;
1040 	if (of_device_is_compatible(np, "shasta-ata")) {
1041 		pmif->kind = controller_sh_ata6;
1042 		d.tp_ops = &pmac_ata6_tp_ops;
1043 		d.port_ops = &pmac_ide_ata4_port_ops;
1044 		d.udma_mask = ATA_UDMA6;
1045 	} else if (of_device_is_compatible(np, "kauai-ata")) {
1046 		pmif->kind = controller_un_ata6;
1047 		d.tp_ops = &pmac_ata6_tp_ops;
1048 		d.port_ops = &pmac_ide_ata4_port_ops;
1049 		d.udma_mask = ATA_UDMA5;
1050 	} else if (of_device_is_compatible(np, "K2-UATA")) {
1051 		pmif->kind = controller_k2_ata6;
1052 		d.tp_ops = &pmac_ata6_tp_ops;
1053 		d.port_ops = &pmac_ide_ata4_port_ops;
1054 		d.udma_mask = ATA_UDMA5;
1055 	} else if (of_device_is_compatible(np, "keylargo-ata")) {
1056 		if (strcmp(np->name, "ata-4") == 0) {
1057 			pmif->kind = controller_kl_ata4;
1058 			d.port_ops = &pmac_ide_ata4_port_ops;
1059 			d.udma_mask = ATA_UDMA4;
1060 		} else
1061 			pmif->kind = controller_kl_ata3;
1062 	} else if (of_device_is_compatible(np, "heathrow-ata")) {
1063 		pmif->kind = controller_heathrow;
1064 	} else {
1065 		pmif->kind = controller_ohare;
1066 		pmif->broken_dma = 1;
1067 	}
1068 
1069 	bidp = of_get_property(np, "AAPL,bus-id", NULL);
1070 	pmif->aapl_bus_id =  bidp ? *bidp : 0;
1071 
1072 	/* On Kauai-type controllers, we make sure the FCR is correct */
1073 	if (pmif->kauai_fcr)
1074 		writel(KAUAI_FCR_UATA_MAGIC |
1075 		       KAUAI_FCR_UATA_RESET_N |
1076 		       KAUAI_FCR_UATA_ENABLE, pmif->kauai_fcr);
1077 
1078 	/* Make sure we have sane timings */
1079 	sanitize_timings(pmif);
1080 
1081 	/* If we are on a media bay, wait for it to settle and lock it */
1082 	if (pmif->mdev)
1083 		lock_media_bay(pmif->mdev->media_bay);
1084 
1085 	host = ide_host_alloc(&d, hws, 1);
1086 	if (host == NULL) {
1087 		rc = -ENOMEM;
1088 		goto bail;
1089 	}
1090 	hwif = pmif->hwif = host->ports[0];
1091 
1092 	if (on_media_bay(pmif)) {
1093 		/* Fixup bus ID for media bay */
1094 		if (!bidp)
1095 			pmif->aapl_bus_id = 1;
1096 	} else if (pmif->kind == controller_ohare) {
1097 		/* The code below is having trouble on some ohare machines
1098 		 * (timing related ?). Until I can put my hand on one of these
1099 		 * units, I keep the old way
1100 		 */
1101 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, 0, 1);
1102 	} else {
1103  		/* This is necessary to enable IDE when net-booting */
1104 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 1);
1105 		ppc_md.feature_call(PMAC_FTR_IDE_ENABLE, np, pmif->aapl_bus_id, 1);
1106 		msleep(10);
1107 		ppc_md.feature_call(PMAC_FTR_IDE_RESET, np, pmif->aapl_bus_id, 0);
1108 		msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY));
1109 	}
1110 
1111 	printk(KERN_INFO DRV_NAME ": Found Apple %s controller (%s), "
1112 	       "bus ID %d%s, irq %d\n", model_name[pmif->kind],
1113 	       pmif->mdev ? "macio" : "PCI", pmif->aapl_bus_id,
1114 	       on_media_bay(pmif) ? " (mediabay)" : "", hw->irq);
1115 
1116 	rc = ide_host_register(host, &d, hws);
1117 	if (rc)
1118 		pmif->hwif = NULL;
1119 
1120 	if (pmif->mdev)
1121 		unlock_media_bay(pmif->mdev->media_bay);
1122 
1123  bail:
1124 	if (rc && host)
1125 		ide_host_free(host);
1126 	return rc;
1127 }
1128 
pmac_ide_init_ports(struct ide_hw * hw,unsigned long base)1129 static void __devinit pmac_ide_init_ports(struct ide_hw *hw, unsigned long base)
1130 {
1131 	int i;
1132 
1133 	for (i = 0; i < 8; ++i)
1134 		hw->io_ports_array[i] = base + i * 0x10;
1135 
1136 	hw->io_ports.ctl_addr = base + 0x160;
1137 }
1138 
1139 /*
1140  * Attach to a macio probed interface
1141  */
1142 static int __devinit
pmac_ide_macio_attach(struct macio_dev * mdev,const struct of_device_id * match)1143 pmac_ide_macio_attach(struct macio_dev *mdev, const struct of_device_id *match)
1144 {
1145 	void __iomem *base;
1146 	unsigned long regbase;
1147 	pmac_ide_hwif_t *pmif;
1148 	int irq, rc;
1149 	struct ide_hw hw;
1150 
1151 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1152 	if (pmif == NULL)
1153 		return -ENOMEM;
1154 
1155 	if (macio_resource_count(mdev) == 0) {
1156 		printk(KERN_WARNING "ide-pmac: no address for %s\n",
1157 				    mdev->ofdev.dev.of_node->full_name);
1158 		rc = -ENXIO;
1159 		goto out_free_pmif;
1160 	}
1161 
1162 	/* Request memory resource for IO ports */
1163 	if (macio_request_resource(mdev, 0, "ide-pmac (ports)")) {
1164 		printk(KERN_ERR "ide-pmac: can't request MMIO resource for "
1165 				"%s!\n", mdev->ofdev.dev.of_node->full_name);
1166 		rc = -EBUSY;
1167 		goto out_free_pmif;
1168 	}
1169 
1170 	/* XXX This is bogus. Should be fixed in the registry by checking
1171 	 * the kind of host interrupt controller, a bit like gatwick
1172 	 * fixes in irq.c. That works well enough for the single case
1173 	 * where that happens though...
1174 	 */
1175 	if (macio_irq_count(mdev) == 0) {
1176 		printk(KERN_WARNING "ide-pmac: no intrs for device %s, using "
1177 				    "13\n", mdev->ofdev.dev.of_node->full_name);
1178 		irq = irq_create_mapping(NULL, 13);
1179 	} else
1180 		irq = macio_irq(mdev, 0);
1181 
1182 	base = ioremap(macio_resource_start(mdev, 0), 0x400);
1183 	regbase = (unsigned long) base;
1184 
1185 	pmif->mdev = mdev;
1186 	pmif->node = mdev->ofdev.dev.of_node;
1187 	pmif->regbase = regbase;
1188 	pmif->irq = irq;
1189 	pmif->kauai_fcr = NULL;
1190 
1191 	if (macio_resource_count(mdev) >= 2) {
1192 		if (macio_request_resource(mdev, 1, "ide-pmac (dma)"))
1193 			printk(KERN_WARNING "ide-pmac: can't request DMA "
1194 					    "resource for %s!\n",
1195 					    mdev->ofdev.dev.of_node->full_name);
1196 		else
1197 			pmif->dma_regs = ioremap(macio_resource_start(mdev, 1), 0x1000);
1198 	} else
1199 		pmif->dma_regs = NULL;
1200 
1201 	dev_set_drvdata(&mdev->ofdev.dev, pmif);
1202 
1203 	memset(&hw, 0, sizeof(hw));
1204 	pmac_ide_init_ports(&hw, pmif->regbase);
1205 	hw.irq = irq;
1206 	hw.dev = &mdev->bus->pdev->dev;
1207 	hw.parent = &mdev->ofdev.dev;
1208 
1209 	rc = pmac_ide_setup_device(pmif, &hw);
1210 	if (rc != 0) {
1211 		/* The inteface is released to the common IDE layer */
1212 		dev_set_drvdata(&mdev->ofdev.dev, NULL);
1213 		iounmap(base);
1214 		if (pmif->dma_regs) {
1215 			iounmap(pmif->dma_regs);
1216 			macio_release_resource(mdev, 1);
1217 		}
1218 		macio_release_resource(mdev, 0);
1219 		kfree(pmif);
1220 	}
1221 
1222 	return rc;
1223 
1224 out_free_pmif:
1225 	kfree(pmif);
1226 	return rc;
1227 }
1228 
1229 static int
pmac_ide_macio_suspend(struct macio_dev * mdev,pm_message_t mesg)1230 pmac_ide_macio_suspend(struct macio_dev *mdev, pm_message_t mesg)
1231 {
1232 	pmac_ide_hwif_t *pmif =
1233 		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1234 	int rc = 0;
1235 
1236 	if (mesg.event != mdev->ofdev.dev.power.power_state.event
1237 			&& (mesg.event & PM_EVENT_SLEEP)) {
1238 		rc = pmac_ide_do_suspend(pmif);
1239 		if (rc == 0)
1240 			mdev->ofdev.dev.power.power_state = mesg;
1241 	}
1242 
1243 	return rc;
1244 }
1245 
1246 static int
pmac_ide_macio_resume(struct macio_dev * mdev)1247 pmac_ide_macio_resume(struct macio_dev *mdev)
1248 {
1249 	pmac_ide_hwif_t *pmif =
1250 		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1251 	int rc = 0;
1252 
1253 	if (mdev->ofdev.dev.power.power_state.event != PM_EVENT_ON) {
1254 		rc = pmac_ide_do_resume(pmif);
1255 		if (rc == 0)
1256 			mdev->ofdev.dev.power.power_state = PMSG_ON;
1257 	}
1258 
1259 	return rc;
1260 }
1261 
1262 /*
1263  * Attach to a PCI probed interface
1264  */
1265 static int __devinit
pmac_ide_pci_attach(struct pci_dev * pdev,const struct pci_device_id * id)1266 pmac_ide_pci_attach(struct pci_dev *pdev, const struct pci_device_id *id)
1267 {
1268 	struct device_node *np;
1269 	pmac_ide_hwif_t *pmif;
1270 	void __iomem *base;
1271 	unsigned long rbase, rlen;
1272 	int rc;
1273 	struct ide_hw hw;
1274 
1275 	np = pci_device_to_OF_node(pdev);
1276 	if (np == NULL) {
1277 		printk(KERN_ERR "ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1278 		return -ENODEV;
1279 	}
1280 
1281 	pmif = kzalloc(sizeof(*pmif), GFP_KERNEL);
1282 	if (pmif == NULL)
1283 		return -ENOMEM;
1284 
1285 	if (pci_enable_device(pdev)) {
1286 		printk(KERN_WARNING "ide-pmac: Can't enable PCI device for "
1287 				    "%s\n", np->full_name);
1288 		rc = -ENXIO;
1289 		goto out_free_pmif;
1290 	}
1291 	pci_set_master(pdev);
1292 
1293 	if (pci_request_regions(pdev, "Kauai ATA")) {
1294 		printk(KERN_ERR "ide-pmac: Cannot obtain PCI resources for "
1295 				"%s\n", np->full_name);
1296 		rc = -ENXIO;
1297 		goto out_free_pmif;
1298 	}
1299 
1300 	pmif->mdev = NULL;
1301 	pmif->node = np;
1302 
1303 	rbase = pci_resource_start(pdev, 0);
1304 	rlen = pci_resource_len(pdev, 0);
1305 
1306 	base = ioremap(rbase, rlen);
1307 	pmif->regbase = (unsigned long) base + 0x2000;
1308 	pmif->dma_regs = base + 0x1000;
1309 	pmif->kauai_fcr = base;
1310 	pmif->irq = pdev->irq;
1311 
1312 	pci_set_drvdata(pdev, pmif);
1313 
1314 	memset(&hw, 0, sizeof(hw));
1315 	pmac_ide_init_ports(&hw, pmif->regbase);
1316 	hw.irq = pdev->irq;
1317 	hw.dev = &pdev->dev;
1318 
1319 	rc = pmac_ide_setup_device(pmif, &hw);
1320 	if (rc != 0) {
1321 		/* The inteface is released to the common IDE layer */
1322 		pci_set_drvdata(pdev, NULL);
1323 		iounmap(base);
1324 		pci_release_regions(pdev);
1325 		kfree(pmif);
1326 	}
1327 
1328 	return rc;
1329 
1330 out_free_pmif:
1331 	kfree(pmif);
1332 	return rc;
1333 }
1334 
1335 static int
pmac_ide_pci_suspend(struct pci_dev * pdev,pm_message_t mesg)1336 pmac_ide_pci_suspend(struct pci_dev *pdev, pm_message_t mesg)
1337 {
1338 	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1339 	int rc = 0;
1340 
1341 	if (mesg.event != pdev->dev.power.power_state.event
1342 			&& (mesg.event & PM_EVENT_SLEEP)) {
1343 		rc = pmac_ide_do_suspend(pmif);
1344 		if (rc == 0)
1345 			pdev->dev.power.power_state = mesg;
1346 	}
1347 
1348 	return rc;
1349 }
1350 
1351 static int
pmac_ide_pci_resume(struct pci_dev * pdev)1352 pmac_ide_pci_resume(struct pci_dev *pdev)
1353 {
1354 	pmac_ide_hwif_t *pmif = pci_get_drvdata(pdev);
1355 	int rc = 0;
1356 
1357 	if (pdev->dev.power.power_state.event != PM_EVENT_ON) {
1358 		rc = pmac_ide_do_resume(pmif);
1359 		if (rc == 0)
1360 			pdev->dev.power.power_state = PMSG_ON;
1361 	}
1362 
1363 	return rc;
1364 }
1365 
1366 #ifdef CONFIG_PMAC_MEDIABAY
pmac_ide_macio_mb_event(struct macio_dev * mdev,int mb_state)1367 static void pmac_ide_macio_mb_event(struct macio_dev* mdev, int mb_state)
1368 {
1369 	pmac_ide_hwif_t *pmif =
1370 		(pmac_ide_hwif_t *)dev_get_drvdata(&mdev->ofdev.dev);
1371 
1372 	switch(mb_state) {
1373 	case MB_CD:
1374 		if (!pmif->hwif->present)
1375 			ide_port_scan(pmif->hwif);
1376 		break;
1377 	default:
1378 		if (pmif->hwif->present)
1379 			ide_port_unregister_devices(pmif->hwif);
1380 	}
1381 }
1382 #endif /* CONFIG_PMAC_MEDIABAY */
1383 
1384 
1385 static struct of_device_id pmac_ide_macio_match[] =
1386 {
1387 	{
1388 	.name 		= "IDE",
1389 	},
1390 	{
1391 	.name 		= "ATA",
1392 	},
1393 	{
1394 	.type		= "ide",
1395 	},
1396 	{
1397 	.type		= "ata",
1398 	},
1399 	{},
1400 };
1401 
1402 static struct macio_driver pmac_ide_macio_driver =
1403 {
1404 	.driver = {
1405 		.name 		= "ide-pmac",
1406 		.owner		= THIS_MODULE,
1407 		.of_match_table	= pmac_ide_macio_match,
1408 	},
1409 	.probe		= pmac_ide_macio_attach,
1410 	.suspend	= pmac_ide_macio_suspend,
1411 	.resume		= pmac_ide_macio_resume,
1412 #ifdef CONFIG_PMAC_MEDIABAY
1413 	.mediabay_event	= pmac_ide_macio_mb_event,
1414 #endif
1415 };
1416 
1417 static const struct pci_device_id pmac_ide_pci_match[] = {
1418 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_UNI_N_ATA),	0 },
1419 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID_ATA100),	0 },
1420 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_K2_ATA100),	0 },
1421 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_SH_ATA),	0 },
1422 	{ PCI_VDEVICE(APPLE, PCI_DEVICE_ID_APPLE_IPID2_ATA),	0 },
1423 	{},
1424 };
1425 
1426 static struct pci_driver pmac_ide_pci_driver = {
1427 	.name		= "ide-pmac",
1428 	.id_table	= pmac_ide_pci_match,
1429 	.probe		= pmac_ide_pci_attach,
1430 	.suspend	= pmac_ide_pci_suspend,
1431 	.resume		= pmac_ide_pci_resume,
1432 };
1433 MODULE_DEVICE_TABLE(pci, pmac_ide_pci_match);
1434 
pmac_ide_probe(void)1435 int __init pmac_ide_probe(void)
1436 {
1437 	int error;
1438 
1439 	if (!machine_is(powermac))
1440 		return -ENODEV;
1441 
1442 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1443 	error = pci_register_driver(&pmac_ide_pci_driver);
1444 	if (error)
1445 		goto out;
1446 	error = macio_register_driver(&pmac_ide_macio_driver);
1447 	if (error) {
1448 		pci_unregister_driver(&pmac_ide_pci_driver);
1449 		goto out;
1450 	}
1451 #else
1452 	error = macio_register_driver(&pmac_ide_macio_driver);
1453 	if (error)
1454 		goto out;
1455 	error = pci_register_driver(&pmac_ide_pci_driver);
1456 	if (error) {
1457 		macio_unregister_driver(&pmac_ide_macio_driver);
1458 		goto out;
1459 	}
1460 #endif
1461 out:
1462 	return error;
1463 }
1464 
1465 /*
1466  * pmac_ide_build_dmatable builds the DBDMA command list
1467  * for a transfer and sets the DBDMA channel to point to it.
1468  */
pmac_ide_build_dmatable(ide_drive_t * drive,struct ide_cmd * cmd)1469 static int pmac_ide_build_dmatable(ide_drive_t *drive, struct ide_cmd *cmd)
1470 {
1471 	ide_hwif_t *hwif = drive->hwif;
1472 	pmac_ide_hwif_t *pmif =
1473 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1474 	struct dbdma_cmd *table;
1475 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1476 	struct scatterlist *sg;
1477 	int wr = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1478 	int i = cmd->sg_nents, count = 0;
1479 
1480 	/* DMA table is already aligned */
1481 	table = (struct dbdma_cmd *) pmif->dma_table_cpu;
1482 
1483 	/* Make sure DMA controller is stopped (necessary ?) */
1484 	writel((RUN|PAUSE|FLUSH|WAKE|DEAD) << 16, &dma->control);
1485 	while (readl(&dma->status) & RUN)
1486 		udelay(1);
1487 
1488 	/* Build DBDMA commands list */
1489 	sg = hwif->sg_table;
1490 	while (i && sg_dma_len(sg)) {
1491 		u32 cur_addr;
1492 		u32 cur_len;
1493 
1494 		cur_addr = sg_dma_address(sg);
1495 		cur_len = sg_dma_len(sg);
1496 
1497 		if (pmif->broken_dma && cur_addr & (L1_CACHE_BYTES - 1)) {
1498 			if (pmif->broken_dma_warn == 0) {
1499 				printk(KERN_WARNING "%s: DMA on non aligned address, "
1500 				       "switching to PIO on Ohare chipset\n", drive->name);
1501 				pmif->broken_dma_warn = 1;
1502 			}
1503 			return 0;
1504 		}
1505 		while (cur_len) {
1506 			unsigned int tc = (cur_len < 0xfe00)? cur_len: 0xfe00;
1507 
1508 			if (count++ >= MAX_DCMDS) {
1509 				printk(KERN_WARNING "%s: DMA table too small\n",
1510 				       drive->name);
1511 				return 0;
1512 			}
1513 			st_le16(&table->command, wr? OUTPUT_MORE: INPUT_MORE);
1514 			st_le16(&table->req_count, tc);
1515 			st_le32(&table->phy_addr, cur_addr);
1516 			table->cmd_dep = 0;
1517 			table->xfer_status = 0;
1518 			table->res_count = 0;
1519 			cur_addr += tc;
1520 			cur_len -= tc;
1521 			++table;
1522 		}
1523 		sg = sg_next(sg);
1524 		i--;
1525 	}
1526 
1527 	/* convert the last command to an input/output last command */
1528 	if (count) {
1529 		st_le16(&table[-1].command, wr? OUTPUT_LAST: INPUT_LAST);
1530 		/* add the stop command to the end of the list */
1531 		memset(table, 0, sizeof(struct dbdma_cmd));
1532 		st_le16(&table->command, DBDMA_STOP);
1533 		mb();
1534 		writel(hwif->dmatable_dma, &dma->cmdptr);
1535 		return 1;
1536 	}
1537 
1538 	printk(KERN_DEBUG "%s: empty DMA table?\n", drive->name);
1539 
1540 	return 0; /* revert to PIO for this request */
1541 }
1542 
1543 /*
1544  * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1545  * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1546  */
pmac_ide_dma_setup(ide_drive_t * drive,struct ide_cmd * cmd)1547 static int pmac_ide_dma_setup(ide_drive_t *drive, struct ide_cmd *cmd)
1548 {
1549 	ide_hwif_t *hwif = drive->hwif;
1550 	pmac_ide_hwif_t *pmif =
1551 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1552 	u8 unit = drive->dn & 1, ata4 = (pmif->kind == controller_kl_ata4);
1553 	u8 write = !!(cmd->tf_flags & IDE_TFLAG_WRITE);
1554 
1555 	if (pmac_ide_build_dmatable(drive, cmd) == 0)
1556 		return 1;
1557 
1558 	/* Apple adds 60ns to wrDataSetup on reads */
1559 	if (ata4 && (pmif->timings[unit] & TR_66_UDMA_EN)) {
1560 		writel(pmif->timings[unit] + (write ? 0 : 0x00800000UL),
1561 			PMAC_IDE_REG(IDE_TIMING_CONFIG));
1562 		(void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG));
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 /*
1569  * Kick the DMA controller into life after the DMA command has been issued
1570  * to the drive.
1571  */
1572 static void
pmac_ide_dma_start(ide_drive_t * drive)1573 pmac_ide_dma_start(ide_drive_t *drive)
1574 {
1575 	ide_hwif_t *hwif = drive->hwif;
1576 	pmac_ide_hwif_t *pmif =
1577 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1578 	volatile struct dbdma_regs __iomem *dma;
1579 
1580 	dma = pmif->dma_regs;
1581 
1582 	writel((RUN << 16) | RUN, &dma->control);
1583 	/* Make sure it gets to the controller right now */
1584 	(void)readl(&dma->control);
1585 }
1586 
1587 /*
1588  * After a DMA transfer, make sure the controller is stopped
1589  */
1590 static int
pmac_ide_dma_end(ide_drive_t * drive)1591 pmac_ide_dma_end (ide_drive_t *drive)
1592 {
1593 	ide_hwif_t *hwif = drive->hwif;
1594 	pmac_ide_hwif_t *pmif =
1595 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1596 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1597 	u32 dstat;
1598 
1599 	dstat = readl(&dma->status);
1600 	writel(((RUN|WAKE|DEAD) << 16), &dma->control);
1601 
1602 	/* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1603 	 * in theory, but with ATAPI decices doing buffer underruns, that would
1604 	 * cause us to disable DMA, which isn't what we want
1605 	 */
1606 	return (dstat & (RUN|DEAD)) != RUN;
1607 }
1608 
1609 /*
1610  * Check out that the interrupt we got was for us. We can't always know this
1611  * for sure with those Apple interfaces (well, we could on the recent ones but
1612  * that's not implemented yet), on the other hand, we don't have shared interrupts
1613  * so it's not really a problem
1614  */
1615 static int
pmac_ide_dma_test_irq(ide_drive_t * drive)1616 pmac_ide_dma_test_irq (ide_drive_t *drive)
1617 {
1618 	ide_hwif_t *hwif = drive->hwif;
1619 	pmac_ide_hwif_t *pmif =
1620 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1621 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1622 	unsigned long status, timeout;
1623 
1624 	/* We have to things to deal with here:
1625 	 *
1626 	 * - The dbdma won't stop if the command was started
1627 	 * but completed with an error without transferring all
1628 	 * datas. This happens when bad blocks are met during
1629 	 * a multi-block transfer.
1630 	 *
1631 	 * - The dbdma fifo hasn't yet finished flushing to
1632 	 * to system memory when the disk interrupt occurs.
1633 	 *
1634 	 */
1635 
1636 	/* If ACTIVE is cleared, the STOP command have passed and
1637 	 * transfer is complete.
1638 	 */
1639 	status = readl(&dma->status);
1640 	if (!(status & ACTIVE))
1641 		return 1;
1642 
1643 	/* If dbdma didn't execute the STOP command yet, the
1644 	 * active bit is still set. We consider that we aren't
1645 	 * sharing interrupts (which is hopefully the case with
1646 	 * those controllers) and so we just try to flush the
1647 	 * channel for pending data in the fifo
1648 	 */
1649 	udelay(1);
1650 	writel((FLUSH << 16) | FLUSH, &dma->control);
1651 	timeout = 0;
1652 	for (;;) {
1653 		udelay(1);
1654 		status = readl(&dma->status);
1655 		if ((status & FLUSH) == 0)
1656 			break;
1657 		if (++timeout > 100) {
1658 			printk(KERN_WARNING "ide%d, ide_dma_test_irq timeout flushing channel\n",
1659 			       hwif->index);
1660 			break;
1661 		}
1662 	}
1663 	return 1;
1664 }
1665 
pmac_ide_dma_host_set(ide_drive_t * drive,int on)1666 static void pmac_ide_dma_host_set(ide_drive_t *drive, int on)
1667 {
1668 }
1669 
1670 static void
pmac_ide_dma_lost_irq(ide_drive_t * drive)1671 pmac_ide_dma_lost_irq (ide_drive_t *drive)
1672 {
1673 	ide_hwif_t *hwif = drive->hwif;
1674 	pmac_ide_hwif_t *pmif =
1675 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1676 	volatile struct dbdma_regs __iomem *dma = pmif->dma_regs;
1677 	unsigned long status = readl(&dma->status);
1678 
1679 	printk(KERN_ERR "ide-pmac lost interrupt, dma status: %lx\n", status);
1680 }
1681 
1682 static const struct ide_dma_ops pmac_dma_ops = {
1683 	.dma_host_set		= pmac_ide_dma_host_set,
1684 	.dma_setup		= pmac_ide_dma_setup,
1685 	.dma_start		= pmac_ide_dma_start,
1686 	.dma_end		= pmac_ide_dma_end,
1687 	.dma_test_irq		= pmac_ide_dma_test_irq,
1688 	.dma_lost_irq		= pmac_ide_dma_lost_irq,
1689 };
1690 
1691 /*
1692  * Allocate the data structures needed for using DMA with an interface
1693  * and fill the proper list of functions pointers
1694  */
pmac_ide_init_dma(ide_hwif_t * hwif,const struct ide_port_info * d)1695 static int __devinit pmac_ide_init_dma(ide_hwif_t *hwif,
1696 				       const struct ide_port_info *d)
1697 {
1698 	pmac_ide_hwif_t *pmif =
1699 		(pmac_ide_hwif_t *)dev_get_drvdata(hwif->gendev.parent);
1700 	struct pci_dev *dev = to_pci_dev(hwif->dev);
1701 
1702 	/* We won't need pci_dev if we switch to generic consistent
1703 	 * DMA routines ...
1704 	 */
1705 	if (dev == NULL || pmif->dma_regs == 0)
1706 		return -ENODEV;
1707 	/*
1708 	 * Allocate space for the DBDMA commands.
1709 	 * The +2 is +1 for the stop command and +1 to allow for
1710 	 * aligning the start address to a multiple of 16 bytes.
1711 	 */
1712 	pmif->dma_table_cpu = pci_alloc_consistent(
1713 		dev,
1714 		(MAX_DCMDS + 2) * sizeof(struct dbdma_cmd),
1715 		&hwif->dmatable_dma);
1716 	if (pmif->dma_table_cpu == NULL) {
1717 		printk(KERN_ERR "%s: unable to allocate DMA command list\n",
1718 		       hwif->name);
1719 		return -ENOMEM;
1720 	}
1721 
1722 	hwif->sg_max_nents = MAX_DCMDS;
1723 
1724 	return 0;
1725 }
1726 
1727 module_init(pmac_ide_probe);
1728 
1729 MODULE_LICENSE("GPL");
1730