1 /*
2 * hfcmulti.c low level driver for hfc-4s/hfc-8s/hfc-e1 based cards
3 *
4 * Author Andreas Eversberg (jolly@eversberg.eu)
5 * ported to mqueue mechanism:
6 * Peter Sprenger (sprengermoving-bytes.de)
7 *
8 * inspired by existing hfc-pci driver:
9 * Copyright 1999 by Werner Cornelius (werner@isdn-development.de)
10 * Copyright 2008 by Karsten Keil (kkeil@suse.de)
11 * Copyright 2008 by Andreas Eversberg (jolly@eversberg.eu)
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 *
27 *
28 * Thanks to Cologne Chip AG for this great controller!
29 */
30
31 /*
32 * module parameters:
33 * type:
34 * By default (0), the card is automatically detected.
35 * Or use the following combinations:
36 * Bit 0-7 = 0x00001 = HFC-E1 (1 port)
37 * or Bit 0-7 = 0x00004 = HFC-4S (4 ports)
38 * or Bit 0-7 = 0x00008 = HFC-8S (8 ports)
39 * Bit 8 = 0x00100 = uLaw (instead of aLaw)
40 * Bit 9 = 0x00200 = Disable DTMF detect on all B-channels via hardware
41 * Bit 10 = spare
42 * Bit 11 = 0x00800 = Force PCM bus into slave mode. (otherwhise auto)
43 * or Bit 12 = 0x01000 = Force PCM bus into master mode. (otherwhise auto)
44 * Bit 13 = spare
45 * Bit 14 = 0x04000 = Use external ram (128K)
46 * Bit 15 = 0x08000 = Use external ram (512K)
47 * Bit 16 = 0x10000 = Use 64 timeslots instead of 32
48 * or Bit 17 = 0x20000 = Use 128 timeslots instead of anything else
49 * Bit 18 = spare
50 * Bit 19 = 0x80000 = Send the Watchdog a Signal (Dual E1 with Watchdog)
51 * (all other bits are reserved and shall be 0)
52 * example: 0x20204 one HFC-4S with dtmf detection and 128 timeslots on PCM
53 * bus (PCM master)
54 *
55 * port: (optional or required for all ports on all installed cards)
56 * HFC-4S/HFC-8S only bits:
57 * Bit 0 = 0x001 = Use master clock for this S/T interface
58 * (ony once per chip).
59 * Bit 1 = 0x002 = transmitter line setup (non capacitive mode)
60 * Don't use this unless you know what you are doing!
61 * Bit 2 = 0x004 = Disable E-channel. (No E-channel processing)
62 * example: 0x0001,0x0000,0x0000,0x0000 one HFC-4S with master clock
63 * received from port 1
64 *
65 * HFC-E1 only bits:
66 * Bit 0 = 0x0001 = interface: 0=copper, 1=optical
67 * Bit 1 = 0x0002 = reserved (later for 32 B-channels transparent mode)
68 * Bit 2 = 0x0004 = Report LOS
69 * Bit 3 = 0x0008 = Report AIS
70 * Bit 4 = 0x0010 = Report SLIP
71 * Bit 5 = 0x0020 = Report RDI
72 * Bit 8 = 0x0100 = Turn off CRC-4 Multiframe Mode, use double frame
73 * mode instead.
74 * Bit 9 = 0x0200 = Force get clock from interface, even in NT mode.
75 * or Bit 10 = 0x0400 = Force put clock to interface, even in TE mode.
76 * Bit 11 = 0x0800 = Use direct RX clock for PCM sync rather than PLL.
77 * (E1 only)
78 * Bit 12-13 = 0xX000 = elastic jitter buffer (1-3), Set both bits to 0
79 * for default.
80 * (all other bits are reserved and shall be 0)
81 *
82 * debug:
83 * NOTE: only one debug value must be given for all cards
84 * enable debugging (see hfc_multi.h for debug options)
85 *
86 * poll:
87 * NOTE: only one poll value must be given for all cards
88 * Give the number of samples for each fifo process.
89 * By default 128 is used. Decrease to reduce delay, increase to
90 * reduce cpu load. If unsure, don't mess with it!
91 * Valid is 8, 16, 32, 64, 128, 256.
92 *
93 * pcm:
94 * NOTE: only one pcm value must be given for every card.
95 * The PCM bus id tells the mISDNdsp module about the connected PCM bus.
96 * By default (0), the PCM bus id is 100 for the card that is PCM master.
97 * If multiple cards are PCM master (because they are not interconnected),
98 * each card with PCM master will have increasing PCM id.
99 * All PCM busses with the same ID are expected to be connected and have
100 * common time slots slots.
101 * Only one chip of the PCM bus must be master, the others slave.
102 * -1 means no support of PCM bus not even.
103 * Omit this value, if all cards are interconnected or none is connected.
104 * If unsure, don't give this parameter.
105 *
106 * dslot:
107 * NOTE: only one dslot value must be given for every card.
108 * Also this value must be given for non-E1 cards. If omitted, the E1
109 * card has D-channel on time slot 16, which is default.
110 * If 1..15 or 17..31, an alternate time slot is used for D-channel.
111 * In this case, the application must be able to handle this.
112 * If -1 is given, the D-channel is disabled and all 31 slots can be used
113 * for B-channel. (only for specific applications)
114 * If you don't know how to use it, you don't need it!
115 *
116 * iomode:
117 * NOTE: only one mode value must be given for every card.
118 * -> See hfc_multi.h for HFC_IO_MODE_* values
119 * By default, the IO mode is pci memory IO (MEMIO).
120 * Some cards require specific IO mode, so it cannot be changed.
121 * It may be useful to set IO mode to register io (REGIO) to solve
122 * PCI bridge problems.
123 * If unsure, don't give this parameter.
124 *
125 * clockdelay_nt:
126 * NOTE: only one clockdelay_nt value must be given once for all cards.
127 * Give the value of the clock control register (A_ST_CLK_DLY)
128 * of the S/T interfaces in NT mode.
129 * This register is needed for the TBR3 certification, so don't change it.
130 *
131 * clockdelay_te:
132 * NOTE: only one clockdelay_te value must be given once
133 * Give the value of the clock control register (A_ST_CLK_DLY)
134 * of the S/T interfaces in TE mode.
135 * This register is needed for the TBR3 certification, so don't change it.
136 *
137 * clock:
138 * NOTE: only one clock value must be given once
139 * Selects interface with clock source for mISDN and applications.
140 * Set to card number starting with 1. Set to -1 to disable.
141 * By default, the first card is used as clock source.
142 *
143 * hwid:
144 * NOTE: only one hwid value must be given once
145 * Enable special embedded devices with XHFC controllers.
146 */
147
148 /*
149 * debug register access (never use this, it will flood your system log)
150 * #define HFC_REGISTER_DEBUG
151 */
152
153 #define HFC_MULTI_VERSION "2.03"
154
155 #include <linux/interrupt.h>
156 #include <linux/module.h>
157 #include <linux/slab.h>
158 #include <linux/pci.h>
159 #include <linux/delay.h>
160 #include <linux/mISDNhw.h>
161 #include <linux/mISDNdsp.h>
162
163 /*
164 #define IRQCOUNT_DEBUG
165 #define IRQ_DEBUG
166 */
167
168 #include "hfc_multi.h"
169 #ifdef ECHOPREP
170 #include "gaintab.h"
171 #endif
172
173 #define MAX_CARDS 8
174 #define MAX_PORTS (8 * MAX_CARDS)
175
176 static LIST_HEAD(HFClist);
177 static spinlock_t HFClock; /* global hfc list lock */
178
179 static void ph_state_change(struct dchannel *);
180
181 static struct hfc_multi *syncmaster;
182 static int plxsd_master; /* if we have a master card (yet) */
183 static spinlock_t plx_lock; /* may not acquire other lock inside */
184
185 #define TYP_E1 1
186 #define TYP_4S 4
187 #define TYP_8S 8
188
189 static int poll_timer = 6; /* default = 128 samples = 16ms */
190 /* number of POLL_TIMER interrupts for G2 timeout (ca 1s) */
191 static int nt_t1_count[] = { 3840, 1920, 960, 480, 240, 120, 60, 30 };
192 #define CLKDEL_TE 0x0f /* CLKDEL in TE mode */
193 #define CLKDEL_NT 0x6c /* CLKDEL in NT mode
194 (0x60 MUST be included!) */
195
196 #define DIP_4S 0x1 /* DIP Switches for Beronet 1S/2S/4S cards */
197 #define DIP_8S 0x2 /* DIP Switches for Beronet 8S+ cards */
198 #define DIP_E1 0x3 /* DIP Switches for Beronet E1 cards */
199
200 /*
201 * module stuff
202 */
203
204 static uint type[MAX_CARDS];
205 static int pcm[MAX_CARDS];
206 static int dslot[MAX_CARDS];
207 static uint iomode[MAX_CARDS];
208 static uint port[MAX_PORTS];
209 static uint debug;
210 static uint poll;
211 static int clock;
212 static uint timer;
213 static uint clockdelay_te = CLKDEL_TE;
214 static uint clockdelay_nt = CLKDEL_NT;
215 #define HWID_NONE 0
216 #define HWID_MINIP4 1
217 #define HWID_MINIP8 2
218 #define HWID_MINIP16 3
219 static uint hwid = HWID_NONE;
220
221 static int HFC_cnt, Port_cnt, PCM_cnt = 99;
222
223 MODULE_AUTHOR("Andreas Eversberg");
224 MODULE_LICENSE("GPL");
225 MODULE_VERSION(HFC_MULTI_VERSION);
226 module_param(debug, uint, S_IRUGO | S_IWUSR);
227 module_param(poll, uint, S_IRUGO | S_IWUSR);
228 module_param(clock, int, S_IRUGO | S_IWUSR);
229 module_param(timer, uint, S_IRUGO | S_IWUSR);
230 module_param(clockdelay_te, uint, S_IRUGO | S_IWUSR);
231 module_param(clockdelay_nt, uint, S_IRUGO | S_IWUSR);
232 module_param_array(type, uint, NULL, S_IRUGO | S_IWUSR);
233 module_param_array(pcm, int, NULL, S_IRUGO | S_IWUSR);
234 module_param_array(dslot, int, NULL, S_IRUGO | S_IWUSR);
235 module_param_array(iomode, uint, NULL, S_IRUGO | S_IWUSR);
236 module_param_array(port, uint, NULL, S_IRUGO | S_IWUSR);
237 module_param(hwid, uint, S_IRUGO | S_IWUSR); /* The hardware ID */
238
239 #ifdef HFC_REGISTER_DEBUG
240 #define HFC_outb(hc, reg, val) \
241 (hc->HFC_outb(hc, reg, val, __func__, __LINE__))
242 #define HFC_outb_nodebug(hc, reg, val) \
243 (hc->HFC_outb_nodebug(hc, reg, val, __func__, __LINE__))
244 #define HFC_inb(hc, reg) \
245 (hc->HFC_inb(hc, reg, __func__, __LINE__))
246 #define HFC_inb_nodebug(hc, reg) \
247 (hc->HFC_inb_nodebug(hc, reg, __func__, __LINE__))
248 #define HFC_inw(hc, reg) \
249 (hc->HFC_inw(hc, reg, __func__, __LINE__))
250 #define HFC_inw_nodebug(hc, reg) \
251 (hc->HFC_inw_nodebug(hc, reg, __func__, __LINE__))
252 #define HFC_wait(hc) \
253 (hc->HFC_wait(hc, __func__, __LINE__))
254 #define HFC_wait_nodebug(hc) \
255 (hc->HFC_wait_nodebug(hc, __func__, __LINE__))
256 #else
257 #define HFC_outb(hc, reg, val) (hc->HFC_outb(hc, reg, val))
258 #define HFC_outb_nodebug(hc, reg, val) (hc->HFC_outb_nodebug(hc, reg, val))
259 #define HFC_inb(hc, reg) (hc->HFC_inb(hc, reg))
260 #define HFC_inb_nodebug(hc, reg) (hc->HFC_inb_nodebug(hc, reg))
261 #define HFC_inw(hc, reg) (hc->HFC_inw(hc, reg))
262 #define HFC_inw_nodebug(hc, reg) (hc->HFC_inw_nodebug(hc, reg))
263 #define HFC_wait(hc) (hc->HFC_wait(hc))
264 #define HFC_wait_nodebug(hc) (hc->HFC_wait_nodebug(hc))
265 #endif
266
267 #ifdef CONFIG_MISDN_HFCMULTI_8xx
268 #include "hfc_multi_8xx.h"
269 #endif
270
271 /* HFC_IO_MODE_PCIMEM */
272 static void
273 #ifdef HFC_REGISTER_DEBUG
HFC_outb_pcimem(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)274 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val,
275 const char *function, int line)
276 #else
277 HFC_outb_pcimem(struct hfc_multi *hc, u_char reg, u_char val)
278 #endif
279 {
280 writeb(val, hc->pci_membase + reg);
281 }
282 static u_char
283 #ifdef HFC_REGISTER_DEBUG
HFC_inb_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)284 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
285 #else
286 HFC_inb_pcimem(struct hfc_multi *hc, u_char reg)
287 #endif
288 {
289 return readb(hc->pci_membase + reg);
290 }
291 static u_short
292 #ifdef HFC_REGISTER_DEBUG
HFC_inw_pcimem(struct hfc_multi * hc,u_char reg,const char * function,int line)293 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg, const char *function, int line)
294 #else
295 HFC_inw_pcimem(struct hfc_multi *hc, u_char reg)
296 #endif
297 {
298 return readw(hc->pci_membase + reg);
299 }
300 static void
301 #ifdef HFC_REGISTER_DEBUG
HFC_wait_pcimem(struct hfc_multi * hc,const char * function,int line)302 HFC_wait_pcimem(struct hfc_multi *hc, const char *function, int line)
303 #else
304 HFC_wait_pcimem(struct hfc_multi *hc)
305 #endif
306 {
307 while (readb(hc->pci_membase + R_STATUS) & V_BUSY)
308 cpu_relax();
309 }
310
311 /* HFC_IO_MODE_REGIO */
312 static void
313 #ifdef HFC_REGISTER_DEBUG
HFC_outb_regio(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)314 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val,
315 const char *function, int line)
316 #else
317 HFC_outb_regio(struct hfc_multi *hc, u_char reg, u_char val)
318 #endif
319 {
320 outb(reg, hc->pci_iobase + 4);
321 outb(val, hc->pci_iobase);
322 }
323 static u_char
324 #ifdef HFC_REGISTER_DEBUG
HFC_inb_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)325 HFC_inb_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
326 #else
327 HFC_inb_regio(struct hfc_multi *hc, u_char reg)
328 #endif
329 {
330 outb(reg, hc->pci_iobase + 4);
331 return inb(hc->pci_iobase);
332 }
333 static u_short
334 #ifdef HFC_REGISTER_DEBUG
HFC_inw_regio(struct hfc_multi * hc,u_char reg,const char * function,int line)335 HFC_inw_regio(struct hfc_multi *hc, u_char reg, const char *function, int line)
336 #else
337 HFC_inw_regio(struct hfc_multi *hc, u_char reg)
338 #endif
339 {
340 outb(reg, hc->pci_iobase + 4);
341 return inw(hc->pci_iobase);
342 }
343 static void
344 #ifdef HFC_REGISTER_DEBUG
HFC_wait_regio(struct hfc_multi * hc,const char * function,int line)345 HFC_wait_regio(struct hfc_multi *hc, const char *function, int line)
346 #else
347 HFC_wait_regio(struct hfc_multi *hc)
348 #endif
349 {
350 outb(R_STATUS, hc->pci_iobase + 4);
351 while (inb(hc->pci_iobase) & V_BUSY)
352 cpu_relax();
353 }
354
355 #ifdef HFC_REGISTER_DEBUG
356 static void
HFC_outb_debug(struct hfc_multi * hc,u_char reg,u_char val,const char * function,int line)357 HFC_outb_debug(struct hfc_multi *hc, u_char reg, u_char val,
358 const char *function, int line)
359 {
360 char regname[256] = "", bits[9] = "xxxxxxxx";
361 int i;
362
363 i = -1;
364 while (hfc_register_names[++i].name) {
365 if (hfc_register_names[i].reg == reg)
366 strcat(regname, hfc_register_names[i].name);
367 }
368 if (regname[0] == '\0')
369 strcpy(regname, "register");
370
371 bits[7] = '0' + (!!(val & 1));
372 bits[6] = '0' + (!!(val & 2));
373 bits[5] = '0' + (!!(val & 4));
374 bits[4] = '0' + (!!(val & 8));
375 bits[3] = '0' + (!!(val & 16));
376 bits[2] = '0' + (!!(val & 32));
377 bits[1] = '0' + (!!(val & 64));
378 bits[0] = '0' + (!!(val & 128));
379 printk(KERN_DEBUG
380 "HFC_outb(chip %d, %02x=%s, 0x%02x=%s); in %s() line %d\n",
381 hc->id, reg, regname, val, bits, function, line);
382 HFC_outb_nodebug(hc, reg, val);
383 }
384 static u_char
HFC_inb_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)385 HFC_inb_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
386 {
387 char regname[256] = "", bits[9] = "xxxxxxxx";
388 u_char val = HFC_inb_nodebug(hc, reg);
389 int i;
390
391 i = 0;
392 while (hfc_register_names[i++].name)
393 ;
394 while (hfc_register_names[++i].name) {
395 if (hfc_register_names[i].reg == reg)
396 strcat(regname, hfc_register_names[i].name);
397 }
398 if (regname[0] == '\0')
399 strcpy(regname, "register");
400
401 bits[7] = '0' + (!!(val & 1));
402 bits[6] = '0' + (!!(val & 2));
403 bits[5] = '0' + (!!(val & 4));
404 bits[4] = '0' + (!!(val & 8));
405 bits[3] = '0' + (!!(val & 16));
406 bits[2] = '0' + (!!(val & 32));
407 bits[1] = '0' + (!!(val & 64));
408 bits[0] = '0' + (!!(val & 128));
409 printk(KERN_DEBUG
410 "HFC_inb(chip %d, %02x=%s) = 0x%02x=%s; in %s() line %d\n",
411 hc->id, reg, regname, val, bits, function, line);
412 return val;
413 }
414 static u_short
HFC_inw_debug(struct hfc_multi * hc,u_char reg,const char * function,int line)415 HFC_inw_debug(struct hfc_multi *hc, u_char reg, const char *function, int line)
416 {
417 char regname[256] = "";
418 u_short val = HFC_inw_nodebug(hc, reg);
419 int i;
420
421 i = 0;
422 while (hfc_register_names[i++].name)
423 ;
424 while (hfc_register_names[++i].name) {
425 if (hfc_register_names[i].reg == reg)
426 strcat(regname, hfc_register_names[i].name);
427 }
428 if (regname[0] == '\0')
429 strcpy(regname, "register");
430
431 printk(KERN_DEBUG
432 "HFC_inw(chip %d, %02x=%s) = 0x%04x; in %s() line %d\n",
433 hc->id, reg, regname, val, function, line);
434 return val;
435 }
436 static void
HFC_wait_debug(struct hfc_multi * hc,const char * function,int line)437 HFC_wait_debug(struct hfc_multi *hc, const char *function, int line)
438 {
439 printk(KERN_DEBUG "HFC_wait(chip %d); in %s() line %d\n",
440 hc->id, function, line);
441 HFC_wait_nodebug(hc);
442 }
443 #endif
444
445 /* write fifo data (REGIO) */
446 static void
write_fifo_regio(struct hfc_multi * hc,u_char * data,int len)447 write_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
448 {
449 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
450 while (len >> 2) {
451 outl(cpu_to_le32(*(u32 *)data), hc->pci_iobase);
452 data += 4;
453 len -= 4;
454 }
455 while (len >> 1) {
456 outw(cpu_to_le16(*(u16 *)data), hc->pci_iobase);
457 data += 2;
458 len -= 2;
459 }
460 while (len) {
461 outb(*data, hc->pci_iobase);
462 data++;
463 len--;
464 }
465 }
466 /* write fifo data (PCIMEM) */
467 static void
write_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)468 write_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
469 {
470 while (len >> 2) {
471 writel(cpu_to_le32(*(u32 *)data),
472 hc->pci_membase + A_FIFO_DATA0);
473 data += 4;
474 len -= 4;
475 }
476 while (len >> 1) {
477 writew(cpu_to_le16(*(u16 *)data),
478 hc->pci_membase + A_FIFO_DATA0);
479 data += 2;
480 len -= 2;
481 }
482 while (len) {
483 writeb(*data, hc->pci_membase + A_FIFO_DATA0);
484 data++;
485 len--;
486 }
487 }
488
489 /* read fifo data (REGIO) */
490 static void
read_fifo_regio(struct hfc_multi * hc,u_char * data,int len)491 read_fifo_regio(struct hfc_multi *hc, u_char *data, int len)
492 {
493 outb(A_FIFO_DATA0, (hc->pci_iobase) + 4);
494 while (len >> 2) {
495 *(u32 *)data = le32_to_cpu(inl(hc->pci_iobase));
496 data += 4;
497 len -= 4;
498 }
499 while (len >> 1) {
500 *(u16 *)data = le16_to_cpu(inw(hc->pci_iobase));
501 data += 2;
502 len -= 2;
503 }
504 while (len) {
505 *data = inb(hc->pci_iobase);
506 data++;
507 len--;
508 }
509 }
510
511 /* read fifo data (PCIMEM) */
512 static void
read_fifo_pcimem(struct hfc_multi * hc,u_char * data,int len)513 read_fifo_pcimem(struct hfc_multi *hc, u_char *data, int len)
514 {
515 while (len >> 2) {
516 *(u32 *)data =
517 le32_to_cpu(readl(hc->pci_membase + A_FIFO_DATA0));
518 data += 4;
519 len -= 4;
520 }
521 while (len >> 1) {
522 *(u16 *)data =
523 le16_to_cpu(readw(hc->pci_membase + A_FIFO_DATA0));
524 data += 2;
525 len -= 2;
526 }
527 while (len) {
528 *data = readb(hc->pci_membase + A_FIFO_DATA0);
529 data++;
530 len--;
531 }
532 }
533
534 static void
enable_hwirq(struct hfc_multi * hc)535 enable_hwirq(struct hfc_multi *hc)
536 {
537 hc->hw.r_irq_ctrl |= V_GLOB_IRQ_EN;
538 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
539 }
540
541 static void
disable_hwirq(struct hfc_multi * hc)542 disable_hwirq(struct hfc_multi *hc)
543 {
544 hc->hw.r_irq_ctrl &= ~((u_char)V_GLOB_IRQ_EN);
545 HFC_outb(hc, R_IRQ_CTRL, hc->hw.r_irq_ctrl);
546 }
547
548 #define NUM_EC 2
549 #define MAX_TDM_CHAN 32
550
551
552 inline void
enablepcibridge(struct hfc_multi * c)553 enablepcibridge(struct hfc_multi *c)
554 {
555 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); /* was _io before */
556 }
557
558 inline void
disablepcibridge(struct hfc_multi * c)559 disablepcibridge(struct hfc_multi *c)
560 {
561 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x2); /* was _io before */
562 }
563
564 inline unsigned char
readpcibridge(struct hfc_multi * hc,unsigned char address)565 readpcibridge(struct hfc_multi *hc, unsigned char address)
566 {
567 unsigned short cipv;
568 unsigned char data;
569
570 if (!hc->pci_iobase)
571 return 0;
572
573 /* slow down a PCI read access by 1 PCI clock cycle */
574 HFC_outb(hc, R_CTRL, 0x4); /*was _io before*/
575
576 if (address == 0)
577 cipv = 0x4000;
578 else
579 cipv = 0x5800;
580
581 /* select local bridge port address by writing to CIP port */
582 /* data = HFC_inb(c, cipv); * was _io before */
583 outw(cipv, hc->pci_iobase + 4);
584 data = inb(hc->pci_iobase);
585
586 /* restore R_CTRL for normal PCI read cycle speed */
587 HFC_outb(hc, R_CTRL, 0x0); /* was _io before */
588
589 return data;
590 }
591
592 inline void
writepcibridge(struct hfc_multi * hc,unsigned char address,unsigned char data)593 writepcibridge(struct hfc_multi *hc, unsigned char address, unsigned char data)
594 {
595 unsigned short cipv;
596 unsigned int datav;
597
598 if (!hc->pci_iobase)
599 return;
600
601 if (address == 0)
602 cipv = 0x4000;
603 else
604 cipv = 0x5800;
605
606 /* select local bridge port address by writing to CIP port */
607 outw(cipv, hc->pci_iobase + 4);
608 /* define a 32 bit dword with 4 identical bytes for write sequence */
609 datav = data | ((__u32) data << 8) | ((__u32) data << 16) |
610 ((__u32) data << 24);
611
612 /*
613 * write this 32 bit dword to the bridge data port
614 * this will initiate a write sequence of up to 4 writes to the same
615 * address on the local bus interface the number of write accesses
616 * is undefined but >=1 and depends on the next PCI transaction
617 * during write sequence on the local bus
618 */
619 outl(datav, hc->pci_iobase);
620 }
621
622 inline void
cpld_set_reg(struct hfc_multi * hc,unsigned char reg)623 cpld_set_reg(struct hfc_multi *hc, unsigned char reg)
624 {
625 /* Do data pin read low byte */
626 HFC_outb(hc, R_GPIO_OUT1, reg);
627 }
628
629 inline void
cpld_write_reg(struct hfc_multi * hc,unsigned char reg,unsigned char val)630 cpld_write_reg(struct hfc_multi *hc, unsigned char reg, unsigned char val)
631 {
632 cpld_set_reg(hc, reg);
633
634 enablepcibridge(hc);
635 writepcibridge(hc, 1, val);
636 disablepcibridge(hc);
637
638 return;
639 }
640
641 inline unsigned char
cpld_read_reg(struct hfc_multi * hc,unsigned char reg)642 cpld_read_reg(struct hfc_multi *hc, unsigned char reg)
643 {
644 unsigned char bytein;
645
646 cpld_set_reg(hc, reg);
647
648 /* Do data pin read low byte */
649 HFC_outb(hc, R_GPIO_OUT1, reg);
650
651 enablepcibridge(hc);
652 bytein = readpcibridge(hc, 1);
653 disablepcibridge(hc);
654
655 return bytein;
656 }
657
658 inline void
vpm_write_address(struct hfc_multi * hc,unsigned short addr)659 vpm_write_address(struct hfc_multi *hc, unsigned short addr)
660 {
661 cpld_write_reg(hc, 0, 0xff & addr);
662 cpld_write_reg(hc, 1, 0x01 & (addr >> 8));
663 }
664
665 inline unsigned short
vpm_read_address(struct hfc_multi * c)666 vpm_read_address(struct hfc_multi *c)
667 {
668 unsigned short addr;
669 unsigned short highbit;
670
671 addr = cpld_read_reg(c, 0);
672 highbit = cpld_read_reg(c, 1);
673
674 addr = addr | (highbit << 8);
675
676 return addr & 0x1ff;
677 }
678
679 inline unsigned char
vpm_in(struct hfc_multi * c,int which,unsigned short addr)680 vpm_in(struct hfc_multi *c, int which, unsigned short addr)
681 {
682 unsigned char res;
683
684 vpm_write_address(c, addr);
685
686 if (!which)
687 cpld_set_reg(c, 2);
688 else
689 cpld_set_reg(c, 3);
690
691 enablepcibridge(c);
692 res = readpcibridge(c, 1);
693 disablepcibridge(c);
694
695 cpld_set_reg(c, 0);
696
697 return res;
698 }
699
700 inline void
vpm_out(struct hfc_multi * c,int which,unsigned short addr,unsigned char data)701 vpm_out(struct hfc_multi *c, int which, unsigned short addr,
702 unsigned char data)
703 {
704 vpm_write_address(c, addr);
705
706 enablepcibridge(c);
707
708 if (!which)
709 cpld_set_reg(c, 2);
710 else
711 cpld_set_reg(c, 3);
712
713 writepcibridge(c, 1, data);
714
715 cpld_set_reg(c, 0);
716
717 disablepcibridge(c);
718
719 {
720 unsigned char regin;
721 regin = vpm_in(c, which, addr);
722 if (regin != data)
723 printk(KERN_DEBUG "Wrote 0x%x to register 0x%x but got back "
724 "0x%x\n", data, addr, regin);
725 }
726
727 }
728
729
730 static void
vpm_init(struct hfc_multi * wc)731 vpm_init(struct hfc_multi *wc)
732 {
733 unsigned char reg;
734 unsigned int mask;
735 unsigned int i, x, y;
736 unsigned int ver;
737
738 for (x = 0; x < NUM_EC; x++) {
739 /* Setup GPIO's */
740 if (!x) {
741 ver = vpm_in(wc, x, 0x1a0);
742 printk(KERN_DEBUG "VPM: Chip %d: ver %02x\n", x, ver);
743 }
744
745 for (y = 0; y < 4; y++) {
746 vpm_out(wc, x, 0x1a8 + y, 0x00); /* GPIO out */
747 vpm_out(wc, x, 0x1ac + y, 0x00); /* GPIO dir */
748 vpm_out(wc, x, 0x1b0 + y, 0x00); /* GPIO sel */
749 }
750
751 /* Setup TDM path - sets fsync and tdm_clk as inputs */
752 reg = vpm_in(wc, x, 0x1a3); /* misc_con */
753 vpm_out(wc, x, 0x1a3, reg & ~2);
754
755 /* Setup Echo length (256 taps) */
756 vpm_out(wc, x, 0x022, 1);
757 vpm_out(wc, x, 0x023, 0xff);
758
759 /* Setup timeslots */
760 vpm_out(wc, x, 0x02f, 0x00);
761 mask = 0x02020202 << (x * 4);
762
763 /* Setup the tdm channel masks for all chips */
764 for (i = 0; i < 4; i++)
765 vpm_out(wc, x, 0x33 - i, (mask >> (i << 3)) & 0xff);
766
767 /* Setup convergence rate */
768 printk(KERN_DEBUG "VPM: A-law mode\n");
769 reg = 0x00 | 0x10 | 0x01;
770 vpm_out(wc, x, 0x20, reg);
771 printk(KERN_DEBUG "VPM reg 0x20 is %x\n", reg);
772 /*vpm_out(wc, x, 0x20, (0x00 | 0x08 | 0x20 | 0x10)); */
773
774 vpm_out(wc, x, 0x24, 0x02);
775 reg = vpm_in(wc, x, 0x24);
776 printk(KERN_DEBUG "NLP Thresh is set to %d (0x%x)\n", reg, reg);
777
778 /* Initialize echo cans */
779 for (i = 0; i < MAX_TDM_CHAN; i++) {
780 if (mask & (0x00000001 << i))
781 vpm_out(wc, x, i, 0x00);
782 }
783
784 /*
785 * ARM arch at least disallows a udelay of
786 * more than 2ms... it gives a fake "__bad_udelay"
787 * reference at link-time.
788 * long delays in kernel code are pretty sucky anyway
789 * for now work around it using 5 x 2ms instead of 1 x 10ms
790 */
791
792 udelay(2000);
793 udelay(2000);
794 udelay(2000);
795 udelay(2000);
796 udelay(2000);
797
798 /* Put in bypass mode */
799 for (i = 0; i < MAX_TDM_CHAN; i++) {
800 if (mask & (0x00000001 << i))
801 vpm_out(wc, x, i, 0x01);
802 }
803
804 /* Enable bypass */
805 for (i = 0; i < MAX_TDM_CHAN; i++) {
806 if (mask & (0x00000001 << i))
807 vpm_out(wc, x, 0x78 + i, 0x01);
808 }
809
810 }
811 }
812
813 #ifdef UNUSED
814 static void
vpm_check(struct hfc_multi * hctmp)815 vpm_check(struct hfc_multi *hctmp)
816 {
817 unsigned char gpi2;
818
819 gpi2 = HFC_inb(hctmp, R_GPI_IN2);
820
821 if ((gpi2 & 0x3) != 0x3)
822 printk(KERN_DEBUG "Got interrupt 0x%x from VPM!\n", gpi2);
823 }
824 #endif /* UNUSED */
825
826
827 /*
828 * Interface to enable/disable the HW Echocan
829 *
830 * these functions are called within a spin_lock_irqsave on
831 * the channel instance lock, so we are not disturbed by irqs
832 *
833 * we can later easily change the interface to make other
834 * things configurable, for now we configure the taps
835 *
836 */
837
838 static void
vpm_echocan_on(struct hfc_multi * hc,int ch,int taps)839 vpm_echocan_on(struct hfc_multi *hc, int ch, int taps)
840 {
841 unsigned int timeslot;
842 unsigned int unit;
843 struct bchannel *bch = hc->chan[ch].bch;
844 #ifdef TXADJ
845 int txadj = -4;
846 struct sk_buff *skb;
847 #endif
848 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
849 return;
850
851 if (!bch)
852 return;
853
854 #ifdef TXADJ
855 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
856 sizeof(int), &txadj, GFP_ATOMIC);
857 if (skb)
858 recv_Bchannel_skb(bch, skb);
859 #endif
860
861 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
862 unit = ch % 4;
863
864 printk(KERN_NOTICE "vpm_echocan_on called taps [%d] on timeslot %d\n",
865 taps, timeslot);
866
867 vpm_out(hc, unit, timeslot, 0x7e);
868 }
869
870 static void
vpm_echocan_off(struct hfc_multi * hc,int ch)871 vpm_echocan_off(struct hfc_multi *hc, int ch)
872 {
873 unsigned int timeslot;
874 unsigned int unit;
875 struct bchannel *bch = hc->chan[ch].bch;
876 #ifdef TXADJ
877 int txadj = 0;
878 struct sk_buff *skb;
879 #endif
880
881 if (hc->chan[ch].protocol != ISDN_P_B_RAW)
882 return;
883
884 if (!bch)
885 return;
886
887 #ifdef TXADJ
888 skb = _alloc_mISDN_skb(PH_CONTROL_IND, HFC_VOL_CHANGE_TX,
889 sizeof(int), &txadj, GFP_ATOMIC);
890 if (skb)
891 recv_Bchannel_skb(bch, skb);
892 #endif
893
894 timeslot = ((ch / 4) * 8) + ((ch % 4) * 4) + 1;
895 unit = ch % 4;
896
897 printk(KERN_NOTICE "vpm_echocan_off called on timeslot %d\n",
898 timeslot);
899 /* FILLME */
900 vpm_out(hc, unit, timeslot, 0x01);
901 }
902
903
904 /*
905 * Speech Design resync feature
906 * NOTE: This is called sometimes outside interrupt handler.
907 * We must lock irqsave, so no other interrupt (other card) will occur!
908 * Also multiple interrupts may nest, so must lock each access (lists, card)!
909 */
910 static inline void
hfcmulti_resync(struct hfc_multi * locked,struct hfc_multi * newmaster,int rm)911 hfcmulti_resync(struct hfc_multi *locked, struct hfc_multi *newmaster, int rm)
912 {
913 struct hfc_multi *hc, *next, *pcmmaster = NULL;
914 void __iomem *plx_acc_32;
915 u_int pv;
916 u_long flags;
917
918 spin_lock_irqsave(&HFClock, flags);
919 spin_lock(&plx_lock); /* must be locked inside other locks */
920
921 if (debug & DEBUG_HFCMULTI_PLXSD)
922 printk(KERN_DEBUG "%s: RESYNC(syncmaster=0x%p)\n",
923 __func__, syncmaster);
924
925 /* select new master */
926 if (newmaster) {
927 if (debug & DEBUG_HFCMULTI_PLXSD)
928 printk(KERN_DEBUG "using provided controller\n");
929 } else {
930 list_for_each_entry_safe(hc, next, &HFClist, list) {
931 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
932 if (hc->syncronized) {
933 newmaster = hc;
934 break;
935 }
936 }
937 }
938 }
939
940 /* Disable sync of all cards */
941 list_for_each_entry_safe(hc, next, &HFClist, list) {
942 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
943 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
944 pv = readl(plx_acc_32);
945 pv &= ~PLX_SYNC_O_EN;
946 writel(pv, plx_acc_32);
947 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
948 pcmmaster = hc;
949 if (hc->ctype == HFC_TYPE_E1) {
950 if (debug & DEBUG_HFCMULTI_PLXSD)
951 printk(KERN_DEBUG
952 "Schedule SYNC_I\n");
953 hc->e1_resync |= 1; /* get SYNC_I */
954 }
955 }
956 }
957 }
958
959 if (newmaster) {
960 hc = newmaster;
961 if (debug & DEBUG_HFCMULTI_PLXSD)
962 printk(KERN_DEBUG "id=%d (0x%p) = syncronized with "
963 "interface.\n", hc->id, hc);
964 /* Enable new sync master */
965 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
966 pv = readl(plx_acc_32);
967 pv |= PLX_SYNC_O_EN;
968 writel(pv, plx_acc_32);
969 /* switch to jatt PLL, if not disabled by RX_SYNC */
970 if (hc->ctype == HFC_TYPE_E1
971 && !test_bit(HFC_CHIP_RX_SYNC, &hc->chip)) {
972 if (debug & DEBUG_HFCMULTI_PLXSD)
973 printk(KERN_DEBUG "Schedule jatt PLL\n");
974 hc->e1_resync |= 2; /* switch to jatt */
975 }
976 } else {
977 if (pcmmaster) {
978 hc = pcmmaster;
979 if (debug & DEBUG_HFCMULTI_PLXSD)
980 printk(KERN_DEBUG
981 "id=%d (0x%p) = PCM master syncronized "
982 "with QUARTZ\n", hc->id, hc);
983 if (hc->ctype == HFC_TYPE_E1) {
984 /* Use the crystal clock for the PCM
985 master card */
986 if (debug & DEBUG_HFCMULTI_PLXSD)
987 printk(KERN_DEBUG
988 "Schedule QUARTZ for HFC-E1\n");
989 hc->e1_resync |= 4; /* switch quartz */
990 } else {
991 if (debug & DEBUG_HFCMULTI_PLXSD)
992 printk(KERN_DEBUG
993 "QUARTZ is automatically "
994 "enabled by HFC-%dS\n", hc->ctype);
995 }
996 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
997 pv = readl(plx_acc_32);
998 pv |= PLX_SYNC_O_EN;
999 writel(pv, plx_acc_32);
1000 } else
1001 if (!rm)
1002 printk(KERN_ERR "%s no pcm master, this MUST "
1003 "not happen!\n", __func__);
1004 }
1005 syncmaster = newmaster;
1006
1007 spin_unlock(&plx_lock);
1008 spin_unlock_irqrestore(&HFClock, flags);
1009 }
1010
1011 /* This must be called AND hc must be locked irqsave!!! */
1012 inline void
plxsd_checksync(struct hfc_multi * hc,int rm)1013 plxsd_checksync(struct hfc_multi *hc, int rm)
1014 {
1015 if (hc->syncronized) {
1016 if (syncmaster == NULL) {
1017 if (debug & DEBUG_HFCMULTI_PLXSD)
1018 printk(KERN_DEBUG "%s: GOT sync on card %d"
1019 " (id=%d)\n", __func__, hc->id + 1,
1020 hc->id);
1021 hfcmulti_resync(hc, hc, rm);
1022 }
1023 } else {
1024 if (syncmaster == hc) {
1025 if (debug & DEBUG_HFCMULTI_PLXSD)
1026 printk(KERN_DEBUG "%s: LOST sync on card %d"
1027 " (id=%d)\n", __func__, hc->id + 1,
1028 hc->id);
1029 hfcmulti_resync(hc, NULL, rm);
1030 }
1031 }
1032 }
1033
1034
1035 /*
1036 * free hardware resources used by driver
1037 */
1038 static void
release_io_hfcmulti(struct hfc_multi * hc)1039 release_io_hfcmulti(struct hfc_multi *hc)
1040 {
1041 void __iomem *plx_acc_32;
1042 u_int pv;
1043 u_long plx_flags;
1044
1045 if (debug & DEBUG_HFCMULTI_INIT)
1046 printk(KERN_DEBUG "%s: entered\n", __func__);
1047
1048 /* soft reset also masks all interrupts */
1049 hc->hw.r_cirm |= V_SRES;
1050 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1051 udelay(1000);
1052 hc->hw.r_cirm &= ~V_SRES;
1053 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1054 udelay(1000); /* instead of 'wait' that may cause locking */
1055
1056 /* release Speech Design card, if PLX was initialized */
1057 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) && hc->plx_membase) {
1058 if (debug & DEBUG_HFCMULTI_PLXSD)
1059 printk(KERN_DEBUG "%s: release PLXSD card %d\n",
1060 __func__, hc->id + 1);
1061 spin_lock_irqsave(&plx_lock, plx_flags);
1062 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1063 writel(PLX_GPIOC_INIT, plx_acc_32);
1064 pv = readl(plx_acc_32);
1065 /* Termination off */
1066 pv &= ~PLX_TERM_ON;
1067 /* Disconnect the PCM */
1068 pv |= PLX_SLAVE_EN_N;
1069 pv &= ~PLX_MASTER_EN;
1070 pv &= ~PLX_SYNC_O_EN;
1071 /* Put the DSP in Reset */
1072 pv &= ~PLX_DSP_RES_N;
1073 writel(pv, plx_acc_32);
1074 if (debug & DEBUG_HFCMULTI_INIT)
1075 printk(KERN_DEBUG "%s: PCM off: PLX_GPIO=%x\n",
1076 __func__, pv);
1077 spin_unlock_irqrestore(&plx_lock, plx_flags);
1078 }
1079
1080 /* disable memory mapped ports / io ports */
1081 test_and_clear_bit(HFC_CHIP_PLXSD, &hc->chip); /* prevent resync */
1082 if (hc->pci_dev)
1083 pci_write_config_word(hc->pci_dev, PCI_COMMAND, 0);
1084 if (hc->pci_membase)
1085 iounmap(hc->pci_membase);
1086 if (hc->plx_membase)
1087 iounmap(hc->plx_membase);
1088 if (hc->pci_iobase)
1089 release_region(hc->pci_iobase, 8);
1090 if (hc->xhfc_membase)
1091 iounmap((void *)hc->xhfc_membase);
1092
1093 if (hc->pci_dev) {
1094 pci_disable_device(hc->pci_dev);
1095 pci_set_drvdata(hc->pci_dev, NULL);
1096 }
1097 if (debug & DEBUG_HFCMULTI_INIT)
1098 printk(KERN_DEBUG "%s: done\n", __func__);
1099 }
1100
1101 /*
1102 * function called to reset the HFC chip. A complete software reset of chip
1103 * and fifos is done. All configuration of the chip is done.
1104 */
1105
1106 static int
init_chip(struct hfc_multi * hc)1107 init_chip(struct hfc_multi *hc)
1108 {
1109 u_long flags, val, val2 = 0, rev;
1110 int i, err = 0;
1111 u_char r_conf_en, rval;
1112 void __iomem *plx_acc_32;
1113 u_int pv;
1114 u_long plx_flags, hfc_flags;
1115 int plx_count;
1116 struct hfc_multi *pos, *next, *plx_last_hc;
1117
1118 spin_lock_irqsave(&hc->lock, flags);
1119 /* reset all registers */
1120 memset(&hc->hw, 0, sizeof(struct hfcm_hw));
1121
1122 /* revision check */
1123 if (debug & DEBUG_HFCMULTI_INIT)
1124 printk(KERN_DEBUG "%s: entered\n", __func__);
1125 val = HFC_inb(hc, R_CHIP_ID);
1126 if ((val >> 4) != 0x8 && (val >> 4) != 0xc && (val >> 4) != 0xe &&
1127 (val >> 1) != 0x31) {
1128 printk(KERN_INFO "HFC_multi: unknown CHIP_ID:%x\n", (u_int)val);
1129 err = -EIO;
1130 goto out;
1131 }
1132 rev = HFC_inb(hc, R_CHIP_RV);
1133 printk(KERN_INFO
1134 "HFC_multi: detected HFC with chip ID=0x%lx revision=%ld%s\n",
1135 val, rev, (rev == 0 && (hc->ctype != HFC_TYPE_XHFC)) ?
1136 " (old FIFO handling)" : "");
1137 if (hc->ctype != HFC_TYPE_XHFC && rev == 0) {
1138 test_and_set_bit(HFC_CHIP_REVISION0, &hc->chip);
1139 printk(KERN_WARNING
1140 "HFC_multi: NOTE: Your chip is revision 0, "
1141 "ask Cologne Chip for update. Newer chips "
1142 "have a better FIFO handling. Old chips "
1143 "still work but may have slightly lower "
1144 "HDLC transmit performance.\n");
1145 }
1146 if (rev > 1) {
1147 printk(KERN_WARNING "HFC_multi: WARNING: This driver doesn't "
1148 "consider chip revision = %ld. The chip / "
1149 "bridge may not work.\n", rev);
1150 }
1151
1152 /* set s-ram size */
1153 hc->Flen = 0x10;
1154 hc->Zmin = 0x80;
1155 hc->Zlen = 384;
1156 hc->DTMFbase = 0x1000;
1157 if (test_bit(HFC_CHIP_EXRAM_128, &hc->chip)) {
1158 if (debug & DEBUG_HFCMULTI_INIT)
1159 printk(KERN_DEBUG "%s: changing to 128K extenal RAM\n",
1160 __func__);
1161 hc->hw.r_ctrl |= V_EXT_RAM;
1162 hc->hw.r_ram_sz = 1;
1163 hc->Flen = 0x20;
1164 hc->Zmin = 0xc0;
1165 hc->Zlen = 1856;
1166 hc->DTMFbase = 0x2000;
1167 }
1168 if (test_bit(HFC_CHIP_EXRAM_512, &hc->chip)) {
1169 if (debug & DEBUG_HFCMULTI_INIT)
1170 printk(KERN_DEBUG "%s: changing to 512K extenal RAM\n",
1171 __func__);
1172 hc->hw.r_ctrl |= V_EXT_RAM;
1173 hc->hw.r_ram_sz = 2;
1174 hc->Flen = 0x20;
1175 hc->Zmin = 0xc0;
1176 hc->Zlen = 8000;
1177 hc->DTMFbase = 0x2000;
1178 }
1179 if (hc->ctype == HFC_TYPE_XHFC) {
1180 hc->Flen = 0x8;
1181 hc->Zmin = 0x0;
1182 hc->Zlen = 64;
1183 hc->DTMFbase = 0x0;
1184 }
1185 hc->max_trans = poll << 1;
1186 if (hc->max_trans > hc->Zlen)
1187 hc->max_trans = hc->Zlen;
1188
1189 /* Speech Design PLX bridge */
1190 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1191 if (debug & DEBUG_HFCMULTI_PLXSD)
1192 printk(KERN_DEBUG "%s: initializing PLXSD card %d\n",
1193 __func__, hc->id + 1);
1194 spin_lock_irqsave(&plx_lock, plx_flags);
1195 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1196 writel(PLX_GPIOC_INIT, plx_acc_32);
1197 pv = readl(plx_acc_32);
1198 /* The first and the last cards are terminating the PCM bus */
1199 pv |= PLX_TERM_ON; /* hc is currently the last */
1200 /* Disconnect the PCM */
1201 pv |= PLX_SLAVE_EN_N;
1202 pv &= ~PLX_MASTER_EN;
1203 pv &= ~PLX_SYNC_O_EN;
1204 /* Put the DSP in Reset */
1205 pv &= ~PLX_DSP_RES_N;
1206 writel(pv, plx_acc_32);
1207 spin_unlock_irqrestore(&plx_lock, plx_flags);
1208 if (debug & DEBUG_HFCMULTI_INIT)
1209 printk(KERN_DEBUG "%s: slave/term: PLX_GPIO=%x\n",
1210 __func__, pv);
1211 /*
1212 * If we are the 3rd PLXSD card or higher, we must turn
1213 * termination of last PLXSD card off.
1214 */
1215 spin_lock_irqsave(&HFClock, hfc_flags);
1216 plx_count = 0;
1217 plx_last_hc = NULL;
1218 list_for_each_entry_safe(pos, next, &HFClist, list) {
1219 if (test_bit(HFC_CHIP_PLXSD, &pos->chip)) {
1220 plx_count++;
1221 if (pos != hc)
1222 plx_last_hc = pos;
1223 }
1224 }
1225 if (plx_count >= 3) {
1226 if (debug & DEBUG_HFCMULTI_PLXSD)
1227 printk(KERN_DEBUG "%s: card %d is between, so "
1228 "we disable termination\n",
1229 __func__, plx_last_hc->id + 1);
1230 spin_lock_irqsave(&plx_lock, plx_flags);
1231 plx_acc_32 = plx_last_hc->plx_membase + PLX_GPIOC;
1232 pv = readl(plx_acc_32);
1233 pv &= ~PLX_TERM_ON;
1234 writel(pv, plx_acc_32);
1235 spin_unlock_irqrestore(&plx_lock, plx_flags);
1236 if (debug & DEBUG_HFCMULTI_INIT)
1237 printk(KERN_DEBUG
1238 "%s: term off: PLX_GPIO=%x\n",
1239 __func__, pv);
1240 }
1241 spin_unlock_irqrestore(&HFClock, hfc_flags);
1242 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1243 }
1244
1245 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1246 hc->hw.r_pcm_md0 = V_F0_LEN; /* shift clock for DSP */
1247
1248 /* we only want the real Z2 read-pointer for revision > 0 */
1249 if (!test_bit(HFC_CHIP_REVISION0, &hc->chip))
1250 hc->hw.r_ram_sz |= V_FZ_MD;
1251
1252 /* select pcm mode */
1253 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1254 if (debug & DEBUG_HFCMULTI_INIT)
1255 printk(KERN_DEBUG "%s: setting PCM into slave mode\n",
1256 __func__);
1257 } else
1258 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip) && !plxsd_master) {
1259 if (debug & DEBUG_HFCMULTI_INIT)
1260 printk(KERN_DEBUG "%s: setting PCM into master mode\n",
1261 __func__);
1262 hc->hw.r_pcm_md0 |= V_PCM_MD;
1263 } else {
1264 if (debug & DEBUG_HFCMULTI_INIT)
1265 printk(KERN_DEBUG "%s: performing PCM auto detect\n",
1266 __func__);
1267 }
1268
1269 /* soft reset */
1270 HFC_outb(hc, R_CTRL, hc->hw.r_ctrl);
1271 if (hc->ctype == HFC_TYPE_XHFC)
1272 HFC_outb(hc, 0x0C /* R_FIFO_THRES */,
1273 0x11 /* 16 Bytes TX/RX */);
1274 else
1275 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1276 HFC_outb(hc, R_FIFO_MD, 0);
1277 if (hc->ctype == HFC_TYPE_XHFC)
1278 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES;
1279 else
1280 hc->hw.r_cirm = V_SRES | V_HFCRES | V_PCMRES | V_STRES
1281 | V_RLD_EPR;
1282 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1283 udelay(100);
1284 hc->hw.r_cirm = 0;
1285 HFC_outb(hc, R_CIRM, hc->hw.r_cirm);
1286 udelay(100);
1287 if (hc->ctype != HFC_TYPE_XHFC)
1288 HFC_outb(hc, R_RAM_SZ, hc->hw.r_ram_sz);
1289
1290 /* Speech Design PLX bridge pcm and sync mode */
1291 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1292 spin_lock_irqsave(&plx_lock, plx_flags);
1293 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1294 pv = readl(plx_acc_32);
1295 /* Connect PCM */
1296 if (hc->hw.r_pcm_md0 & V_PCM_MD) {
1297 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1298 pv |= PLX_SYNC_O_EN;
1299 if (debug & DEBUG_HFCMULTI_INIT)
1300 printk(KERN_DEBUG "%s: master: PLX_GPIO=%x\n",
1301 __func__, pv);
1302 } else {
1303 pv &= ~(PLX_MASTER_EN | PLX_SLAVE_EN_N);
1304 pv &= ~PLX_SYNC_O_EN;
1305 if (debug & DEBUG_HFCMULTI_INIT)
1306 printk(KERN_DEBUG "%s: slave: PLX_GPIO=%x\n",
1307 __func__, pv);
1308 }
1309 writel(pv, plx_acc_32);
1310 spin_unlock_irqrestore(&plx_lock, plx_flags);
1311 }
1312
1313 /* PCM setup */
1314 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x90);
1315 if (hc->slots == 32)
1316 HFC_outb(hc, R_PCM_MD1, 0x00);
1317 if (hc->slots == 64)
1318 HFC_outb(hc, R_PCM_MD1, 0x10);
1319 if (hc->slots == 128)
1320 HFC_outb(hc, R_PCM_MD1, 0x20);
1321 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0xa0);
1322 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
1323 HFC_outb(hc, R_PCM_MD2, V_SYNC_SRC); /* sync via SYNC_I / O */
1324 else if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1325 HFC_outb(hc, R_PCM_MD2, 0x10); /* V_C2O_EN */
1326 else
1327 HFC_outb(hc, R_PCM_MD2, 0x00); /* sync from interface */
1328 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1329 for (i = 0; i < 256; i++) {
1330 HFC_outb_nodebug(hc, R_SLOT, i);
1331 HFC_outb_nodebug(hc, A_SL_CFG, 0);
1332 if (hc->ctype != HFC_TYPE_XHFC)
1333 HFC_outb_nodebug(hc, A_CONF, 0);
1334 hc->slot_owner[i] = -1;
1335 }
1336
1337 /* set clock speed */
1338 if (test_bit(HFC_CHIP_CLOCK2, &hc->chip)) {
1339 if (debug & DEBUG_HFCMULTI_INIT)
1340 printk(KERN_DEBUG
1341 "%s: setting double clock\n", __func__);
1342 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1343 }
1344
1345 if (test_bit(HFC_CHIP_EMBSD, &hc->chip))
1346 HFC_outb(hc, 0x02 /* R_CLK_CFG */, 0x40 /* V_CLKO_OFF */);
1347
1348 /* B410P GPIO */
1349 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1350 printk(KERN_NOTICE "Setting GPIOs\n");
1351 HFC_outb(hc, R_GPIO_SEL, 0x30);
1352 HFC_outb(hc, R_GPIO_EN1, 0x3);
1353 udelay(1000);
1354 printk(KERN_NOTICE "calling vpm_init\n");
1355 vpm_init(hc);
1356 }
1357
1358 /* check if R_F0_CNT counts (8 kHz frame count) */
1359 val = HFC_inb(hc, R_F0_CNTL);
1360 val += HFC_inb(hc, R_F0_CNTH) << 8;
1361 if (debug & DEBUG_HFCMULTI_INIT)
1362 printk(KERN_DEBUG
1363 "HFC_multi F0_CNT %ld after reset\n", val);
1364 spin_unlock_irqrestore(&hc->lock, flags);
1365 set_current_state(TASK_UNINTERRUPTIBLE);
1366 schedule_timeout((HZ / 100) ? : 1); /* Timeout minimum 10ms */
1367 spin_lock_irqsave(&hc->lock, flags);
1368 val2 = HFC_inb(hc, R_F0_CNTL);
1369 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1370 if (debug & DEBUG_HFCMULTI_INIT)
1371 printk(KERN_DEBUG
1372 "HFC_multi F0_CNT %ld after 10 ms (1st try)\n",
1373 val2);
1374 if (val2 >= val + 8) { /* 1 ms */
1375 /* it counts, so we keep the pcm mode */
1376 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1377 printk(KERN_INFO "controller is PCM bus MASTER\n");
1378 else
1379 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip))
1380 printk(KERN_INFO "controller is PCM bus SLAVE\n");
1381 else {
1382 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
1383 printk(KERN_INFO "controller is PCM bus SLAVE "
1384 "(auto detected)\n");
1385 }
1386 } else {
1387 /* does not count */
1388 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)) {
1389 controller_fail:
1390 printk(KERN_ERR "HFC_multi ERROR, getting no 125us "
1391 "pulse. Seems that controller fails.\n");
1392 err = -EIO;
1393 goto out;
1394 }
1395 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
1396 printk(KERN_INFO "controller is PCM bus SLAVE "
1397 "(ignoring missing PCM clock)\n");
1398 } else {
1399 /* only one pcm master */
1400 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
1401 && plxsd_master) {
1402 printk(KERN_ERR "HFC_multi ERROR, no clock "
1403 "on another Speech Design card found. "
1404 "Please be sure to connect PCM cable.\n");
1405 err = -EIO;
1406 goto out;
1407 }
1408 /* retry with master clock */
1409 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1410 spin_lock_irqsave(&plx_lock, plx_flags);
1411 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1412 pv = readl(plx_acc_32);
1413 pv |= PLX_MASTER_EN | PLX_SLAVE_EN_N;
1414 pv |= PLX_SYNC_O_EN;
1415 writel(pv, plx_acc_32);
1416 spin_unlock_irqrestore(&plx_lock, plx_flags);
1417 if (debug & DEBUG_HFCMULTI_INIT)
1418 printk(KERN_DEBUG "%s: master: "
1419 "PLX_GPIO=%x\n", __func__, pv);
1420 }
1421 hc->hw.r_pcm_md0 |= V_PCM_MD;
1422 HFC_outb(hc, R_PCM_MD0, hc->hw.r_pcm_md0 | 0x00);
1423 spin_unlock_irqrestore(&hc->lock, flags);
1424 set_current_state(TASK_UNINTERRUPTIBLE);
1425 schedule_timeout((HZ / 100) ?: 1); /* Timeout min. 10ms */
1426 spin_lock_irqsave(&hc->lock, flags);
1427 val2 = HFC_inb(hc, R_F0_CNTL);
1428 val2 += HFC_inb(hc, R_F0_CNTH) << 8;
1429 if (debug & DEBUG_HFCMULTI_INIT)
1430 printk(KERN_DEBUG "HFC_multi F0_CNT %ld after "
1431 "10 ms (2nd try)\n", val2);
1432 if (val2 >= val + 8) { /* 1 ms */
1433 test_and_set_bit(HFC_CHIP_PCM_MASTER,
1434 &hc->chip);
1435 printk(KERN_INFO "controller is PCM bus MASTER "
1436 "(auto detected)\n");
1437 } else
1438 goto controller_fail;
1439 }
1440 }
1441
1442 /* Release the DSP Reset */
1443 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1444 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip))
1445 plxsd_master = 1;
1446 spin_lock_irqsave(&plx_lock, plx_flags);
1447 plx_acc_32 = hc->plx_membase + PLX_GPIOC;
1448 pv = readl(plx_acc_32);
1449 pv |= PLX_DSP_RES_N;
1450 writel(pv, plx_acc_32);
1451 spin_unlock_irqrestore(&plx_lock, plx_flags);
1452 if (debug & DEBUG_HFCMULTI_INIT)
1453 printk(KERN_DEBUG "%s: reset off: PLX_GPIO=%x\n",
1454 __func__, pv);
1455 }
1456
1457 /* pcm id */
1458 if (hc->pcm)
1459 printk(KERN_INFO "controller has given PCM BUS ID %d\n",
1460 hc->pcm);
1461 else {
1462 if (test_bit(HFC_CHIP_PCM_MASTER, &hc->chip)
1463 || test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
1464 PCM_cnt++; /* SD has proprietary bridging */
1465 }
1466 hc->pcm = PCM_cnt;
1467 printk(KERN_INFO "controller has PCM BUS ID %d "
1468 "(auto selected)\n", hc->pcm);
1469 }
1470
1471 /* set up timer */
1472 HFC_outb(hc, R_TI_WD, poll_timer);
1473 hc->hw.r_irqmsk_misc |= V_TI_IRQMSK;
1474
1475 /* set E1 state machine IRQ */
1476 if (hc->ctype == HFC_TYPE_E1)
1477 hc->hw.r_irqmsk_misc |= V_STA_IRQMSK;
1478
1479 /* set DTMF detection */
1480 if (test_bit(HFC_CHIP_DTMF, &hc->chip)) {
1481 if (debug & DEBUG_HFCMULTI_INIT)
1482 printk(KERN_DEBUG "%s: enabling DTMF detection "
1483 "for all B-channel\n", __func__);
1484 hc->hw.r_dtmf = V_DTMF_EN | V_DTMF_STOP;
1485 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1486 hc->hw.r_dtmf |= V_ULAW_SEL;
1487 HFC_outb(hc, R_DTMF_N, 102 - 1);
1488 hc->hw.r_irqmsk_misc |= V_DTMF_IRQMSK;
1489 }
1490
1491 /* conference engine */
1492 if (test_bit(HFC_CHIP_ULAW, &hc->chip))
1493 r_conf_en = V_CONF_EN | V_ULAW;
1494 else
1495 r_conf_en = V_CONF_EN;
1496 if (hc->ctype != HFC_TYPE_XHFC)
1497 HFC_outb(hc, R_CONF_EN, r_conf_en);
1498
1499 /* setting leds */
1500 switch (hc->leds) {
1501 case 1: /* HFC-E1 OEM */
1502 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
1503 HFC_outb(hc, R_GPIO_SEL, 0x32);
1504 else
1505 HFC_outb(hc, R_GPIO_SEL, 0x30);
1506
1507 HFC_outb(hc, R_GPIO_EN1, 0x0f);
1508 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1509
1510 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1511 break;
1512
1513 case 2: /* HFC-4S OEM */
1514 case 3:
1515 HFC_outb(hc, R_GPIO_SEL, 0xf0);
1516 HFC_outb(hc, R_GPIO_EN1, 0xff);
1517 HFC_outb(hc, R_GPIO_OUT1, 0x00);
1518 break;
1519 }
1520
1521 if (test_bit(HFC_CHIP_EMBSD, &hc->chip)) {
1522 hc->hw.r_st_sync = 0x10; /* V_AUTO_SYNCI */
1523 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1524 }
1525
1526 /* set master clock */
1527 if (hc->masterclk >= 0) {
1528 if (debug & DEBUG_HFCMULTI_INIT)
1529 printk(KERN_DEBUG "%s: setting ST master clock "
1530 "to port %d (0..%d)\n",
1531 __func__, hc->masterclk, hc->ports - 1);
1532 hc->hw.r_st_sync |= (hc->masterclk | V_AUTO_SYNC);
1533 HFC_outb(hc, R_ST_SYNC, hc->hw.r_st_sync);
1534 }
1535
1536
1537
1538 /* setting misc irq */
1539 HFC_outb(hc, R_IRQMSK_MISC, hc->hw.r_irqmsk_misc);
1540 if (debug & DEBUG_HFCMULTI_INIT)
1541 printk(KERN_DEBUG "r_irqmsk_misc.2: 0x%x\n",
1542 hc->hw.r_irqmsk_misc);
1543
1544 /* RAM access test */
1545 HFC_outb(hc, R_RAM_ADDR0, 0);
1546 HFC_outb(hc, R_RAM_ADDR1, 0);
1547 HFC_outb(hc, R_RAM_ADDR2, 0);
1548 for (i = 0; i < 256; i++) {
1549 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1550 HFC_outb_nodebug(hc, R_RAM_DATA, ((i * 3) & 0xff));
1551 }
1552 for (i = 0; i < 256; i++) {
1553 HFC_outb_nodebug(hc, R_RAM_ADDR0, i);
1554 HFC_inb_nodebug(hc, R_RAM_DATA);
1555 rval = HFC_inb_nodebug(hc, R_INT_DATA);
1556 if (rval != ((i * 3) & 0xff)) {
1557 printk(KERN_DEBUG
1558 "addr:%x val:%x should:%x\n", i, rval,
1559 (i * 3) & 0xff);
1560 err++;
1561 }
1562 }
1563 if (err) {
1564 printk(KERN_DEBUG "aborting - %d RAM access errors\n", err);
1565 err = -EIO;
1566 goto out;
1567 }
1568
1569 if (debug & DEBUG_HFCMULTI_INIT)
1570 printk(KERN_DEBUG "%s: done\n", __func__);
1571 out:
1572 spin_unlock_irqrestore(&hc->lock, flags);
1573 return err;
1574 }
1575
1576
1577 /*
1578 * control the watchdog
1579 */
1580 static void
hfcmulti_watchdog(struct hfc_multi * hc)1581 hfcmulti_watchdog(struct hfc_multi *hc)
1582 {
1583 hc->wdcount++;
1584
1585 if (hc->wdcount > 10) {
1586 hc->wdcount = 0;
1587 hc->wdbyte = hc->wdbyte == V_GPIO_OUT2 ?
1588 V_GPIO_OUT3 : V_GPIO_OUT2;
1589
1590 /* printk("Sending Watchdog Kill %x\n",hc->wdbyte); */
1591 HFC_outb(hc, R_GPIO_EN0, V_GPIO_EN2 | V_GPIO_EN3);
1592 HFC_outb(hc, R_GPIO_OUT0, hc->wdbyte);
1593 }
1594 }
1595
1596
1597
1598 /*
1599 * output leds
1600 */
1601 static void
hfcmulti_leds(struct hfc_multi * hc)1602 hfcmulti_leds(struct hfc_multi *hc)
1603 {
1604 unsigned long lled;
1605 unsigned long leddw;
1606 int i, state, active, leds;
1607 struct dchannel *dch;
1608 int led[4];
1609
1610 hc->ledcount += poll;
1611 if (hc->ledcount > 4096) {
1612 hc->ledcount -= 4096;
1613 hc->ledstate = 0xAFFEAFFE;
1614 }
1615
1616 switch (hc->leds) {
1617 case 1: /* HFC-E1 OEM */
1618 /* 2 red blinking: NT mode deactivate
1619 * 2 red steady: TE mode deactivate
1620 * left green: L1 active
1621 * left red: frame sync, but no L1
1622 * right green: L2 active
1623 */
1624 if (hc->chan[hc->dslot].sync != 2) { /* no frame sync */
1625 if (hc->chan[hc->dslot].dch->dev.D.protocol
1626 != ISDN_P_NT_E1) {
1627 led[0] = 1;
1628 led[1] = 1;
1629 } else if (hc->ledcount >> 11) {
1630 led[0] = 1;
1631 led[1] = 1;
1632 } else {
1633 led[0] = 0;
1634 led[1] = 0;
1635 }
1636 led[2] = 0;
1637 led[3] = 0;
1638 } else { /* with frame sync */
1639 /* TODO make it work */
1640 led[0] = 0;
1641 led[1] = 0;
1642 led[2] = 0;
1643 led[3] = 1;
1644 }
1645 leds = (led[0] | (led[1]<<2) | (led[2]<<1) | (led[3]<<3))^0xF;
1646 /* leds are inverted */
1647 if (leds != (int)hc->ledstate) {
1648 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds);
1649 hc->ledstate = leds;
1650 }
1651 break;
1652
1653 case 2: /* HFC-4S OEM */
1654 /* red blinking = PH_DEACTIVATE NT Mode
1655 * red steady = PH_DEACTIVATE TE Mode
1656 * green steady = PH_ACTIVATE
1657 */
1658 for (i = 0; i < 4; i++) {
1659 state = 0;
1660 active = -1;
1661 dch = hc->chan[(i << 2) | 2].dch;
1662 if (dch) {
1663 state = dch->state;
1664 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1665 active = 3;
1666 else
1667 active = 7;
1668 }
1669 if (state) {
1670 if (state == active) {
1671 led[i] = 1; /* led green */
1672 } else
1673 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1674 /* TE mode: led red */
1675 led[i] = 2;
1676 else
1677 if (hc->ledcount >> 11)
1678 /* led red */
1679 led[i] = 2;
1680 else
1681 /* led off */
1682 led[i] = 0;
1683 } else
1684 led[i] = 0; /* led off */
1685 }
1686 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
1687 leds = 0;
1688 for (i = 0; i < 4; i++) {
1689 if (led[i] == 1) {
1690 /*green*/
1691 leds |= (0x2 << (i * 2));
1692 } else if (led[i] == 2) {
1693 /*red*/
1694 leds |= (0x1 << (i * 2));
1695 }
1696 }
1697 if (leds != (int)hc->ledstate) {
1698 vpm_out(hc, 0, 0x1a8 + 3, leds);
1699 hc->ledstate = leds;
1700 }
1701 } else {
1702 leds = ((led[3] > 0) << 0) | ((led[1] > 0) << 1) |
1703 ((led[0] > 0) << 2) | ((led[2] > 0) << 3) |
1704 ((led[3] & 1) << 4) | ((led[1] & 1) << 5) |
1705 ((led[0] & 1) << 6) | ((led[2] & 1) << 7);
1706 if (leds != (int)hc->ledstate) {
1707 HFC_outb_nodebug(hc, R_GPIO_EN1, leds & 0x0F);
1708 HFC_outb_nodebug(hc, R_GPIO_OUT1, leds >> 4);
1709 hc->ledstate = leds;
1710 }
1711 }
1712 break;
1713
1714 case 3: /* HFC 1S/2S Beronet */
1715 /* red blinking = PH_DEACTIVATE NT Mode
1716 * red steady = PH_DEACTIVATE TE Mode
1717 * green steady = PH_ACTIVATE
1718 */
1719 for (i = 0; i < 2; i++) {
1720 state = 0;
1721 active = -1;
1722 dch = hc->chan[(i << 2) | 2].dch;
1723 if (dch) {
1724 state = dch->state;
1725 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1726 active = 3;
1727 else
1728 active = 7;
1729 }
1730 if (state) {
1731 if (state == active) {
1732 led[i] = 1; /* led green */
1733 } else
1734 if (dch->dev.D.protocol == ISDN_P_TE_S0)
1735 /* TE mode: led red */
1736 led[i] = 2;
1737 else
1738 if (hc->ledcount >> 11)
1739 /* led red */
1740 led[i] = 2;
1741 else
1742 /* led off */
1743 led[i] = 0;
1744 } else
1745 led[i] = 0; /* led off */
1746 }
1747
1748
1749 leds = (led[0] > 0) | ((led[1] > 0) << 1) | ((led[0]&1) << 2)
1750 | ((led[1]&1) << 3);
1751 if (leds != (int)hc->ledstate) {
1752 HFC_outb_nodebug(hc, R_GPIO_EN1,
1753 ((led[0] > 0) << 2) | ((led[1] > 0) << 3));
1754 HFC_outb_nodebug(hc, R_GPIO_OUT1,
1755 ((led[0] & 1) << 2) | ((led[1] & 1) << 3));
1756 hc->ledstate = leds;
1757 }
1758 break;
1759 case 8: /* HFC 8S+ Beronet */
1760 lled = 0;
1761
1762 for (i = 0; i < 8; i++) {
1763 state = 0;
1764 active = -1;
1765 dch = hc->chan[(i << 2) | 2].dch;
1766 if (dch) {
1767 state = dch->state;
1768 if (dch->dev.D.protocol == ISDN_P_NT_S0)
1769 active = 3;
1770 else
1771 active = 7;
1772 }
1773 if (state) {
1774 if (state == active) {
1775 lled |= 0 << i;
1776 } else
1777 if (hc->ledcount >> 11)
1778 lled |= 0 << i;
1779 else
1780 lled |= 1 << i;
1781 } else
1782 lled |= 1 << i;
1783 }
1784 leddw = lled << 24 | lled << 16 | lled << 8 | lled;
1785 if (leddw != hc->ledstate) {
1786 /* HFC_outb(hc, R_BRG_PCM_CFG, 1);
1787 HFC_outb(c, R_BRG_PCM_CFG, (0x0 << 6) | 0x3); */
1788 /* was _io before */
1789 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
1790 outw(0x4000, hc->pci_iobase + 4);
1791 outl(leddw, hc->pci_iobase);
1792 HFC_outb_nodebug(hc, R_BRG_PCM_CFG, V_PCM_CLK);
1793 hc->ledstate = leddw;
1794 }
1795 break;
1796 }
1797 }
1798 /*
1799 * read dtmf coefficients
1800 */
1801
1802 static void
hfcmulti_dtmf(struct hfc_multi * hc)1803 hfcmulti_dtmf(struct hfc_multi *hc)
1804 {
1805 s32 *coeff;
1806 u_int mantissa;
1807 int co, ch;
1808 struct bchannel *bch = NULL;
1809 u8 exponent;
1810 int dtmf = 0;
1811 int addr;
1812 u16 w_float;
1813 struct sk_buff *skb;
1814 struct mISDNhead *hh;
1815
1816 if (debug & DEBUG_HFCMULTI_DTMF)
1817 printk(KERN_DEBUG "%s: dtmf detection irq\n", __func__);
1818 for (ch = 0; ch <= 31; ch++) {
1819 /* only process enabled B-channels */
1820 bch = hc->chan[ch].bch;
1821 if (!bch)
1822 continue;
1823 if (!hc->created[hc->chan[ch].port])
1824 continue;
1825 if (!test_bit(FLG_TRANSPARENT, &bch->Flags))
1826 continue;
1827 if (debug & DEBUG_HFCMULTI_DTMF)
1828 printk(KERN_DEBUG "%s: dtmf channel %d:",
1829 __func__, ch);
1830 coeff = &(hc->chan[ch].coeff[hc->chan[ch].coeff_count * 16]);
1831 dtmf = 1;
1832 for (co = 0; co < 8; co++) {
1833 /* read W(n-1) coefficient */
1834 addr = hc->DTMFbase + ((co << 7) | (ch << 2));
1835 HFC_outb_nodebug(hc, R_RAM_ADDR0, addr);
1836 HFC_outb_nodebug(hc, R_RAM_ADDR1, addr >> 8);
1837 HFC_outb_nodebug(hc, R_RAM_ADDR2, (addr >> 16)
1838 | V_ADDR_INC);
1839 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1840 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1841 if (debug & DEBUG_HFCMULTI_DTMF)
1842 printk(" %04x", w_float);
1843
1844 /* decode float (see chip doc) */
1845 mantissa = w_float & 0x0fff;
1846 if (w_float & 0x8000)
1847 mantissa |= 0xfffff000;
1848 exponent = (w_float >> 12) & 0x7;
1849 if (exponent) {
1850 mantissa ^= 0x1000;
1851 mantissa <<= (exponent - 1);
1852 }
1853
1854 /* store coefficient */
1855 coeff[co << 1] = mantissa;
1856
1857 /* read W(n) coefficient */
1858 w_float = HFC_inb_nodebug(hc, R_RAM_DATA);
1859 w_float |= (HFC_inb_nodebug(hc, R_RAM_DATA) << 8);
1860 if (debug & DEBUG_HFCMULTI_DTMF)
1861 printk(" %04x", w_float);
1862
1863 /* decode float (see chip doc) */
1864 mantissa = w_float & 0x0fff;
1865 if (w_float & 0x8000)
1866 mantissa |= 0xfffff000;
1867 exponent = (w_float >> 12) & 0x7;
1868 if (exponent) {
1869 mantissa ^= 0x1000;
1870 mantissa <<= (exponent - 1);
1871 }
1872
1873 /* store coefficient */
1874 coeff[(co << 1) | 1] = mantissa;
1875 }
1876 if (debug & DEBUG_HFCMULTI_DTMF)
1877 printk(" DTMF ready %08x %08x %08x %08x "
1878 "%08x %08x %08x %08x\n",
1879 coeff[0], coeff[1], coeff[2], coeff[3],
1880 coeff[4], coeff[5], coeff[6], coeff[7]);
1881 hc->chan[ch].coeff_count++;
1882 if (hc->chan[ch].coeff_count == 8) {
1883 hc->chan[ch].coeff_count = 0;
1884 skb = mI_alloc_skb(512, GFP_ATOMIC);
1885 if (!skb) {
1886 printk(KERN_DEBUG "%s: No memory for skb\n",
1887 __func__);
1888 continue;
1889 }
1890 hh = mISDN_HEAD_P(skb);
1891 hh->prim = PH_CONTROL_IND;
1892 hh->id = DTMF_HFC_COEF;
1893 memcpy(skb_put(skb, 512), hc->chan[ch].coeff, 512);
1894 recv_Bchannel_skb(bch, skb);
1895 }
1896 }
1897
1898 /* restart DTMF processing */
1899 hc->dtmf = dtmf;
1900 if (dtmf)
1901 HFC_outb_nodebug(hc, R_DTMF, hc->hw.r_dtmf | V_RST_DTMF);
1902 }
1903
1904
1905 /*
1906 * fill fifo as much as possible
1907 */
1908
1909 static void
hfcmulti_tx(struct hfc_multi * hc,int ch)1910 hfcmulti_tx(struct hfc_multi *hc, int ch)
1911 {
1912 int i, ii, temp, len = 0;
1913 int Zspace, z1, z2; /* must be int for calculation */
1914 int Fspace, f1, f2;
1915 u_char *d;
1916 int *txpending, slot_tx;
1917 struct bchannel *bch;
1918 struct dchannel *dch;
1919 struct sk_buff **sp = NULL;
1920 int *idxp;
1921
1922 bch = hc->chan[ch].bch;
1923 dch = hc->chan[ch].dch;
1924 if ((!dch) && (!bch))
1925 return;
1926
1927 txpending = &hc->chan[ch].txpending;
1928 slot_tx = hc->chan[ch].slot_tx;
1929 if (dch) {
1930 if (!test_bit(FLG_ACTIVE, &dch->Flags))
1931 return;
1932 sp = &dch->tx_skb;
1933 idxp = &dch->tx_idx;
1934 } else {
1935 if (!test_bit(FLG_ACTIVE, &bch->Flags))
1936 return;
1937 sp = &bch->tx_skb;
1938 idxp = &bch->tx_idx;
1939 }
1940 if (*sp)
1941 len = (*sp)->len;
1942
1943 if ((!len) && *txpending != 1)
1944 return; /* no data */
1945
1946 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
1947 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
1948 (hc->chan[ch].slot_rx < 0) &&
1949 (hc->chan[ch].slot_tx < 0))
1950 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1));
1951 else
1952 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
1953 HFC_wait_nodebug(hc);
1954
1955 if (*txpending == 2) {
1956 /* reset fifo */
1957 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
1958 HFC_wait_nodebug(hc);
1959 HFC_outb(hc, A_SUBCH_CFG, 0);
1960 *txpending = 1;
1961 }
1962 next_frame:
1963 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
1964 f1 = HFC_inb_nodebug(hc, A_F1);
1965 f2 = HFC_inb_nodebug(hc, A_F2);
1966 while (f2 != (temp = HFC_inb_nodebug(hc, A_F2))) {
1967 if (debug & DEBUG_HFCMULTI_FIFO)
1968 printk(KERN_DEBUG
1969 "%s(card %d): reread f2 because %d!=%d\n",
1970 __func__, hc->id + 1, temp, f2);
1971 f2 = temp; /* repeat until F2 is equal */
1972 }
1973 Fspace = f2 - f1 - 1;
1974 if (Fspace < 0)
1975 Fspace += hc->Flen;
1976 /*
1977 * Old FIFO handling doesn't give us the current Z2 read
1978 * pointer, so we cannot send the next frame before the fifo
1979 * is empty. It makes no difference except for a slightly
1980 * lower performance.
1981 */
1982 if (test_bit(HFC_CHIP_REVISION0, &hc->chip)) {
1983 if (f1 != f2)
1984 Fspace = 0;
1985 else
1986 Fspace = 1;
1987 }
1988 /* one frame only for ST D-channels, to allow resending */
1989 if (hc->ctype != HFC_TYPE_E1 && dch) {
1990 if (f1 != f2)
1991 Fspace = 0;
1992 }
1993 /* F-counter full condition */
1994 if (Fspace == 0)
1995 return;
1996 }
1997 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
1998 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
1999 while (z2 != (temp = (HFC_inw_nodebug(hc, A_Z2) - hc->Zmin))) {
2000 if (debug & DEBUG_HFCMULTI_FIFO)
2001 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2002 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2003 z2 = temp; /* repeat unti Z2 is equal */
2004 }
2005 hc->chan[ch].Zfill = z1 - z2;
2006 if (hc->chan[ch].Zfill < 0)
2007 hc->chan[ch].Zfill += hc->Zlen;
2008 Zspace = z2 - z1;
2009 if (Zspace <= 0)
2010 Zspace += hc->Zlen;
2011 Zspace -= 4; /* keep not too full, so pointers will not overrun */
2012 /* fill transparent data only to maxinum transparent load (minus 4) */
2013 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2014 Zspace = Zspace - hc->Zlen + hc->max_trans;
2015 if (Zspace <= 0) /* no space of 4 bytes */
2016 return;
2017
2018 /* if no data */
2019 if (!len) {
2020 if (z1 == z2) { /* empty */
2021 /* if done with FIFO audio data during PCM connection */
2022 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) &&
2023 *txpending && slot_tx >= 0) {
2024 if (debug & DEBUG_HFCMULTI_MODE)
2025 printk(KERN_DEBUG
2026 "%s: reconnecting PCM due to no "
2027 "more FIFO data: channel %d "
2028 "slot_tx %d\n",
2029 __func__, ch, slot_tx);
2030 /* connect slot */
2031 if (hc->ctype == HFC_TYPE_XHFC)
2032 HFC_outb(hc, A_CON_HDLC, 0xc0
2033 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2034 /* Enable FIFO, no interrupt */
2035 else
2036 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2037 V_HDLC_TRP | V_IFF);
2038 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2039 HFC_wait_nodebug(hc);
2040 if (hc->ctype == HFC_TYPE_XHFC)
2041 HFC_outb(hc, A_CON_HDLC, 0xc0
2042 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2043 /* Enable FIFO, no interrupt */
2044 else
2045 HFC_outb(hc, A_CON_HDLC, 0xc0 | 0x00 |
2046 V_HDLC_TRP | V_IFF);
2047 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2048 HFC_wait_nodebug(hc);
2049 }
2050 *txpending = 0;
2051 }
2052 return; /* no data */
2053 }
2054
2055 /* "fill fifo if empty" feature */
2056 if (bch && test_bit(FLG_FILLEMPTY, &bch->Flags)
2057 && !test_bit(FLG_HDLC, &bch->Flags) && z2 == z1) {
2058 if (debug & DEBUG_HFCMULTI_FILL)
2059 printk(KERN_DEBUG "%s: buffer empty, so we have "
2060 "underrun\n", __func__);
2061 /* fill buffer, to prevent future underrun */
2062 hc->write_fifo(hc, hc->silence_data, poll >> 1);
2063 Zspace -= (poll >> 1);
2064 }
2065
2066 /* if audio data and connected slot */
2067 if (bch && (!test_bit(FLG_HDLC, &bch->Flags)) && (!*txpending)
2068 && slot_tx >= 0) {
2069 if (debug & DEBUG_HFCMULTI_MODE)
2070 printk(KERN_DEBUG "%s: disconnecting PCM due to "
2071 "FIFO data: channel %d slot_tx %d\n",
2072 __func__, ch, slot_tx);
2073 /* disconnect slot */
2074 if (hc->ctype == HFC_TYPE_XHFC)
2075 HFC_outb(hc, A_CON_HDLC, 0x80
2076 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2077 /* Enable FIFO, no interrupt */
2078 else
2079 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2080 V_HDLC_TRP | V_IFF);
2081 HFC_outb_nodebug(hc, R_FIFO, ch << 1 | 1);
2082 HFC_wait_nodebug(hc);
2083 if (hc->ctype == HFC_TYPE_XHFC)
2084 HFC_outb(hc, A_CON_HDLC, 0x80
2085 | 0x07 << 2 | V_HDLC_TRP | V_IFF);
2086 /* Enable FIFO, no interrupt */
2087 else
2088 HFC_outb(hc, A_CON_HDLC, 0x80 | 0x00 |
2089 V_HDLC_TRP | V_IFF);
2090 HFC_outb_nodebug(hc, R_FIFO, ch << 1);
2091 HFC_wait_nodebug(hc);
2092 }
2093 *txpending = 1;
2094
2095 /* show activity */
2096 hc->activity[hc->chan[ch].port] = 1;
2097
2098 /* fill fifo to what we have left */
2099 ii = len;
2100 if (dch || test_bit(FLG_HDLC, &bch->Flags))
2101 temp = 1;
2102 else
2103 temp = 0;
2104 i = *idxp;
2105 d = (*sp)->data + i;
2106 if (ii - i > Zspace)
2107 ii = Zspace + i;
2108 if (debug & DEBUG_HFCMULTI_FIFO)
2109 printk(KERN_DEBUG "%s(card %d): fifo(%d) has %d bytes space "
2110 "left (z1=%04x, z2=%04x) sending %d of %d bytes %s\n",
2111 __func__, hc->id + 1, ch, Zspace, z1, z2, ii-i, len-i,
2112 temp ? "HDLC" : "TRANS");
2113
2114 /* Have to prep the audio data */
2115 hc->write_fifo(hc, d, ii - i);
2116 hc->chan[ch].Zfill += ii - i;
2117 *idxp = ii;
2118
2119 /* if not all data has been written */
2120 if (ii != len) {
2121 /* NOTE: fifo is started by the calling function */
2122 return;
2123 }
2124
2125 /* if all data has been written, terminate frame */
2126 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2127 /* increment f-counter */
2128 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2129 HFC_wait_nodebug(hc);
2130 }
2131
2132 /* send confirm, since get_net_bframe will not do it with trans */
2133 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2134 confirm_Bsend(bch);
2135
2136 /* check for next frame */
2137 dev_kfree_skb(*sp);
2138 if (bch && get_next_bframe(bch)) { /* hdlc is confirmed here */
2139 len = (*sp)->len;
2140 goto next_frame;
2141 }
2142 if (dch && get_next_dframe(dch)) {
2143 len = (*sp)->len;
2144 goto next_frame;
2145 }
2146
2147 /*
2148 * now we have no more data, so in case of transparent,
2149 * we set the last byte in fifo to 'silence' in case we will get
2150 * no more data at all. this prevents sending an undefined value.
2151 */
2152 if (bch && test_bit(FLG_TRANSPARENT, &bch->Flags))
2153 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
2154 }
2155
2156
2157 /* NOTE: only called if E1 card is in active state */
2158 static void
hfcmulti_rx(struct hfc_multi * hc,int ch)2159 hfcmulti_rx(struct hfc_multi *hc, int ch)
2160 {
2161 int temp;
2162 int Zsize, z1, z2 = 0; /* = 0, to make GCC happy */
2163 int f1 = 0, f2 = 0; /* = 0, to make GCC happy */
2164 int again = 0;
2165 struct bchannel *bch;
2166 struct dchannel *dch;
2167 struct sk_buff *skb, **sp = NULL;
2168 int maxlen;
2169
2170 bch = hc->chan[ch].bch;
2171 dch = hc->chan[ch].dch;
2172 if ((!dch) && (!bch))
2173 return;
2174 if (dch) {
2175 if (!test_bit(FLG_ACTIVE, &dch->Flags))
2176 return;
2177 sp = &dch->rx_skb;
2178 maxlen = dch->maxlen;
2179 } else {
2180 if (!test_bit(FLG_ACTIVE, &bch->Flags))
2181 return;
2182 sp = &bch->rx_skb;
2183 maxlen = bch->maxlen;
2184 }
2185 next_frame:
2186 /* on first AND before getting next valid frame, R_FIFO must be written
2187 to. */
2188 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2189 (hc->chan[ch].protocol == ISDN_P_B_RAW) &&
2190 (hc->chan[ch].slot_rx < 0) &&
2191 (hc->chan[ch].slot_tx < 0))
2192 HFC_outb_nodebug(hc, R_FIFO, 0x20 | (ch << 1) | 1);
2193 else
2194 HFC_outb_nodebug(hc, R_FIFO, (ch << 1) | 1);
2195 HFC_wait_nodebug(hc);
2196
2197 /* ignore if rx is off BUT change fifo (above) to start pending TX */
2198 if (hc->chan[ch].rx_off)
2199 return;
2200
2201 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2202 f1 = HFC_inb_nodebug(hc, A_F1);
2203 while (f1 != (temp = HFC_inb_nodebug(hc, A_F1))) {
2204 if (debug & DEBUG_HFCMULTI_FIFO)
2205 printk(KERN_DEBUG
2206 "%s(card %d): reread f1 because %d!=%d\n",
2207 __func__, hc->id + 1, temp, f1);
2208 f1 = temp; /* repeat until F1 is equal */
2209 }
2210 f2 = HFC_inb_nodebug(hc, A_F2);
2211 }
2212 z1 = HFC_inw_nodebug(hc, A_Z1) - hc->Zmin;
2213 while (z1 != (temp = (HFC_inw_nodebug(hc, A_Z1) - hc->Zmin))) {
2214 if (debug & DEBUG_HFCMULTI_FIFO)
2215 printk(KERN_DEBUG "%s(card %d): reread z2 because "
2216 "%d!=%d\n", __func__, hc->id + 1, temp, z2);
2217 z1 = temp; /* repeat until Z1 is equal */
2218 }
2219 z2 = HFC_inw_nodebug(hc, A_Z2) - hc->Zmin;
2220 Zsize = z1 - z2;
2221 if ((dch || test_bit(FLG_HDLC, &bch->Flags)) && f1 != f2)
2222 /* complete hdlc frame */
2223 Zsize++;
2224 if (Zsize < 0)
2225 Zsize += hc->Zlen;
2226 /* if buffer is empty */
2227 if (Zsize <= 0)
2228 return;
2229
2230 if (*sp == NULL) {
2231 *sp = mI_alloc_skb(maxlen + 3, GFP_ATOMIC);
2232 if (*sp == NULL) {
2233 printk(KERN_DEBUG "%s: No mem for rx_skb\n",
2234 __func__);
2235 return;
2236 }
2237 }
2238 /* show activity */
2239 hc->activity[hc->chan[ch].port] = 1;
2240
2241 /* empty fifo with what we have */
2242 if (dch || test_bit(FLG_HDLC, &bch->Flags)) {
2243 if (debug & DEBUG_HFCMULTI_FIFO)
2244 printk(KERN_DEBUG "%s(card %d): fifo(%d) reading %d "
2245 "bytes (z1=%04x, z2=%04x) HDLC %s (f1=%d, f2=%d) "
2246 "got=%d (again %d)\n", __func__, hc->id + 1, ch,
2247 Zsize, z1, z2, (f1 == f2) ? "fragment" : "COMPLETE",
2248 f1, f2, Zsize + (*sp)->len, again);
2249 /* HDLC */
2250 if ((Zsize + (*sp)->len) > (maxlen + 3)) {
2251 if (debug & DEBUG_HFCMULTI_FIFO)
2252 printk(KERN_DEBUG
2253 "%s(card %d): hdlc-frame too large.\n",
2254 __func__, hc->id + 1);
2255 skb_trim(*sp, 0);
2256 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
2257 HFC_wait_nodebug(hc);
2258 return;
2259 }
2260
2261 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2262
2263 if (f1 != f2) {
2264 /* increment Z2,F2-counter */
2265 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_INC_F);
2266 HFC_wait_nodebug(hc);
2267 /* check size */
2268 if ((*sp)->len < 4) {
2269 if (debug & DEBUG_HFCMULTI_FIFO)
2270 printk(KERN_DEBUG
2271 "%s(card %d): Frame below minimum "
2272 "size\n", __func__, hc->id + 1);
2273 skb_trim(*sp, 0);
2274 goto next_frame;
2275 }
2276 /* there is at least one complete frame, check crc */
2277 if ((*sp)->data[(*sp)->len - 1]) {
2278 if (debug & DEBUG_HFCMULTI_CRC)
2279 printk(KERN_DEBUG
2280 "%s: CRC-error\n", __func__);
2281 skb_trim(*sp, 0);
2282 goto next_frame;
2283 }
2284 skb_trim(*sp, (*sp)->len - 3);
2285 if ((*sp)->len < MISDN_COPY_SIZE) {
2286 skb = *sp;
2287 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2288 if (*sp) {
2289 memcpy(skb_put(*sp, skb->len),
2290 skb->data, skb->len);
2291 skb_trim(skb, 0);
2292 } else {
2293 printk(KERN_DEBUG "%s: No mem\n",
2294 __func__);
2295 *sp = skb;
2296 skb = NULL;
2297 }
2298 } else {
2299 skb = NULL;
2300 }
2301 if (debug & DEBUG_HFCMULTI_FIFO) {
2302 printk(KERN_DEBUG "%s(card %d):",
2303 __func__, hc->id + 1);
2304 temp = 0;
2305 while (temp < (*sp)->len)
2306 printk(" %02x", (*sp)->data[temp++]);
2307 printk("\n");
2308 }
2309 if (dch)
2310 recv_Dchannel(dch);
2311 else
2312 recv_Bchannel(bch, MISDN_ID_ANY);
2313 *sp = skb;
2314 again++;
2315 goto next_frame;
2316 }
2317 /* there is an incomplete frame */
2318 } else {
2319 /* transparent */
2320 if (Zsize > skb_tailroom(*sp))
2321 Zsize = skb_tailroom(*sp);
2322 hc->read_fifo(hc, skb_put(*sp, Zsize), Zsize);
2323 if (((*sp)->len) < MISDN_COPY_SIZE) {
2324 skb = *sp;
2325 *sp = mI_alloc_skb(skb->len, GFP_ATOMIC);
2326 if (*sp) {
2327 memcpy(skb_put(*sp, skb->len),
2328 skb->data, skb->len);
2329 skb_trim(skb, 0);
2330 } else {
2331 printk(KERN_DEBUG "%s: No mem\n", __func__);
2332 *sp = skb;
2333 skb = NULL;
2334 }
2335 } else {
2336 skb = NULL;
2337 }
2338 if (debug & DEBUG_HFCMULTI_FIFO)
2339 printk(KERN_DEBUG
2340 "%s(card %d): fifo(%d) reading %d bytes "
2341 "(z1=%04x, z2=%04x) TRANS\n",
2342 __func__, hc->id + 1, ch, Zsize, z1, z2);
2343 /* only bch is transparent */
2344 recv_Bchannel(bch, hc->chan[ch].Zfill);
2345 *sp = skb;
2346 }
2347 }
2348
2349
2350 /*
2351 * Interrupt handler
2352 */
2353 static void
signal_state_up(struct dchannel * dch,int info,char * msg)2354 signal_state_up(struct dchannel *dch, int info, char *msg)
2355 {
2356 struct sk_buff *skb;
2357 int id, data = info;
2358
2359 if (debug & DEBUG_HFCMULTI_STATE)
2360 printk(KERN_DEBUG "%s: %s\n", __func__, msg);
2361
2362 id = TEI_SAPI | (GROUP_TEI << 8); /* manager address */
2363
2364 skb = _alloc_mISDN_skb(MPH_INFORMATION_IND, id, sizeof(data), &data,
2365 GFP_ATOMIC);
2366 if (!skb)
2367 return;
2368 recv_Dchannel_skb(dch, skb);
2369 }
2370
2371 static inline void
handle_timer_irq(struct hfc_multi * hc)2372 handle_timer_irq(struct hfc_multi *hc)
2373 {
2374 int ch, temp;
2375 struct dchannel *dch;
2376 u_long flags;
2377
2378 /* process queued resync jobs */
2379 if (hc->e1_resync) {
2380 /* lock, so e1_resync gets not changed */
2381 spin_lock_irqsave(&HFClock, flags);
2382 if (hc->e1_resync & 1) {
2383 if (debug & DEBUG_HFCMULTI_PLXSD)
2384 printk(KERN_DEBUG "Enable SYNC_I\n");
2385 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC);
2386 /* disable JATT, if RX_SYNC is set */
2387 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
2388 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
2389 }
2390 if (hc->e1_resync & 2) {
2391 if (debug & DEBUG_HFCMULTI_PLXSD)
2392 printk(KERN_DEBUG "Enable jatt PLL\n");
2393 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
2394 }
2395 if (hc->e1_resync & 4) {
2396 if (debug & DEBUG_HFCMULTI_PLXSD)
2397 printk(KERN_DEBUG
2398 "Enable QUARTZ for HFC-E1\n");
2399 /* set jatt to quartz */
2400 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC
2401 | V_JATT_OFF);
2402 /* switch to JATT, in case it is not already */
2403 HFC_outb(hc, R_SYNC_OUT, 0);
2404 }
2405 hc->e1_resync = 0;
2406 spin_unlock_irqrestore(&HFClock, flags);
2407 }
2408
2409 if (hc->ctype != HFC_TYPE_E1 || hc->e1_state == 1)
2410 for (ch = 0; ch <= 31; ch++) {
2411 if (hc->created[hc->chan[ch].port]) {
2412 hfcmulti_tx(hc, ch);
2413 /* fifo is started when switching to rx-fifo */
2414 hfcmulti_rx(hc, ch);
2415 if (hc->chan[ch].dch &&
2416 hc->chan[ch].nt_timer > -1) {
2417 dch = hc->chan[ch].dch;
2418 if (!(--hc->chan[ch].nt_timer)) {
2419 schedule_event(dch,
2420 FLG_PHCHANGE);
2421 if (debug &
2422 DEBUG_HFCMULTI_STATE)
2423 printk(KERN_DEBUG
2424 "%s: nt_timer at "
2425 "state %x\n",
2426 __func__,
2427 dch->state);
2428 }
2429 }
2430 }
2431 }
2432 if (hc->ctype == HFC_TYPE_E1 && hc->created[0]) {
2433 dch = hc->chan[hc->dslot].dch;
2434 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
2435 /* LOS */
2436 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_SIG_LOS;
2437 if (!temp && hc->chan[hc->dslot].los)
2438 signal_state_up(dch, L1_SIGNAL_LOS_ON,
2439 "LOS detected");
2440 if (temp && !hc->chan[hc->dslot].los)
2441 signal_state_up(dch, L1_SIGNAL_LOS_OFF,
2442 "LOS gone");
2443 hc->chan[hc->dslot].los = temp;
2444 }
2445 if (test_bit(HFC_CFG_REPORT_AIS, &hc->chan[hc->dslot].cfg)) {
2446 /* AIS */
2447 temp = HFC_inb_nodebug(hc, R_SYNC_STA) & V_AIS;
2448 if (!temp && hc->chan[hc->dslot].ais)
2449 signal_state_up(dch, L1_SIGNAL_AIS_ON,
2450 "AIS detected");
2451 if (temp && !hc->chan[hc->dslot].ais)
2452 signal_state_up(dch, L1_SIGNAL_AIS_OFF,
2453 "AIS gone");
2454 hc->chan[hc->dslot].ais = temp;
2455 }
2456 if (test_bit(HFC_CFG_REPORT_SLIP, &hc->chan[hc->dslot].cfg)) {
2457 /* SLIP */
2458 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_RX;
2459 if (!temp && hc->chan[hc->dslot].slip_rx)
2460 signal_state_up(dch, L1_SIGNAL_SLIP_RX,
2461 " bit SLIP detected RX");
2462 hc->chan[hc->dslot].slip_rx = temp;
2463 temp = HFC_inb_nodebug(hc, R_SLIP) & V_FOSLIP_TX;
2464 if (!temp && hc->chan[hc->dslot].slip_tx)
2465 signal_state_up(dch, L1_SIGNAL_SLIP_TX,
2466 " bit SLIP detected TX");
2467 hc->chan[hc->dslot].slip_tx = temp;
2468 }
2469 if (test_bit(HFC_CFG_REPORT_RDI, &hc->chan[hc->dslot].cfg)) {
2470 /* RDI */
2471 temp = HFC_inb_nodebug(hc, R_RX_SL0_0) & V_A;
2472 if (!temp && hc->chan[hc->dslot].rdi)
2473 signal_state_up(dch, L1_SIGNAL_RDI_ON,
2474 "RDI detected");
2475 if (temp && !hc->chan[hc->dslot].rdi)
2476 signal_state_up(dch, L1_SIGNAL_RDI_OFF,
2477 "RDI gone");
2478 hc->chan[hc->dslot].rdi = temp;
2479 }
2480 temp = HFC_inb_nodebug(hc, R_JATT_DIR);
2481 switch (hc->chan[hc->dslot].sync) {
2482 case 0:
2483 if ((temp & 0x60) == 0x60) {
2484 if (debug & DEBUG_HFCMULTI_SYNC)
2485 printk(KERN_DEBUG
2486 "%s: (id=%d) E1 now "
2487 "in clock sync\n",
2488 __func__, hc->id);
2489 HFC_outb(hc, R_RX_OFF,
2490 hc->chan[hc->dslot].jitter | V_RX_INIT);
2491 HFC_outb(hc, R_TX_OFF,
2492 hc->chan[hc->dslot].jitter | V_RX_INIT);
2493 hc->chan[hc->dslot].sync = 1;
2494 goto check_framesync;
2495 }
2496 break;
2497 case 1:
2498 if ((temp & 0x60) != 0x60) {
2499 if (debug & DEBUG_HFCMULTI_SYNC)
2500 printk(KERN_DEBUG
2501 "%s: (id=%d) E1 "
2502 "lost clock sync\n",
2503 __func__, hc->id);
2504 hc->chan[hc->dslot].sync = 0;
2505 break;
2506 }
2507 check_framesync:
2508 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2509 if (temp == 0x27) {
2510 if (debug & DEBUG_HFCMULTI_SYNC)
2511 printk(KERN_DEBUG
2512 "%s: (id=%d) E1 "
2513 "now in frame sync\n",
2514 __func__, hc->id);
2515 hc->chan[hc->dslot].sync = 2;
2516 }
2517 break;
2518 case 2:
2519 if ((temp & 0x60) != 0x60) {
2520 if (debug & DEBUG_HFCMULTI_SYNC)
2521 printk(KERN_DEBUG
2522 "%s: (id=%d) E1 lost "
2523 "clock & frame sync\n",
2524 __func__, hc->id);
2525 hc->chan[hc->dslot].sync = 0;
2526 break;
2527 }
2528 temp = HFC_inb_nodebug(hc, R_SYNC_STA);
2529 if (temp != 0x27) {
2530 if (debug & DEBUG_HFCMULTI_SYNC)
2531 printk(KERN_DEBUG
2532 "%s: (id=%d) E1 "
2533 "lost frame sync\n",
2534 __func__, hc->id);
2535 hc->chan[hc->dslot].sync = 1;
2536 }
2537 break;
2538 }
2539 }
2540
2541 if (test_bit(HFC_CHIP_WATCHDOG, &hc->chip))
2542 hfcmulti_watchdog(hc);
2543
2544 if (hc->leds)
2545 hfcmulti_leds(hc);
2546 }
2547
2548 static void
ph_state_irq(struct hfc_multi * hc,u_char r_irq_statech)2549 ph_state_irq(struct hfc_multi *hc, u_char r_irq_statech)
2550 {
2551 struct dchannel *dch;
2552 int ch;
2553 int active;
2554 u_char st_status, temp;
2555
2556 /* state machine */
2557 for (ch = 0; ch <= 31; ch++) {
2558 if (hc->chan[ch].dch) {
2559 dch = hc->chan[ch].dch;
2560 if (r_irq_statech & 1) {
2561 HFC_outb_nodebug(hc, R_ST_SEL,
2562 hc->chan[ch].port);
2563 /* undocumented: delay after R_ST_SEL */
2564 udelay(1);
2565 /* undocumented: status changes during read */
2566 st_status = HFC_inb_nodebug(hc, A_ST_RD_STATE);
2567 while (st_status != (temp =
2568 HFC_inb_nodebug(hc, A_ST_RD_STATE))) {
2569 if (debug & DEBUG_HFCMULTI_STATE)
2570 printk(KERN_DEBUG "%s: reread "
2571 "STATE because %d!=%d\n",
2572 __func__, temp,
2573 st_status);
2574 st_status = temp; /* repeat */
2575 }
2576
2577 /* Speech Design TE-sync indication */
2578 if (test_bit(HFC_CHIP_PLXSD, &hc->chip) &&
2579 dch->dev.D.protocol == ISDN_P_TE_S0) {
2580 if (st_status & V_FR_SYNC_ST)
2581 hc->syncronized |=
2582 (1 << hc->chan[ch].port);
2583 else
2584 hc->syncronized &=
2585 ~(1 << hc->chan[ch].port);
2586 }
2587 dch->state = st_status & 0x0f;
2588 if (dch->dev.D.protocol == ISDN_P_NT_S0)
2589 active = 3;
2590 else
2591 active = 7;
2592 if (dch->state == active) {
2593 HFC_outb_nodebug(hc, R_FIFO,
2594 (ch << 1) | 1);
2595 HFC_wait_nodebug(hc);
2596 HFC_outb_nodebug(hc,
2597 R_INC_RES_FIFO, V_RES_F);
2598 HFC_wait_nodebug(hc);
2599 dch->tx_idx = 0;
2600 }
2601 schedule_event(dch, FLG_PHCHANGE);
2602 if (debug & DEBUG_HFCMULTI_STATE)
2603 printk(KERN_DEBUG
2604 "%s: S/T newstate %x port %d\n",
2605 __func__, dch->state,
2606 hc->chan[ch].port);
2607 }
2608 r_irq_statech >>= 1;
2609 }
2610 }
2611 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2612 plxsd_checksync(hc, 0);
2613 }
2614
2615 static void
fifo_irq(struct hfc_multi * hc,int block)2616 fifo_irq(struct hfc_multi *hc, int block)
2617 {
2618 int ch, j;
2619 struct dchannel *dch;
2620 struct bchannel *bch;
2621 u_char r_irq_fifo_bl;
2622
2623 r_irq_fifo_bl = HFC_inb_nodebug(hc, R_IRQ_FIFO_BL0 + block);
2624 j = 0;
2625 while (j < 8) {
2626 ch = (block << 2) + (j >> 1);
2627 dch = hc->chan[ch].dch;
2628 bch = hc->chan[ch].bch;
2629 if (((!dch) && (!bch)) || (!hc->created[hc->chan[ch].port])) {
2630 j += 2;
2631 continue;
2632 }
2633 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2634 test_bit(FLG_ACTIVE, &dch->Flags)) {
2635 hfcmulti_tx(hc, ch);
2636 /* start fifo */
2637 HFC_outb_nodebug(hc, R_FIFO, 0);
2638 HFC_wait_nodebug(hc);
2639 }
2640 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2641 test_bit(FLG_ACTIVE, &bch->Flags)) {
2642 hfcmulti_tx(hc, ch);
2643 /* start fifo */
2644 HFC_outb_nodebug(hc, R_FIFO, 0);
2645 HFC_wait_nodebug(hc);
2646 }
2647 j++;
2648 if (dch && (r_irq_fifo_bl & (1 << j)) &&
2649 test_bit(FLG_ACTIVE, &dch->Flags)) {
2650 hfcmulti_rx(hc, ch);
2651 }
2652 if (bch && (r_irq_fifo_bl & (1 << j)) &&
2653 test_bit(FLG_ACTIVE, &bch->Flags)) {
2654 hfcmulti_rx(hc, ch);
2655 }
2656 j++;
2657 }
2658 }
2659
2660 #ifdef IRQ_DEBUG
2661 int irqsem;
2662 #endif
2663 static irqreturn_t
hfcmulti_interrupt(int intno,void * dev_id)2664 hfcmulti_interrupt(int intno, void *dev_id)
2665 {
2666 #ifdef IRQCOUNT_DEBUG
2667 static int iq1 = 0, iq2 = 0, iq3 = 0, iq4 = 0,
2668 iq5 = 0, iq6 = 0, iqcnt = 0;
2669 #endif
2670 struct hfc_multi *hc = dev_id;
2671 struct dchannel *dch;
2672 u_char r_irq_statech, status, r_irq_misc, r_irq_oview;
2673 int i;
2674 void __iomem *plx_acc;
2675 u_short wval;
2676 u_char e1_syncsta, temp;
2677 u_long flags;
2678
2679 if (!hc) {
2680 printk(KERN_ERR "HFC-multi: Spurious interrupt!\n");
2681 return IRQ_NONE;
2682 }
2683
2684 spin_lock(&hc->lock);
2685
2686 #ifdef IRQ_DEBUG
2687 if (irqsem)
2688 printk(KERN_ERR "irq for card %d during irq from "
2689 "card %d, this is no bug.\n", hc->id + 1, irqsem);
2690 irqsem = hc->id + 1;
2691 #endif
2692 #ifdef CONFIG_MISDN_HFCMULTI_8xx
2693 if (hc->immap->im_cpm.cp_pbdat & hc->pb_irqmsk)
2694 goto irq_notforus;
2695 #endif
2696 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
2697 spin_lock_irqsave(&plx_lock, flags);
2698 plx_acc = hc->plx_membase + PLX_INTCSR;
2699 wval = readw(plx_acc);
2700 spin_unlock_irqrestore(&plx_lock, flags);
2701 if (!(wval & PLX_INTCSR_LINTI1_STATUS))
2702 goto irq_notforus;
2703 }
2704
2705 status = HFC_inb_nodebug(hc, R_STATUS);
2706 r_irq_statech = HFC_inb_nodebug(hc, R_IRQ_STATECH);
2707 #ifdef IRQCOUNT_DEBUG
2708 if (r_irq_statech)
2709 iq1++;
2710 if (status & V_DTMF_STA)
2711 iq2++;
2712 if (status & V_LOST_STA)
2713 iq3++;
2714 if (status & V_EXT_IRQSTA)
2715 iq4++;
2716 if (status & V_MISC_IRQSTA)
2717 iq5++;
2718 if (status & V_FR_IRQSTA)
2719 iq6++;
2720 if (iqcnt++ > 5000) {
2721 printk(KERN_ERR "iq1:%x iq2:%x iq3:%x iq4:%x iq5:%x iq6:%x\n",
2722 iq1, iq2, iq3, iq4, iq5, iq6);
2723 iqcnt = 0;
2724 }
2725 #endif
2726
2727 if (!r_irq_statech &&
2728 !(status & (V_DTMF_STA | V_LOST_STA | V_EXT_IRQSTA |
2729 V_MISC_IRQSTA | V_FR_IRQSTA))) {
2730 /* irq is not for us */
2731 goto irq_notforus;
2732 }
2733 hc->irqcnt++;
2734 if (r_irq_statech) {
2735 if (hc->ctype != HFC_TYPE_E1)
2736 ph_state_irq(hc, r_irq_statech);
2737 }
2738 if (status & V_EXT_IRQSTA)
2739 ; /* external IRQ */
2740 if (status & V_LOST_STA) {
2741 /* LOST IRQ */
2742 HFC_outb(hc, R_INC_RES_FIFO, V_RES_LOST); /* clear irq! */
2743 }
2744 if (status & V_MISC_IRQSTA) {
2745 /* misc IRQ */
2746 r_irq_misc = HFC_inb_nodebug(hc, R_IRQ_MISC);
2747 r_irq_misc &= hc->hw.r_irqmsk_misc; /* ignore disabled irqs */
2748 if (r_irq_misc & V_STA_IRQ) {
2749 if (hc->ctype == HFC_TYPE_E1) {
2750 /* state machine */
2751 dch = hc->chan[hc->dslot].dch;
2752 e1_syncsta = HFC_inb_nodebug(hc, R_SYNC_STA);
2753 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)
2754 && hc->e1_getclock) {
2755 if (e1_syncsta & V_FR_SYNC_E1)
2756 hc->syncronized = 1;
2757 else
2758 hc->syncronized = 0;
2759 }
2760 /* undocumented: status changes during read */
2761 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA);
2762 while (dch->state != (temp =
2763 HFC_inb_nodebug(hc, R_E1_RD_STA))) {
2764 if (debug & DEBUG_HFCMULTI_STATE)
2765 printk(KERN_DEBUG "%s: reread "
2766 "STATE because %d!=%d\n",
2767 __func__, temp,
2768 dch->state);
2769 dch->state = temp; /* repeat */
2770 }
2771 dch->state = HFC_inb_nodebug(hc, R_E1_RD_STA)
2772 & 0x7;
2773 schedule_event(dch, FLG_PHCHANGE);
2774 if (debug & DEBUG_HFCMULTI_STATE)
2775 printk(KERN_DEBUG
2776 "%s: E1 (id=%d) newstate %x\n",
2777 __func__, hc->id, dch->state);
2778 if (test_bit(HFC_CHIP_PLXSD, &hc->chip))
2779 plxsd_checksync(hc, 0);
2780 }
2781 }
2782 if (r_irq_misc & V_TI_IRQ) {
2783 if (hc->iclock_on)
2784 mISDN_clock_update(hc->iclock, poll, NULL);
2785 handle_timer_irq(hc);
2786 }
2787
2788 if (r_irq_misc & V_DTMF_IRQ)
2789 hfcmulti_dtmf(hc);
2790
2791 if (r_irq_misc & V_IRQ_PROC) {
2792 static int irq_proc_cnt;
2793 if (!irq_proc_cnt++)
2794 printk(KERN_DEBUG "%s: got V_IRQ_PROC -"
2795 " this should not happen\n", __func__);
2796 }
2797
2798 }
2799 if (status & V_FR_IRQSTA) {
2800 /* FIFO IRQ */
2801 r_irq_oview = HFC_inb_nodebug(hc, R_IRQ_OVIEW);
2802 for (i = 0; i < 8; i++) {
2803 if (r_irq_oview & (1 << i))
2804 fifo_irq(hc, i);
2805 }
2806 }
2807
2808 #ifdef IRQ_DEBUG
2809 irqsem = 0;
2810 #endif
2811 spin_unlock(&hc->lock);
2812 return IRQ_HANDLED;
2813
2814 irq_notforus:
2815 #ifdef IRQ_DEBUG
2816 irqsem = 0;
2817 #endif
2818 spin_unlock(&hc->lock);
2819 return IRQ_NONE;
2820 }
2821
2822
2823 /*
2824 * timer callback for D-chan busy resolution. Currently no function
2825 */
2826
2827 static void
hfcmulti_dbusy_timer(struct hfc_multi * hc)2828 hfcmulti_dbusy_timer(struct hfc_multi *hc)
2829 {
2830 }
2831
2832
2833 /*
2834 * activate/deactivate hardware for selected channels and mode
2835 *
2836 * configure B-channel with the given protocol
2837 * ch eqals to the HFC-channel (0-31)
2838 * ch is the number of channel (0-4,4-7,8-11,12-15,16-19,20-23,24-27,28-31
2839 * for S/T, 1-31 for E1)
2840 * the hdlc interrupts will be set/unset
2841 */
2842 static int
mode_hfcmulti(struct hfc_multi * hc,int ch,int protocol,int slot_tx,int bank_tx,int slot_rx,int bank_rx)2843 mode_hfcmulti(struct hfc_multi *hc, int ch, int protocol, int slot_tx,
2844 int bank_tx, int slot_rx, int bank_rx)
2845 {
2846 int flow_tx = 0, flow_rx = 0, routing = 0;
2847 int oslot_tx, oslot_rx;
2848 int conf;
2849
2850 if (ch < 0 || ch > 31)
2851 return -EINVAL;
2852 oslot_tx = hc->chan[ch].slot_tx;
2853 oslot_rx = hc->chan[ch].slot_rx;
2854 conf = hc->chan[ch].conf;
2855
2856 if (debug & DEBUG_HFCMULTI_MODE)
2857 printk(KERN_DEBUG
2858 "%s: card %d channel %d protocol %x slot old=%d new=%d "
2859 "bank new=%d (TX) slot old=%d new=%d bank new=%d (RX)\n",
2860 __func__, hc->id, ch, protocol, oslot_tx, slot_tx,
2861 bank_tx, oslot_rx, slot_rx, bank_rx);
2862
2863 if (oslot_tx >= 0 && slot_tx != oslot_tx) {
2864 /* remove from slot */
2865 if (debug & DEBUG_HFCMULTI_MODE)
2866 printk(KERN_DEBUG "%s: remove from slot %d (TX)\n",
2867 __func__, oslot_tx);
2868 if (hc->slot_owner[oslot_tx << 1] == ch) {
2869 HFC_outb(hc, R_SLOT, oslot_tx << 1);
2870 HFC_outb(hc, A_SL_CFG, 0);
2871 if (hc->ctype != HFC_TYPE_XHFC)
2872 HFC_outb(hc, A_CONF, 0);
2873 hc->slot_owner[oslot_tx << 1] = -1;
2874 } else {
2875 if (debug & DEBUG_HFCMULTI_MODE)
2876 printk(KERN_DEBUG
2877 "%s: we are not owner of this tx slot "
2878 "anymore, channel %d is.\n",
2879 __func__, hc->slot_owner[oslot_tx << 1]);
2880 }
2881 }
2882
2883 if (oslot_rx >= 0 && slot_rx != oslot_rx) {
2884 /* remove from slot */
2885 if (debug & DEBUG_HFCMULTI_MODE)
2886 printk(KERN_DEBUG
2887 "%s: remove from slot %d (RX)\n",
2888 __func__, oslot_rx);
2889 if (hc->slot_owner[(oslot_rx << 1) | 1] == ch) {
2890 HFC_outb(hc, R_SLOT, (oslot_rx << 1) | V_SL_DIR);
2891 HFC_outb(hc, A_SL_CFG, 0);
2892 hc->slot_owner[(oslot_rx << 1) | 1] = -1;
2893 } else {
2894 if (debug & DEBUG_HFCMULTI_MODE)
2895 printk(KERN_DEBUG
2896 "%s: we are not owner of this rx slot "
2897 "anymore, channel %d is.\n",
2898 __func__,
2899 hc->slot_owner[(oslot_rx << 1) | 1]);
2900 }
2901 }
2902
2903 if (slot_tx < 0) {
2904 flow_tx = 0x80; /* FIFO->ST */
2905 /* disable pcm slot */
2906 hc->chan[ch].slot_tx = -1;
2907 hc->chan[ch].bank_tx = 0;
2908 } else {
2909 /* set pcm slot */
2910 if (hc->chan[ch].txpending)
2911 flow_tx = 0x80; /* FIFO->ST */
2912 else
2913 flow_tx = 0xc0; /* PCM->ST */
2914 /* put on slot */
2915 routing = bank_tx ? 0xc0 : 0x80;
2916 if (conf >= 0 || bank_tx > 1)
2917 routing = 0x40; /* loop */
2918 if (debug & DEBUG_HFCMULTI_MODE)
2919 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2920 " %d flow %02x routing %02x conf %d (TX)\n",
2921 __func__, ch, slot_tx, bank_tx,
2922 flow_tx, routing, conf);
2923 HFC_outb(hc, R_SLOT, slot_tx << 1);
2924 HFC_outb(hc, A_SL_CFG, (ch << 1) | routing);
2925 if (hc->ctype != HFC_TYPE_XHFC)
2926 HFC_outb(hc, A_CONF,
2927 (conf < 0) ? 0 : (conf | V_CONF_SL));
2928 hc->slot_owner[slot_tx << 1] = ch;
2929 hc->chan[ch].slot_tx = slot_tx;
2930 hc->chan[ch].bank_tx = bank_tx;
2931 }
2932 if (slot_rx < 0) {
2933 /* disable pcm slot */
2934 flow_rx = 0x80; /* ST->FIFO */
2935 hc->chan[ch].slot_rx = -1;
2936 hc->chan[ch].bank_rx = 0;
2937 } else {
2938 /* set pcm slot */
2939 if (hc->chan[ch].txpending)
2940 flow_rx = 0x80; /* ST->FIFO */
2941 else
2942 flow_rx = 0xc0; /* ST->(FIFO,PCM) */
2943 /* put on slot */
2944 routing = bank_rx ? 0x80 : 0xc0; /* reversed */
2945 if (conf >= 0 || bank_rx > 1)
2946 routing = 0x40; /* loop */
2947 if (debug & DEBUG_HFCMULTI_MODE)
2948 printk(KERN_DEBUG "%s: put channel %d to slot %d bank"
2949 " %d flow %02x routing %02x conf %d (RX)\n",
2950 __func__, ch, slot_rx, bank_rx,
2951 flow_rx, routing, conf);
2952 HFC_outb(hc, R_SLOT, (slot_rx << 1) | V_SL_DIR);
2953 HFC_outb(hc, A_SL_CFG, (ch << 1) | V_CH_DIR | routing);
2954 hc->slot_owner[(slot_rx << 1) | 1] = ch;
2955 hc->chan[ch].slot_rx = slot_rx;
2956 hc->chan[ch].bank_rx = bank_rx;
2957 }
2958
2959 switch (protocol) {
2960 case (ISDN_P_NONE):
2961 /* disable TX fifo */
2962 HFC_outb(hc, R_FIFO, ch << 1);
2963 HFC_wait(hc);
2964 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 | V_IFF);
2965 HFC_outb(hc, A_SUBCH_CFG, 0);
2966 HFC_outb(hc, A_IRQ_MSK, 0);
2967 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2968 HFC_wait(hc);
2969 /* disable RX fifo */
2970 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
2971 HFC_wait(hc);
2972 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00);
2973 HFC_outb(hc, A_SUBCH_CFG, 0);
2974 HFC_outb(hc, A_IRQ_MSK, 0);
2975 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
2976 HFC_wait(hc);
2977 if (hc->chan[ch].bch && hc->ctype != HFC_TYPE_E1) {
2978 hc->hw.a_st_ctrl0[hc->chan[ch].port] &=
2979 ((ch & 0x3) == 0) ? ~V_B1_EN : ~V_B2_EN;
2980 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
2981 /* undocumented: delay after R_ST_SEL */
2982 udelay(1);
2983 HFC_outb(hc, A_ST_CTRL0,
2984 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
2985 }
2986 if (hc->chan[ch].bch) {
2987 test_and_clear_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
2988 test_and_clear_bit(FLG_TRANSPARENT,
2989 &hc->chan[ch].bch->Flags);
2990 }
2991 break;
2992 case (ISDN_P_B_RAW): /* B-channel */
2993
2994 if (test_bit(HFC_CHIP_B410P, &hc->chip) &&
2995 (hc->chan[ch].slot_rx < 0) &&
2996 (hc->chan[ch].slot_tx < 0)) {
2997
2998 printk(KERN_DEBUG
2999 "Setting B-channel %d to echo cancelable "
3000 "state on PCM slot %d\n", ch,
3001 ((ch / 4) * 8) + ((ch % 4) * 4) + 1);
3002 printk(KERN_DEBUG
3003 "Enabling pass through for channel\n");
3004 vpm_out(hc, ch, ((ch / 4) * 8) +
3005 ((ch % 4) * 4) + 1, 0x01);
3006 /* rx path */
3007 /* S/T -> PCM */
3008 HFC_outb(hc, R_FIFO, (ch << 1));
3009 HFC_wait(hc);
3010 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3011 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3012 ((ch % 4) * 4) + 1) << 1);
3013 HFC_outb(hc, A_SL_CFG, 0x80 | (ch << 1));
3014
3015 /* PCM -> FIFO */
3016 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1) | 1);
3017 HFC_wait(hc);
3018 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3019 HFC_outb(hc, A_SUBCH_CFG, 0);
3020 HFC_outb(hc, A_IRQ_MSK, 0);
3021 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3022 HFC_wait(hc);
3023 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3024 ((ch % 4) * 4) + 1) << 1) | 1);
3025 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1) | 1);
3026
3027 /* tx path */
3028 /* PCM -> S/T */
3029 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3030 HFC_wait(hc);
3031 HFC_outb(hc, A_CON_HDLC, 0xc0 | V_HDLC_TRP | V_IFF);
3032 HFC_outb(hc, R_SLOT, ((((ch / 4) * 8) +
3033 ((ch % 4) * 4)) << 1) | 1);
3034 HFC_outb(hc, A_SL_CFG, 0x80 | 0x40 | (ch << 1) | 1);
3035
3036 /* FIFO -> PCM */
3037 HFC_outb(hc, R_FIFO, 0x20 | (ch << 1));
3038 HFC_wait(hc);
3039 HFC_outb(hc, A_CON_HDLC, 0x20 | V_HDLC_TRP | V_IFF);
3040 HFC_outb(hc, A_SUBCH_CFG, 0);
3041 HFC_outb(hc, A_IRQ_MSK, 0);
3042 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3043 HFC_wait(hc);
3044 /* tx silence */
3045 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3046 HFC_outb(hc, R_SLOT, (((ch / 4) * 8) +
3047 ((ch % 4) * 4)) << 1);
3048 HFC_outb(hc, A_SL_CFG, 0x80 | 0x20 | (ch << 1));
3049 } else {
3050 /* enable TX fifo */
3051 HFC_outb(hc, R_FIFO, ch << 1);
3052 HFC_wait(hc);
3053 if (hc->ctype == HFC_TYPE_XHFC)
3054 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x07 << 2 |
3055 V_HDLC_TRP | V_IFF);
3056 /* Enable FIFO, no interrupt */
3057 else
3058 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x00 |
3059 V_HDLC_TRP | V_IFF);
3060 HFC_outb(hc, A_SUBCH_CFG, 0);
3061 HFC_outb(hc, A_IRQ_MSK, 0);
3062 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3063 HFC_wait(hc);
3064 /* tx silence */
3065 HFC_outb_nodebug(hc, A_FIFO_DATA0_NOINC, hc->silence);
3066 /* enable RX fifo */
3067 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3068 HFC_wait(hc);
3069 if (hc->ctype == HFC_TYPE_XHFC)
3070 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x07 << 2 |
3071 V_HDLC_TRP);
3072 /* Enable FIFO, no interrupt*/
3073 else
3074 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x00 |
3075 V_HDLC_TRP);
3076 HFC_outb(hc, A_SUBCH_CFG, 0);
3077 HFC_outb(hc, A_IRQ_MSK, 0);
3078 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3079 HFC_wait(hc);
3080 }
3081 if (hc->ctype != HFC_TYPE_E1) {
3082 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3083 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3084 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3085 /* undocumented: delay after R_ST_SEL */
3086 udelay(1);
3087 HFC_outb(hc, A_ST_CTRL0,
3088 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3089 }
3090 if (hc->chan[ch].bch)
3091 test_and_set_bit(FLG_TRANSPARENT,
3092 &hc->chan[ch].bch->Flags);
3093 break;
3094 case (ISDN_P_B_HDLC): /* B-channel */
3095 case (ISDN_P_TE_S0): /* D-channel */
3096 case (ISDN_P_NT_S0):
3097 case (ISDN_P_TE_E1):
3098 case (ISDN_P_NT_E1):
3099 /* enable TX fifo */
3100 HFC_outb(hc, R_FIFO, ch << 1);
3101 HFC_wait(hc);
3102 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch) {
3103 /* E1 or B-channel */
3104 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04);
3105 HFC_outb(hc, A_SUBCH_CFG, 0);
3106 } else {
3107 /* D-Channel without HDLC fill flags */
3108 HFC_outb(hc, A_CON_HDLC, flow_tx | 0x04 | V_IFF);
3109 HFC_outb(hc, A_SUBCH_CFG, 2);
3110 }
3111 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3112 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3113 HFC_wait(hc);
3114 /* enable RX fifo */
3115 HFC_outb(hc, R_FIFO, (ch << 1) | 1);
3116 HFC_wait(hc);
3117 HFC_outb(hc, A_CON_HDLC, flow_rx | 0x04);
3118 if (hc->ctype == HFC_TYPE_E1 || hc->chan[ch].bch)
3119 HFC_outb(hc, A_SUBCH_CFG, 0); /* full 8 bits */
3120 else
3121 HFC_outb(hc, A_SUBCH_CFG, 2); /* 2 bits dchannel */
3122 HFC_outb(hc, A_IRQ_MSK, V_IRQ);
3123 HFC_outb(hc, R_INC_RES_FIFO, V_RES_F);
3124 HFC_wait(hc);
3125 if (hc->chan[ch].bch) {
3126 test_and_set_bit(FLG_HDLC, &hc->chan[ch].bch->Flags);
3127 if (hc->ctype != HFC_TYPE_E1) {
3128 hc->hw.a_st_ctrl0[hc->chan[ch].port] |=
3129 ((ch & 0x3) == 0) ? V_B1_EN : V_B2_EN;
3130 HFC_outb(hc, R_ST_SEL, hc->chan[ch].port);
3131 /* undocumented: delay after R_ST_SEL */
3132 udelay(1);
3133 HFC_outb(hc, A_ST_CTRL0,
3134 hc->hw.a_st_ctrl0[hc->chan[ch].port]);
3135 }
3136 }
3137 break;
3138 default:
3139 printk(KERN_DEBUG "%s: protocol not known %x\n",
3140 __func__, protocol);
3141 hc->chan[ch].protocol = ISDN_P_NONE;
3142 return -ENOPROTOOPT;
3143 }
3144 hc->chan[ch].protocol = protocol;
3145 return 0;
3146 }
3147
3148
3149 /*
3150 * connect/disconnect PCM
3151 */
3152
3153 static void
hfcmulti_pcm(struct hfc_multi * hc,int ch,int slot_tx,int bank_tx,int slot_rx,int bank_rx)3154 hfcmulti_pcm(struct hfc_multi *hc, int ch, int slot_tx, int bank_tx,
3155 int slot_rx, int bank_rx)
3156 {
3157 if (slot_tx < 0 || slot_rx < 0 || bank_tx < 0 || bank_rx < 0) {
3158 /* disable PCM */
3159 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, -1, 0, -1, 0);
3160 return;
3161 }
3162
3163 /* enable pcm */
3164 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, slot_tx, bank_tx,
3165 slot_rx, bank_rx);
3166 }
3167
3168 /*
3169 * set/disable conference
3170 */
3171
3172 static void
hfcmulti_conf(struct hfc_multi * hc,int ch,int num)3173 hfcmulti_conf(struct hfc_multi *hc, int ch, int num)
3174 {
3175 if (num >= 0 && num <= 7)
3176 hc->chan[ch].conf = num;
3177 else
3178 hc->chan[ch].conf = -1;
3179 mode_hfcmulti(hc, ch, hc->chan[ch].protocol, hc->chan[ch].slot_tx,
3180 hc->chan[ch].bank_tx, hc->chan[ch].slot_rx,
3181 hc->chan[ch].bank_rx);
3182 }
3183
3184
3185 /*
3186 * set/disable sample loop
3187 */
3188
3189 /* NOTE: this function is experimental and therefore disabled */
3190
3191 /*
3192 * Layer 1 callback function
3193 */
3194 static int
hfcm_l1callback(struct dchannel * dch,u_int cmd)3195 hfcm_l1callback(struct dchannel *dch, u_int cmd)
3196 {
3197 struct hfc_multi *hc = dch->hw;
3198 u_long flags;
3199
3200 switch (cmd) {
3201 case INFO3_P8:
3202 case INFO3_P10:
3203 break;
3204 case HW_RESET_REQ:
3205 /* start activation */
3206 spin_lock_irqsave(&hc->lock, flags);
3207 if (hc->ctype == HFC_TYPE_E1) {
3208 if (debug & DEBUG_HFCMULTI_MSG)
3209 printk(KERN_DEBUG
3210 "%s: HW_RESET_REQ no BRI\n",
3211 __func__);
3212 } else {
3213 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3214 /* undocumented: delay after R_ST_SEL */
3215 udelay(1);
3216 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 3); /* F3 */
3217 udelay(6); /* wait at least 5,21us */
3218 HFC_outb(hc, A_ST_WR_STATE, 3);
3219 HFC_outb(hc, A_ST_WR_STATE, 3 | (V_ST_ACT * 3));
3220 /* activate */
3221 }
3222 spin_unlock_irqrestore(&hc->lock, flags);
3223 l1_event(dch->l1, HW_POWERUP_IND);
3224 break;
3225 case HW_DEACT_REQ:
3226 /* start deactivation */
3227 spin_lock_irqsave(&hc->lock, flags);
3228 if (hc->ctype == HFC_TYPE_E1) {
3229 if (debug & DEBUG_HFCMULTI_MSG)
3230 printk(KERN_DEBUG
3231 "%s: HW_DEACT_REQ no BRI\n",
3232 __func__);
3233 } else {
3234 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3235 /* undocumented: delay after R_ST_SEL */
3236 udelay(1);
3237 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3238 /* deactivate */
3239 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3240 hc->syncronized &=
3241 ~(1 << hc->chan[dch->slot].port);
3242 plxsd_checksync(hc, 0);
3243 }
3244 }
3245 skb_queue_purge(&dch->squeue);
3246 if (dch->tx_skb) {
3247 dev_kfree_skb(dch->tx_skb);
3248 dch->tx_skb = NULL;
3249 }
3250 dch->tx_idx = 0;
3251 if (dch->rx_skb) {
3252 dev_kfree_skb(dch->rx_skb);
3253 dch->rx_skb = NULL;
3254 }
3255 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3256 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3257 del_timer(&dch->timer);
3258 spin_unlock_irqrestore(&hc->lock, flags);
3259 break;
3260 case HW_POWERUP_REQ:
3261 spin_lock_irqsave(&hc->lock, flags);
3262 if (hc->ctype == HFC_TYPE_E1) {
3263 if (debug & DEBUG_HFCMULTI_MSG)
3264 printk(KERN_DEBUG
3265 "%s: HW_POWERUP_REQ no BRI\n",
3266 __func__);
3267 } else {
3268 HFC_outb(hc, R_ST_SEL, hc->chan[dch->slot].port);
3269 /* undocumented: delay after R_ST_SEL */
3270 udelay(1);
3271 HFC_outb(hc, A_ST_WR_STATE, 3 | 0x10); /* activate */
3272 udelay(6); /* wait at least 5,21us */
3273 HFC_outb(hc, A_ST_WR_STATE, 3); /* activate */
3274 }
3275 spin_unlock_irqrestore(&hc->lock, flags);
3276 break;
3277 case PH_ACTIVATE_IND:
3278 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3279 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3280 GFP_ATOMIC);
3281 break;
3282 case PH_DEACTIVATE_IND:
3283 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3284 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
3285 GFP_ATOMIC);
3286 break;
3287 default:
3288 if (dch->debug & DEBUG_HW)
3289 printk(KERN_DEBUG "%s: unknown command %x\n",
3290 __func__, cmd);
3291 return -1;
3292 }
3293 return 0;
3294 }
3295
3296 /*
3297 * Layer2 -> Layer 1 Transfer
3298 */
3299
3300 static int
handle_dmsg(struct mISDNchannel * ch,struct sk_buff * skb)3301 handle_dmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3302 {
3303 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
3304 struct dchannel *dch = container_of(dev, struct dchannel, dev);
3305 struct hfc_multi *hc = dch->hw;
3306 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3307 int ret = -EINVAL;
3308 unsigned int id;
3309 u_long flags;
3310
3311 switch (hh->prim) {
3312 case PH_DATA_REQ:
3313 if (skb->len < 1)
3314 break;
3315 spin_lock_irqsave(&hc->lock, flags);
3316 ret = dchannel_senddata(dch, skb);
3317 if (ret > 0) { /* direct TX */
3318 id = hh->id; /* skb can be freed */
3319 hfcmulti_tx(hc, dch->slot);
3320 ret = 0;
3321 /* start fifo */
3322 HFC_outb(hc, R_FIFO, 0);
3323 HFC_wait(hc);
3324 spin_unlock_irqrestore(&hc->lock, flags);
3325 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3326 } else
3327 spin_unlock_irqrestore(&hc->lock, flags);
3328 return ret;
3329 case PH_ACTIVATE_REQ:
3330 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3331 spin_lock_irqsave(&hc->lock, flags);
3332 ret = 0;
3333 if (debug & DEBUG_HFCMULTI_MSG)
3334 printk(KERN_DEBUG
3335 "%s: PH_ACTIVATE port %d (0..%d)\n",
3336 __func__, hc->chan[dch->slot].port,
3337 hc->ports - 1);
3338 /* start activation */
3339 if (hc->ctype == HFC_TYPE_E1) {
3340 ph_state_change(dch);
3341 if (debug & DEBUG_HFCMULTI_STATE)
3342 printk(KERN_DEBUG
3343 "%s: E1 report state %x \n",
3344 __func__, dch->state);
3345 } else {
3346 HFC_outb(hc, R_ST_SEL,
3347 hc->chan[dch->slot].port);
3348 /* undocumented: delay after R_ST_SEL */
3349 udelay(1);
3350 HFC_outb(hc, A_ST_WR_STATE, V_ST_LD_STA | 1);
3351 /* G1 */
3352 udelay(6); /* wait at least 5,21us */
3353 HFC_outb(hc, A_ST_WR_STATE, 1);
3354 HFC_outb(hc, A_ST_WR_STATE, 1 |
3355 (V_ST_ACT * 3)); /* activate */
3356 dch->state = 1;
3357 }
3358 spin_unlock_irqrestore(&hc->lock, flags);
3359 } else
3360 ret = l1_event(dch->l1, hh->prim);
3361 break;
3362 case PH_DEACTIVATE_REQ:
3363 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
3364 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
3365 spin_lock_irqsave(&hc->lock, flags);
3366 if (debug & DEBUG_HFCMULTI_MSG)
3367 printk(KERN_DEBUG
3368 "%s: PH_DEACTIVATE port %d (0..%d)\n",
3369 __func__, hc->chan[dch->slot].port,
3370 hc->ports - 1);
3371 /* start deactivation */
3372 if (hc->ctype == HFC_TYPE_E1) {
3373 if (debug & DEBUG_HFCMULTI_MSG)
3374 printk(KERN_DEBUG
3375 "%s: PH_DEACTIVATE no BRI\n",
3376 __func__);
3377 } else {
3378 HFC_outb(hc, R_ST_SEL,
3379 hc->chan[dch->slot].port);
3380 /* undocumented: delay after R_ST_SEL */
3381 udelay(1);
3382 HFC_outb(hc, A_ST_WR_STATE, V_ST_ACT * 2);
3383 /* deactivate */
3384 dch->state = 1;
3385 }
3386 skb_queue_purge(&dch->squeue);
3387 if (dch->tx_skb) {
3388 dev_kfree_skb(dch->tx_skb);
3389 dch->tx_skb = NULL;
3390 }
3391 dch->tx_idx = 0;
3392 if (dch->rx_skb) {
3393 dev_kfree_skb(dch->rx_skb);
3394 dch->rx_skb = NULL;
3395 }
3396 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
3397 if (test_and_clear_bit(FLG_BUSY_TIMER, &dch->Flags))
3398 del_timer(&dch->timer);
3399 #ifdef FIXME
3400 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
3401 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
3402 #endif
3403 ret = 0;
3404 spin_unlock_irqrestore(&hc->lock, flags);
3405 } else
3406 ret = l1_event(dch->l1, hh->prim);
3407 break;
3408 }
3409 if (!ret)
3410 dev_kfree_skb(skb);
3411 return ret;
3412 }
3413
3414 static void
deactivate_bchannel(struct bchannel * bch)3415 deactivate_bchannel(struct bchannel *bch)
3416 {
3417 struct hfc_multi *hc = bch->hw;
3418 u_long flags;
3419
3420 spin_lock_irqsave(&hc->lock, flags);
3421 mISDN_clear_bchannel(bch);
3422 hc->chan[bch->slot].coeff_count = 0;
3423 hc->chan[bch->slot].rx_off = 0;
3424 hc->chan[bch->slot].conf = -1;
3425 mode_hfcmulti(hc, bch->slot, ISDN_P_NONE, -1, 0, -1, 0);
3426 spin_unlock_irqrestore(&hc->lock, flags);
3427 }
3428
3429 static int
handle_bmsg(struct mISDNchannel * ch,struct sk_buff * skb)3430 handle_bmsg(struct mISDNchannel *ch, struct sk_buff *skb)
3431 {
3432 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3433 struct hfc_multi *hc = bch->hw;
3434 int ret = -EINVAL;
3435 struct mISDNhead *hh = mISDN_HEAD_P(skb);
3436 unsigned int id;
3437 u_long flags;
3438
3439 switch (hh->prim) {
3440 case PH_DATA_REQ:
3441 if (!skb->len)
3442 break;
3443 spin_lock_irqsave(&hc->lock, flags);
3444 ret = bchannel_senddata(bch, skb);
3445 if (ret > 0) { /* direct TX */
3446 id = hh->id; /* skb can be freed */
3447 hfcmulti_tx(hc, bch->slot);
3448 ret = 0;
3449 /* start fifo */
3450 HFC_outb_nodebug(hc, R_FIFO, 0);
3451 HFC_wait_nodebug(hc);
3452 if (!test_bit(FLG_TRANSPARENT, &bch->Flags)) {
3453 spin_unlock_irqrestore(&hc->lock, flags);
3454 queue_ch_frame(ch, PH_DATA_CNF, id, NULL);
3455 } else
3456 spin_unlock_irqrestore(&hc->lock, flags);
3457 } else
3458 spin_unlock_irqrestore(&hc->lock, flags);
3459 return ret;
3460 case PH_ACTIVATE_REQ:
3461 if (debug & DEBUG_HFCMULTI_MSG)
3462 printk(KERN_DEBUG "%s: PH_ACTIVATE ch %d (0..32)\n",
3463 __func__, bch->slot);
3464 spin_lock_irqsave(&hc->lock, flags);
3465 /* activate B-channel if not already activated */
3466 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
3467 hc->chan[bch->slot].txpending = 0;
3468 ret = mode_hfcmulti(hc, bch->slot,
3469 ch->protocol,
3470 hc->chan[bch->slot].slot_tx,
3471 hc->chan[bch->slot].bank_tx,
3472 hc->chan[bch->slot].slot_rx,
3473 hc->chan[bch->slot].bank_rx);
3474 if (!ret) {
3475 if (ch->protocol == ISDN_P_B_RAW && !hc->dtmf
3476 && test_bit(HFC_CHIP_DTMF, &hc->chip)) {
3477 /* start decoder */
3478 hc->dtmf = 1;
3479 if (debug & DEBUG_HFCMULTI_DTMF)
3480 printk(KERN_DEBUG
3481 "%s: start dtmf decoder\n",
3482 __func__);
3483 HFC_outb(hc, R_DTMF, hc->hw.r_dtmf |
3484 V_RST_DTMF);
3485 }
3486 }
3487 } else
3488 ret = 0;
3489 spin_unlock_irqrestore(&hc->lock, flags);
3490 if (!ret)
3491 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3492 GFP_KERNEL);
3493 break;
3494 case PH_CONTROL_REQ:
3495 spin_lock_irqsave(&hc->lock, flags);
3496 switch (hh->id) {
3497 case HFC_SPL_LOOP_ON: /* set sample loop */
3498 if (debug & DEBUG_HFCMULTI_MSG)
3499 printk(KERN_DEBUG
3500 "%s: HFC_SPL_LOOP_ON (len = %d)\n",
3501 __func__, skb->len);
3502 ret = 0;
3503 break;
3504 case HFC_SPL_LOOP_OFF: /* set silence */
3505 if (debug & DEBUG_HFCMULTI_MSG)
3506 printk(KERN_DEBUG "%s: HFC_SPL_LOOP_OFF\n",
3507 __func__);
3508 ret = 0;
3509 break;
3510 default:
3511 printk(KERN_ERR
3512 "%s: unknown PH_CONTROL_REQ info %x\n",
3513 __func__, hh->id);
3514 ret = -EINVAL;
3515 }
3516 spin_unlock_irqrestore(&hc->lock, flags);
3517 break;
3518 case PH_DEACTIVATE_REQ:
3519 deactivate_bchannel(bch); /* locked there */
3520 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY, 0, NULL,
3521 GFP_KERNEL);
3522 ret = 0;
3523 break;
3524 }
3525 if (!ret)
3526 dev_kfree_skb(skb);
3527 return ret;
3528 }
3529
3530 /*
3531 * bchannel control function
3532 */
3533 static int
channel_bctrl(struct bchannel * bch,struct mISDN_ctrl_req * cq)3534 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
3535 {
3536 int ret = 0;
3537 struct dsp_features *features =
3538 (struct dsp_features *)(*((u_long *)&cq->p1));
3539 struct hfc_multi *hc = bch->hw;
3540 int slot_tx;
3541 int bank_tx;
3542 int slot_rx;
3543 int bank_rx;
3544 int num;
3545
3546 switch (cq->op) {
3547 case MISDN_CTRL_GETOP:
3548 cq->op = MISDN_CTRL_HFC_OP | MISDN_CTRL_HW_FEATURES_OP
3549 | MISDN_CTRL_RX_OFF | MISDN_CTRL_FILL_EMPTY;
3550 break;
3551 case MISDN_CTRL_RX_OFF: /* turn off / on rx stream */
3552 hc->chan[bch->slot].rx_off = !!cq->p1;
3553 if (!hc->chan[bch->slot].rx_off) {
3554 /* reset fifo on rx on */
3555 HFC_outb_nodebug(hc, R_FIFO, (bch->slot << 1) | 1);
3556 HFC_wait_nodebug(hc);
3557 HFC_outb_nodebug(hc, R_INC_RES_FIFO, V_RES_F);
3558 HFC_wait_nodebug(hc);
3559 }
3560 if (debug & DEBUG_HFCMULTI_MSG)
3561 printk(KERN_DEBUG "%s: RX_OFF request (nr=%d off=%d)\n",
3562 __func__, bch->nr, hc->chan[bch->slot].rx_off);
3563 break;
3564 case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
3565 test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
3566 if (debug & DEBUG_HFCMULTI_MSG)
3567 printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
3568 "off=%d)\n", __func__, bch->nr, !!cq->p1);
3569 break;
3570 case MISDN_CTRL_HW_FEATURES: /* fill features structure */
3571 if (debug & DEBUG_HFCMULTI_MSG)
3572 printk(KERN_DEBUG "%s: HW_FEATURE request\n",
3573 __func__);
3574 /* create confirm */
3575 features->hfc_id = hc->id;
3576 if (test_bit(HFC_CHIP_DTMF, &hc->chip))
3577 features->hfc_dtmf = 1;
3578 if (test_bit(HFC_CHIP_CONF, &hc->chip))
3579 features->hfc_conf = 1;
3580 features->hfc_loops = 0;
3581 if (test_bit(HFC_CHIP_B410P, &hc->chip)) {
3582 features->hfc_echocanhw = 1;
3583 } else {
3584 features->pcm_id = hc->pcm;
3585 features->pcm_slots = hc->slots;
3586 features->pcm_banks = 2;
3587 }
3588 break;
3589 case MISDN_CTRL_HFC_PCM_CONN: /* connect to pcm timeslot (0..N) */
3590 slot_tx = cq->p1 & 0xff;
3591 bank_tx = cq->p1 >> 8;
3592 slot_rx = cq->p2 & 0xff;
3593 bank_rx = cq->p2 >> 8;
3594 if (debug & DEBUG_HFCMULTI_MSG)
3595 printk(KERN_DEBUG
3596 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3597 "slot %d bank %d (RX)\n",
3598 __func__, slot_tx, bank_tx,
3599 slot_rx, bank_rx);
3600 if (slot_tx < hc->slots && bank_tx <= 2 &&
3601 slot_rx < hc->slots && bank_rx <= 2)
3602 hfcmulti_pcm(hc, bch->slot,
3603 slot_tx, bank_tx, slot_rx, bank_rx);
3604 else {
3605 printk(KERN_WARNING
3606 "%s: HFC_PCM_CONN slot %d bank %d (TX) "
3607 "slot %d bank %d (RX) out of range\n",
3608 __func__, slot_tx, bank_tx,
3609 slot_rx, bank_rx);
3610 ret = -EINVAL;
3611 }
3612 break;
3613 case MISDN_CTRL_HFC_PCM_DISC: /* release interface from pcm timeslot */
3614 if (debug & DEBUG_HFCMULTI_MSG)
3615 printk(KERN_DEBUG "%s: HFC_PCM_DISC\n",
3616 __func__);
3617 hfcmulti_pcm(hc, bch->slot, -1, 0, -1, 0);
3618 break;
3619 case MISDN_CTRL_HFC_CONF_JOIN: /* join conference (0..7) */
3620 num = cq->p1 & 0xff;
3621 if (debug & DEBUG_HFCMULTI_MSG)
3622 printk(KERN_DEBUG "%s: HFC_CONF_JOIN conf %d\n",
3623 __func__, num);
3624 if (num <= 7)
3625 hfcmulti_conf(hc, bch->slot, num);
3626 else {
3627 printk(KERN_WARNING
3628 "%s: HW_CONF_JOIN conf %d out of range\n",
3629 __func__, num);
3630 ret = -EINVAL;
3631 }
3632 break;
3633 case MISDN_CTRL_HFC_CONF_SPLIT: /* split conference */
3634 if (debug & DEBUG_HFCMULTI_MSG)
3635 printk(KERN_DEBUG "%s: HFC_CONF_SPLIT\n", __func__);
3636 hfcmulti_conf(hc, bch->slot, -1);
3637 break;
3638 case MISDN_CTRL_HFC_ECHOCAN_ON:
3639 if (debug & DEBUG_HFCMULTI_MSG)
3640 printk(KERN_DEBUG "%s: HFC_ECHOCAN_ON\n", __func__);
3641 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3642 vpm_echocan_on(hc, bch->slot, cq->p1);
3643 else
3644 ret = -EINVAL;
3645 break;
3646
3647 case MISDN_CTRL_HFC_ECHOCAN_OFF:
3648 if (debug & DEBUG_HFCMULTI_MSG)
3649 printk(KERN_DEBUG "%s: HFC_ECHOCAN_OFF\n",
3650 __func__);
3651 if (test_bit(HFC_CHIP_B410P, &hc->chip))
3652 vpm_echocan_off(hc, bch->slot);
3653 else
3654 ret = -EINVAL;
3655 break;
3656 default:
3657 printk(KERN_WARNING "%s: unknown Op %x\n",
3658 __func__, cq->op);
3659 ret = -EINVAL;
3660 break;
3661 }
3662 return ret;
3663 }
3664
3665 static int
hfcm_bctrl(struct mISDNchannel * ch,u_int cmd,void * arg)3666 hfcm_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
3667 {
3668 struct bchannel *bch = container_of(ch, struct bchannel, ch);
3669 struct hfc_multi *hc = bch->hw;
3670 int err = -EINVAL;
3671 u_long flags;
3672
3673 if (bch->debug & DEBUG_HW)
3674 printk(KERN_DEBUG "%s: cmd:%x %p\n",
3675 __func__, cmd, arg);
3676 switch (cmd) {
3677 case CLOSE_CHANNEL:
3678 test_and_clear_bit(FLG_OPEN, &bch->Flags);
3679 if (test_bit(FLG_ACTIVE, &bch->Flags))
3680 deactivate_bchannel(bch); /* locked there */
3681 ch->protocol = ISDN_P_NONE;
3682 ch->peer = NULL;
3683 module_put(THIS_MODULE);
3684 err = 0;
3685 break;
3686 case CONTROL_CHANNEL:
3687 spin_lock_irqsave(&hc->lock, flags);
3688 err = channel_bctrl(bch, arg);
3689 spin_unlock_irqrestore(&hc->lock, flags);
3690 break;
3691 default:
3692 printk(KERN_WARNING "%s: unknown prim(%x)\n",
3693 __func__, cmd);
3694 }
3695 return err;
3696 }
3697
3698 /*
3699 * handle D-channel events
3700 *
3701 * handle state change event
3702 */
3703 static void
ph_state_change(struct dchannel * dch)3704 ph_state_change(struct dchannel *dch)
3705 {
3706 struct hfc_multi *hc;
3707 int ch, i;
3708
3709 if (!dch) {
3710 printk(KERN_WARNING "%s: ERROR given dch is NULL\n", __func__);
3711 return;
3712 }
3713 hc = dch->hw;
3714 ch = dch->slot;
3715
3716 if (hc->ctype == HFC_TYPE_E1) {
3717 if (dch->dev.D.protocol == ISDN_P_TE_E1) {
3718 if (debug & DEBUG_HFCMULTI_STATE)
3719 printk(KERN_DEBUG
3720 "%s: E1 TE (id=%d) newstate %x\n",
3721 __func__, hc->id, dch->state);
3722 } else {
3723 if (debug & DEBUG_HFCMULTI_STATE)
3724 printk(KERN_DEBUG
3725 "%s: E1 NT (id=%d) newstate %x\n",
3726 __func__, hc->id, dch->state);
3727 }
3728 switch (dch->state) {
3729 case (1):
3730 if (hc->e1_state != 1) {
3731 for (i = 1; i <= 31; i++) {
3732 /* reset fifos on e1 activation */
3733 HFC_outb_nodebug(hc, R_FIFO,
3734 (i << 1) | 1);
3735 HFC_wait_nodebug(hc);
3736 HFC_outb_nodebug(hc, R_INC_RES_FIFO,
3737 V_RES_F);
3738 HFC_wait_nodebug(hc);
3739 }
3740 }
3741 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3742 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3743 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3744 break;
3745
3746 default:
3747 if (hc->e1_state != 1)
3748 return;
3749 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3750 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3751 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3752 }
3753 hc->e1_state = dch->state;
3754 } else {
3755 if (dch->dev.D.protocol == ISDN_P_TE_S0) {
3756 if (debug & DEBUG_HFCMULTI_STATE)
3757 printk(KERN_DEBUG
3758 "%s: S/T TE newstate %x\n",
3759 __func__, dch->state);
3760 switch (dch->state) {
3761 case (0):
3762 l1_event(dch->l1, HW_RESET_IND);
3763 break;
3764 case (3):
3765 l1_event(dch->l1, HW_DEACT_IND);
3766 break;
3767 case (5):
3768 case (8):
3769 l1_event(dch->l1, ANYSIGNAL);
3770 break;
3771 case (6):
3772 l1_event(dch->l1, INFO2);
3773 break;
3774 case (7):
3775 l1_event(dch->l1, INFO4_P8);
3776 break;
3777 }
3778 } else {
3779 if (debug & DEBUG_HFCMULTI_STATE)
3780 printk(KERN_DEBUG "%s: S/T NT newstate %x\n",
3781 __func__, dch->state);
3782 switch (dch->state) {
3783 case (2):
3784 if (hc->chan[ch].nt_timer == 0) {
3785 hc->chan[ch].nt_timer = -1;
3786 HFC_outb(hc, R_ST_SEL,
3787 hc->chan[ch].port);
3788 /* undocumented: delay after R_ST_SEL */
3789 udelay(1);
3790 HFC_outb(hc, A_ST_WR_STATE, 4 |
3791 V_ST_LD_STA); /* G4 */
3792 udelay(6); /* wait at least 5,21us */
3793 HFC_outb(hc, A_ST_WR_STATE, 4);
3794 dch->state = 4;
3795 } else {
3796 /* one extra count for the next event */
3797 hc->chan[ch].nt_timer =
3798 nt_t1_count[poll_timer] + 1;
3799 HFC_outb(hc, R_ST_SEL,
3800 hc->chan[ch].port);
3801 /* undocumented: delay after R_ST_SEL */
3802 udelay(1);
3803 /* allow G2 -> G3 transition */
3804 HFC_outb(hc, A_ST_WR_STATE, 2 |
3805 V_SET_G2_G3);
3806 }
3807 break;
3808 case (1):
3809 hc->chan[ch].nt_timer = -1;
3810 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
3811 _queue_data(&dch->dev.D, PH_DEACTIVATE_IND,
3812 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3813 break;
3814 case (4):
3815 hc->chan[ch].nt_timer = -1;
3816 break;
3817 case (3):
3818 hc->chan[ch].nt_timer = -1;
3819 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
3820 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
3821 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
3822 break;
3823 }
3824 }
3825 }
3826 }
3827
3828 /*
3829 * called for card mode init message
3830 */
3831
3832 static void
hfcmulti_initmode(struct dchannel * dch)3833 hfcmulti_initmode(struct dchannel *dch)
3834 {
3835 struct hfc_multi *hc = dch->hw;
3836 u_char a_st_wr_state, r_e1_wr_sta;
3837 int i, pt;
3838
3839 if (debug & DEBUG_HFCMULTI_INIT)
3840 printk(KERN_DEBUG "%s: entered\n", __func__);
3841
3842 if (hc->ctype == HFC_TYPE_E1) {
3843 hc->chan[hc->dslot].slot_tx = -1;
3844 hc->chan[hc->dslot].slot_rx = -1;
3845 hc->chan[hc->dslot].conf = -1;
3846 if (hc->dslot) {
3847 mode_hfcmulti(hc, hc->dslot, dch->dev.D.protocol,
3848 -1, 0, -1, 0);
3849 dch->timer.function = (void *) hfcmulti_dbusy_timer;
3850 dch->timer.data = (long) dch;
3851 init_timer(&dch->timer);
3852 }
3853 for (i = 1; i <= 31; i++) {
3854 if (i == hc->dslot)
3855 continue;
3856 hc->chan[i].slot_tx = -1;
3857 hc->chan[i].slot_rx = -1;
3858 hc->chan[i].conf = -1;
3859 mode_hfcmulti(hc, i, ISDN_P_NONE, -1, 0, -1, 0);
3860 }
3861 /* E1 */
3862 if (test_bit(HFC_CFG_REPORT_LOS, &hc->chan[hc->dslot].cfg)) {
3863 HFC_outb(hc, R_LOS0, 255); /* 2 ms */
3864 HFC_outb(hc, R_LOS1, 255); /* 512 ms */
3865 }
3866 if (test_bit(HFC_CFG_OPTICAL, &hc->chan[hc->dslot].cfg)) {
3867 HFC_outb(hc, R_RX0, 0);
3868 hc->hw.r_tx0 = 0 | V_OUT_EN;
3869 } else {
3870 HFC_outb(hc, R_RX0, 1);
3871 hc->hw.r_tx0 = 1 | V_OUT_EN;
3872 }
3873 hc->hw.r_tx1 = V_ATX | V_NTRI;
3874 HFC_outb(hc, R_TX0, hc->hw.r_tx0);
3875 HFC_outb(hc, R_TX1, hc->hw.r_tx1);
3876 HFC_outb(hc, R_TX_FR0, 0x00);
3877 HFC_outb(hc, R_TX_FR1, 0xf8);
3878
3879 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3880 HFC_outb(hc, R_TX_FR2, V_TX_MF | V_TX_E | V_NEG_E);
3881
3882 HFC_outb(hc, R_RX_FR0, V_AUTO_RESYNC | V_AUTO_RECO | 0);
3883
3884 if (test_bit(HFC_CFG_CRC4, &hc->chan[hc->dslot].cfg))
3885 HFC_outb(hc, R_RX_FR1, V_RX_MF | V_RX_MF_SYNC);
3886
3887 if (dch->dev.D.protocol == ISDN_P_NT_E1) {
3888 if (debug & DEBUG_HFCMULTI_INIT)
3889 printk(KERN_DEBUG "%s: E1 port is NT-mode\n",
3890 __func__);
3891 r_e1_wr_sta = 0; /* G0 */
3892 hc->e1_getclock = 0;
3893 } else {
3894 if (debug & DEBUG_HFCMULTI_INIT)
3895 printk(KERN_DEBUG "%s: E1 port is TE-mode\n",
3896 __func__);
3897 r_e1_wr_sta = 0; /* F0 */
3898 hc->e1_getclock = 1;
3899 }
3900 if (test_bit(HFC_CHIP_RX_SYNC, &hc->chip))
3901 HFC_outb(hc, R_SYNC_OUT, V_SYNC_E1_RX);
3902 else
3903 HFC_outb(hc, R_SYNC_OUT, 0);
3904 if (test_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip))
3905 hc->e1_getclock = 1;
3906 if (test_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip))
3907 hc->e1_getclock = 0;
3908 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
3909 /* SLAVE (clock master) */
3910 if (debug & DEBUG_HFCMULTI_INIT)
3911 printk(KERN_DEBUG
3912 "%s: E1 port is clock master "
3913 "(clock from PCM)\n", __func__);
3914 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC | V_PCM_SYNC);
3915 } else {
3916 if (hc->e1_getclock) {
3917 /* MASTER (clock slave) */
3918 if (debug & DEBUG_HFCMULTI_INIT)
3919 printk(KERN_DEBUG
3920 "%s: E1 port is clock slave "
3921 "(clock to PCM)\n", __func__);
3922 HFC_outb(hc, R_SYNC_CTRL, V_SYNC_OFFS);
3923 } else {
3924 /* MASTER (clock master) */
3925 if (debug & DEBUG_HFCMULTI_INIT)
3926 printk(KERN_DEBUG "%s: E1 port is "
3927 "clock master "
3928 "(clock from QUARTZ)\n",
3929 __func__);
3930 HFC_outb(hc, R_SYNC_CTRL, V_EXT_CLK_SYNC |
3931 V_PCM_SYNC | V_JATT_OFF);
3932 HFC_outb(hc, R_SYNC_OUT, 0);
3933 }
3934 }
3935 HFC_outb(hc, R_JATT_ATT, 0x9c); /* undoc register */
3936 HFC_outb(hc, R_PWM_MD, V_PWM0_MD);
3937 HFC_outb(hc, R_PWM0, 0x50);
3938 HFC_outb(hc, R_PWM1, 0xff);
3939 /* state machine setup */
3940 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta | V_E1_LD_STA);
3941 udelay(6); /* wait at least 5,21us */
3942 HFC_outb(hc, R_E1_WR_STA, r_e1_wr_sta);
3943 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
3944 hc->syncronized = 0;
3945 plxsd_checksync(hc, 0);
3946 }
3947 } else {
3948 i = dch->slot;
3949 hc->chan[i].slot_tx = -1;
3950 hc->chan[i].slot_rx = -1;
3951 hc->chan[i].conf = -1;
3952 mode_hfcmulti(hc, i, dch->dev.D.protocol, -1, 0, -1, 0);
3953 dch->timer.function = (void *)hfcmulti_dbusy_timer;
3954 dch->timer.data = (long) dch;
3955 init_timer(&dch->timer);
3956 hc->chan[i - 2].slot_tx = -1;
3957 hc->chan[i - 2].slot_rx = -1;
3958 hc->chan[i - 2].conf = -1;
3959 mode_hfcmulti(hc, i - 2, ISDN_P_NONE, -1, 0, -1, 0);
3960 hc->chan[i - 1].slot_tx = -1;
3961 hc->chan[i - 1].slot_rx = -1;
3962 hc->chan[i - 1].conf = -1;
3963 mode_hfcmulti(hc, i - 1, ISDN_P_NONE, -1, 0, -1, 0);
3964 /* ST */
3965 pt = hc->chan[i].port;
3966 /* select interface */
3967 HFC_outb(hc, R_ST_SEL, pt);
3968 /* undocumented: delay after R_ST_SEL */
3969 udelay(1);
3970 if (dch->dev.D.protocol == ISDN_P_NT_S0) {
3971 if (debug & DEBUG_HFCMULTI_INIT)
3972 printk(KERN_DEBUG
3973 "%s: ST port %d is NT-mode\n",
3974 __func__, pt);
3975 /* clock delay */
3976 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_nt);
3977 a_st_wr_state = 1; /* G1 */
3978 hc->hw.a_st_ctrl0[pt] = V_ST_MD;
3979 } else {
3980 if (debug & DEBUG_HFCMULTI_INIT)
3981 printk(KERN_DEBUG
3982 "%s: ST port %d is TE-mode\n",
3983 __func__, pt);
3984 /* clock delay */
3985 HFC_outb(hc, A_ST_CLK_DLY, clockdelay_te);
3986 a_st_wr_state = 2; /* F2 */
3987 hc->hw.a_st_ctrl0[pt] = 0;
3988 }
3989 if (!test_bit(HFC_CFG_NONCAP_TX, &hc->chan[i].cfg))
3990 hc->hw.a_st_ctrl0[pt] |= V_TX_LI;
3991 if (hc->ctype == HFC_TYPE_XHFC) {
3992 hc->hw.a_st_ctrl0[pt] |= 0x40 /* V_ST_PU_CTRL */;
3993 HFC_outb(hc, 0x35 /* A_ST_CTRL3 */,
3994 0x7c << 1 /* V_ST_PULSE */);
3995 }
3996 /* line setup */
3997 HFC_outb(hc, A_ST_CTRL0, hc->hw.a_st_ctrl0[pt]);
3998 /* disable E-channel */
3999 if ((dch->dev.D.protocol == ISDN_P_NT_S0) ||
4000 test_bit(HFC_CFG_DIS_ECHANNEL, &hc->chan[i].cfg))
4001 HFC_outb(hc, A_ST_CTRL1, V_E_IGNO);
4002 else
4003 HFC_outb(hc, A_ST_CTRL1, 0);
4004 /* enable B-channel receive */
4005 HFC_outb(hc, A_ST_CTRL2, V_B1_RX_EN | V_B2_RX_EN);
4006 /* state machine setup */
4007 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state | V_ST_LD_STA);
4008 udelay(6); /* wait at least 5,21us */
4009 HFC_outb(hc, A_ST_WR_STATE, a_st_wr_state);
4010 hc->hw.r_sci_msk |= 1 << pt;
4011 /* state machine interrupts */
4012 HFC_outb(hc, R_SCI_MSK, hc->hw.r_sci_msk);
4013 /* unset sync on port */
4014 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4015 hc->syncronized &=
4016 ~(1 << hc->chan[dch->slot].port);
4017 plxsd_checksync(hc, 0);
4018 }
4019 }
4020 if (debug & DEBUG_HFCMULTI_INIT)
4021 printk("%s: done\n", __func__);
4022 }
4023
4024
4025 static int
open_dchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4026 open_dchannel(struct hfc_multi *hc, struct dchannel *dch,
4027 struct channel_req *rq)
4028 {
4029 int err = 0;
4030 u_long flags;
4031
4032 if (debug & DEBUG_HW_OPEN)
4033 printk(KERN_DEBUG "%s: dev(%d) open from %p\n", __func__,
4034 dch->dev.id, __builtin_return_address(0));
4035 if (rq->protocol == ISDN_P_NONE)
4036 return -EINVAL;
4037 if ((dch->dev.D.protocol != ISDN_P_NONE) &&
4038 (dch->dev.D.protocol != rq->protocol)) {
4039 if (debug & DEBUG_HFCMULTI_MODE)
4040 printk(KERN_DEBUG "%s: change protocol %x to %x\n",
4041 __func__, dch->dev.D.protocol, rq->protocol);
4042 }
4043 if ((dch->dev.D.protocol == ISDN_P_TE_S0) &&
4044 (rq->protocol != ISDN_P_TE_S0))
4045 l1_event(dch->l1, CLOSE_CHANNEL);
4046 if (dch->dev.D.protocol != rq->protocol) {
4047 if (rq->protocol == ISDN_P_TE_S0) {
4048 err = create_l1(dch, hfcm_l1callback);
4049 if (err)
4050 return err;
4051 }
4052 dch->dev.D.protocol = rq->protocol;
4053 spin_lock_irqsave(&hc->lock, flags);
4054 hfcmulti_initmode(dch);
4055 spin_unlock_irqrestore(&hc->lock, flags);
4056 }
4057
4058 if (((rq->protocol == ISDN_P_NT_S0) && (dch->state == 3)) ||
4059 ((rq->protocol == ISDN_P_TE_S0) && (dch->state == 7)) ||
4060 ((rq->protocol == ISDN_P_NT_E1) && (dch->state == 1)) ||
4061 ((rq->protocol == ISDN_P_TE_E1) && (dch->state == 1))) {
4062 _queue_data(&dch->dev.D, PH_ACTIVATE_IND, MISDN_ID_ANY,
4063 0, NULL, GFP_KERNEL);
4064 }
4065 rq->ch = &dch->dev.D;
4066 if (!try_module_get(THIS_MODULE))
4067 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4068 return 0;
4069 }
4070
4071 static int
open_bchannel(struct hfc_multi * hc,struct dchannel * dch,struct channel_req * rq)4072 open_bchannel(struct hfc_multi *hc, struct dchannel *dch,
4073 struct channel_req *rq)
4074 {
4075 struct bchannel *bch;
4076 int ch;
4077
4078 if (!test_channelmap(rq->adr.channel, dch->dev.channelmap))
4079 return -EINVAL;
4080 if (rq->protocol == ISDN_P_NONE)
4081 return -EINVAL;
4082 if (hc->ctype == HFC_TYPE_E1)
4083 ch = rq->adr.channel;
4084 else
4085 ch = (rq->adr.channel - 1) + (dch->slot - 2);
4086 bch = hc->chan[ch].bch;
4087 if (!bch) {
4088 printk(KERN_ERR "%s:internal error ch %d has no bch\n",
4089 __func__, ch);
4090 return -EINVAL;
4091 }
4092 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
4093 return -EBUSY; /* b-channel can be only open once */
4094 test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
4095 bch->ch.protocol = rq->protocol;
4096 hc->chan[ch].rx_off = 0;
4097 rq->ch = &bch->ch;
4098 if (!try_module_get(THIS_MODULE))
4099 printk(KERN_WARNING "%s:cannot get module\n", __func__);
4100 return 0;
4101 }
4102
4103 /*
4104 * device control function
4105 */
4106 static int
channel_dctrl(struct dchannel * dch,struct mISDN_ctrl_req * cq)4107 channel_dctrl(struct dchannel *dch, struct mISDN_ctrl_req *cq)
4108 {
4109 struct hfc_multi *hc = dch->hw;
4110 int ret = 0;
4111 int wd_mode, wd_cnt;
4112
4113 switch (cq->op) {
4114 case MISDN_CTRL_GETOP:
4115 cq->op = MISDN_CTRL_HFC_OP;
4116 break;
4117 case MISDN_CTRL_HFC_WD_INIT: /* init the watchdog */
4118 wd_cnt = cq->p1 & 0xf;
4119 wd_mode = !!(cq->p1 >> 4);
4120 if (debug & DEBUG_HFCMULTI_MSG)
4121 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_INIT mode %s"
4122 ", counter 0x%x\n", __func__,
4123 wd_mode ? "AUTO" : "MANUAL", wd_cnt);
4124 /* set the watchdog timer */
4125 HFC_outb(hc, R_TI_WD, poll_timer | (wd_cnt << 4));
4126 hc->hw.r_bert_wd_md = (wd_mode ? V_AUTO_WD_RES : 0);
4127 if (hc->ctype == HFC_TYPE_XHFC)
4128 hc->hw.r_bert_wd_md |= 0x40 /* V_WD_EN */;
4129 /* init the watchdog register and reset the counter */
4130 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4131 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4132 /* enable the watchdog output for Speech-Design */
4133 HFC_outb(hc, R_GPIO_SEL, V_GPIO_SEL7);
4134 HFC_outb(hc, R_GPIO_EN1, V_GPIO_EN15);
4135 HFC_outb(hc, R_GPIO_OUT1, 0);
4136 HFC_outb(hc, R_GPIO_OUT1, V_GPIO_OUT15);
4137 }
4138 break;
4139 case MISDN_CTRL_HFC_WD_RESET: /* reset the watchdog counter */
4140 if (debug & DEBUG_HFCMULTI_MSG)
4141 printk(KERN_DEBUG "%s: MISDN_CTRL_HFC_WD_RESET\n",
4142 __func__);
4143 HFC_outb(hc, R_BERT_WD_MD, hc->hw.r_bert_wd_md | V_WD_RES);
4144 break;
4145 default:
4146 printk(KERN_WARNING "%s: unknown Op %x\n",
4147 __func__, cq->op);
4148 ret = -EINVAL;
4149 break;
4150 }
4151 return ret;
4152 }
4153
4154 static int
hfcm_dctrl(struct mISDNchannel * ch,u_int cmd,void * arg)4155 hfcm_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
4156 {
4157 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
4158 struct dchannel *dch = container_of(dev, struct dchannel, dev);
4159 struct hfc_multi *hc = dch->hw;
4160 struct channel_req *rq;
4161 int err = 0;
4162 u_long flags;
4163
4164 if (dch->debug & DEBUG_HW)
4165 printk(KERN_DEBUG "%s: cmd:%x %p\n",
4166 __func__, cmd, arg);
4167 switch (cmd) {
4168 case OPEN_CHANNEL:
4169 rq = arg;
4170 switch (rq->protocol) {
4171 case ISDN_P_TE_S0:
4172 case ISDN_P_NT_S0:
4173 if (hc->ctype == HFC_TYPE_E1) {
4174 err = -EINVAL;
4175 break;
4176 }
4177 err = open_dchannel(hc, dch, rq); /* locked there */
4178 break;
4179 case ISDN_P_TE_E1:
4180 case ISDN_P_NT_E1:
4181 if (hc->ctype != HFC_TYPE_E1) {
4182 err = -EINVAL;
4183 break;
4184 }
4185 err = open_dchannel(hc, dch, rq); /* locked there */
4186 break;
4187 default:
4188 spin_lock_irqsave(&hc->lock, flags);
4189 err = open_bchannel(hc, dch, rq);
4190 spin_unlock_irqrestore(&hc->lock, flags);
4191 }
4192 break;
4193 case CLOSE_CHANNEL:
4194 if (debug & DEBUG_HW_OPEN)
4195 printk(KERN_DEBUG "%s: dev(%d) close from %p\n",
4196 __func__, dch->dev.id,
4197 __builtin_return_address(0));
4198 module_put(THIS_MODULE);
4199 break;
4200 case CONTROL_CHANNEL:
4201 spin_lock_irqsave(&hc->lock, flags);
4202 err = channel_dctrl(dch, arg);
4203 spin_unlock_irqrestore(&hc->lock, flags);
4204 break;
4205 default:
4206 if (dch->debug & DEBUG_HW)
4207 printk(KERN_DEBUG "%s: unknown command %x\n",
4208 __func__, cmd);
4209 err = -EINVAL;
4210 }
4211 return err;
4212 }
4213
4214 static int
clockctl(void * priv,int enable)4215 clockctl(void *priv, int enable)
4216 {
4217 struct hfc_multi *hc = priv;
4218
4219 hc->iclock_on = enable;
4220 return 0;
4221 }
4222
4223 /*
4224 * initialize the card
4225 */
4226
4227 /*
4228 * start timer irq, wait some time and check if we have interrupts.
4229 * if not, reset chip and try again.
4230 */
4231 static int
init_card(struct hfc_multi * hc)4232 init_card(struct hfc_multi *hc)
4233 {
4234 int err = -EIO;
4235 u_long flags;
4236 void __iomem *plx_acc;
4237 u_long plx_flags;
4238
4239 if (debug & DEBUG_HFCMULTI_INIT)
4240 printk(KERN_DEBUG "%s: entered\n", __func__);
4241
4242 spin_lock_irqsave(&hc->lock, flags);
4243 /* set interrupts but leave global interrupt disabled */
4244 hc->hw.r_irq_ctrl = V_FIFO_IRQ;
4245 disable_hwirq(hc);
4246 spin_unlock_irqrestore(&hc->lock, flags);
4247
4248 if (request_irq(hc->irq, hfcmulti_interrupt, IRQF_SHARED,
4249 "HFC-multi", hc)) {
4250 printk(KERN_WARNING "mISDN: Could not get interrupt %d.\n",
4251 hc->irq);
4252 hc->irq = 0;
4253 return -EIO;
4254 }
4255
4256 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4257 spin_lock_irqsave(&plx_lock, plx_flags);
4258 plx_acc = hc->plx_membase + PLX_INTCSR;
4259 writew((PLX_INTCSR_PCIINT_ENABLE | PLX_INTCSR_LINTI1_ENABLE),
4260 plx_acc); /* enable PCI & LINT1 irq */
4261 spin_unlock_irqrestore(&plx_lock, plx_flags);
4262 }
4263
4264 if (debug & DEBUG_HFCMULTI_INIT)
4265 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4266 __func__, hc->irq, hc->irqcnt);
4267 err = init_chip(hc);
4268 if (err)
4269 goto error;
4270 /*
4271 * Finally enable IRQ output
4272 * this is only allowed, if an IRQ routine is already
4273 * established for this HFC, so don't do that earlier
4274 */
4275 spin_lock_irqsave(&hc->lock, flags);
4276 enable_hwirq(hc);
4277 spin_unlock_irqrestore(&hc->lock, flags);
4278 /* printk(KERN_DEBUG "no master irq set!!!\n"); */
4279 set_current_state(TASK_UNINTERRUPTIBLE);
4280 schedule_timeout((100 * HZ) / 1000); /* Timeout 100ms */
4281 /* turn IRQ off until chip is completely initialized */
4282 spin_lock_irqsave(&hc->lock, flags);
4283 disable_hwirq(hc);
4284 spin_unlock_irqrestore(&hc->lock, flags);
4285 if (debug & DEBUG_HFCMULTI_INIT)
4286 printk(KERN_DEBUG "%s: IRQ %d count %d\n",
4287 __func__, hc->irq, hc->irqcnt);
4288 if (hc->irqcnt) {
4289 if (debug & DEBUG_HFCMULTI_INIT)
4290 printk(KERN_DEBUG "%s: done\n", __func__);
4291
4292 return 0;
4293 }
4294 if (test_bit(HFC_CHIP_PCM_SLAVE, &hc->chip)) {
4295 printk(KERN_INFO "ignoring missing interrupts\n");
4296 return 0;
4297 }
4298
4299 printk(KERN_ERR "HFC PCI: IRQ(%d) getting no interrupts during init.\n",
4300 hc->irq);
4301
4302 err = -EIO;
4303
4304 error:
4305 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4306 spin_lock_irqsave(&plx_lock, plx_flags);
4307 plx_acc = hc->plx_membase + PLX_INTCSR;
4308 writew(0x00, plx_acc); /*disable IRQs*/
4309 spin_unlock_irqrestore(&plx_lock, plx_flags);
4310 }
4311
4312 if (debug & DEBUG_HFCMULTI_INIT)
4313 printk(KERN_DEBUG "%s: free irq %d\n", __func__, hc->irq);
4314 if (hc->irq) {
4315 free_irq(hc->irq, hc);
4316 hc->irq = 0;
4317 }
4318
4319 if (debug & DEBUG_HFCMULTI_INIT)
4320 printk(KERN_DEBUG "%s: done (err=%d)\n", __func__, err);
4321 return err;
4322 }
4323
4324 /*
4325 * find pci device and set it up
4326 */
4327
4328 static int
setup_pci(struct hfc_multi * hc,struct pci_dev * pdev,const struct pci_device_id * ent)4329 setup_pci(struct hfc_multi *hc, struct pci_dev *pdev,
4330 const struct pci_device_id *ent)
4331 {
4332 struct hm_map *m = (struct hm_map *)ent->driver_data;
4333
4334 printk(KERN_INFO
4335 "HFC-multi: card manufacturer: '%s' card name: '%s' clock: %s\n",
4336 m->vendor_name, m->card_name, m->clock2 ? "double" : "normal");
4337
4338 hc->pci_dev = pdev;
4339 if (m->clock2)
4340 test_and_set_bit(HFC_CHIP_CLOCK2, &hc->chip);
4341
4342 if (ent->device == 0xB410) {
4343 test_and_set_bit(HFC_CHIP_B410P, &hc->chip);
4344 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
4345 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
4346 hc->slots = 32;
4347 }
4348
4349 if (hc->pci_dev->irq <= 0) {
4350 printk(KERN_WARNING "HFC-multi: No IRQ for PCI card found.\n");
4351 return -EIO;
4352 }
4353 if (pci_enable_device(hc->pci_dev)) {
4354 printk(KERN_WARNING "HFC-multi: Error enabling PCI card.\n");
4355 return -EIO;
4356 }
4357 hc->leds = m->leds;
4358 hc->ledstate = 0xAFFEAFFE;
4359 hc->opticalsupport = m->opticalsupport;
4360
4361 hc->pci_iobase = 0;
4362 hc->pci_membase = NULL;
4363 hc->plx_membase = NULL;
4364
4365 /* set memory access methods */
4366 if (m->io_mode) /* use mode from card config */
4367 hc->io_mode = m->io_mode;
4368 switch (hc->io_mode) {
4369 case HFC_IO_MODE_PLXSD:
4370 test_and_set_bit(HFC_CHIP_PLXSD, &hc->chip);
4371 hc->slots = 128; /* required */
4372 hc->HFC_outb = HFC_outb_pcimem;
4373 hc->HFC_inb = HFC_inb_pcimem;
4374 hc->HFC_inw = HFC_inw_pcimem;
4375 hc->HFC_wait = HFC_wait_pcimem;
4376 hc->read_fifo = read_fifo_pcimem;
4377 hc->write_fifo = write_fifo_pcimem;
4378 hc->plx_origmembase = hc->pci_dev->resource[0].start;
4379 /* MEMBASE 1 is PLX PCI Bridge */
4380
4381 if (!hc->plx_origmembase) {
4382 printk(KERN_WARNING
4383 "HFC-multi: No IO-Memory for PCI PLX bridge found\n");
4384 pci_disable_device(hc->pci_dev);
4385 return -EIO;
4386 }
4387
4388 hc->plx_membase = ioremap(hc->plx_origmembase, 0x80);
4389 if (!hc->plx_membase) {
4390 printk(KERN_WARNING
4391 "HFC-multi: failed to remap plx address space. "
4392 "(internal error)\n");
4393 pci_disable_device(hc->pci_dev);
4394 return -EIO;
4395 }
4396 printk(KERN_INFO
4397 "HFC-multi: plx_membase:%#lx plx_origmembase:%#lx\n",
4398 (u_long)hc->plx_membase, hc->plx_origmembase);
4399
4400 hc->pci_origmembase = hc->pci_dev->resource[2].start;
4401 /* MEMBASE 1 is PLX PCI Bridge */
4402 if (!hc->pci_origmembase) {
4403 printk(KERN_WARNING
4404 "HFC-multi: No IO-Memory for PCI card found\n");
4405 pci_disable_device(hc->pci_dev);
4406 return -EIO;
4407 }
4408
4409 hc->pci_membase = ioremap(hc->pci_origmembase, 0x400);
4410 if (!hc->pci_membase) {
4411 printk(KERN_WARNING "HFC-multi: failed to remap io "
4412 "address space. (internal error)\n");
4413 pci_disable_device(hc->pci_dev);
4414 return -EIO;
4415 }
4416
4417 printk(KERN_INFO
4418 "card %d: defined at MEMBASE %#lx (%#lx) IRQ %d HZ %d "
4419 "leds-type %d\n",
4420 hc->id, (u_long)hc->pci_membase, hc->pci_origmembase,
4421 hc->pci_dev->irq, HZ, hc->leds);
4422 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4423 break;
4424 case HFC_IO_MODE_PCIMEM:
4425 hc->HFC_outb = HFC_outb_pcimem;
4426 hc->HFC_inb = HFC_inb_pcimem;
4427 hc->HFC_inw = HFC_inw_pcimem;
4428 hc->HFC_wait = HFC_wait_pcimem;
4429 hc->read_fifo = read_fifo_pcimem;
4430 hc->write_fifo = write_fifo_pcimem;
4431 hc->pci_origmembase = hc->pci_dev->resource[1].start;
4432 if (!hc->pci_origmembase) {
4433 printk(KERN_WARNING
4434 "HFC-multi: No IO-Memory for PCI card found\n");
4435 pci_disable_device(hc->pci_dev);
4436 return -EIO;
4437 }
4438
4439 hc->pci_membase = ioremap(hc->pci_origmembase, 256);
4440 if (!hc->pci_membase) {
4441 printk(KERN_WARNING
4442 "HFC-multi: failed to remap io address space. "
4443 "(internal error)\n");
4444 pci_disable_device(hc->pci_dev);
4445 return -EIO;
4446 }
4447 printk(KERN_INFO "card %d: defined at MEMBASE %#lx (%#lx) IRQ "
4448 "%d HZ %d leds-type %d\n", hc->id, (u_long)hc->pci_membase,
4449 hc->pci_origmembase, hc->pci_dev->irq, HZ, hc->leds);
4450 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_MEMIO);
4451 break;
4452 case HFC_IO_MODE_REGIO:
4453 hc->HFC_outb = HFC_outb_regio;
4454 hc->HFC_inb = HFC_inb_regio;
4455 hc->HFC_inw = HFC_inw_regio;
4456 hc->HFC_wait = HFC_wait_regio;
4457 hc->read_fifo = read_fifo_regio;
4458 hc->write_fifo = write_fifo_regio;
4459 hc->pci_iobase = (u_int) hc->pci_dev->resource[0].start;
4460 if (!hc->pci_iobase) {
4461 printk(KERN_WARNING
4462 "HFC-multi: No IO for PCI card found\n");
4463 pci_disable_device(hc->pci_dev);
4464 return -EIO;
4465 }
4466
4467 if (!request_region(hc->pci_iobase, 8, "hfcmulti")) {
4468 printk(KERN_WARNING "HFC-multi: failed to request "
4469 "address space at 0x%08lx (internal error)\n",
4470 hc->pci_iobase);
4471 pci_disable_device(hc->pci_dev);
4472 return -EIO;
4473 }
4474
4475 printk(KERN_INFO
4476 "%s %s: defined at IOBASE %#x IRQ %d HZ %d leds-type %d\n",
4477 m->vendor_name, m->card_name, (u_int) hc->pci_iobase,
4478 hc->pci_dev->irq, HZ, hc->leds);
4479 pci_write_config_word(hc->pci_dev, PCI_COMMAND, PCI_ENA_REGIO);
4480 break;
4481 default:
4482 printk(KERN_WARNING "HFC-multi: Invalid IO mode.\n");
4483 pci_disable_device(hc->pci_dev);
4484 return -EIO;
4485 }
4486
4487 pci_set_drvdata(hc->pci_dev, hc);
4488
4489 /* At this point the needed PCI config is done */
4490 /* fifos are still not enabled */
4491 return 0;
4492 }
4493
4494
4495 /*
4496 * remove port
4497 */
4498
4499 static void
release_port(struct hfc_multi * hc,struct dchannel * dch)4500 release_port(struct hfc_multi *hc, struct dchannel *dch)
4501 {
4502 int pt, ci, i = 0;
4503 u_long flags;
4504 struct bchannel *pb;
4505
4506 ci = dch->slot;
4507 pt = hc->chan[ci].port;
4508
4509 if (debug & DEBUG_HFCMULTI_INIT)
4510 printk(KERN_DEBUG "%s: entered for port %d\n",
4511 __func__, pt + 1);
4512
4513 if (pt >= hc->ports) {
4514 printk(KERN_WARNING "%s: ERROR port out of range (%d).\n",
4515 __func__, pt + 1);
4516 return;
4517 }
4518
4519 if (debug & DEBUG_HFCMULTI_INIT)
4520 printk(KERN_DEBUG "%s: releasing port=%d\n",
4521 __func__, pt + 1);
4522
4523 if (dch->dev.D.protocol == ISDN_P_TE_S0)
4524 l1_event(dch->l1, CLOSE_CHANNEL);
4525
4526 hc->chan[ci].dch = NULL;
4527
4528 if (hc->created[pt]) {
4529 hc->created[pt] = 0;
4530 mISDN_unregister_device(&dch->dev);
4531 }
4532
4533 spin_lock_irqsave(&hc->lock, flags);
4534
4535 if (dch->timer.function) {
4536 del_timer(&dch->timer);
4537 dch->timer.function = NULL;
4538 }
4539
4540 if (hc->ctype == HFC_TYPE_E1) { /* E1 */
4541 /* remove sync */
4542 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4543 hc->syncronized = 0;
4544 plxsd_checksync(hc, 1);
4545 }
4546 /* free channels */
4547 for (i = 0; i <= 31; i++) {
4548 if (hc->chan[i].bch) {
4549 if (debug & DEBUG_HFCMULTI_INIT)
4550 printk(KERN_DEBUG
4551 "%s: free port %d channel %d\n",
4552 __func__, hc->chan[i].port + 1, i);
4553 pb = hc->chan[i].bch;
4554 hc->chan[i].bch = NULL;
4555 spin_unlock_irqrestore(&hc->lock, flags);
4556 mISDN_freebchannel(pb);
4557 kfree(pb);
4558 kfree(hc->chan[i].coeff);
4559 spin_lock_irqsave(&hc->lock, flags);
4560 }
4561 }
4562 } else {
4563 /* remove sync */
4564 if (test_bit(HFC_CHIP_PLXSD, &hc->chip)) {
4565 hc->syncronized &=
4566 ~(1 << hc->chan[ci].port);
4567 plxsd_checksync(hc, 1);
4568 }
4569 /* free channels */
4570 if (hc->chan[ci - 2].bch) {
4571 if (debug & DEBUG_HFCMULTI_INIT)
4572 printk(KERN_DEBUG
4573 "%s: free port %d channel %d\n",
4574 __func__, hc->chan[ci - 2].port + 1,
4575 ci - 2);
4576 pb = hc->chan[ci - 2].bch;
4577 hc->chan[ci - 2].bch = NULL;
4578 spin_unlock_irqrestore(&hc->lock, flags);
4579 mISDN_freebchannel(pb);
4580 kfree(pb);
4581 kfree(hc->chan[ci - 2].coeff);
4582 spin_lock_irqsave(&hc->lock, flags);
4583 }
4584 if (hc->chan[ci - 1].bch) {
4585 if (debug & DEBUG_HFCMULTI_INIT)
4586 printk(KERN_DEBUG
4587 "%s: free port %d channel %d\n",
4588 __func__, hc->chan[ci - 1].port + 1,
4589 ci - 1);
4590 pb = hc->chan[ci - 1].bch;
4591 hc->chan[ci - 1].bch = NULL;
4592 spin_unlock_irqrestore(&hc->lock, flags);
4593 mISDN_freebchannel(pb);
4594 kfree(pb);
4595 kfree(hc->chan[ci - 1].coeff);
4596 spin_lock_irqsave(&hc->lock, flags);
4597 }
4598 }
4599
4600 spin_unlock_irqrestore(&hc->lock, flags);
4601
4602 if (debug & DEBUG_HFCMULTI_INIT)
4603 printk(KERN_DEBUG "%s: free port %d channel D\n", __func__, pt);
4604 mISDN_freedchannel(dch);
4605 kfree(dch);
4606
4607 if (debug & DEBUG_HFCMULTI_INIT)
4608 printk(KERN_DEBUG "%s: done!\n", __func__);
4609 }
4610
4611 static void
release_card(struct hfc_multi * hc)4612 release_card(struct hfc_multi *hc)
4613 {
4614 u_long flags;
4615 int ch;
4616
4617 if (debug & DEBUG_HFCMULTI_INIT)
4618 printk(KERN_DEBUG "%s: release card (%d) entered\n",
4619 __func__, hc->id);
4620
4621 /* unregister clock source */
4622 if (hc->iclock)
4623 mISDN_unregister_clock(hc->iclock);
4624
4625 /* disable irq */
4626 spin_lock_irqsave(&hc->lock, flags);
4627 disable_hwirq(hc);
4628 spin_unlock_irqrestore(&hc->lock, flags);
4629 udelay(1000);
4630
4631 /* dimm leds */
4632 if (hc->leds)
4633 hfcmulti_leds(hc);
4634
4635 /* disable D-channels & B-channels */
4636 if (debug & DEBUG_HFCMULTI_INIT)
4637 printk(KERN_DEBUG "%s: disable all channels (d and b)\n",
4638 __func__);
4639 for (ch = 0; ch <= 31; ch++) {
4640 if (hc->chan[ch].dch)
4641 release_port(hc, hc->chan[ch].dch);
4642 }
4643
4644 /* release hardware & irq */
4645 if (hc->irq) {
4646 if (debug & DEBUG_HFCMULTI_INIT)
4647 printk(KERN_DEBUG "%s: free irq %d\n",
4648 __func__, hc->irq);
4649 free_irq(hc->irq, hc);
4650 hc->irq = 0;
4651
4652 }
4653 release_io_hfcmulti(hc);
4654
4655 if (debug & DEBUG_HFCMULTI_INIT)
4656 printk(KERN_DEBUG "%s: remove instance from list\n",
4657 __func__);
4658 list_del(&hc->list);
4659
4660 if (debug & DEBUG_HFCMULTI_INIT)
4661 printk(KERN_DEBUG "%s: delete instance\n", __func__);
4662 if (hc == syncmaster)
4663 syncmaster = NULL;
4664 kfree(hc);
4665 if (debug & DEBUG_HFCMULTI_INIT)
4666 printk(KERN_DEBUG "%s: card successfully removed\n",
4667 __func__);
4668 }
4669
4670 static int
init_e1_port(struct hfc_multi * hc,struct hm_map * m)4671 init_e1_port(struct hfc_multi *hc, struct hm_map *m)
4672 {
4673 struct dchannel *dch;
4674 struct bchannel *bch;
4675 int ch, ret = 0;
4676 char name[MISDN_MAX_IDLEN];
4677
4678 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4679 if (!dch)
4680 return -ENOMEM;
4681 dch->debug = debug;
4682 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4683 dch->hw = hc;
4684 dch->dev.Dprotocols = (1 << ISDN_P_TE_E1) | (1 << ISDN_P_NT_E1);
4685 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4686 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4687 dch->dev.D.send = handle_dmsg;
4688 dch->dev.D.ctrl = hfcm_dctrl;
4689 dch->dev.nrbchan = (hc->dslot) ? 30 : 31;
4690 dch->slot = hc->dslot;
4691 hc->chan[hc->dslot].dch = dch;
4692 hc->chan[hc->dslot].port = 0;
4693 hc->chan[hc->dslot].nt_timer = -1;
4694 for (ch = 1; ch <= 31; ch++) {
4695 if (ch == hc->dslot) /* skip dchannel */
4696 continue;
4697 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4698 if (!bch) {
4699 printk(KERN_ERR "%s: no memory for bchannel\n",
4700 __func__);
4701 ret = -ENOMEM;
4702 goto free_chan;
4703 }
4704 hc->chan[ch].coeff = kzalloc(512, GFP_KERNEL);
4705 if (!hc->chan[ch].coeff) {
4706 printk(KERN_ERR "%s: no memory for coeffs\n",
4707 __func__);
4708 ret = -ENOMEM;
4709 kfree(bch);
4710 goto free_chan;
4711 }
4712 bch->nr = ch;
4713 bch->slot = ch;
4714 bch->debug = debug;
4715 mISDN_initbchannel(bch, MAX_DATA_MEM);
4716 bch->hw = hc;
4717 bch->ch.send = handle_bmsg;
4718 bch->ch.ctrl = hfcm_bctrl;
4719 bch->ch.nr = ch;
4720 list_add(&bch->ch.list, &dch->dev.bchannels);
4721 hc->chan[ch].bch = bch;
4722 hc->chan[ch].port = 0;
4723 set_channelmap(bch->nr, dch->dev.channelmap);
4724 }
4725 /* set optical line type */
4726 if (port[Port_cnt] & 0x001) {
4727 if (!m->opticalsupport) {
4728 printk(KERN_INFO
4729 "This board has no optical "
4730 "support\n");
4731 } else {
4732 if (debug & DEBUG_HFCMULTI_INIT)
4733 printk(KERN_DEBUG
4734 "%s: PORT set optical "
4735 "interfacs: card(%d) "
4736 "port(%d)\n",
4737 __func__,
4738 HFC_cnt + 1, 1);
4739 test_and_set_bit(HFC_CFG_OPTICAL,
4740 &hc->chan[hc->dslot].cfg);
4741 }
4742 }
4743 /* set LOS report */
4744 if (port[Port_cnt] & 0x004) {
4745 if (debug & DEBUG_HFCMULTI_INIT)
4746 printk(KERN_DEBUG "%s: PORT set "
4747 "LOS report: card(%d) port(%d)\n",
4748 __func__, HFC_cnt + 1, 1);
4749 test_and_set_bit(HFC_CFG_REPORT_LOS,
4750 &hc->chan[hc->dslot].cfg);
4751 }
4752 /* set AIS report */
4753 if (port[Port_cnt] & 0x008) {
4754 if (debug & DEBUG_HFCMULTI_INIT)
4755 printk(KERN_DEBUG "%s: PORT set "
4756 "AIS report: card(%d) port(%d)\n",
4757 __func__, HFC_cnt + 1, 1);
4758 test_and_set_bit(HFC_CFG_REPORT_AIS,
4759 &hc->chan[hc->dslot].cfg);
4760 }
4761 /* set SLIP report */
4762 if (port[Port_cnt] & 0x010) {
4763 if (debug & DEBUG_HFCMULTI_INIT)
4764 printk(KERN_DEBUG
4765 "%s: PORT set SLIP report: "
4766 "card(%d) port(%d)\n",
4767 __func__, HFC_cnt + 1, 1);
4768 test_and_set_bit(HFC_CFG_REPORT_SLIP,
4769 &hc->chan[hc->dslot].cfg);
4770 }
4771 /* set RDI report */
4772 if (port[Port_cnt] & 0x020) {
4773 if (debug & DEBUG_HFCMULTI_INIT)
4774 printk(KERN_DEBUG
4775 "%s: PORT set RDI report: "
4776 "card(%d) port(%d)\n",
4777 __func__, HFC_cnt + 1, 1);
4778 test_and_set_bit(HFC_CFG_REPORT_RDI,
4779 &hc->chan[hc->dslot].cfg);
4780 }
4781 /* set CRC-4 Mode */
4782 if (!(port[Port_cnt] & 0x100)) {
4783 if (debug & DEBUG_HFCMULTI_INIT)
4784 printk(KERN_DEBUG "%s: PORT turn on CRC4 report:"
4785 " card(%d) port(%d)\n",
4786 __func__, HFC_cnt + 1, 1);
4787 test_and_set_bit(HFC_CFG_CRC4,
4788 &hc->chan[hc->dslot].cfg);
4789 } else {
4790 if (debug & DEBUG_HFCMULTI_INIT)
4791 printk(KERN_DEBUG "%s: PORT turn off CRC4"
4792 " report: card(%d) port(%d)\n",
4793 __func__, HFC_cnt + 1, 1);
4794 }
4795 /* set forced clock */
4796 if (port[Port_cnt] & 0x0200) {
4797 if (debug & DEBUG_HFCMULTI_INIT)
4798 printk(KERN_DEBUG "%s: PORT force getting clock from "
4799 "E1: card(%d) port(%d)\n",
4800 __func__, HFC_cnt + 1, 1);
4801 test_and_set_bit(HFC_CHIP_E1CLOCK_GET, &hc->chip);
4802 } else
4803 if (port[Port_cnt] & 0x0400) {
4804 if (debug & DEBUG_HFCMULTI_INIT)
4805 printk(KERN_DEBUG "%s: PORT force putting clock to "
4806 "E1: card(%d) port(%d)\n",
4807 __func__, HFC_cnt + 1, 1);
4808 test_and_set_bit(HFC_CHIP_E1CLOCK_PUT, &hc->chip);
4809 }
4810 /* set JATT PLL */
4811 if (port[Port_cnt] & 0x0800) {
4812 if (debug & DEBUG_HFCMULTI_INIT)
4813 printk(KERN_DEBUG "%s: PORT disable JATT PLL on "
4814 "E1: card(%d) port(%d)\n",
4815 __func__, HFC_cnt + 1, 1);
4816 test_and_set_bit(HFC_CHIP_RX_SYNC, &hc->chip);
4817 }
4818 /* set elastic jitter buffer */
4819 if (port[Port_cnt] & 0x3000) {
4820 hc->chan[hc->dslot].jitter = (port[Port_cnt]>>12) & 0x3;
4821 if (debug & DEBUG_HFCMULTI_INIT)
4822 printk(KERN_DEBUG
4823 "%s: PORT set elastic "
4824 "buffer to %d: card(%d) port(%d)\n",
4825 __func__, hc->chan[hc->dslot].jitter,
4826 HFC_cnt + 1, 1);
4827 } else
4828 hc->chan[hc->dslot].jitter = 2; /* default */
4829 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-e1.%d", HFC_cnt + 1);
4830 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4831 if (ret)
4832 goto free_chan;
4833 hc->created[0] = 1;
4834 return ret;
4835 free_chan:
4836 release_port(hc, dch);
4837 return ret;
4838 }
4839
4840 static int
init_multi_port(struct hfc_multi * hc,int pt)4841 init_multi_port(struct hfc_multi *hc, int pt)
4842 {
4843 struct dchannel *dch;
4844 struct bchannel *bch;
4845 int ch, i, ret = 0;
4846 char name[MISDN_MAX_IDLEN];
4847
4848 dch = kzalloc(sizeof(struct dchannel), GFP_KERNEL);
4849 if (!dch)
4850 return -ENOMEM;
4851 dch->debug = debug;
4852 mISDN_initdchannel(dch, MAX_DFRAME_LEN_L1, ph_state_change);
4853 dch->hw = hc;
4854 dch->dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
4855 dch->dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
4856 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
4857 dch->dev.D.send = handle_dmsg;
4858 dch->dev.D.ctrl = hfcm_dctrl;
4859 dch->dev.nrbchan = 2;
4860 i = pt << 2;
4861 dch->slot = i + 2;
4862 hc->chan[i + 2].dch = dch;
4863 hc->chan[i + 2].port = pt;
4864 hc->chan[i + 2].nt_timer = -1;
4865 for (ch = 0; ch < dch->dev.nrbchan; ch++) {
4866 bch = kzalloc(sizeof(struct bchannel), GFP_KERNEL);
4867 if (!bch) {
4868 printk(KERN_ERR "%s: no memory for bchannel\n",
4869 __func__);
4870 ret = -ENOMEM;
4871 goto free_chan;
4872 }
4873 hc->chan[i + ch].coeff = kzalloc(512, GFP_KERNEL);
4874 if (!hc->chan[i + ch].coeff) {
4875 printk(KERN_ERR "%s: no memory for coeffs\n",
4876 __func__);
4877 ret = -ENOMEM;
4878 kfree(bch);
4879 goto free_chan;
4880 }
4881 bch->nr = ch + 1;
4882 bch->slot = i + ch;
4883 bch->debug = debug;
4884 mISDN_initbchannel(bch, MAX_DATA_MEM);
4885 bch->hw = hc;
4886 bch->ch.send = handle_bmsg;
4887 bch->ch.ctrl = hfcm_bctrl;
4888 bch->ch.nr = ch + 1;
4889 list_add(&bch->ch.list, &dch->dev.bchannels);
4890 hc->chan[i + ch].bch = bch;
4891 hc->chan[i + ch].port = pt;
4892 set_channelmap(bch->nr, dch->dev.channelmap);
4893 }
4894 /* set master clock */
4895 if (port[Port_cnt] & 0x001) {
4896 if (debug & DEBUG_HFCMULTI_INIT)
4897 printk(KERN_DEBUG
4898 "%s: PROTOCOL set master clock: "
4899 "card(%d) port(%d)\n",
4900 __func__, HFC_cnt + 1, pt + 1);
4901 if (dch->dev.D.protocol != ISDN_P_TE_S0) {
4902 printk(KERN_ERR "Error: Master clock "
4903 "for port(%d) of card(%d) is only"
4904 " possible with TE-mode\n",
4905 pt + 1, HFC_cnt + 1);
4906 ret = -EINVAL;
4907 goto free_chan;
4908 }
4909 if (hc->masterclk >= 0) {
4910 printk(KERN_ERR "Error: Master clock "
4911 "for port(%d) of card(%d) already "
4912 "defined for port(%d)\n",
4913 pt + 1, HFC_cnt + 1, hc->masterclk + 1);
4914 ret = -EINVAL;
4915 goto free_chan;
4916 }
4917 hc->masterclk = pt;
4918 }
4919 /* set transmitter line to non capacitive */
4920 if (port[Port_cnt] & 0x002) {
4921 if (debug & DEBUG_HFCMULTI_INIT)
4922 printk(KERN_DEBUG
4923 "%s: PROTOCOL set non capacitive "
4924 "transmitter: card(%d) port(%d)\n",
4925 __func__, HFC_cnt + 1, pt + 1);
4926 test_and_set_bit(HFC_CFG_NONCAP_TX,
4927 &hc->chan[i + 2].cfg);
4928 }
4929 /* disable E-channel */
4930 if (port[Port_cnt] & 0x004) {
4931 if (debug & DEBUG_HFCMULTI_INIT)
4932 printk(KERN_DEBUG
4933 "%s: PROTOCOL disable E-channel: "
4934 "card(%d) port(%d)\n",
4935 __func__, HFC_cnt + 1, pt + 1);
4936 test_and_set_bit(HFC_CFG_DIS_ECHANNEL,
4937 &hc->chan[i + 2].cfg);
4938 }
4939 if (hc->ctype == HFC_TYPE_XHFC) {
4940 snprintf(name, MISDN_MAX_IDLEN - 1, "xhfc.%d-%d",
4941 HFC_cnt + 1, pt + 1);
4942 ret = mISDN_register_device(&dch->dev, NULL, name);
4943 } else {
4944 snprintf(name, MISDN_MAX_IDLEN - 1, "hfc-%ds.%d-%d",
4945 hc->ctype, HFC_cnt + 1, pt + 1);
4946 ret = mISDN_register_device(&dch->dev, &hc->pci_dev->dev, name);
4947 }
4948 if (ret)
4949 goto free_chan;
4950 hc->created[pt] = 1;
4951 return ret;
4952 free_chan:
4953 release_port(hc, dch);
4954 return ret;
4955 }
4956
4957 static int
hfcmulti_init(struct hm_map * m,struct pci_dev * pdev,const struct pci_device_id * ent)4958 hfcmulti_init(struct hm_map *m, struct pci_dev *pdev,
4959 const struct pci_device_id *ent)
4960 {
4961 int ret_err = 0;
4962 int pt;
4963 struct hfc_multi *hc;
4964 u_long flags;
4965 u_char dips = 0, pmj = 0; /* dip settings, port mode Jumpers */
4966 int i;
4967
4968 if (HFC_cnt >= MAX_CARDS) {
4969 printk(KERN_ERR "too many cards (max=%d).\n",
4970 MAX_CARDS);
4971 return -EINVAL;
4972 }
4973 if ((type[HFC_cnt] & 0xff) && (type[HFC_cnt] & 0xff) != m->type) {
4974 printk(KERN_WARNING "HFC-MULTI: Card '%s:%s' type %d found but "
4975 "type[%d] %d was supplied as module parameter\n",
4976 m->vendor_name, m->card_name, m->type, HFC_cnt,
4977 type[HFC_cnt] & 0xff);
4978 printk(KERN_WARNING "HFC-MULTI: Load module without parameters "
4979 "first, to see cards and their types.");
4980 return -EINVAL;
4981 }
4982 if (debug & DEBUG_HFCMULTI_INIT)
4983 printk(KERN_DEBUG "%s: Registering %s:%s chip type %d (0x%x)\n",
4984 __func__, m->vendor_name, m->card_name, m->type,
4985 type[HFC_cnt]);
4986
4987 /* allocate card+fifo structure */
4988 hc = kzalloc(sizeof(struct hfc_multi), GFP_KERNEL);
4989 if (!hc) {
4990 printk(KERN_ERR "No kmem for HFC-Multi card\n");
4991 return -ENOMEM;
4992 }
4993 spin_lock_init(&hc->lock);
4994 hc->mtyp = m;
4995 hc->ctype = m->type;
4996 hc->ports = m->ports;
4997 hc->id = HFC_cnt;
4998 hc->pcm = pcm[HFC_cnt];
4999 hc->io_mode = iomode[HFC_cnt];
5000 if (dslot[HFC_cnt] < 0 && hc->ctype == HFC_TYPE_E1) {
5001 hc->dslot = 0;
5002 printk(KERN_INFO "HFC-E1 card has disabled D-channel, but "
5003 "31 B-channels\n");
5004 }
5005 if (dslot[HFC_cnt] > 0 && dslot[HFC_cnt] < 32
5006 && hc->ctype == HFC_TYPE_E1) {
5007 hc->dslot = dslot[HFC_cnt];
5008 printk(KERN_INFO "HFC-E1 card has alternating D-channel on "
5009 "time slot %d\n", dslot[HFC_cnt]);
5010 } else
5011 hc->dslot = 16;
5012
5013 /* set chip specific features */
5014 hc->masterclk = -1;
5015 if (type[HFC_cnt] & 0x100) {
5016 test_and_set_bit(HFC_CHIP_ULAW, &hc->chip);
5017 hc->silence = 0xff; /* ulaw silence */
5018 } else
5019 hc->silence = 0x2a; /* alaw silence */
5020 if ((poll >> 1) > sizeof(hc->silence_data)) {
5021 printk(KERN_ERR "HFCMULTI error: silence_data too small, "
5022 "please fix\n");
5023 return -EINVAL;
5024 }
5025 for (i = 0; i < (poll >> 1); i++)
5026 hc->silence_data[i] = hc->silence;
5027
5028 if (hc->ctype != HFC_TYPE_XHFC) {
5029 if (!(type[HFC_cnt] & 0x200))
5030 test_and_set_bit(HFC_CHIP_DTMF, &hc->chip);
5031 test_and_set_bit(HFC_CHIP_CONF, &hc->chip);
5032 }
5033
5034 if (type[HFC_cnt] & 0x800)
5035 test_and_set_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5036 if (type[HFC_cnt] & 0x1000) {
5037 test_and_set_bit(HFC_CHIP_PCM_MASTER, &hc->chip);
5038 test_and_clear_bit(HFC_CHIP_PCM_SLAVE, &hc->chip);
5039 }
5040 if (type[HFC_cnt] & 0x4000)
5041 test_and_set_bit(HFC_CHIP_EXRAM_128, &hc->chip);
5042 if (type[HFC_cnt] & 0x8000)
5043 test_and_set_bit(HFC_CHIP_EXRAM_512, &hc->chip);
5044 hc->slots = 32;
5045 if (type[HFC_cnt] & 0x10000)
5046 hc->slots = 64;
5047 if (type[HFC_cnt] & 0x20000)
5048 hc->slots = 128;
5049 if (type[HFC_cnt] & 0x80000) {
5050 test_and_set_bit(HFC_CHIP_WATCHDOG, &hc->chip);
5051 hc->wdcount = 0;
5052 hc->wdbyte = V_GPIO_OUT2;
5053 printk(KERN_NOTICE "Watchdog enabled\n");
5054 }
5055
5056 if (pdev && ent)
5057 /* setup pci, hc->slots may change due to PLXSD */
5058 ret_err = setup_pci(hc, pdev, ent);
5059 else
5060 #ifdef CONFIG_MISDN_HFCMULTI_8xx
5061 ret_err = setup_embedded(hc, m);
5062 #else
5063 {
5064 printk(KERN_WARNING "Embedded IO Mode not selected\n");
5065 ret_err = -EIO;
5066 }
5067 #endif
5068 if (ret_err) {
5069 if (hc == syncmaster)
5070 syncmaster = NULL;
5071 kfree(hc);
5072 return ret_err;
5073 }
5074
5075 hc->HFC_outb_nodebug = hc->HFC_outb;
5076 hc->HFC_inb_nodebug = hc->HFC_inb;
5077 hc->HFC_inw_nodebug = hc->HFC_inw;
5078 hc->HFC_wait_nodebug = hc->HFC_wait;
5079 #ifdef HFC_REGISTER_DEBUG
5080 hc->HFC_outb = HFC_outb_debug;
5081 hc->HFC_inb = HFC_inb_debug;
5082 hc->HFC_inw = HFC_inw_debug;
5083 hc->HFC_wait = HFC_wait_debug;
5084 #endif
5085 /* create channels */
5086 for (pt = 0; pt < hc->ports; pt++) {
5087 if (Port_cnt >= MAX_PORTS) {
5088 printk(KERN_ERR "too many ports (max=%d).\n",
5089 MAX_PORTS);
5090 ret_err = -EINVAL;
5091 goto free_card;
5092 }
5093 if (hc->ctype == HFC_TYPE_E1)
5094 ret_err = init_e1_port(hc, m);
5095 else
5096 ret_err = init_multi_port(hc, pt);
5097 if (debug & DEBUG_HFCMULTI_INIT)
5098 printk(KERN_DEBUG
5099 "%s: Registering D-channel, card(%d) port(%d)"
5100 "result %d\n",
5101 __func__, HFC_cnt + 1, pt, ret_err);
5102
5103 if (ret_err) {
5104 while (pt) { /* release already registered ports */
5105 pt--;
5106 release_port(hc, hc->chan[(pt << 2) + 2].dch);
5107 }
5108 goto free_card;
5109 }
5110 Port_cnt++;
5111 }
5112
5113 /* disp switches */
5114 switch (m->dip_type) {
5115 case DIP_4S:
5116 /*
5117 * Get DIP setting for beroNet 1S/2S/4S cards
5118 * DIP Setting: (collect GPIO 13/14/15 (R_GPIO_IN1) +
5119 * GPI 19/23 (R_GPI_IN2))
5120 */
5121 dips = ((~HFC_inb(hc, R_GPIO_IN1) & 0xE0) >> 5) |
5122 ((~HFC_inb(hc, R_GPI_IN2) & 0x80) >> 3) |
5123 (~HFC_inb(hc, R_GPI_IN2) & 0x08);
5124
5125 /* Port mode (TE/NT) jumpers */
5126 pmj = ((HFC_inb(hc, R_GPI_IN3) >> 4) & 0xf);
5127
5128 if (test_bit(HFC_CHIP_B410P, &hc->chip))
5129 pmj = ~pmj & 0xf;
5130
5131 printk(KERN_INFO "%s: %s DIPs(0x%x) jumpers(0x%x)\n",
5132 m->vendor_name, m->card_name, dips, pmj);
5133 break;
5134 case DIP_8S:
5135 /*
5136 * Get DIP Setting for beroNet 8S0+ cards
5137 * Enable PCI auxbridge function
5138 */
5139 HFC_outb(hc, R_BRG_PCM_CFG, 1 | V_PCM_CLK);
5140 /* prepare access to auxport */
5141 outw(0x4000, hc->pci_iobase + 4);
5142 /*
5143 * some dummy reads are required to
5144 * read valid DIP switch data
5145 */
5146 dips = inb(hc->pci_iobase);
5147 dips = inb(hc->pci_iobase);
5148 dips = inb(hc->pci_iobase);
5149 dips = ~inb(hc->pci_iobase) & 0x3F;
5150 outw(0x0, hc->pci_iobase + 4);
5151 /* disable PCI auxbridge function */
5152 HFC_outb(hc, R_BRG_PCM_CFG, V_PCM_CLK);
5153 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5154 m->vendor_name, m->card_name, dips);
5155 break;
5156 case DIP_E1:
5157 /*
5158 * get DIP Setting for beroNet E1 cards
5159 * DIP Setting: collect GPI 4/5/6/7 (R_GPI_IN0)
5160 */
5161 dips = (~HFC_inb(hc, R_GPI_IN0) & 0xF0) >> 4;
5162 printk(KERN_INFO "%s: %s DIPs(0x%x)\n",
5163 m->vendor_name, m->card_name, dips);
5164 break;
5165 }
5166
5167 /* add to list */
5168 spin_lock_irqsave(&HFClock, flags);
5169 list_add_tail(&hc->list, &HFClist);
5170 spin_unlock_irqrestore(&HFClock, flags);
5171
5172 /* use as clock source */
5173 if (clock == HFC_cnt + 1)
5174 hc->iclock = mISDN_register_clock("HFCMulti", 0, clockctl, hc);
5175
5176 /* initialize hardware */
5177 hc->irq = (m->irq) ? : hc->pci_dev->irq;
5178 ret_err = init_card(hc);
5179 if (ret_err) {
5180 printk(KERN_ERR "init card returns %d\n", ret_err);
5181 release_card(hc);
5182 return ret_err;
5183 }
5184
5185 /* start IRQ and return */
5186 spin_lock_irqsave(&hc->lock, flags);
5187 enable_hwirq(hc);
5188 spin_unlock_irqrestore(&hc->lock, flags);
5189 return 0;
5190
5191 free_card:
5192 release_io_hfcmulti(hc);
5193 if (hc == syncmaster)
5194 syncmaster = NULL;
5195 kfree(hc);
5196 return ret_err;
5197 }
5198
hfc_remove_pci(struct pci_dev * pdev)5199 static void __devexit hfc_remove_pci(struct pci_dev *pdev)
5200 {
5201 struct hfc_multi *card = pci_get_drvdata(pdev);
5202 u_long flags;
5203
5204 if (debug)
5205 printk(KERN_INFO "removing hfc_multi card vendor:%x "
5206 "device:%x subvendor:%x subdevice:%x\n",
5207 pdev->vendor, pdev->device,
5208 pdev->subsystem_vendor, pdev->subsystem_device);
5209
5210 if (card) {
5211 spin_lock_irqsave(&HFClock, flags);
5212 release_card(card);
5213 spin_unlock_irqrestore(&HFClock, flags);
5214 } else {
5215 if (debug)
5216 printk(KERN_DEBUG "%s: drvdata already removed\n",
5217 __func__);
5218 }
5219 }
5220
5221 #define VENDOR_CCD "Cologne Chip AG"
5222 #define VENDOR_BN "beroNet GmbH"
5223 #define VENDOR_DIG "Digium Inc."
5224 #define VENDOR_JH "Junghanns.NET GmbH"
5225 #define VENDOR_PRIM "PrimuX"
5226
5227 static const struct hm_map hfcm_map[] = {
5228 /*0*/ {VENDOR_BN, "HFC-1S Card (mini PCI)", 4, 1, 1, 3, 0, DIP_4S, 0, 0},
5229 /*1*/ {VENDOR_BN, "HFC-2S Card", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5230 /*2*/ {VENDOR_BN, "HFC-2S Card (mini PCI)", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5231 /*3*/ {VENDOR_BN, "HFC-4S Card", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5232 /*4*/ {VENDOR_BN, "HFC-4S Card (mini PCI)", 4, 4, 1, 2, 0, 0, 0, 0},
5233 /*5*/ {VENDOR_CCD, "HFC-4S Eval (old)", 4, 4, 0, 0, 0, 0, 0, 0},
5234 /*6*/ {VENDOR_CCD, "HFC-4S IOB4ST", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5235 /*7*/ {VENDOR_CCD, "HFC-4S", 4, 4, 1, 2, 0, 0, 0, 0},
5236 /*8*/ {VENDOR_DIG, "HFC-4S Card", 4, 4, 0, 2, 0, 0, HFC_IO_MODE_REGIO, 0},
5237 /*9*/ {VENDOR_CCD, "HFC-4S Swyx 4xS0 SX2 QuadBri", 4, 4, 1, 2, 0, 0, 0, 0},
5238 /*10*/ {VENDOR_JH, "HFC-4S (junghanns 2.0)", 4, 4, 1, 2, 0, 0, 0, 0},
5239 /*11*/ {VENDOR_PRIM, "HFC-2S Primux Card", 4, 2, 0, 0, 0, 0, 0, 0},
5240
5241 /*12*/ {VENDOR_BN, "HFC-8S Card", 8, 8, 1, 0, 0, 0, 0, 0},
5242 /*13*/ {VENDOR_BN, "HFC-8S Card (+)", 8, 8, 1, 8, 0, DIP_8S,
5243 HFC_IO_MODE_REGIO, 0},
5244 /*14*/ {VENDOR_CCD, "HFC-8S Eval (old)", 8, 8, 0, 0, 0, 0, 0, 0},
5245 /*15*/ {VENDOR_CCD, "HFC-8S IOB4ST Recording", 8, 8, 1, 0, 0, 0, 0, 0},
5246
5247 /*16*/ {VENDOR_CCD, "HFC-8S IOB8ST", 8, 8, 1, 0, 0, 0, 0, 0},
5248 /*17*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5249 /*18*/ {VENDOR_CCD, "HFC-8S", 8, 8, 1, 0, 0, 0, 0, 0},
5250
5251 /*19*/ {VENDOR_BN, "HFC-E1 Card", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5252 /*20*/ {VENDOR_BN, "HFC-E1 Card (mini PCI)", 1, 1, 0, 1, 0, 0, 0, 0},
5253 /*21*/ {VENDOR_BN, "HFC-E1+ Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5254 /*22*/ {VENDOR_BN, "HFC-E1 Card (Dual)", 1, 1, 0, 1, 0, DIP_E1, 0, 0},
5255
5256 /*23*/ {VENDOR_CCD, "HFC-E1 Eval (old)", 1, 1, 0, 0, 0, 0, 0, 0},
5257 /*24*/ {VENDOR_CCD, "HFC-E1 IOB1E1", 1, 1, 0, 1, 0, 0, 0, 0},
5258 /*25*/ {VENDOR_CCD, "HFC-E1", 1, 1, 0, 1, 0, 0, 0, 0},
5259
5260 /*26*/ {VENDOR_CCD, "HFC-4S Speech Design", 4, 4, 0, 0, 0, 0,
5261 HFC_IO_MODE_PLXSD, 0},
5262 /*27*/ {VENDOR_CCD, "HFC-E1 Speech Design", 1, 1, 0, 0, 0, 0,
5263 HFC_IO_MODE_PLXSD, 0},
5264 /*28*/ {VENDOR_CCD, "HFC-4S OpenVox", 4, 4, 1, 0, 0, 0, 0, 0},
5265 /*29*/ {VENDOR_CCD, "HFC-2S OpenVox", 4, 2, 1, 0, 0, 0, 0, 0},
5266 /*30*/ {VENDOR_CCD, "HFC-8S OpenVox", 8, 8, 1, 0, 0, 0, 0, 0},
5267 /*31*/ {VENDOR_CCD, "XHFC-4S Speech Design", 5, 4, 0, 0, 0, 0,
5268 HFC_IO_MODE_EMBSD, XHFC_IRQ},
5269 /*32*/ {VENDOR_JH, "HFC-8S (junghanns)", 8, 8, 1, 0, 0, 0, 0, 0},
5270 /*33*/ {VENDOR_BN, "HFC-2S Beronet Card PCIe", 4, 2, 1, 3, 0, DIP_4S, 0, 0},
5271 /*34*/ {VENDOR_BN, "HFC-4S Beronet Card PCIe", 4, 4, 1, 2, 0, DIP_4S, 0, 0},
5272 };
5273
5274 #undef H
5275 #define H(x) ((unsigned long)&hfcm_map[x])
5276 static struct pci_device_id hfmultipci_ids[] __devinitdata = {
5277
5278 /* Cards with HFC-4S Chip */
5279 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5280 PCI_SUBDEVICE_ID_CCD_BN1SM, 0, 0, H(0)}, /* BN1S mini PCI */
5281 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5282 PCI_SUBDEVICE_ID_CCD_BN2S, 0, 0, H(1)}, /* BN2S */
5283 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5284 PCI_SUBDEVICE_ID_CCD_BN2SM, 0, 0, H(2)}, /* BN2S mini PCI */
5285 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5286 PCI_SUBDEVICE_ID_CCD_BN4S, 0, 0, H(3)}, /* BN4S */
5287 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5288 PCI_SUBDEVICE_ID_CCD_BN4SM, 0, 0, H(4)}, /* BN4S mini PCI */
5289 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5290 PCI_DEVICE_ID_CCD_HFC4S, 0, 0, H(5)}, /* Old Eval */
5291 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5292 PCI_SUBDEVICE_ID_CCD_IOB4ST, 0, 0, H(6)}, /* IOB4ST */
5293 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5294 PCI_SUBDEVICE_ID_CCD_HFC4S, 0, 0, H(7)}, /* 4S */
5295 { PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S,
5296 PCI_VENDOR_ID_DIGIUM, PCI_DEVICE_ID_DIGIUM_HFC4S, 0, 0, H(8)},
5297 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5298 PCI_SUBDEVICE_ID_CCD_SWYX4S, 0, 0, H(9)}, /* 4S Swyx */
5299 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5300 PCI_SUBDEVICE_ID_CCD_JH4S20, 0, 0, H(10)},
5301 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5302 PCI_SUBDEVICE_ID_CCD_PMX2S, 0, 0, H(11)}, /* Primux */
5303 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5304 PCI_SUBDEVICE_ID_CCD_OV4S, 0, 0, H(28)}, /* OpenVox 4 */
5305 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5306 PCI_SUBDEVICE_ID_CCD_OV2S, 0, 0, H(29)}, /* OpenVox 2 */
5307 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5308 0xb761, 0, 0, H(33)}, /* BN2S PCIe */
5309 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC4S, PCI_VENDOR_ID_CCD,
5310 0xb762, 0, 0, H(34)}, /* BN4S PCIe */
5311
5312 /* Cards with HFC-8S Chip */
5313 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5314 PCI_SUBDEVICE_ID_CCD_BN8S, 0, 0, H(12)}, /* BN8S */
5315 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5316 PCI_SUBDEVICE_ID_CCD_BN8SP, 0, 0, H(13)}, /* BN8S+ */
5317 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5318 PCI_DEVICE_ID_CCD_HFC8S, 0, 0, H(14)}, /* old Eval */
5319 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5320 PCI_SUBDEVICE_ID_CCD_IOB8STR, 0, 0, H(15)}, /* IOB8ST Recording */
5321 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5322 PCI_SUBDEVICE_ID_CCD_IOB8ST, 0, 0, H(16)}, /* IOB8ST */
5323 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5324 PCI_SUBDEVICE_ID_CCD_IOB8ST_1, 0, 0, H(17)}, /* IOB8ST */
5325 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5326 PCI_SUBDEVICE_ID_CCD_HFC8S, 0, 0, H(18)}, /* 8S */
5327 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5328 PCI_SUBDEVICE_ID_CCD_OV8S, 0, 0, H(30)}, /* OpenVox 8 */
5329 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFC8S, PCI_VENDOR_ID_CCD,
5330 PCI_SUBDEVICE_ID_CCD_JH8S, 0, 0, H(32)}, /* Junganns 8S */
5331
5332
5333 /* Cards with HFC-E1 Chip */
5334 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5335 PCI_SUBDEVICE_ID_CCD_BNE1, 0, 0, H(19)}, /* BNE1 */
5336 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5337 PCI_SUBDEVICE_ID_CCD_BNE1M, 0, 0, H(20)}, /* BNE1 mini PCI */
5338 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5339 PCI_SUBDEVICE_ID_CCD_BNE1DP, 0, 0, H(21)}, /* BNE1 + (Dual) */
5340 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5341 PCI_SUBDEVICE_ID_CCD_BNE1D, 0, 0, H(22)}, /* BNE1 (Dual) */
5342
5343 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5344 PCI_DEVICE_ID_CCD_HFCE1, 0, 0, H(23)}, /* Old Eval */
5345 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5346 PCI_SUBDEVICE_ID_CCD_IOB1E1, 0, 0, H(24)}, /* IOB1E1 */
5347 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5348 PCI_SUBDEVICE_ID_CCD_HFCE1, 0, 0, H(25)}, /* E1 */
5349
5350 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5351 PCI_SUBDEVICE_ID_CCD_SPD4S, 0, 0, H(26)}, /* PLX PCI Bridge */
5352 { PCI_VENDOR_ID_PLX, PCI_DEVICE_ID_PLX_9030, PCI_VENDOR_ID_CCD,
5353 PCI_SUBDEVICE_ID_CCD_SPDE1, 0, 0, H(27)}, /* PLX PCI Bridge */
5354
5355 { PCI_VENDOR_ID_CCD, PCI_DEVICE_ID_CCD_HFCE1, PCI_VENDOR_ID_CCD,
5356 PCI_SUBDEVICE_ID_CCD_JHSE1, 0, 0, H(25)}, /* Junghanns E1 */
5357
5358 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC4S), 0 },
5359 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFC8S), 0 },
5360 { PCI_VDEVICE(CCD, PCI_DEVICE_ID_CCD_HFCE1), 0 },
5361 {0, }
5362 };
5363 #undef H
5364
5365 MODULE_DEVICE_TABLE(pci, hfmultipci_ids);
5366
5367 static int
hfcmulti_probe(struct pci_dev * pdev,const struct pci_device_id * ent)5368 hfcmulti_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
5369 {
5370 struct hm_map *m = (struct hm_map *)ent->driver_data;
5371 int ret;
5372
5373 if (m == NULL && ent->vendor == PCI_VENDOR_ID_CCD && (
5374 ent->device == PCI_DEVICE_ID_CCD_HFC4S ||
5375 ent->device == PCI_DEVICE_ID_CCD_HFC8S ||
5376 ent->device == PCI_DEVICE_ID_CCD_HFCE1)) {
5377 printk(KERN_ERR
5378 "Unknown HFC multiport controller (vendor:%04x device:%04x "
5379 "subvendor:%04x subdevice:%04x)\n", pdev->vendor,
5380 pdev->device, pdev->subsystem_vendor,
5381 pdev->subsystem_device);
5382 printk(KERN_ERR
5383 "Please contact the driver maintainer for support.\n");
5384 return -ENODEV;
5385 }
5386 ret = hfcmulti_init(m, pdev, ent);
5387 if (ret)
5388 return ret;
5389 HFC_cnt++;
5390 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5391 return 0;
5392 }
5393
5394 static struct pci_driver hfcmultipci_driver = {
5395 .name = "hfc_multi",
5396 .probe = hfcmulti_probe,
5397 .remove = __devexit_p(hfc_remove_pci),
5398 .id_table = hfmultipci_ids,
5399 };
5400
5401 static void __exit
HFCmulti_cleanup(void)5402 HFCmulti_cleanup(void)
5403 {
5404 struct hfc_multi *card, *next;
5405
5406 /* get rid of all devices of this driver */
5407 list_for_each_entry_safe(card, next, &HFClist, list)
5408 release_card(card);
5409 pci_unregister_driver(&hfcmultipci_driver);
5410 }
5411
5412 static int __init
HFCmulti_init(void)5413 HFCmulti_init(void)
5414 {
5415 int err;
5416 int i, xhfc = 0;
5417 struct hm_map m;
5418
5419 printk(KERN_INFO "mISDN: HFC-multi driver %s\n", HFC_MULTI_VERSION);
5420
5421 #ifdef IRQ_DEBUG
5422 printk(KERN_DEBUG "%s: IRQ_DEBUG IS ENABLED!\n", __func__);
5423 #endif
5424
5425 spin_lock_init(&HFClock);
5426 spin_lock_init(&plx_lock);
5427
5428 if (debug & DEBUG_HFCMULTI_INIT)
5429 printk(KERN_DEBUG "%s: init entered\n", __func__);
5430
5431 switch (poll) {
5432 case 0:
5433 poll_timer = 6;
5434 poll = 128;
5435 break;
5436 case 8:
5437 poll_timer = 2;
5438 break;
5439 case 16:
5440 poll_timer = 3;
5441 break;
5442 case 32:
5443 poll_timer = 4;
5444 break;
5445 case 64:
5446 poll_timer = 5;
5447 break;
5448 case 128:
5449 poll_timer = 6;
5450 break;
5451 case 256:
5452 poll_timer = 7;
5453 break;
5454 default:
5455 printk(KERN_ERR
5456 "%s: Wrong poll value (%d).\n", __func__, poll);
5457 err = -EINVAL;
5458 return err;
5459
5460 }
5461
5462 if (!clock)
5463 clock = 1;
5464
5465 /* Register the embedded devices.
5466 * This should be done before the PCI cards registration */
5467 switch (hwid) {
5468 case HWID_MINIP4:
5469 xhfc = 1;
5470 m = hfcm_map[31];
5471 break;
5472 case HWID_MINIP8:
5473 xhfc = 2;
5474 m = hfcm_map[31];
5475 break;
5476 case HWID_MINIP16:
5477 xhfc = 4;
5478 m = hfcm_map[31];
5479 break;
5480 default:
5481 xhfc = 0;
5482 }
5483
5484 for (i = 0; i < xhfc; ++i) {
5485 err = hfcmulti_init(&m, NULL, NULL);
5486 if (err) {
5487 printk(KERN_ERR "error registering embedded driver: "
5488 "%x\n", err);
5489 return err;
5490 }
5491 HFC_cnt++;
5492 printk(KERN_INFO "%d devices registered\n", HFC_cnt);
5493 }
5494
5495 /* Register the PCI cards */
5496 err = pci_register_driver(&hfcmultipci_driver);
5497 if (err < 0) {
5498 printk(KERN_ERR "error registering pci driver: %x\n", err);
5499 return err;
5500 }
5501
5502 return 0;
5503 }
5504
5505
5506 module_init(HFCmulti_init);
5507 module_exit(HFCmulti_cleanup);
5508