• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3  * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4  * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
5  *
6  * This file is released under the GPL.
7  */
8 
9 #include <linux/completion.h>
10 #include <linux/err.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/bio.h>
15 #include <linux/blkdev.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/crypto.h>
19 #include <linux/workqueue.h>
20 #include <linux/backing-dev.h>
21 #include <linux/percpu.h>
22 #include <linux/atomic.h>
23 #include <linux/scatterlist.h>
24 #include <asm/page.h>
25 #include <asm/unaligned.h>
26 #include <crypto/hash.h>
27 #include <crypto/md5.h>
28 #include <crypto/algapi.h>
29 
30 #include <linux/device-mapper.h>
31 
32 #define DM_MSG_PREFIX "crypt"
33 
34 /*
35  * context holding the current state of a multi-part conversion
36  */
37 struct convert_context {
38 	struct completion restart;
39 	struct bio *bio_in;
40 	struct bio *bio_out;
41 	unsigned int offset_in;
42 	unsigned int offset_out;
43 	unsigned int idx_in;
44 	unsigned int idx_out;
45 	sector_t sector;
46 	atomic_t pending;
47 };
48 
49 /*
50  * per bio private data
51  */
52 struct dm_crypt_io {
53 	struct dm_target *target;
54 	struct bio *base_bio;
55 	struct work_struct work;
56 
57 	struct convert_context ctx;
58 
59 	atomic_t pending;
60 	int error;
61 	sector_t sector;
62 	struct dm_crypt_io *base_io;
63 };
64 
65 struct dm_crypt_request {
66 	struct convert_context *ctx;
67 	struct scatterlist sg_in;
68 	struct scatterlist sg_out;
69 	sector_t iv_sector;
70 };
71 
72 struct crypt_config;
73 
74 struct crypt_iv_operations {
75 	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
76 		   const char *opts);
77 	void (*dtr)(struct crypt_config *cc);
78 	int (*init)(struct crypt_config *cc);
79 	int (*wipe)(struct crypt_config *cc);
80 	int (*generator)(struct crypt_config *cc, u8 *iv,
81 			 struct dm_crypt_request *dmreq);
82 	int (*post)(struct crypt_config *cc, u8 *iv,
83 		    struct dm_crypt_request *dmreq);
84 };
85 
86 struct iv_essiv_private {
87 	struct crypto_hash *hash_tfm;
88 	u8 *salt;
89 };
90 
91 struct iv_benbi_private {
92 	int shift;
93 };
94 
95 #define LMK_SEED_SIZE 64 /* hash + 0 */
96 struct iv_lmk_private {
97 	struct crypto_shash *hash_tfm;
98 	u8 *seed;
99 };
100 
101 /*
102  * Crypt: maps a linear range of a block device
103  * and encrypts / decrypts at the same time.
104  */
105 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
106 
107 /*
108  * Duplicated per-CPU state for cipher.
109  */
110 struct crypt_cpu {
111 	struct ablkcipher_request *req;
112 	/* ESSIV: struct crypto_cipher *essiv_tfm */
113 	void *iv_private;
114 	struct crypto_ablkcipher *tfms[0];
115 };
116 
117 /*
118  * The fields in here must be read only after initialization,
119  * changing state should be in crypt_cpu.
120  */
121 struct crypt_config {
122 	struct dm_dev *dev;
123 	sector_t start;
124 
125 	/*
126 	 * pool for per bio private data, crypto requests and
127 	 * encryption requeusts/buffer pages
128 	 */
129 	mempool_t *io_pool;
130 	mempool_t *req_pool;
131 	mempool_t *page_pool;
132 	struct bio_set *bs;
133 
134 	struct workqueue_struct *io_queue;
135 	struct workqueue_struct *crypt_queue;
136 
137 	char *cipher;
138 	char *cipher_string;
139 
140 	struct crypt_iv_operations *iv_gen_ops;
141 	union {
142 		struct iv_essiv_private essiv;
143 		struct iv_benbi_private benbi;
144 		struct iv_lmk_private lmk;
145 	} iv_gen_private;
146 	sector_t iv_offset;
147 	unsigned int iv_size;
148 
149 	/*
150 	 * Duplicated per cpu state. Access through
151 	 * per_cpu_ptr() only.
152 	 */
153 	struct crypt_cpu __percpu *cpu;
154 	unsigned tfms_count;
155 
156 	/*
157 	 * Layout of each crypto request:
158 	 *
159 	 *   struct ablkcipher_request
160 	 *      context
161 	 *      padding
162 	 *   struct dm_crypt_request
163 	 *      padding
164 	 *   IV
165 	 *
166 	 * The padding is added so that dm_crypt_request and the IV are
167 	 * correctly aligned.
168 	 */
169 	unsigned int dmreq_start;
170 
171 	unsigned long flags;
172 	unsigned int key_size;
173 	unsigned int key_parts;
174 	u8 key[0];
175 };
176 
177 #define MIN_IOS        16
178 #define MIN_POOL_PAGES 32
179 
180 static struct kmem_cache *_crypt_io_pool;
181 
182 static void clone_init(struct dm_crypt_io *, struct bio *);
183 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
184 static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
185 
this_crypt_config(struct crypt_config * cc)186 static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
187 {
188 	return this_cpu_ptr(cc->cpu);
189 }
190 
191 /*
192  * Use this to access cipher attributes that are the same for each CPU.
193  */
any_tfm(struct crypt_config * cc)194 static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
195 {
196 	return __this_cpu_ptr(cc->cpu)->tfms[0];
197 }
198 
199 /*
200  * Different IV generation algorithms:
201  *
202  * plain: the initial vector is the 32-bit little-endian version of the sector
203  *        number, padded with zeros if necessary.
204  *
205  * plain64: the initial vector is the 64-bit little-endian version of the sector
206  *        number, padded with zeros if necessary.
207  *
208  * essiv: "encrypted sector|salt initial vector", the sector number is
209  *        encrypted with the bulk cipher using a salt as key. The salt
210  *        should be derived from the bulk cipher's key via hashing.
211  *
212  * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
213  *        (needed for LRW-32-AES and possible other narrow block modes)
214  *
215  * null: the initial vector is always zero.  Provides compatibility with
216  *       obsolete loop_fish2 devices.  Do not use for new devices.
217  *
218  * lmk:  Compatible implementation of the block chaining mode used
219  *       by the Loop-AES block device encryption system
220  *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
221  *       It operates on full 512 byte sectors and uses CBC
222  *       with an IV derived from the sector number, the data and
223  *       optionally extra IV seed.
224  *       This means that after decryption the first block
225  *       of sector must be tweaked according to decrypted data.
226  *       Loop-AES can use three encryption schemes:
227  *         version 1: is plain aes-cbc mode
228  *         version 2: uses 64 multikey scheme with lmk IV generator
229  *         version 3: the same as version 2 with additional IV seed
230  *                   (it uses 65 keys, last key is used as IV seed)
231  *
232  * plumb: unimplemented, see:
233  * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
234  */
235 
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)236 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
237 			      struct dm_crypt_request *dmreq)
238 {
239 	memset(iv, 0, cc->iv_size);
240 	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
241 
242 	return 0;
243 }
244 
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)245 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
246 				struct dm_crypt_request *dmreq)
247 {
248 	memset(iv, 0, cc->iv_size);
249 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
250 
251 	return 0;
252 }
253 
254 /* Initialise ESSIV - compute salt but no local memory allocations */
crypt_iv_essiv_init(struct crypt_config * cc)255 static int crypt_iv_essiv_init(struct crypt_config *cc)
256 {
257 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
258 	struct hash_desc desc;
259 	struct scatterlist sg;
260 	struct crypto_cipher *essiv_tfm;
261 	int err, cpu;
262 
263 	sg_init_one(&sg, cc->key, cc->key_size);
264 	desc.tfm = essiv->hash_tfm;
265 	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
266 
267 	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
268 	if (err)
269 		return err;
270 
271 	for_each_possible_cpu(cpu) {
272 		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
273 
274 		err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
275 				    crypto_hash_digestsize(essiv->hash_tfm));
276 		if (err)
277 			return err;
278 	}
279 
280 	return 0;
281 }
282 
283 /* Wipe salt and reset key derived from volume key */
crypt_iv_essiv_wipe(struct crypt_config * cc)284 static int crypt_iv_essiv_wipe(struct crypt_config *cc)
285 {
286 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
287 	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
288 	struct crypto_cipher *essiv_tfm;
289 	int cpu, r, err = 0;
290 
291 	memset(essiv->salt, 0, salt_size);
292 
293 	for_each_possible_cpu(cpu) {
294 		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
295 		r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
296 		if (r)
297 			err = r;
298 	}
299 
300 	return err;
301 }
302 
303 /* Set up per cpu cipher state */
setup_essiv_cpu(struct crypt_config * cc,struct dm_target * ti,u8 * salt,unsigned saltsize)304 static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
305 					     struct dm_target *ti,
306 					     u8 *salt, unsigned saltsize)
307 {
308 	struct crypto_cipher *essiv_tfm;
309 	int err;
310 
311 	/* Setup the essiv_tfm with the given salt */
312 	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
313 	if (IS_ERR(essiv_tfm)) {
314 		ti->error = "Error allocating crypto tfm for ESSIV";
315 		return essiv_tfm;
316 	}
317 
318 	if (crypto_cipher_blocksize(essiv_tfm) !=
319 	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
320 		ti->error = "Block size of ESSIV cipher does "
321 			    "not match IV size of block cipher";
322 		crypto_free_cipher(essiv_tfm);
323 		return ERR_PTR(-EINVAL);
324 	}
325 
326 	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
327 	if (err) {
328 		ti->error = "Failed to set key for ESSIV cipher";
329 		crypto_free_cipher(essiv_tfm);
330 		return ERR_PTR(err);
331 	}
332 
333 	return essiv_tfm;
334 }
335 
crypt_iv_essiv_dtr(struct crypt_config * cc)336 static void crypt_iv_essiv_dtr(struct crypt_config *cc)
337 {
338 	int cpu;
339 	struct crypt_cpu *cpu_cc;
340 	struct crypto_cipher *essiv_tfm;
341 	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
342 
343 	crypto_free_hash(essiv->hash_tfm);
344 	essiv->hash_tfm = NULL;
345 
346 	kzfree(essiv->salt);
347 	essiv->salt = NULL;
348 
349 	for_each_possible_cpu(cpu) {
350 		cpu_cc = per_cpu_ptr(cc->cpu, cpu);
351 		essiv_tfm = cpu_cc->iv_private;
352 
353 		if (essiv_tfm)
354 			crypto_free_cipher(essiv_tfm);
355 
356 		cpu_cc->iv_private = NULL;
357 	}
358 }
359 
crypt_iv_essiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)360 static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
361 			      const char *opts)
362 {
363 	struct crypto_cipher *essiv_tfm = NULL;
364 	struct crypto_hash *hash_tfm = NULL;
365 	u8 *salt = NULL;
366 	int err, cpu;
367 
368 	if (!opts) {
369 		ti->error = "Digest algorithm missing for ESSIV mode";
370 		return -EINVAL;
371 	}
372 
373 	/* Allocate hash algorithm */
374 	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
375 	if (IS_ERR(hash_tfm)) {
376 		ti->error = "Error initializing ESSIV hash";
377 		err = PTR_ERR(hash_tfm);
378 		goto bad;
379 	}
380 
381 	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
382 	if (!salt) {
383 		ti->error = "Error kmallocing salt storage in ESSIV";
384 		err = -ENOMEM;
385 		goto bad;
386 	}
387 
388 	cc->iv_gen_private.essiv.salt = salt;
389 	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
390 
391 	for_each_possible_cpu(cpu) {
392 		essiv_tfm = setup_essiv_cpu(cc, ti, salt,
393 					crypto_hash_digestsize(hash_tfm));
394 		if (IS_ERR(essiv_tfm)) {
395 			crypt_iv_essiv_dtr(cc);
396 			return PTR_ERR(essiv_tfm);
397 		}
398 		per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
399 	}
400 
401 	return 0;
402 
403 bad:
404 	if (hash_tfm && !IS_ERR(hash_tfm))
405 		crypto_free_hash(hash_tfm);
406 	kfree(salt);
407 	return err;
408 }
409 
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)410 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
411 			      struct dm_crypt_request *dmreq)
412 {
413 	struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
414 
415 	memset(iv, 0, cc->iv_size);
416 	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
417 	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
418 
419 	return 0;
420 }
421 
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)422 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
423 			      const char *opts)
424 {
425 	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
426 	int log = ilog2(bs);
427 
428 	/* we need to calculate how far we must shift the sector count
429 	 * to get the cipher block count, we use this shift in _gen */
430 
431 	if (1 << log != bs) {
432 		ti->error = "cypher blocksize is not a power of 2";
433 		return -EINVAL;
434 	}
435 
436 	if (log > 9) {
437 		ti->error = "cypher blocksize is > 512";
438 		return -EINVAL;
439 	}
440 
441 	cc->iv_gen_private.benbi.shift = 9 - log;
442 
443 	return 0;
444 }
445 
crypt_iv_benbi_dtr(struct crypt_config * cc)446 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
447 {
448 }
449 
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)450 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
451 			      struct dm_crypt_request *dmreq)
452 {
453 	__be64 val;
454 
455 	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
456 
457 	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
458 	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
459 
460 	return 0;
461 }
462 
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)463 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
464 			     struct dm_crypt_request *dmreq)
465 {
466 	memset(iv, 0, cc->iv_size);
467 
468 	return 0;
469 }
470 
crypt_iv_lmk_dtr(struct crypt_config * cc)471 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
472 {
473 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
474 
475 	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
476 		crypto_free_shash(lmk->hash_tfm);
477 	lmk->hash_tfm = NULL;
478 
479 	kzfree(lmk->seed);
480 	lmk->seed = NULL;
481 }
482 
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)483 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
484 			    const char *opts)
485 {
486 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
487 
488 	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
489 	if (IS_ERR(lmk->hash_tfm)) {
490 		ti->error = "Error initializing LMK hash";
491 		return PTR_ERR(lmk->hash_tfm);
492 	}
493 
494 	/* No seed in LMK version 2 */
495 	if (cc->key_parts == cc->tfms_count) {
496 		lmk->seed = NULL;
497 		return 0;
498 	}
499 
500 	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
501 	if (!lmk->seed) {
502 		crypt_iv_lmk_dtr(cc);
503 		ti->error = "Error kmallocing seed storage in LMK";
504 		return -ENOMEM;
505 	}
506 
507 	return 0;
508 }
509 
crypt_iv_lmk_init(struct crypt_config * cc)510 static int crypt_iv_lmk_init(struct crypt_config *cc)
511 {
512 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
513 	int subkey_size = cc->key_size / cc->key_parts;
514 
515 	/* LMK seed is on the position of LMK_KEYS + 1 key */
516 	if (lmk->seed)
517 		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
518 		       crypto_shash_digestsize(lmk->hash_tfm));
519 
520 	return 0;
521 }
522 
crypt_iv_lmk_wipe(struct crypt_config * cc)523 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
524 {
525 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
526 
527 	if (lmk->seed)
528 		memset(lmk->seed, 0, LMK_SEED_SIZE);
529 
530 	return 0;
531 }
532 
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)533 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
534 			    struct dm_crypt_request *dmreq,
535 			    u8 *data)
536 {
537 	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
538 	struct {
539 		struct shash_desc desc;
540 		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
541 	} sdesc;
542 	struct md5_state md5state;
543 	u32 buf[4];
544 	int i, r;
545 
546 	sdesc.desc.tfm = lmk->hash_tfm;
547 	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
548 
549 	r = crypto_shash_init(&sdesc.desc);
550 	if (r)
551 		return r;
552 
553 	if (lmk->seed) {
554 		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
555 		if (r)
556 			return r;
557 	}
558 
559 	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
560 	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
561 	if (r)
562 		return r;
563 
564 	/* Sector is cropped to 56 bits here */
565 	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
566 	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
567 	buf[2] = cpu_to_le32(4024);
568 	buf[3] = 0;
569 	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
570 	if (r)
571 		return r;
572 
573 	/* No MD5 padding here */
574 	r = crypto_shash_export(&sdesc.desc, &md5state);
575 	if (r)
576 		return r;
577 
578 	for (i = 0; i < MD5_HASH_WORDS; i++)
579 		__cpu_to_le32s(&md5state.hash[i]);
580 	memcpy(iv, &md5state.hash, cc->iv_size);
581 
582 	return 0;
583 }
584 
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)585 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
586 			    struct dm_crypt_request *dmreq)
587 {
588 	u8 *src;
589 	int r = 0;
590 
591 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
592 		src = kmap_atomic(sg_page(&dmreq->sg_in));
593 		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
594 		kunmap_atomic(src);
595 	} else
596 		memset(iv, 0, cc->iv_size);
597 
598 	return r;
599 }
600 
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)601 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
602 			     struct dm_crypt_request *dmreq)
603 {
604 	u8 *dst;
605 	int r;
606 
607 	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
608 		return 0;
609 
610 	dst = kmap_atomic(sg_page(&dmreq->sg_out));
611 	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
612 
613 	/* Tweak the first block of plaintext sector */
614 	if (!r)
615 		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
616 
617 	kunmap_atomic(dst);
618 	return r;
619 }
620 
621 static struct crypt_iv_operations crypt_iv_plain_ops = {
622 	.generator = crypt_iv_plain_gen
623 };
624 
625 static struct crypt_iv_operations crypt_iv_plain64_ops = {
626 	.generator = crypt_iv_plain64_gen
627 };
628 
629 static struct crypt_iv_operations crypt_iv_essiv_ops = {
630 	.ctr       = crypt_iv_essiv_ctr,
631 	.dtr       = crypt_iv_essiv_dtr,
632 	.init      = crypt_iv_essiv_init,
633 	.wipe      = crypt_iv_essiv_wipe,
634 	.generator = crypt_iv_essiv_gen
635 };
636 
637 static struct crypt_iv_operations crypt_iv_benbi_ops = {
638 	.ctr	   = crypt_iv_benbi_ctr,
639 	.dtr	   = crypt_iv_benbi_dtr,
640 	.generator = crypt_iv_benbi_gen
641 };
642 
643 static struct crypt_iv_operations crypt_iv_null_ops = {
644 	.generator = crypt_iv_null_gen
645 };
646 
647 static struct crypt_iv_operations crypt_iv_lmk_ops = {
648 	.ctr	   = crypt_iv_lmk_ctr,
649 	.dtr	   = crypt_iv_lmk_dtr,
650 	.init	   = crypt_iv_lmk_init,
651 	.wipe	   = crypt_iv_lmk_wipe,
652 	.generator = crypt_iv_lmk_gen,
653 	.post	   = crypt_iv_lmk_post
654 };
655 
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)656 static void crypt_convert_init(struct crypt_config *cc,
657 			       struct convert_context *ctx,
658 			       struct bio *bio_out, struct bio *bio_in,
659 			       sector_t sector)
660 {
661 	ctx->bio_in = bio_in;
662 	ctx->bio_out = bio_out;
663 	ctx->offset_in = 0;
664 	ctx->offset_out = 0;
665 	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
666 	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
667 	ctx->sector = sector + cc->iv_offset;
668 	init_completion(&ctx->restart);
669 }
670 
dmreq_of_req(struct crypt_config * cc,struct ablkcipher_request * req)671 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
672 					     struct ablkcipher_request *req)
673 {
674 	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
675 }
676 
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)677 static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
678 					       struct dm_crypt_request *dmreq)
679 {
680 	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
681 }
682 
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)683 static u8 *iv_of_dmreq(struct crypt_config *cc,
684 		       struct dm_crypt_request *dmreq)
685 {
686 	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
687 		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
688 }
689 
crypt_convert_block(struct crypt_config * cc,struct convert_context * ctx,struct ablkcipher_request * req)690 static int crypt_convert_block(struct crypt_config *cc,
691 			       struct convert_context *ctx,
692 			       struct ablkcipher_request *req)
693 {
694 	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
695 	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
696 	struct dm_crypt_request *dmreq;
697 	u8 *iv;
698 	int r = 0;
699 
700 	dmreq = dmreq_of_req(cc, req);
701 	iv = iv_of_dmreq(cc, dmreq);
702 
703 	dmreq->iv_sector = ctx->sector;
704 	dmreq->ctx = ctx;
705 	sg_init_table(&dmreq->sg_in, 1);
706 	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
707 		    bv_in->bv_offset + ctx->offset_in);
708 
709 	sg_init_table(&dmreq->sg_out, 1);
710 	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
711 		    bv_out->bv_offset + ctx->offset_out);
712 
713 	ctx->offset_in += 1 << SECTOR_SHIFT;
714 	if (ctx->offset_in >= bv_in->bv_len) {
715 		ctx->offset_in = 0;
716 		ctx->idx_in++;
717 	}
718 
719 	ctx->offset_out += 1 << SECTOR_SHIFT;
720 	if (ctx->offset_out >= bv_out->bv_len) {
721 		ctx->offset_out = 0;
722 		ctx->idx_out++;
723 	}
724 
725 	if (cc->iv_gen_ops) {
726 		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
727 		if (r < 0)
728 			return r;
729 	}
730 
731 	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
732 				     1 << SECTOR_SHIFT, iv);
733 
734 	if (bio_data_dir(ctx->bio_in) == WRITE)
735 		r = crypto_ablkcipher_encrypt(req);
736 	else
737 		r = crypto_ablkcipher_decrypt(req);
738 
739 	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
740 		r = cc->iv_gen_ops->post(cc, iv, dmreq);
741 
742 	return r;
743 }
744 
745 static void kcryptd_async_done(struct crypto_async_request *async_req,
746 			       int error);
747 
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)748 static void crypt_alloc_req(struct crypt_config *cc,
749 			    struct convert_context *ctx)
750 {
751 	struct crypt_cpu *this_cc = this_crypt_config(cc);
752 	unsigned key_index = ctx->sector & (cc->tfms_count - 1);
753 
754 	if (!this_cc->req)
755 		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
756 
757 	ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
758 	ablkcipher_request_set_callback(this_cc->req,
759 	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
760 	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
761 }
762 
763 /*
764  * Encrypt / decrypt data from one bio to another one (can be the same one)
765  */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx)766 static int crypt_convert(struct crypt_config *cc,
767 			 struct convert_context *ctx)
768 {
769 	struct crypt_cpu *this_cc = this_crypt_config(cc);
770 	int r;
771 
772 	atomic_set(&ctx->pending, 1);
773 
774 	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
775 	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
776 
777 		crypt_alloc_req(cc, ctx);
778 
779 		atomic_inc(&ctx->pending);
780 
781 		r = crypt_convert_block(cc, ctx, this_cc->req);
782 
783 		switch (r) {
784 		/* async */
785 		case -EBUSY:
786 			wait_for_completion(&ctx->restart);
787 			INIT_COMPLETION(ctx->restart);
788 			/* fall through*/
789 		case -EINPROGRESS:
790 			this_cc->req = NULL;
791 			ctx->sector++;
792 			continue;
793 
794 		/* sync */
795 		case 0:
796 			atomic_dec(&ctx->pending);
797 			ctx->sector++;
798 			cond_resched();
799 			continue;
800 
801 		/* error */
802 		default:
803 			atomic_dec(&ctx->pending);
804 			return r;
805 		}
806 	}
807 
808 	return 0;
809 }
810 
dm_crypt_bio_destructor(struct bio * bio)811 static void dm_crypt_bio_destructor(struct bio *bio)
812 {
813 	struct dm_crypt_io *io = bio->bi_private;
814 	struct crypt_config *cc = io->target->private;
815 
816 	bio_free(bio, cc->bs);
817 }
818 
819 /*
820  * Generate a new unfragmented bio with the given size
821  * This should never violate the device limitations
822  * May return a smaller bio when running out of pages, indicated by
823  * *out_of_pages set to 1.
824  */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned size,unsigned * out_of_pages)825 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
826 				      unsigned *out_of_pages)
827 {
828 	struct crypt_config *cc = io->target->private;
829 	struct bio *clone;
830 	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
831 	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
832 	unsigned i, len;
833 	struct page *page;
834 
835 	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
836 	if (!clone)
837 		return NULL;
838 
839 	clone_init(io, clone);
840 	*out_of_pages = 0;
841 
842 	for (i = 0; i < nr_iovecs; i++) {
843 		page = mempool_alloc(cc->page_pool, gfp_mask);
844 		if (!page) {
845 			*out_of_pages = 1;
846 			break;
847 		}
848 
849 		/*
850 		 * If additional pages cannot be allocated without waiting,
851 		 * return a partially-allocated bio.  The caller will then try
852 		 * to allocate more bios while submitting this partial bio.
853 		 */
854 		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
855 
856 		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
857 
858 		if (!bio_add_page(clone, page, len, 0)) {
859 			mempool_free(page, cc->page_pool);
860 			break;
861 		}
862 
863 		size -= len;
864 	}
865 
866 	if (!clone->bi_size) {
867 		bio_put(clone);
868 		return NULL;
869 	}
870 
871 	return clone;
872 }
873 
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)874 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
875 {
876 	unsigned int i;
877 	struct bio_vec *bv;
878 
879 	for (i = 0; i < clone->bi_vcnt; i++) {
880 		bv = bio_iovec_idx(clone, i);
881 		BUG_ON(!bv->bv_page);
882 		mempool_free(bv->bv_page, cc->page_pool);
883 		bv->bv_page = NULL;
884 	}
885 }
886 
crypt_io_alloc(struct dm_target * ti,struct bio * bio,sector_t sector)887 static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
888 					  struct bio *bio, sector_t sector)
889 {
890 	struct crypt_config *cc = ti->private;
891 	struct dm_crypt_io *io;
892 
893 	io = mempool_alloc(cc->io_pool, GFP_NOIO);
894 	io->target = ti;
895 	io->base_bio = bio;
896 	io->sector = sector;
897 	io->error = 0;
898 	io->base_io = NULL;
899 	atomic_set(&io->pending, 0);
900 
901 	return io;
902 }
903 
crypt_inc_pending(struct dm_crypt_io * io)904 static void crypt_inc_pending(struct dm_crypt_io *io)
905 {
906 	atomic_inc(&io->pending);
907 }
908 
909 /*
910  * One of the bios was finished. Check for completion of
911  * the whole request and correctly clean up the buffer.
912  * If base_io is set, wait for the last fragment to complete.
913  */
crypt_dec_pending(struct dm_crypt_io * io)914 static void crypt_dec_pending(struct dm_crypt_io *io)
915 {
916 	struct crypt_config *cc = io->target->private;
917 	struct bio *base_bio = io->base_bio;
918 	struct dm_crypt_io *base_io = io->base_io;
919 	int error = io->error;
920 
921 	if (!atomic_dec_and_test(&io->pending))
922 		return;
923 
924 	mempool_free(io, cc->io_pool);
925 
926 	if (likely(!base_io))
927 		bio_endio(base_bio, error);
928 	else {
929 		if (error && !base_io->error)
930 			base_io->error = error;
931 		crypt_dec_pending(base_io);
932 	}
933 }
934 
935 /*
936  * kcryptd/kcryptd_io:
937  *
938  * Needed because it would be very unwise to do decryption in an
939  * interrupt context.
940  *
941  * kcryptd performs the actual encryption or decryption.
942  *
943  * kcryptd_io performs the IO submission.
944  *
945  * They must be separated as otherwise the final stages could be
946  * starved by new requests which can block in the first stages due
947  * to memory allocation.
948  *
949  * The work is done per CPU global for all dm-crypt instances.
950  * They should not depend on each other and do not block.
951  */
crypt_endio(struct bio * clone,int error)952 static void crypt_endio(struct bio *clone, int error)
953 {
954 	struct dm_crypt_io *io = clone->bi_private;
955 	struct crypt_config *cc = io->target->private;
956 	unsigned rw = bio_data_dir(clone);
957 
958 	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
959 		error = -EIO;
960 
961 	/*
962 	 * free the processed pages
963 	 */
964 	if (rw == WRITE)
965 		crypt_free_buffer_pages(cc, clone);
966 
967 	bio_put(clone);
968 
969 	if (rw == READ && !error) {
970 		kcryptd_queue_crypt(io);
971 		return;
972 	}
973 
974 	if (unlikely(error))
975 		io->error = error;
976 
977 	crypt_dec_pending(io);
978 }
979 
clone_init(struct dm_crypt_io * io,struct bio * clone)980 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
981 {
982 	struct crypt_config *cc = io->target->private;
983 
984 	clone->bi_private = io;
985 	clone->bi_end_io  = crypt_endio;
986 	clone->bi_bdev    = cc->dev->bdev;
987 	clone->bi_rw      = io->base_bio->bi_rw;
988 	clone->bi_destructor = dm_crypt_bio_destructor;
989 }
990 
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)991 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
992 {
993 	struct crypt_config *cc = io->target->private;
994 	struct bio *base_bio = io->base_bio;
995 	struct bio *clone;
996 
997 	/*
998 	 * The block layer might modify the bvec array, so always
999 	 * copy the required bvecs because we need the original
1000 	 * one in order to decrypt the whole bio data *afterwards*.
1001 	 */
1002 	clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
1003 	if (!clone)
1004 		return 1;
1005 
1006 	crypt_inc_pending(io);
1007 
1008 	clone_init(io, clone);
1009 	clone->bi_idx = 0;
1010 	clone->bi_vcnt = bio_segments(base_bio);
1011 	clone->bi_size = base_bio->bi_size;
1012 	clone->bi_sector = cc->start + io->sector;
1013 	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
1014 	       sizeof(struct bio_vec) * clone->bi_vcnt);
1015 
1016 	generic_make_request(clone);
1017 	return 0;
1018 }
1019 
kcryptd_io_write(struct dm_crypt_io * io)1020 static void kcryptd_io_write(struct dm_crypt_io *io)
1021 {
1022 	struct bio *clone = io->ctx.bio_out;
1023 	generic_make_request(clone);
1024 }
1025 
kcryptd_io(struct work_struct * work)1026 static void kcryptd_io(struct work_struct *work)
1027 {
1028 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1029 
1030 	if (bio_data_dir(io->base_bio) == READ) {
1031 		crypt_inc_pending(io);
1032 		if (kcryptd_io_read(io, GFP_NOIO))
1033 			io->error = -ENOMEM;
1034 		crypt_dec_pending(io);
1035 	} else
1036 		kcryptd_io_write(io);
1037 }
1038 
kcryptd_queue_io(struct dm_crypt_io * io)1039 static void kcryptd_queue_io(struct dm_crypt_io *io)
1040 {
1041 	struct crypt_config *cc = io->target->private;
1042 
1043 	INIT_WORK(&io->work, kcryptd_io);
1044 	queue_work(cc->io_queue, &io->work);
1045 }
1046 
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1047 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1048 {
1049 	struct bio *clone = io->ctx.bio_out;
1050 	struct crypt_config *cc = io->target->private;
1051 
1052 	if (unlikely(io->error < 0)) {
1053 		crypt_free_buffer_pages(cc, clone);
1054 		bio_put(clone);
1055 		crypt_dec_pending(io);
1056 		return;
1057 	}
1058 
1059 	/* crypt_convert should have filled the clone bio */
1060 	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
1061 
1062 	clone->bi_sector = cc->start + io->sector;
1063 
1064 	if (async)
1065 		kcryptd_queue_io(io);
1066 	else
1067 		generic_make_request(clone);
1068 }
1069 
kcryptd_crypt_write_convert(struct dm_crypt_io * io)1070 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1071 {
1072 	struct crypt_config *cc = io->target->private;
1073 	struct bio *clone;
1074 	struct dm_crypt_io *new_io;
1075 	int crypt_finished;
1076 	unsigned out_of_pages = 0;
1077 	unsigned remaining = io->base_bio->bi_size;
1078 	sector_t sector = io->sector;
1079 	int r;
1080 
1081 	/*
1082 	 * Prevent io from disappearing until this function completes.
1083 	 */
1084 	crypt_inc_pending(io);
1085 	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1086 
1087 	/*
1088 	 * The allocated buffers can be smaller than the whole bio,
1089 	 * so repeat the whole process until all the data can be handled.
1090 	 */
1091 	while (remaining) {
1092 		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
1093 		if (unlikely(!clone)) {
1094 			io->error = -ENOMEM;
1095 			break;
1096 		}
1097 
1098 		io->ctx.bio_out = clone;
1099 		io->ctx.idx_out = 0;
1100 
1101 		remaining -= clone->bi_size;
1102 		sector += bio_sectors(clone);
1103 
1104 		crypt_inc_pending(io);
1105 
1106 		r = crypt_convert(cc, &io->ctx);
1107 		if (r < 0)
1108 			io->error = -EIO;
1109 
1110 		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
1111 
1112 		/* Encryption was already finished, submit io now */
1113 		if (crypt_finished) {
1114 			kcryptd_crypt_write_io_submit(io, 0);
1115 
1116 			/*
1117 			 * If there was an error, do not try next fragments.
1118 			 * For async, error is processed in async handler.
1119 			 */
1120 			if (unlikely(r < 0))
1121 				break;
1122 
1123 			io->sector = sector;
1124 		}
1125 
1126 		/*
1127 		 * Out of memory -> run queues
1128 		 * But don't wait if split was due to the io size restriction
1129 		 */
1130 		if (unlikely(out_of_pages))
1131 			congestion_wait(BLK_RW_ASYNC, HZ/100);
1132 
1133 		/*
1134 		 * With async crypto it is unsafe to share the crypto context
1135 		 * between fragments, so switch to a new dm_crypt_io structure.
1136 		 */
1137 		if (unlikely(!crypt_finished && remaining)) {
1138 			new_io = crypt_io_alloc(io->target, io->base_bio,
1139 						sector);
1140 			crypt_inc_pending(new_io);
1141 			crypt_convert_init(cc, &new_io->ctx, NULL,
1142 					   io->base_bio, sector);
1143 			new_io->ctx.idx_in = io->ctx.idx_in;
1144 			new_io->ctx.offset_in = io->ctx.offset_in;
1145 
1146 			/*
1147 			 * Fragments after the first use the base_io
1148 			 * pending count.
1149 			 */
1150 			if (!io->base_io)
1151 				new_io->base_io = io;
1152 			else {
1153 				new_io->base_io = io->base_io;
1154 				crypt_inc_pending(io->base_io);
1155 				crypt_dec_pending(io);
1156 			}
1157 
1158 			io = new_io;
1159 		}
1160 	}
1161 
1162 	crypt_dec_pending(io);
1163 }
1164 
kcryptd_crypt_read_done(struct dm_crypt_io * io)1165 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1166 {
1167 	crypt_dec_pending(io);
1168 }
1169 
kcryptd_crypt_read_convert(struct dm_crypt_io * io)1170 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1171 {
1172 	struct crypt_config *cc = io->target->private;
1173 	int r = 0;
1174 
1175 	crypt_inc_pending(io);
1176 
1177 	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1178 			   io->sector);
1179 
1180 	r = crypt_convert(cc, &io->ctx);
1181 	if (r < 0)
1182 		io->error = -EIO;
1183 
1184 	if (atomic_dec_and_test(&io->ctx.pending))
1185 		kcryptd_crypt_read_done(io);
1186 
1187 	crypt_dec_pending(io);
1188 }
1189 
kcryptd_async_done(struct crypto_async_request * async_req,int error)1190 static void kcryptd_async_done(struct crypto_async_request *async_req,
1191 			       int error)
1192 {
1193 	struct dm_crypt_request *dmreq = async_req->data;
1194 	struct convert_context *ctx = dmreq->ctx;
1195 	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1196 	struct crypt_config *cc = io->target->private;
1197 
1198 	if (error == -EINPROGRESS) {
1199 		complete(&ctx->restart);
1200 		return;
1201 	}
1202 
1203 	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1204 		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1205 
1206 	if (error < 0)
1207 		io->error = -EIO;
1208 
1209 	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
1210 
1211 	if (!atomic_dec_and_test(&ctx->pending))
1212 		return;
1213 
1214 	if (bio_data_dir(io->base_bio) == READ)
1215 		kcryptd_crypt_read_done(io);
1216 	else
1217 		kcryptd_crypt_write_io_submit(io, 1);
1218 }
1219 
kcryptd_crypt(struct work_struct * work)1220 static void kcryptd_crypt(struct work_struct *work)
1221 {
1222 	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1223 
1224 	if (bio_data_dir(io->base_bio) == READ)
1225 		kcryptd_crypt_read_convert(io);
1226 	else
1227 		kcryptd_crypt_write_convert(io);
1228 }
1229 
kcryptd_queue_crypt(struct dm_crypt_io * io)1230 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1231 {
1232 	struct crypt_config *cc = io->target->private;
1233 
1234 	INIT_WORK(&io->work, kcryptd_crypt);
1235 	queue_work(cc->crypt_queue, &io->work);
1236 }
1237 
1238 /*
1239  * Decode key from its hex representation
1240  */
crypt_decode_key(u8 * key,char * hex,unsigned int size)1241 static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1242 {
1243 	char buffer[3];
1244 	char *endp;
1245 	unsigned int i;
1246 
1247 	buffer[2] = '\0';
1248 
1249 	for (i = 0; i < size; i++) {
1250 		buffer[0] = *hex++;
1251 		buffer[1] = *hex++;
1252 
1253 		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
1254 
1255 		if (endp != &buffer[2])
1256 			return -EINVAL;
1257 	}
1258 
1259 	if (*hex != '\0')
1260 		return -EINVAL;
1261 
1262 	return 0;
1263 }
1264 
1265 /*
1266  * Encode key into its hex representation
1267  */
crypt_encode_key(char * hex,u8 * key,unsigned int size)1268 static void crypt_encode_key(char *hex, u8 *key, unsigned int size)
1269 {
1270 	unsigned int i;
1271 
1272 	for (i = 0; i < size; i++) {
1273 		sprintf(hex, "%02x", *key);
1274 		hex += 2;
1275 		key++;
1276 	}
1277 }
1278 
crypt_free_tfms(struct crypt_config * cc,int cpu)1279 static void crypt_free_tfms(struct crypt_config *cc, int cpu)
1280 {
1281 	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1282 	unsigned i;
1283 
1284 	for (i = 0; i < cc->tfms_count; i++)
1285 		if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
1286 			crypto_free_ablkcipher(cpu_cc->tfms[i]);
1287 			cpu_cc->tfms[i] = NULL;
1288 		}
1289 }
1290 
crypt_alloc_tfms(struct crypt_config * cc,int cpu,char * ciphermode)1291 static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
1292 {
1293 	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1294 	unsigned i;
1295 	int err;
1296 
1297 	for (i = 0; i < cc->tfms_count; i++) {
1298 		cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
1299 		if (IS_ERR(cpu_cc->tfms[i])) {
1300 			err = PTR_ERR(cpu_cc->tfms[i]);
1301 			crypt_free_tfms(cc, cpu);
1302 			return err;
1303 		}
1304 	}
1305 
1306 	return 0;
1307 }
1308 
crypt_setkey_allcpus(struct crypt_config * cc)1309 static int crypt_setkey_allcpus(struct crypt_config *cc)
1310 {
1311 	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
1312 	int cpu, err = 0, i, r;
1313 
1314 	for_each_possible_cpu(cpu) {
1315 		for (i = 0; i < cc->tfms_count; i++) {
1316 			r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
1317 						     cc->key + (i * subkey_size), subkey_size);
1318 			if (r)
1319 				err = r;
1320 		}
1321 	}
1322 
1323 	return err;
1324 }
1325 
crypt_set_key(struct crypt_config * cc,char * key)1326 static int crypt_set_key(struct crypt_config *cc, char *key)
1327 {
1328 	int r = -EINVAL;
1329 	int key_string_len = strlen(key);
1330 
1331 	/* The key size may not be changed. */
1332 	if (cc->key_size != (key_string_len >> 1))
1333 		goto out;
1334 
1335 	/* Hyphen (which gives a key_size of zero) means there is no key. */
1336 	if (!cc->key_size && strcmp(key, "-"))
1337 		goto out;
1338 
1339 	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
1340 		goto out;
1341 
1342 	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1343 
1344 	r = crypt_setkey_allcpus(cc);
1345 
1346 out:
1347 	/* Hex key string not needed after here, so wipe it. */
1348 	memset(key, '0', key_string_len);
1349 
1350 	return r;
1351 }
1352 
crypt_wipe_key(struct crypt_config * cc)1353 static int crypt_wipe_key(struct crypt_config *cc)
1354 {
1355 	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
1356 	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1357 
1358 	return crypt_setkey_allcpus(cc);
1359 }
1360 
crypt_dtr(struct dm_target * ti)1361 static void crypt_dtr(struct dm_target *ti)
1362 {
1363 	struct crypt_config *cc = ti->private;
1364 	struct crypt_cpu *cpu_cc;
1365 	int cpu;
1366 
1367 	ti->private = NULL;
1368 
1369 	if (!cc)
1370 		return;
1371 
1372 	if (cc->io_queue)
1373 		destroy_workqueue(cc->io_queue);
1374 	if (cc->crypt_queue)
1375 		destroy_workqueue(cc->crypt_queue);
1376 
1377 	if (cc->cpu)
1378 		for_each_possible_cpu(cpu) {
1379 			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
1380 			if (cpu_cc->req)
1381 				mempool_free(cpu_cc->req, cc->req_pool);
1382 			crypt_free_tfms(cc, cpu);
1383 		}
1384 
1385 	if (cc->bs)
1386 		bioset_free(cc->bs);
1387 
1388 	if (cc->page_pool)
1389 		mempool_destroy(cc->page_pool);
1390 	if (cc->req_pool)
1391 		mempool_destroy(cc->req_pool);
1392 	if (cc->io_pool)
1393 		mempool_destroy(cc->io_pool);
1394 
1395 	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1396 		cc->iv_gen_ops->dtr(cc);
1397 
1398 	if (cc->dev)
1399 		dm_put_device(ti, cc->dev);
1400 
1401 	if (cc->cpu)
1402 		free_percpu(cc->cpu);
1403 
1404 	kzfree(cc->cipher);
1405 	kzfree(cc->cipher_string);
1406 
1407 	/* Must zero key material before freeing */
1408 	kzfree(cc);
1409 }
1410 
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)1411 static int crypt_ctr_cipher(struct dm_target *ti,
1412 			    char *cipher_in, char *key)
1413 {
1414 	struct crypt_config *cc = ti->private;
1415 	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1416 	char *cipher_api = NULL;
1417 	int cpu, ret = -EINVAL;
1418 	char dummy;
1419 
1420 	/* Convert to crypto api definition? */
1421 	if (strchr(cipher_in, '(')) {
1422 		ti->error = "Bad cipher specification";
1423 		return -EINVAL;
1424 	}
1425 
1426 	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1427 	if (!cc->cipher_string)
1428 		goto bad_mem;
1429 
1430 	/*
1431 	 * Legacy dm-crypt cipher specification
1432 	 * cipher[:keycount]-mode-iv:ivopts
1433 	 */
1434 	tmp = cipher_in;
1435 	keycount = strsep(&tmp, "-");
1436 	cipher = strsep(&keycount, ":");
1437 
1438 	if (!keycount)
1439 		cc->tfms_count = 1;
1440 	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1441 		 !is_power_of_2(cc->tfms_count)) {
1442 		ti->error = "Bad cipher key count specification";
1443 		return -EINVAL;
1444 	}
1445 	cc->key_parts = cc->tfms_count;
1446 
1447 	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1448 	if (!cc->cipher)
1449 		goto bad_mem;
1450 
1451 	chainmode = strsep(&tmp, "-");
1452 	ivopts = strsep(&tmp, "-");
1453 	ivmode = strsep(&ivopts, ":");
1454 
1455 	if (tmp)
1456 		DMWARN("Ignoring unexpected additional cipher options");
1457 
1458 	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
1459 				 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
1460 				 __alignof__(struct crypt_cpu));
1461 	if (!cc->cpu) {
1462 		ti->error = "Cannot allocate per cpu state";
1463 		goto bad_mem;
1464 	}
1465 
1466 	/*
1467 	 * For compatibility with the original dm-crypt mapping format, if
1468 	 * only the cipher name is supplied, use cbc-plain.
1469 	 */
1470 	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1471 		chainmode = "cbc";
1472 		ivmode = "plain";
1473 	}
1474 
1475 	if (strcmp(chainmode, "ecb") && !ivmode) {
1476 		ti->error = "IV mechanism required";
1477 		return -EINVAL;
1478 	}
1479 
1480 	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1481 	if (!cipher_api)
1482 		goto bad_mem;
1483 
1484 	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1485 		       "%s(%s)", chainmode, cipher);
1486 	if (ret < 0) {
1487 		kfree(cipher_api);
1488 		goto bad_mem;
1489 	}
1490 
1491 	/* Allocate cipher */
1492 	for_each_possible_cpu(cpu) {
1493 		ret = crypt_alloc_tfms(cc, cpu, cipher_api);
1494 		if (ret < 0) {
1495 			ti->error = "Error allocating crypto tfm";
1496 			goto bad;
1497 		}
1498 	}
1499 
1500 	/* Initialize and set key */
1501 	ret = crypt_set_key(cc, key);
1502 	if (ret < 0) {
1503 		ti->error = "Error decoding and setting key";
1504 		goto bad;
1505 	}
1506 
1507 	/* Initialize IV */
1508 	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
1509 	if (cc->iv_size)
1510 		/* at least a 64 bit sector number should fit in our buffer */
1511 		cc->iv_size = max(cc->iv_size,
1512 				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1513 	else if (ivmode) {
1514 		DMWARN("Selected cipher does not support IVs");
1515 		ivmode = NULL;
1516 	}
1517 
1518 	/* Choose ivmode, see comments at iv code. */
1519 	if (ivmode == NULL)
1520 		cc->iv_gen_ops = NULL;
1521 	else if (strcmp(ivmode, "plain") == 0)
1522 		cc->iv_gen_ops = &crypt_iv_plain_ops;
1523 	else if (strcmp(ivmode, "plain64") == 0)
1524 		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1525 	else if (strcmp(ivmode, "essiv") == 0)
1526 		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1527 	else if (strcmp(ivmode, "benbi") == 0)
1528 		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1529 	else if (strcmp(ivmode, "null") == 0)
1530 		cc->iv_gen_ops = &crypt_iv_null_ops;
1531 	else if (strcmp(ivmode, "lmk") == 0) {
1532 		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1533 		/* Version 2 and 3 is recognised according
1534 		 * to length of provided multi-key string.
1535 		 * If present (version 3), last key is used as IV seed.
1536 		 */
1537 		if (cc->key_size % cc->key_parts)
1538 			cc->key_parts++;
1539 	} else {
1540 		ret = -EINVAL;
1541 		ti->error = "Invalid IV mode";
1542 		goto bad;
1543 	}
1544 
1545 	/* Allocate IV */
1546 	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1547 		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1548 		if (ret < 0) {
1549 			ti->error = "Error creating IV";
1550 			goto bad;
1551 		}
1552 	}
1553 
1554 	/* Initialize IV (set keys for ESSIV etc) */
1555 	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1556 		ret = cc->iv_gen_ops->init(cc);
1557 		if (ret < 0) {
1558 			ti->error = "Error initialising IV";
1559 			goto bad;
1560 		}
1561 	}
1562 
1563 	ret = 0;
1564 bad:
1565 	kfree(cipher_api);
1566 	return ret;
1567 
1568 bad_mem:
1569 	ti->error = "Cannot allocate cipher strings";
1570 	return -ENOMEM;
1571 }
1572 
1573 /*
1574  * Construct an encryption mapping:
1575  * <cipher> <key> <iv_offset> <dev_path> <start>
1576  */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)1577 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1578 {
1579 	struct crypt_config *cc;
1580 	unsigned int key_size, opt_params;
1581 	unsigned long long tmpll;
1582 	int ret;
1583 	struct dm_arg_set as;
1584 	const char *opt_string;
1585 	char dummy;
1586 
1587 	static struct dm_arg _args[] = {
1588 		{0, 1, "Invalid number of feature args"},
1589 	};
1590 
1591 	if (argc < 5) {
1592 		ti->error = "Not enough arguments";
1593 		return -EINVAL;
1594 	}
1595 
1596 	key_size = strlen(argv[1]) >> 1;
1597 
1598 	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1599 	if (!cc) {
1600 		ti->error = "Cannot allocate encryption context";
1601 		return -ENOMEM;
1602 	}
1603 	cc->key_size = key_size;
1604 
1605 	ti->private = cc;
1606 	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1607 	if (ret < 0)
1608 		goto bad;
1609 
1610 	ret = -ENOMEM;
1611 	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
1612 	if (!cc->io_pool) {
1613 		ti->error = "Cannot allocate crypt io mempool";
1614 		goto bad;
1615 	}
1616 
1617 	cc->dmreq_start = sizeof(struct ablkcipher_request);
1618 	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
1619 	cc->dmreq_start = ALIGN(cc->dmreq_start, crypto_tfm_ctx_alignment());
1620 	cc->dmreq_start += crypto_ablkcipher_alignmask(any_tfm(cc)) &
1621 			   ~(crypto_tfm_ctx_alignment() - 1);
1622 
1623 	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1624 			sizeof(struct dm_crypt_request) + cc->iv_size);
1625 	if (!cc->req_pool) {
1626 		ti->error = "Cannot allocate crypt request mempool";
1627 		goto bad;
1628 	}
1629 
1630 	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
1631 	if (!cc->page_pool) {
1632 		ti->error = "Cannot allocate page mempool";
1633 		goto bad;
1634 	}
1635 
1636 	cc->bs = bioset_create(MIN_IOS, 0);
1637 	if (!cc->bs) {
1638 		ti->error = "Cannot allocate crypt bioset";
1639 		goto bad;
1640 	}
1641 
1642 	ret = -EINVAL;
1643 	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
1644 		ti->error = "Invalid iv_offset sector";
1645 		goto bad;
1646 	}
1647 	cc->iv_offset = tmpll;
1648 
1649 	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
1650 		ti->error = "Device lookup failed";
1651 		goto bad;
1652 	}
1653 
1654 	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1655 		ti->error = "Invalid device sector";
1656 		goto bad;
1657 	}
1658 	cc->start = tmpll;
1659 
1660 	argv += 5;
1661 	argc -= 5;
1662 
1663 	/* Optional parameters */
1664 	if (argc) {
1665 		as.argc = argc;
1666 		as.argv = argv;
1667 
1668 		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
1669 		if (ret)
1670 			goto bad;
1671 
1672 		opt_string = dm_shift_arg(&as);
1673 
1674 		if (opt_params == 1 && opt_string &&
1675 		    !strcasecmp(opt_string, "allow_discards"))
1676 			ti->num_discard_requests = 1;
1677 		else if (opt_params) {
1678 			ret = -EINVAL;
1679 			ti->error = "Invalid feature arguments";
1680 			goto bad;
1681 		}
1682 	}
1683 
1684 	ret = -ENOMEM;
1685 	cc->io_queue = alloc_workqueue("kcryptd_io",
1686 				       WQ_NON_REENTRANT|
1687 				       WQ_MEM_RECLAIM,
1688 				       1);
1689 	if (!cc->io_queue) {
1690 		ti->error = "Couldn't create kcryptd io queue";
1691 		goto bad;
1692 	}
1693 
1694 	cc->crypt_queue = alloc_workqueue("kcryptd",
1695 					  WQ_NON_REENTRANT|
1696 					  WQ_CPU_INTENSIVE|
1697 					  WQ_MEM_RECLAIM,
1698 					  1);
1699 	if (!cc->crypt_queue) {
1700 		ti->error = "Couldn't create kcryptd queue";
1701 		goto bad;
1702 	}
1703 
1704 	ti->num_flush_requests = 1;
1705 	ti->discard_zeroes_data_unsupported = 1;
1706 
1707 	return 0;
1708 
1709 bad:
1710 	crypt_dtr(ti);
1711 	return ret;
1712 }
1713 
crypt_map(struct dm_target * ti,struct bio * bio,union map_info * map_context)1714 static int crypt_map(struct dm_target *ti, struct bio *bio,
1715 		     union map_info *map_context)
1716 {
1717 	struct dm_crypt_io *io;
1718 	struct crypt_config *cc;
1719 
1720 	/*
1721 	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1722 	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1723 	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1724 	 */
1725 	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1726 		cc = ti->private;
1727 		bio->bi_bdev = cc->dev->bdev;
1728 		if (bio_sectors(bio))
1729 			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
1730 		return DM_MAPIO_REMAPPED;
1731 	}
1732 
1733 	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
1734 
1735 	if (bio_data_dir(io->base_bio) == READ) {
1736 		if (kcryptd_io_read(io, GFP_NOWAIT))
1737 			kcryptd_queue_io(io);
1738 	} else
1739 		kcryptd_queue_crypt(io);
1740 
1741 	return DM_MAPIO_SUBMITTED;
1742 }
1743 
crypt_status(struct dm_target * ti,status_type_t type,char * result,unsigned int maxlen)1744 static int crypt_status(struct dm_target *ti, status_type_t type,
1745 			char *result, unsigned int maxlen)
1746 {
1747 	struct crypt_config *cc = ti->private;
1748 	unsigned int sz = 0;
1749 
1750 	switch (type) {
1751 	case STATUSTYPE_INFO:
1752 		result[0] = '\0';
1753 		break;
1754 
1755 	case STATUSTYPE_TABLE:
1756 		DMEMIT("%s ", cc->cipher_string);
1757 
1758 		if (cc->key_size > 0) {
1759 			if ((maxlen - sz) < ((cc->key_size << 1) + 1))
1760 				return -ENOMEM;
1761 
1762 			crypt_encode_key(result + sz, cc->key, cc->key_size);
1763 			sz += cc->key_size << 1;
1764 		} else {
1765 			if (sz >= maxlen)
1766 				return -ENOMEM;
1767 			result[sz++] = '-';
1768 		}
1769 
1770 		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1771 				cc->dev->name, (unsigned long long)cc->start);
1772 
1773 		if (ti->num_discard_requests)
1774 			DMEMIT(" 1 allow_discards");
1775 
1776 		break;
1777 	}
1778 	return 0;
1779 }
1780 
crypt_postsuspend(struct dm_target * ti)1781 static void crypt_postsuspend(struct dm_target *ti)
1782 {
1783 	struct crypt_config *cc = ti->private;
1784 
1785 	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1786 }
1787 
crypt_preresume(struct dm_target * ti)1788 static int crypt_preresume(struct dm_target *ti)
1789 {
1790 	struct crypt_config *cc = ti->private;
1791 
1792 	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1793 		DMERR("aborting resume - crypt key is not set.");
1794 		return -EAGAIN;
1795 	}
1796 
1797 	return 0;
1798 }
1799 
crypt_resume(struct dm_target * ti)1800 static void crypt_resume(struct dm_target *ti)
1801 {
1802 	struct crypt_config *cc = ti->private;
1803 
1804 	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1805 }
1806 
1807 /* Message interface
1808  *	key set <key>
1809  *	key wipe
1810  */
crypt_message(struct dm_target * ti,unsigned argc,char ** argv)1811 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
1812 {
1813 	struct crypt_config *cc = ti->private;
1814 	int ret = -EINVAL;
1815 
1816 	if (argc < 2)
1817 		goto error;
1818 
1819 	if (!strcasecmp(argv[0], "key")) {
1820 		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
1821 			DMWARN("not suspended during key manipulation.");
1822 			return -EINVAL;
1823 		}
1824 		if (argc == 3 && !strcasecmp(argv[1], "set")) {
1825 			ret = crypt_set_key(cc, argv[2]);
1826 			if (ret)
1827 				return ret;
1828 			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
1829 				ret = cc->iv_gen_ops->init(cc);
1830 			return ret;
1831 		}
1832 		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
1833 			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
1834 				ret = cc->iv_gen_ops->wipe(cc);
1835 				if (ret)
1836 					return ret;
1837 			}
1838 			return crypt_wipe_key(cc);
1839 		}
1840 	}
1841 
1842 error:
1843 	DMWARN("unrecognised message received.");
1844 	return -EINVAL;
1845 }
1846 
crypt_merge(struct dm_target * ti,struct bvec_merge_data * bvm,struct bio_vec * biovec,int max_size)1847 static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
1848 		       struct bio_vec *biovec, int max_size)
1849 {
1850 	struct crypt_config *cc = ti->private;
1851 	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
1852 
1853 	if (!q->merge_bvec_fn)
1854 		return max_size;
1855 
1856 	bvm->bi_bdev = cc->dev->bdev;
1857 	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
1858 
1859 	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
1860 }
1861 
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)1862 static int crypt_iterate_devices(struct dm_target *ti,
1863 				 iterate_devices_callout_fn fn, void *data)
1864 {
1865 	struct crypt_config *cc = ti->private;
1866 
1867 	return fn(ti, cc->dev, cc->start, ti->len, data);
1868 }
1869 
1870 static struct target_type crypt_target = {
1871 	.name   = "crypt",
1872 	.version = {1, 11, 0},
1873 	.module = THIS_MODULE,
1874 	.ctr    = crypt_ctr,
1875 	.dtr    = crypt_dtr,
1876 	.map    = crypt_map,
1877 	.status = crypt_status,
1878 	.postsuspend = crypt_postsuspend,
1879 	.preresume = crypt_preresume,
1880 	.resume = crypt_resume,
1881 	.message = crypt_message,
1882 	.merge  = crypt_merge,
1883 	.iterate_devices = crypt_iterate_devices,
1884 };
1885 
dm_crypt_init(void)1886 static int __init dm_crypt_init(void)
1887 {
1888 	int r;
1889 
1890 	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
1891 	if (!_crypt_io_pool)
1892 		return -ENOMEM;
1893 
1894 	r = dm_register_target(&crypt_target);
1895 	if (r < 0) {
1896 		DMERR("register failed %d", r);
1897 		kmem_cache_destroy(_crypt_io_pool);
1898 	}
1899 
1900 	return r;
1901 }
1902 
dm_crypt_exit(void)1903 static void __exit dm_crypt_exit(void)
1904 {
1905 	dm_unregister_target(&crypt_target);
1906 	kmem_cache_destroy(_crypt_io_pool);
1907 }
1908 
1909 module_init(dm_crypt_init);
1910 module_exit(dm_crypt_exit);
1911 
1912 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
1913 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
1914 MODULE_LICENSE("GPL");
1915