1 /*
2 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
3 *
4 * Integrated Consumer Infrared Controller
5 *
6 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 */
23
24 #include <linux/slab.h>
25 #include <linux/kfifo.h>
26 #include <linux/module.h>
27 #include <media/cx25840.h>
28 #include <media/rc-core.h>
29
30 #include "cx25840-core.h"
31
32 static unsigned int ir_debug;
33 module_param(ir_debug, int, 0644);
34 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
35
36 #define CX25840_IR_REG_BASE 0x200
37
38 #define CX25840_IR_CNTRL_REG 0x200
39 #define CNTRL_WIN_3_3 0x00000000
40 #define CNTRL_WIN_4_3 0x00000001
41 #define CNTRL_WIN_3_4 0x00000002
42 #define CNTRL_WIN_4_4 0x00000003
43 #define CNTRL_WIN 0x00000003
44 #define CNTRL_EDG_NONE 0x00000000
45 #define CNTRL_EDG_FALL 0x00000004
46 #define CNTRL_EDG_RISE 0x00000008
47 #define CNTRL_EDG_BOTH 0x0000000C
48 #define CNTRL_EDG 0x0000000C
49 #define CNTRL_DMD 0x00000010
50 #define CNTRL_MOD 0x00000020
51 #define CNTRL_RFE 0x00000040
52 #define CNTRL_TFE 0x00000080
53 #define CNTRL_RXE 0x00000100
54 #define CNTRL_TXE 0x00000200
55 #define CNTRL_RIC 0x00000400
56 #define CNTRL_TIC 0x00000800
57 #define CNTRL_CPL 0x00001000
58 #define CNTRL_LBM 0x00002000
59 #define CNTRL_R 0x00004000
60
61 #define CX25840_IR_TXCLK_REG 0x204
62 #define TXCLK_TCD 0x0000FFFF
63
64 #define CX25840_IR_RXCLK_REG 0x208
65 #define RXCLK_RCD 0x0000FFFF
66
67 #define CX25840_IR_CDUTY_REG 0x20C
68 #define CDUTY_CDC 0x0000000F
69
70 #define CX25840_IR_STATS_REG 0x210
71 #define STATS_RTO 0x00000001
72 #define STATS_ROR 0x00000002
73 #define STATS_RBY 0x00000004
74 #define STATS_TBY 0x00000008
75 #define STATS_RSR 0x00000010
76 #define STATS_TSR 0x00000020
77
78 #define CX25840_IR_IRQEN_REG 0x214
79 #define IRQEN_RTE 0x00000001
80 #define IRQEN_ROE 0x00000002
81 #define IRQEN_RSE 0x00000010
82 #define IRQEN_TSE 0x00000020
83 #define IRQEN_MSK 0x00000033
84
85 #define CX25840_IR_FILTR_REG 0x218
86 #define FILTR_LPF 0x0000FFFF
87
88 #define CX25840_IR_FIFO_REG 0x23C
89 #define FIFO_RXTX 0x0000FFFF
90 #define FIFO_RXTX_LVL 0x00010000
91 #define FIFO_RXTX_RTO 0x0001FFFF
92 #define FIFO_RX_NDV 0x00020000
93 #define FIFO_RX_DEPTH 8
94 #define FIFO_TX_DEPTH 8
95
96 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
97 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
98
99 /*
100 * We use this union internally for convenience, but callers to tx_write
101 * and rx_read will be expecting records of type struct ir_raw_event.
102 * Always ensure the size of this union is dictated by struct ir_raw_event.
103 */
104 union cx25840_ir_fifo_rec {
105 u32 hw_fifo_data;
106 struct ir_raw_event ir_core_data;
107 };
108
109 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
110 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
111
112 struct cx25840_ir_state {
113 struct i2c_client *c;
114
115 struct v4l2_subdev_ir_parameters rx_params;
116 struct mutex rx_params_lock; /* protects Rx parameter settings cache */
117 atomic_t rxclk_divider;
118 atomic_t rx_invert;
119
120 struct kfifo rx_kfifo;
121 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
122
123 struct v4l2_subdev_ir_parameters tx_params;
124 struct mutex tx_params_lock; /* protects Tx parameter settings cache */
125 atomic_t txclk_divider;
126 };
127
to_ir_state(struct v4l2_subdev * sd)128 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
129 {
130 struct cx25840_state *state = to_state(sd);
131 return state ? state->ir_state : NULL;
132 }
133
134
135 /*
136 * Rx and Tx Clock Divider register computations
137 *
138 * Note the largest clock divider value of 0xffff corresponds to:
139 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
140 * which fits in 21 bits, so we'll use unsigned int for time arguments.
141 */
count_to_clock_divider(unsigned int d)142 static inline u16 count_to_clock_divider(unsigned int d)
143 {
144 if (d > RXCLK_RCD + 1)
145 d = RXCLK_RCD;
146 else if (d < 2)
147 d = 1;
148 else
149 d--;
150 return (u16) d;
151 }
152
ns_to_clock_divider(unsigned int ns)153 static inline u16 ns_to_clock_divider(unsigned int ns)
154 {
155 return count_to_clock_divider(
156 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
157 }
158
clock_divider_to_ns(unsigned int divider)159 static inline unsigned int clock_divider_to_ns(unsigned int divider)
160 {
161 /* Period of the Rx or Tx clock in ns */
162 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
163 CX25840_IR_REFCLK_FREQ / 1000000);
164 }
165
carrier_freq_to_clock_divider(unsigned int freq)166 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
167 {
168 return count_to_clock_divider(
169 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
170 }
171
clock_divider_to_carrier_freq(unsigned int divider)172 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
173 {
174 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
175 }
176
freq_to_clock_divider(unsigned int freq,unsigned int rollovers)177 static inline u16 freq_to_clock_divider(unsigned int freq,
178 unsigned int rollovers)
179 {
180 return count_to_clock_divider(
181 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
182 }
183
clock_divider_to_freq(unsigned int divider,unsigned int rollovers)184 static inline unsigned int clock_divider_to_freq(unsigned int divider,
185 unsigned int rollovers)
186 {
187 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
188 (divider + 1) * rollovers);
189 }
190
191 /*
192 * Low Pass Filter register calculations
193 *
194 * Note the largest count value of 0xffff corresponds to:
195 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
196 * which fits in 21 bits, so we'll use unsigned int for time arguments.
197 */
count_to_lpf_count(unsigned int d)198 static inline u16 count_to_lpf_count(unsigned int d)
199 {
200 if (d > FILTR_LPF)
201 d = FILTR_LPF;
202 else if (d < 4)
203 d = 0;
204 return (u16) d;
205 }
206
ns_to_lpf_count(unsigned int ns)207 static inline u16 ns_to_lpf_count(unsigned int ns)
208 {
209 return count_to_lpf_count(
210 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
211 }
212
lpf_count_to_ns(unsigned int count)213 static inline unsigned int lpf_count_to_ns(unsigned int count)
214 {
215 /* Duration of the Low Pass Filter rejection window in ns */
216 return DIV_ROUND_CLOSEST(count * 1000,
217 CX25840_IR_REFCLK_FREQ / 1000000);
218 }
219
lpf_count_to_us(unsigned int count)220 static inline unsigned int lpf_count_to_us(unsigned int count)
221 {
222 /* Duration of the Low Pass Filter rejection window in us */
223 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
224 }
225
226 /*
227 * FIFO register pulse width count compuations
228 */
clock_divider_to_resolution(u16 divider)229 static u32 clock_divider_to_resolution(u16 divider)
230 {
231 /*
232 * Resolution is the duration of 1 tick of the readable portion of
233 * of the pulse width counter as read from the FIFO. The two lsb's are
234 * not readable, hence the << 2. This function returns ns.
235 */
236 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
237 CX25840_IR_REFCLK_FREQ / 1000000);
238 }
239
pulse_width_count_to_ns(u16 count,u16 divider)240 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
241 {
242 u64 n;
243 u32 rem;
244
245 /*
246 * The 2 lsb's of the pulse width timer count are not readable, hence
247 * the (count << 2) | 0x3
248 */
249 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
250 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
251 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
252 n++;
253 return n;
254 }
255
256 #if 0
257 /* Keep as we will need this for Transmit functionality */
258 static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
259 {
260 u64 n;
261 u32 d;
262 u32 rem;
263
264 /*
265 * The 2 lsb's of the pulse width timer count are not accessible, hence
266 * the (1 << 2)
267 */
268 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
269 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
270 rem = do_div(n, d);
271 if (rem >= d / 2)
272 n++;
273
274 if (n > FIFO_RXTX)
275 n = FIFO_RXTX;
276 else if (n == 0)
277 n = 1;
278 return (u16) n;
279 }
280
281 #endif
pulse_width_count_to_us(u16 count,u16 divider)282 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
283 {
284 u64 n;
285 u32 rem;
286
287 /*
288 * The 2 lsb's of the pulse width timer count are not readable, hence
289 * the (count << 2) | 0x3
290 */
291 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
292 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
293 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
294 n++;
295 return (unsigned int) n;
296 }
297
298 /*
299 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
300 *
301 * The total pulse clock count is an 18 bit pulse width timer count as the most
302 * significant part and (up to) 16 bit clock divider count as a modulus.
303 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
304 * width timer count's least significant bit.
305 */
ns_to_pulse_clocks(u32 ns)306 static u64 ns_to_pulse_clocks(u32 ns)
307 {
308 u64 clocks;
309 u32 rem;
310 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
311 rem = do_div(clocks, 1000); /* /1000 = cycles */
312 if (rem >= 1000 / 2)
313 clocks++;
314 return clocks;
315 }
316
pulse_clocks_to_clock_divider(u64 count)317 static u16 pulse_clocks_to_clock_divider(u64 count)
318 {
319 u32 rem;
320
321 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
322
323 /* net result needs to be rounded down and decremented by 1 */
324 if (count > RXCLK_RCD + 1)
325 count = RXCLK_RCD;
326 else if (count < 2)
327 count = 1;
328 else
329 count--;
330 return (u16) count;
331 }
332
333 /*
334 * IR Control Register helpers
335 */
336 enum tx_fifo_watermark {
337 TX_FIFO_HALF_EMPTY = 0,
338 TX_FIFO_EMPTY = CNTRL_TIC,
339 };
340
341 enum rx_fifo_watermark {
342 RX_FIFO_HALF_FULL = 0,
343 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
344 };
345
control_tx_irq_watermark(struct i2c_client * c,enum tx_fifo_watermark level)346 static inline void control_tx_irq_watermark(struct i2c_client *c,
347 enum tx_fifo_watermark level)
348 {
349 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
350 }
351
control_rx_irq_watermark(struct i2c_client * c,enum rx_fifo_watermark level)352 static inline void control_rx_irq_watermark(struct i2c_client *c,
353 enum rx_fifo_watermark level)
354 {
355 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
356 }
357
control_tx_enable(struct i2c_client * c,bool enable)358 static inline void control_tx_enable(struct i2c_client *c, bool enable)
359 {
360 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
361 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
362 }
363
control_rx_enable(struct i2c_client * c,bool enable)364 static inline void control_rx_enable(struct i2c_client *c, bool enable)
365 {
366 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
367 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
368 }
369
control_tx_modulation_enable(struct i2c_client * c,bool enable)370 static inline void control_tx_modulation_enable(struct i2c_client *c,
371 bool enable)
372 {
373 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
374 enable ? CNTRL_MOD : 0);
375 }
376
control_rx_demodulation_enable(struct i2c_client * c,bool enable)377 static inline void control_rx_demodulation_enable(struct i2c_client *c,
378 bool enable)
379 {
380 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
381 enable ? CNTRL_DMD : 0);
382 }
383
control_rx_s_edge_detection(struct i2c_client * c,u32 edge_types)384 static inline void control_rx_s_edge_detection(struct i2c_client *c,
385 u32 edge_types)
386 {
387 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
388 edge_types & CNTRL_EDG_BOTH);
389 }
390
control_rx_s_carrier_window(struct i2c_client * c,unsigned int carrier,unsigned int * carrier_range_low,unsigned int * carrier_range_high)391 static void control_rx_s_carrier_window(struct i2c_client *c,
392 unsigned int carrier,
393 unsigned int *carrier_range_low,
394 unsigned int *carrier_range_high)
395 {
396 u32 v;
397 unsigned int c16 = carrier * 16;
398
399 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
400 v = CNTRL_WIN_3_4;
401 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
402 } else {
403 v = CNTRL_WIN_3_3;
404 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
405 }
406
407 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
408 v |= CNTRL_WIN_4_3;
409 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
410 } else {
411 v |= CNTRL_WIN_3_3;
412 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
413 }
414 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
415 }
416
control_tx_polarity_invert(struct i2c_client * c,bool invert)417 static inline void control_tx_polarity_invert(struct i2c_client *c,
418 bool invert)
419 {
420 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
421 invert ? CNTRL_CPL : 0);
422 }
423
424 /*
425 * IR Rx & Tx Clock Register helpers
426 */
txclk_tx_s_carrier(struct i2c_client * c,unsigned int freq,u16 * divider)427 static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
428 unsigned int freq,
429 u16 *divider)
430 {
431 *divider = carrier_freq_to_clock_divider(freq);
432 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
433 return clock_divider_to_carrier_freq(*divider);
434 }
435
rxclk_rx_s_carrier(struct i2c_client * c,unsigned int freq,u16 * divider)436 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
437 unsigned int freq,
438 u16 *divider)
439 {
440 *divider = carrier_freq_to_clock_divider(freq);
441 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
442 return clock_divider_to_carrier_freq(*divider);
443 }
444
txclk_tx_s_max_pulse_width(struct i2c_client * c,u32 ns,u16 * divider)445 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
446 u16 *divider)
447 {
448 u64 pulse_clocks;
449
450 if (ns > IR_MAX_DURATION)
451 ns = IR_MAX_DURATION;
452 pulse_clocks = ns_to_pulse_clocks(ns);
453 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
454 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
455 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
456 }
457
rxclk_rx_s_max_pulse_width(struct i2c_client * c,u32 ns,u16 * divider)458 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
459 u16 *divider)
460 {
461 u64 pulse_clocks;
462
463 if (ns > IR_MAX_DURATION)
464 ns = IR_MAX_DURATION;
465 pulse_clocks = ns_to_pulse_clocks(ns);
466 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
467 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
468 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
469 }
470
471 /*
472 * IR Tx Carrier Duty Cycle register helpers
473 */
cduty_tx_s_duty_cycle(struct i2c_client * c,unsigned int duty_cycle)474 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
475 unsigned int duty_cycle)
476 {
477 u32 n;
478 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
479 if (n != 0)
480 n--;
481 if (n > 15)
482 n = 15;
483 cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
484 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
485 }
486
487 /*
488 * IR Filter Register helpers
489 */
filter_rx_s_min_width(struct i2c_client * c,u32 min_width_ns)490 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
491 {
492 u32 count = ns_to_lpf_count(min_width_ns);
493 cx25840_write4(c, CX25840_IR_FILTR_REG, count);
494 return lpf_count_to_ns(count);
495 }
496
497 /*
498 * IR IRQ Enable Register helpers
499 */
irqenable_rx(struct v4l2_subdev * sd,u32 mask)500 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
501 {
502 struct cx25840_state *state = to_state(sd);
503
504 if (is_cx23885(state) || is_cx23887(state))
505 mask ^= IRQEN_MSK;
506 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
507 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
508 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
509 }
510
irqenable_tx(struct v4l2_subdev * sd,u32 mask)511 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
512 {
513 struct cx25840_state *state = to_state(sd);
514
515 if (is_cx23885(state) || is_cx23887(state))
516 mask ^= IRQEN_MSK;
517 mask &= IRQEN_TSE;
518 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
519 }
520
521 /*
522 * V4L2 Subdevice IR Ops
523 */
cx25840_ir_irq_handler(struct v4l2_subdev * sd,u32 status,bool * handled)524 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
525 {
526 struct cx25840_state *state = to_state(sd);
527 struct cx25840_ir_state *ir_state = to_ir_state(sd);
528 struct i2c_client *c = NULL;
529 unsigned long flags;
530
531 union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
532 unsigned int i, j, k;
533 u32 events, v;
534 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
535 u32 cntrl, irqen, stats;
536
537 *handled = false;
538 if (ir_state == NULL)
539 return -ENODEV;
540
541 c = ir_state->c;
542
543 /* Only support the IR controller for the CX2388[57] AV Core for now */
544 if (!(is_cx23885(state) || is_cx23887(state)))
545 return -ENODEV;
546
547 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
548 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
549 if (is_cx23885(state) || is_cx23887(state))
550 irqen ^= IRQEN_MSK;
551 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
552
553 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
554 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
555 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
556 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
557
558 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
559 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
560 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
561 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
562
563 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n",
564 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
565 rto ? "rto" : " ", ror ? "ror" : " ",
566 stats & STATS_TBY ? "tby" : " ",
567 stats & STATS_RBY ? "rby" : " ");
568
569 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
570 tse ? "tse" : " ", rse ? "rse" : " ",
571 rte ? "rte" : " ", roe ? "roe" : " ");
572
573 /*
574 * Transmitter interrupt service
575 */
576 if (tse && tsr) {
577 /*
578 * TODO:
579 * Check the watermark threshold setting
580 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
581 * Push the data to the hardware FIFO.
582 * If there was nothing more to send in the tx_kfifo, disable
583 * the TSR IRQ and notify the v4l2_device.
584 * If there was something in the tx_kfifo, check the tx_kfifo
585 * level and notify the v4l2_device, if it is low.
586 */
587 /* For now, inhibit TSR interrupt until Tx is implemented */
588 irqenable_tx(sd, 0);
589 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
590 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
591 *handled = true;
592 }
593
594 /*
595 * Receiver interrupt service
596 */
597 kror = 0;
598 if ((rse && rsr) || (rte && rto)) {
599 /*
600 * Receive data on RSR to clear the STATS_RSR.
601 * Receive data on RTO, since we may not have yet hit the RSR
602 * watermark when we receive the RTO.
603 */
604 for (i = 0, v = FIFO_RX_NDV;
605 (v & FIFO_RX_NDV) && !kror; i = 0) {
606 for (j = 0;
607 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
608 v = cx25840_read4(c, CX25840_IR_FIFO_REG);
609 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
610 i++;
611 }
612 if (i == 0)
613 break;
614 j = i * sizeof(union cx25840_ir_fifo_rec);
615 k = kfifo_in_locked(&ir_state->rx_kfifo,
616 (unsigned char *) rx_data, j,
617 &ir_state->rx_kfifo_lock);
618 if (k != j)
619 kror++; /* rx_kfifo over run */
620 }
621 *handled = true;
622 }
623
624 events = 0;
625 v = 0;
626 if (kror) {
627 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
628 v4l2_err(sd, "IR receiver software FIFO overrun\n");
629 }
630 if (roe && ror) {
631 /*
632 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
633 * the Rx FIFO Over Run status (STATS_ROR)
634 */
635 v |= CNTRL_RFE;
636 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
637 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
638 }
639 if (rte && rto) {
640 /*
641 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
642 * the Rx Pulse Width Timer Time Out (STATS_RTO)
643 */
644 v |= CNTRL_RXE;
645 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
646 }
647 if (v) {
648 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
649 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
650 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
651 *handled = true;
652 }
653 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
654 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
655 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
656 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
657
658 if (events)
659 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
660 return 0;
661 }
662
663 /* Receiver */
cx25840_ir_rx_read(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)664 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
665 ssize_t *num)
666 {
667 struct cx25840_ir_state *ir_state = to_ir_state(sd);
668 bool invert;
669 u16 divider;
670 unsigned int i, n;
671 union cx25840_ir_fifo_rec *p;
672 unsigned u, v, w;
673
674 if (ir_state == NULL)
675 return -ENODEV;
676
677 invert = (bool) atomic_read(&ir_state->rx_invert);
678 divider = (u16) atomic_read(&ir_state->rxclk_divider);
679
680 n = count / sizeof(union cx25840_ir_fifo_rec)
681 * sizeof(union cx25840_ir_fifo_rec);
682 if (n == 0) {
683 *num = 0;
684 return 0;
685 }
686
687 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
688 &ir_state->rx_kfifo_lock);
689
690 n /= sizeof(union cx25840_ir_fifo_rec);
691 *num = n * sizeof(union cx25840_ir_fifo_rec);
692
693 for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
694
695 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
696 /* Assume RTO was because of no IR light input */
697 u = 0;
698 w = 1;
699 } else {
700 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
701 if (invert)
702 u = u ? 0 : 1;
703 w = 0;
704 }
705
706 v = (unsigned) pulse_width_count_to_ns(
707 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
708 if (v > IR_MAX_DURATION)
709 v = IR_MAX_DURATION;
710
711 init_ir_raw_event(&p->ir_core_data);
712 p->ir_core_data.pulse = u;
713 p->ir_core_data.duration = v;
714 p->ir_core_data.timeout = w;
715
716 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s %s\n",
717 v, u ? "mark" : "space", w ? "(timed out)" : "");
718 if (w)
719 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
720 }
721 return 0;
722 }
723
cx25840_ir_rx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)724 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
725 struct v4l2_subdev_ir_parameters *p)
726 {
727 struct cx25840_ir_state *ir_state = to_ir_state(sd);
728
729 if (ir_state == NULL)
730 return -ENODEV;
731
732 mutex_lock(&ir_state->rx_params_lock);
733 memcpy(p, &ir_state->rx_params,
734 sizeof(struct v4l2_subdev_ir_parameters));
735 mutex_unlock(&ir_state->rx_params_lock);
736 return 0;
737 }
738
cx25840_ir_rx_shutdown(struct v4l2_subdev * sd)739 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
740 {
741 struct cx25840_ir_state *ir_state = to_ir_state(sd);
742 struct i2c_client *c;
743
744 if (ir_state == NULL)
745 return -ENODEV;
746
747 c = ir_state->c;
748 mutex_lock(&ir_state->rx_params_lock);
749
750 /* Disable or slow down all IR Rx circuits and counters */
751 irqenable_rx(sd, 0);
752 control_rx_enable(c, false);
753 control_rx_demodulation_enable(c, false);
754 control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
755 filter_rx_s_min_width(c, 0);
756 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
757
758 ir_state->rx_params.shutdown = true;
759
760 mutex_unlock(&ir_state->rx_params_lock);
761 return 0;
762 }
763
cx25840_ir_rx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)764 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
765 struct v4l2_subdev_ir_parameters *p)
766 {
767 struct cx25840_ir_state *ir_state = to_ir_state(sd);
768 struct i2c_client *c;
769 struct v4l2_subdev_ir_parameters *o;
770 u16 rxclk_divider;
771
772 if (ir_state == NULL)
773 return -ENODEV;
774
775 if (p->shutdown)
776 return cx25840_ir_rx_shutdown(sd);
777
778 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
779 return -ENOSYS;
780
781 c = ir_state->c;
782 o = &ir_state->rx_params;
783
784 mutex_lock(&ir_state->rx_params_lock);
785
786 o->shutdown = p->shutdown;
787
788 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
789 o->mode = p->mode;
790
791 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
792 o->bytes_per_data_element = p->bytes_per_data_element;
793
794 /* Before we tweak the hardware, we have to disable the receiver */
795 irqenable_rx(sd, 0);
796 control_rx_enable(c, false);
797
798 control_rx_demodulation_enable(c, p->modulation);
799 o->modulation = p->modulation;
800
801 if (p->modulation) {
802 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
803 &rxclk_divider);
804
805 o->carrier_freq = p->carrier_freq;
806
807 p->duty_cycle = 50;
808 o->duty_cycle = p->duty_cycle;
809
810 control_rx_s_carrier_window(c, p->carrier_freq,
811 &p->carrier_range_lower,
812 &p->carrier_range_upper);
813 o->carrier_range_lower = p->carrier_range_lower;
814 o->carrier_range_upper = p->carrier_range_upper;
815
816 p->max_pulse_width =
817 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
818 } else {
819 p->max_pulse_width =
820 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
821 &rxclk_divider);
822 }
823 o->max_pulse_width = p->max_pulse_width;
824 atomic_set(&ir_state->rxclk_divider, rxclk_divider);
825
826 p->noise_filter_min_width =
827 filter_rx_s_min_width(c, p->noise_filter_min_width);
828 o->noise_filter_min_width = p->noise_filter_min_width;
829
830 p->resolution = clock_divider_to_resolution(rxclk_divider);
831 o->resolution = p->resolution;
832
833 /* FIXME - make this dependent on resolution for better performance */
834 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
835
836 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
837
838 o->invert_level = p->invert_level;
839 atomic_set(&ir_state->rx_invert, p->invert_level);
840
841 o->interrupt_enable = p->interrupt_enable;
842 o->enable = p->enable;
843 if (p->enable) {
844 unsigned long flags;
845
846 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
847 kfifo_reset(&ir_state->rx_kfifo);
848 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
849 if (p->interrupt_enable)
850 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
851 control_rx_enable(c, p->enable);
852 }
853
854 mutex_unlock(&ir_state->rx_params_lock);
855 return 0;
856 }
857
858 /* Transmitter */
cx25840_ir_tx_write(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)859 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
860 ssize_t *num)
861 {
862 struct cx25840_ir_state *ir_state = to_ir_state(sd);
863 struct i2c_client *c;
864
865 if (ir_state == NULL)
866 return -ENODEV;
867
868 c = ir_state->c;
869 #if 0
870 /*
871 * FIXME - the code below is an incomplete and untested sketch of what
872 * may need to be done. The critical part is to get 4 (or 8) pulses
873 * from the tx_kfifo, or converted from ns to the proper units from the
874 * input, and push them off to the hardware Tx FIFO right away, if the
875 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
876 * a less critical timeframe. Also watch out for overruning the
877 * tx_kfifo - don't let it happen and let the caller know not all his
878 * pulses were written.
879 */
880 u32 *ns_pulse = (u32 *) buf;
881 unsigned int n;
882 u32 fifo_pulse[FIFO_TX_DEPTH];
883 u32 mark;
884
885 /* Compute how much we can fit in the tx kfifo */
886 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
887 n = min(n, (unsigned int) count);
888 n /= sizeof(u32);
889
890 /* FIXME - turn on Tx Fifo service interrupt
891 * check hardware fifo level, and other stuff
892 */
893 for (i = 0; i < n; ) {
894 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
895 mark = ns_pulse[i] & LEVEL_MASK;
896 fifo_pulse[j] = ns_to_pulse_width_count(
897 ns_pulse[i] &
898 ~LEVEL_MASK,
899 ir_state->txclk_divider);
900 if (mark)
901 fifo_pulse[j] &= FIFO_RXTX_LVL;
902 i++;
903 }
904 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
905 j * sizeof(u32));
906 }
907 *num = n * sizeof(u32);
908 #else
909 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
910 irqenable_tx(sd, IRQEN_TSE);
911 *num = count;
912 #endif
913 return 0;
914 }
915
cx25840_ir_tx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)916 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
917 struct v4l2_subdev_ir_parameters *p)
918 {
919 struct cx25840_ir_state *ir_state = to_ir_state(sd);
920
921 if (ir_state == NULL)
922 return -ENODEV;
923
924 mutex_lock(&ir_state->tx_params_lock);
925 memcpy(p, &ir_state->tx_params,
926 sizeof(struct v4l2_subdev_ir_parameters));
927 mutex_unlock(&ir_state->tx_params_lock);
928 return 0;
929 }
930
cx25840_ir_tx_shutdown(struct v4l2_subdev * sd)931 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
932 {
933 struct cx25840_ir_state *ir_state = to_ir_state(sd);
934 struct i2c_client *c;
935
936 if (ir_state == NULL)
937 return -ENODEV;
938
939 c = ir_state->c;
940 mutex_lock(&ir_state->tx_params_lock);
941
942 /* Disable or slow down all IR Tx circuits and counters */
943 irqenable_tx(sd, 0);
944 control_tx_enable(c, false);
945 control_tx_modulation_enable(c, false);
946 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
947
948 ir_state->tx_params.shutdown = true;
949
950 mutex_unlock(&ir_state->tx_params_lock);
951 return 0;
952 }
953
cx25840_ir_tx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)954 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
955 struct v4l2_subdev_ir_parameters *p)
956 {
957 struct cx25840_ir_state *ir_state = to_ir_state(sd);
958 struct i2c_client *c;
959 struct v4l2_subdev_ir_parameters *o;
960 u16 txclk_divider;
961
962 if (ir_state == NULL)
963 return -ENODEV;
964
965 if (p->shutdown)
966 return cx25840_ir_tx_shutdown(sd);
967
968 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
969 return -ENOSYS;
970
971 c = ir_state->c;
972 o = &ir_state->tx_params;
973 mutex_lock(&ir_state->tx_params_lock);
974
975 o->shutdown = p->shutdown;
976
977 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
978 o->mode = p->mode;
979
980 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
981 o->bytes_per_data_element = p->bytes_per_data_element;
982
983 /* Before we tweak the hardware, we have to disable the transmitter */
984 irqenable_tx(sd, 0);
985 control_tx_enable(c, false);
986
987 control_tx_modulation_enable(c, p->modulation);
988 o->modulation = p->modulation;
989
990 if (p->modulation) {
991 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
992 &txclk_divider);
993 o->carrier_freq = p->carrier_freq;
994
995 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
996 o->duty_cycle = p->duty_cycle;
997
998 p->max_pulse_width =
999 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
1000 } else {
1001 p->max_pulse_width =
1002 txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
1003 &txclk_divider);
1004 }
1005 o->max_pulse_width = p->max_pulse_width;
1006 atomic_set(&ir_state->txclk_divider, txclk_divider);
1007
1008 p->resolution = clock_divider_to_resolution(txclk_divider);
1009 o->resolution = p->resolution;
1010
1011 /* FIXME - make this dependent on resolution for better performance */
1012 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
1013
1014 control_tx_polarity_invert(c, p->invert_carrier_sense);
1015 o->invert_carrier_sense = p->invert_carrier_sense;
1016
1017 /*
1018 * FIXME: we don't have hardware help for IO pin level inversion
1019 * here like we have on the CX23888.
1020 * Act on this with some mix of logical inversion of data levels,
1021 * carrier polarity, and carrier duty cycle.
1022 */
1023 o->invert_level = p->invert_level;
1024
1025 o->interrupt_enable = p->interrupt_enable;
1026 o->enable = p->enable;
1027 if (p->enable) {
1028 /* reset tx_fifo here */
1029 if (p->interrupt_enable)
1030 irqenable_tx(sd, IRQEN_TSE);
1031 control_tx_enable(c, p->enable);
1032 }
1033
1034 mutex_unlock(&ir_state->tx_params_lock);
1035 return 0;
1036 }
1037
1038
1039 /*
1040 * V4L2 Subdevice Core Ops support
1041 */
cx25840_ir_log_status(struct v4l2_subdev * sd)1042 int cx25840_ir_log_status(struct v4l2_subdev *sd)
1043 {
1044 struct cx25840_state *state = to_state(sd);
1045 struct i2c_client *c = state->c;
1046 char *s;
1047 int i, j;
1048 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1049
1050 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1051 if (is_cx23888(state))
1052 return 0;
1053
1054 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1055 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1056 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1057 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1058 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1059 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1060 if (is_cx23885(state) || is_cx23887(state))
1061 irqen ^= IRQEN_MSK;
1062 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1063
1064 v4l2_info(sd, "IR Receiver:\n");
1065 v4l2_info(sd, "\tEnabled: %s\n",
1066 cntrl & CNTRL_RXE ? "yes" : "no");
1067 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
1068 cntrl & CNTRL_DMD ? "enabled" : "disabled");
1069 v4l2_info(sd, "\tFIFO: %s\n",
1070 cntrl & CNTRL_RFE ? "enabled" : "disabled");
1071 switch (cntrl & CNTRL_EDG) {
1072 case CNTRL_EDG_NONE:
1073 s = "disabled";
1074 break;
1075 case CNTRL_EDG_FALL:
1076 s = "falling edge";
1077 break;
1078 case CNTRL_EDG_RISE:
1079 s = "rising edge";
1080 break;
1081 case CNTRL_EDG_BOTH:
1082 s = "rising & falling edges";
1083 break;
1084 default:
1085 s = "??? edge";
1086 break;
1087 }
1088 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
1089 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1090 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1091 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1092 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1093 v4l2_info(sd, "\tLoopback mode: %s\n",
1094 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1095 if (cntrl & CNTRL_DMD) {
1096 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1097 clock_divider_to_carrier_freq(rxclk));
1098 switch (cntrl & CNTRL_WIN) {
1099 case CNTRL_WIN_3_3:
1100 i = 3;
1101 j = 3;
1102 break;
1103 case CNTRL_WIN_4_3:
1104 i = 4;
1105 j = 3;
1106 break;
1107 case CNTRL_WIN_3_4:
1108 i = 3;
1109 j = 4;
1110 break;
1111 case CNTRL_WIN_4_4:
1112 i = 4;
1113 j = 4;
1114 break;
1115 default:
1116 i = 0;
1117 j = 0;
1118 break;
1119 }
1120 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1121 "-%1d/+%1d, %u to %u Hz\n", i, j,
1122 clock_divider_to_freq(rxclk, 16 + j),
1123 clock_divider_to_freq(rxclk, 16 - i));
1124 }
1125 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1126 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1127 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1128 v4l2_info(sd, "\tLow pass filter: %s\n",
1129 filtr ? "enabled" : "disabled");
1130 if (filtr)
1131 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1132 "%u ns\n",
1133 lpf_count_to_us(filtr),
1134 lpf_count_to_ns(filtr));
1135 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1136 stats & STATS_RTO ? "yes" : "no");
1137 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1138 irqen & IRQEN_RTE ? "enabled" : "disabled");
1139 v4l2_info(sd, "\tFIFO overrun: %s\n",
1140 stats & STATS_ROR ? "yes" : "no");
1141 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1142 irqen & IRQEN_ROE ? "enabled" : "disabled");
1143 v4l2_info(sd, "\tBusy: %s\n",
1144 stats & STATS_RBY ? "yes" : "no");
1145 v4l2_info(sd, "\tFIFO service requested: %s\n",
1146 stats & STATS_RSR ? "yes" : "no");
1147 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1148 irqen & IRQEN_RSE ? "enabled" : "disabled");
1149
1150 v4l2_info(sd, "IR Transmitter:\n");
1151 v4l2_info(sd, "\tEnabled: %s\n",
1152 cntrl & CNTRL_TXE ? "yes" : "no");
1153 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1154 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1155 v4l2_info(sd, "\tFIFO: %s\n",
1156 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1157 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1158 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1159 v4l2_info(sd, "\tCarrier polarity: %s\n",
1160 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1161 : "space:noburst mark:burst");
1162 if (cntrl & CNTRL_MOD) {
1163 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1164 clock_divider_to_carrier_freq(txclk));
1165 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1166 cduty + 1);
1167 }
1168 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1169 pulse_width_count_to_us(FIFO_RXTX, txclk),
1170 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1171 v4l2_info(sd, "\tBusy: %s\n",
1172 stats & STATS_TBY ? "yes" : "no");
1173 v4l2_info(sd, "\tFIFO service requested: %s\n",
1174 stats & STATS_TSR ? "yes" : "no");
1175 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1176 irqen & IRQEN_TSE ? "enabled" : "disabled");
1177
1178 return 0;
1179 }
1180
1181
1182 const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1183 .rx_read = cx25840_ir_rx_read,
1184 .rx_g_parameters = cx25840_ir_rx_g_parameters,
1185 .rx_s_parameters = cx25840_ir_rx_s_parameters,
1186
1187 .tx_write = cx25840_ir_tx_write,
1188 .tx_g_parameters = cx25840_ir_tx_g_parameters,
1189 .tx_s_parameters = cx25840_ir_tx_s_parameters,
1190 };
1191
1192
1193 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1194 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1195 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1196
1197 .enable = false,
1198 .interrupt_enable = false,
1199 .shutdown = true,
1200
1201 .modulation = true,
1202 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1203
1204 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1205 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1206 .noise_filter_min_width = 333333, /* ns */
1207 .carrier_range_lower = 35000,
1208 .carrier_range_upper = 37000,
1209 .invert_level = false,
1210 };
1211
1212 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1213 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1214 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1215
1216 .enable = false,
1217 .interrupt_enable = false,
1218 .shutdown = true,
1219
1220 .modulation = true,
1221 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1222 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1223 .invert_level = false,
1224 .invert_carrier_sense = false,
1225 };
1226
cx25840_ir_probe(struct v4l2_subdev * sd)1227 int cx25840_ir_probe(struct v4l2_subdev *sd)
1228 {
1229 struct cx25840_state *state = to_state(sd);
1230 struct cx25840_ir_state *ir_state;
1231 struct v4l2_subdev_ir_parameters default_params;
1232
1233 /* Only init the IR controller for the CX2388[57] AV Core for now */
1234 if (!(is_cx23885(state) || is_cx23887(state)))
1235 return 0;
1236
1237 ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
1238 if (ir_state == NULL)
1239 return -ENOMEM;
1240
1241 spin_lock_init(&ir_state->rx_kfifo_lock);
1242 if (kfifo_alloc(&ir_state->rx_kfifo,
1243 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
1244 kfree(ir_state);
1245 return -ENOMEM;
1246 }
1247
1248 ir_state->c = state->c;
1249 state->ir_state = ir_state;
1250
1251 /* Ensure no interrupts arrive yet */
1252 if (is_cx23885(state) || is_cx23887(state))
1253 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1254 else
1255 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1256
1257 mutex_init(&ir_state->rx_params_lock);
1258 memcpy(&default_params, &default_rx_params,
1259 sizeof(struct v4l2_subdev_ir_parameters));
1260 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1261
1262 mutex_init(&ir_state->tx_params_lock);
1263 memcpy(&default_params, &default_tx_params,
1264 sizeof(struct v4l2_subdev_ir_parameters));
1265 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1266
1267 return 0;
1268 }
1269
cx25840_ir_remove(struct v4l2_subdev * sd)1270 int cx25840_ir_remove(struct v4l2_subdev *sd)
1271 {
1272 struct cx25840_state *state = to_state(sd);
1273 struct cx25840_ir_state *ir_state = to_ir_state(sd);
1274
1275 if (ir_state == NULL)
1276 return -ENODEV;
1277
1278 cx25840_ir_rx_shutdown(sd);
1279 cx25840_ir_tx_shutdown(sd);
1280
1281 kfifo_free(&ir_state->rx_kfifo);
1282 kfree(ir_state);
1283 state->ir_state = NULL;
1284 return 0;
1285 }
1286