• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
3  *
4  *  Integrated Consumer Infrared Controller
5  *
6  *  Copyright (C) 2010  Andy Walls <awalls@md.metrocast.net>
7  *
8  *  This program is free software; you can redistribute it and/or
9  *  modify it under the terms of the GNU General Public License
10  *  as published by the Free Software Foundation; either version 2
11  *  of the License, or (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21  *  02110-1301, USA.
22  */
23 
24 #include <linux/slab.h>
25 #include <linux/kfifo.h>
26 #include <linux/module.h>
27 #include <media/cx25840.h>
28 #include <media/rc-core.h>
29 
30 #include "cx25840-core.h"
31 
32 static unsigned int ir_debug;
33 module_param(ir_debug, int, 0644);
34 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
35 
36 #define CX25840_IR_REG_BASE 	0x200
37 
38 #define CX25840_IR_CNTRL_REG	0x200
39 #define CNTRL_WIN_3_3	0x00000000
40 #define CNTRL_WIN_4_3	0x00000001
41 #define CNTRL_WIN_3_4	0x00000002
42 #define CNTRL_WIN_4_4	0x00000003
43 #define CNTRL_WIN	0x00000003
44 #define CNTRL_EDG_NONE	0x00000000
45 #define CNTRL_EDG_FALL	0x00000004
46 #define CNTRL_EDG_RISE	0x00000008
47 #define CNTRL_EDG_BOTH	0x0000000C
48 #define CNTRL_EDG	0x0000000C
49 #define CNTRL_DMD	0x00000010
50 #define CNTRL_MOD	0x00000020
51 #define CNTRL_RFE	0x00000040
52 #define CNTRL_TFE	0x00000080
53 #define CNTRL_RXE	0x00000100
54 #define CNTRL_TXE	0x00000200
55 #define CNTRL_RIC	0x00000400
56 #define CNTRL_TIC	0x00000800
57 #define CNTRL_CPL	0x00001000
58 #define CNTRL_LBM	0x00002000
59 #define CNTRL_R		0x00004000
60 
61 #define CX25840_IR_TXCLK_REG	0x204
62 #define TXCLK_TCD	0x0000FFFF
63 
64 #define CX25840_IR_RXCLK_REG	0x208
65 #define RXCLK_RCD	0x0000FFFF
66 
67 #define CX25840_IR_CDUTY_REG	0x20C
68 #define CDUTY_CDC	0x0000000F
69 
70 #define CX25840_IR_STATS_REG	0x210
71 #define STATS_RTO	0x00000001
72 #define STATS_ROR	0x00000002
73 #define STATS_RBY	0x00000004
74 #define STATS_TBY	0x00000008
75 #define STATS_RSR	0x00000010
76 #define STATS_TSR	0x00000020
77 
78 #define CX25840_IR_IRQEN_REG	0x214
79 #define IRQEN_RTE	0x00000001
80 #define IRQEN_ROE	0x00000002
81 #define IRQEN_RSE	0x00000010
82 #define IRQEN_TSE	0x00000020
83 #define IRQEN_MSK	0x00000033
84 
85 #define CX25840_IR_FILTR_REG	0x218
86 #define FILTR_LPF	0x0000FFFF
87 
88 #define CX25840_IR_FIFO_REG	0x23C
89 #define FIFO_RXTX	0x0000FFFF
90 #define FIFO_RXTX_LVL	0x00010000
91 #define FIFO_RXTX_RTO	0x0001FFFF
92 #define FIFO_RX_NDV	0x00020000
93 #define FIFO_RX_DEPTH	8
94 #define FIFO_TX_DEPTH	8
95 
96 #define CX25840_VIDCLK_FREQ	108000000 /* 108 MHz, BT.656 */
97 #define CX25840_IR_REFCLK_FREQ	(CX25840_VIDCLK_FREQ / 2)
98 
99 /*
100  * We use this union internally for convenience, but callers to tx_write
101  * and rx_read will be expecting records of type struct ir_raw_event.
102  * Always ensure the size of this union is dictated by struct ir_raw_event.
103  */
104 union cx25840_ir_fifo_rec {
105 	u32 hw_fifo_data;
106 	struct ir_raw_event ir_core_data;
107 };
108 
109 #define CX25840_IR_RX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
110 #define CX25840_IR_TX_KFIFO_SIZE    (256 * sizeof(union cx25840_ir_fifo_rec))
111 
112 struct cx25840_ir_state {
113 	struct i2c_client *c;
114 
115 	struct v4l2_subdev_ir_parameters rx_params;
116 	struct mutex rx_params_lock; /* protects Rx parameter settings cache */
117 	atomic_t rxclk_divider;
118 	atomic_t rx_invert;
119 
120 	struct kfifo rx_kfifo;
121 	spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
122 
123 	struct v4l2_subdev_ir_parameters tx_params;
124 	struct mutex tx_params_lock; /* protects Tx parameter settings cache */
125 	atomic_t txclk_divider;
126 };
127 
to_ir_state(struct v4l2_subdev * sd)128 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
129 {
130 	struct cx25840_state *state = to_state(sd);
131 	return state ? state->ir_state : NULL;
132 }
133 
134 
135 /*
136  * Rx and Tx Clock Divider register computations
137  *
138  * Note the largest clock divider value of 0xffff corresponds to:
139  * 	(0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
140  * which fits in 21 bits, so we'll use unsigned int for time arguments.
141  */
count_to_clock_divider(unsigned int d)142 static inline u16 count_to_clock_divider(unsigned int d)
143 {
144 	if (d > RXCLK_RCD + 1)
145 		d = RXCLK_RCD;
146 	else if (d < 2)
147 		d = 1;
148 	else
149 		d--;
150 	return (u16) d;
151 }
152 
ns_to_clock_divider(unsigned int ns)153 static inline u16 ns_to_clock_divider(unsigned int ns)
154 {
155 	return count_to_clock_divider(
156 		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
157 }
158 
clock_divider_to_ns(unsigned int divider)159 static inline unsigned int clock_divider_to_ns(unsigned int divider)
160 {
161 	/* Period of the Rx or Tx clock in ns */
162 	return DIV_ROUND_CLOSEST((divider + 1) * 1000,
163 				 CX25840_IR_REFCLK_FREQ / 1000000);
164 }
165 
carrier_freq_to_clock_divider(unsigned int freq)166 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
167 {
168 	return count_to_clock_divider(
169 			  DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
170 }
171 
clock_divider_to_carrier_freq(unsigned int divider)172 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
173 {
174 	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
175 }
176 
freq_to_clock_divider(unsigned int freq,unsigned int rollovers)177 static inline u16 freq_to_clock_divider(unsigned int freq,
178 					unsigned int rollovers)
179 {
180 	return count_to_clock_divider(
181 		   DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
182 }
183 
clock_divider_to_freq(unsigned int divider,unsigned int rollovers)184 static inline unsigned int clock_divider_to_freq(unsigned int divider,
185 						 unsigned int rollovers)
186 {
187 	return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
188 				 (divider + 1) * rollovers);
189 }
190 
191 /*
192  * Low Pass Filter register calculations
193  *
194  * Note the largest count value of 0xffff corresponds to:
195  * 	0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
196  * which fits in 21 bits, so we'll use unsigned int for time arguments.
197  */
count_to_lpf_count(unsigned int d)198 static inline u16 count_to_lpf_count(unsigned int d)
199 {
200 	if (d > FILTR_LPF)
201 		d = FILTR_LPF;
202 	else if (d < 4)
203 		d = 0;
204 	return (u16) d;
205 }
206 
ns_to_lpf_count(unsigned int ns)207 static inline u16 ns_to_lpf_count(unsigned int ns)
208 {
209 	return count_to_lpf_count(
210 		DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
211 }
212 
lpf_count_to_ns(unsigned int count)213 static inline unsigned int lpf_count_to_ns(unsigned int count)
214 {
215 	/* Duration of the Low Pass Filter rejection window in ns */
216 	return DIV_ROUND_CLOSEST(count * 1000,
217 				 CX25840_IR_REFCLK_FREQ / 1000000);
218 }
219 
lpf_count_to_us(unsigned int count)220 static inline unsigned int lpf_count_to_us(unsigned int count)
221 {
222 	/* Duration of the Low Pass Filter rejection window in us */
223 	return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
224 }
225 
226 /*
227  * FIFO register pulse width count compuations
228  */
clock_divider_to_resolution(u16 divider)229 static u32 clock_divider_to_resolution(u16 divider)
230 {
231 	/*
232 	 * Resolution is the duration of 1 tick of the readable portion of
233 	 * of the pulse width counter as read from the FIFO.  The two lsb's are
234 	 * not readable, hence the << 2.  This function returns ns.
235 	 */
236 	return DIV_ROUND_CLOSEST((1 << 2)  * ((u32) divider + 1) * 1000,
237 				 CX25840_IR_REFCLK_FREQ / 1000000);
238 }
239 
pulse_width_count_to_ns(u16 count,u16 divider)240 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
241 {
242 	u64 n;
243 	u32 rem;
244 
245 	/*
246 	 * The 2 lsb's of the pulse width timer count are not readable, hence
247 	 * the (count << 2) | 0x3
248 	 */
249 	n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
250 	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000);     /* / MHz => ns */
251 	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
252 		n++;
253 	return n;
254 }
255 
256 #if 0
257 /* Keep as we will need this for Transmit functionality */
258 static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
259 {
260 	u64 n;
261 	u32 d;
262 	u32 rem;
263 
264 	/*
265 	 * The 2 lsb's of the pulse width timer count are not accessible, hence
266 	 * the (1 << 2)
267 	 */
268 	n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
269 	d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
270 	rem = do_div(n, d);
271 	if (rem >= d / 2)
272 		n++;
273 
274 	if (n > FIFO_RXTX)
275 		n = FIFO_RXTX;
276 	else if (n == 0)
277 		n = 1;
278 	return (u16) n;
279 }
280 
281 #endif
pulse_width_count_to_us(u16 count,u16 divider)282 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
283 {
284 	u64 n;
285 	u32 rem;
286 
287 	/*
288 	 * The 2 lsb's of the pulse width timer count are not readable, hence
289 	 * the (count << 2) | 0x3
290 	 */
291 	n = (((u64) count << 2) | 0x3) * (divider + 1);    /* cycles      */
292 	rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
293 	if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
294 		n++;
295 	return (unsigned int) n;
296 }
297 
298 /*
299  * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
300  *
301  * The total pulse clock count is an 18 bit pulse width timer count as the most
302  * significant part and (up to) 16 bit clock divider count as a modulus.
303  * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
304  * width timer count's least significant bit.
305  */
ns_to_pulse_clocks(u32 ns)306 static u64 ns_to_pulse_clocks(u32 ns)
307 {
308 	u64 clocks;
309 	u32 rem;
310 	clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles  */
311 	rem = do_div(clocks, 1000);                         /* /1000 = cycles */
312 	if (rem >= 1000 / 2)
313 		clocks++;
314 	return clocks;
315 }
316 
pulse_clocks_to_clock_divider(u64 count)317 static u16 pulse_clocks_to_clock_divider(u64 count)
318 {
319 	u32 rem;
320 
321 	rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
322 
323 	/* net result needs to be rounded down and decremented by 1 */
324 	if (count > RXCLK_RCD + 1)
325 		count = RXCLK_RCD;
326 	else if (count < 2)
327 		count = 1;
328 	else
329 		count--;
330 	return (u16) count;
331 }
332 
333 /*
334  * IR Control Register helpers
335  */
336 enum tx_fifo_watermark {
337 	TX_FIFO_HALF_EMPTY = 0,
338 	TX_FIFO_EMPTY      = CNTRL_TIC,
339 };
340 
341 enum rx_fifo_watermark {
342 	RX_FIFO_HALF_FULL = 0,
343 	RX_FIFO_NOT_EMPTY = CNTRL_RIC,
344 };
345 
control_tx_irq_watermark(struct i2c_client * c,enum tx_fifo_watermark level)346 static inline void control_tx_irq_watermark(struct i2c_client *c,
347 					    enum tx_fifo_watermark level)
348 {
349 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
350 }
351 
control_rx_irq_watermark(struct i2c_client * c,enum rx_fifo_watermark level)352 static inline void control_rx_irq_watermark(struct i2c_client *c,
353 					    enum rx_fifo_watermark level)
354 {
355 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
356 }
357 
control_tx_enable(struct i2c_client * c,bool enable)358 static inline void control_tx_enable(struct i2c_client *c, bool enable)
359 {
360 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
361 			enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
362 }
363 
control_rx_enable(struct i2c_client * c,bool enable)364 static inline void control_rx_enable(struct i2c_client *c, bool enable)
365 {
366 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
367 			enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
368 }
369 
control_tx_modulation_enable(struct i2c_client * c,bool enable)370 static inline void control_tx_modulation_enable(struct i2c_client *c,
371 						bool enable)
372 {
373 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
374 			enable ? CNTRL_MOD : 0);
375 }
376 
control_rx_demodulation_enable(struct i2c_client * c,bool enable)377 static inline void control_rx_demodulation_enable(struct i2c_client *c,
378 						  bool enable)
379 {
380 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
381 			enable ? CNTRL_DMD : 0);
382 }
383 
control_rx_s_edge_detection(struct i2c_client * c,u32 edge_types)384 static inline void control_rx_s_edge_detection(struct i2c_client *c,
385 					       u32 edge_types)
386 {
387 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
388 			edge_types & CNTRL_EDG_BOTH);
389 }
390 
control_rx_s_carrier_window(struct i2c_client * c,unsigned int carrier,unsigned int * carrier_range_low,unsigned int * carrier_range_high)391 static void control_rx_s_carrier_window(struct i2c_client *c,
392 					unsigned int carrier,
393 					unsigned int *carrier_range_low,
394 					unsigned int *carrier_range_high)
395 {
396 	u32 v;
397 	unsigned int c16 = carrier * 16;
398 
399 	if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
400 		v = CNTRL_WIN_3_4;
401 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
402 	} else {
403 		v = CNTRL_WIN_3_3;
404 		*carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
405 	}
406 
407 	if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
408 		v |= CNTRL_WIN_4_3;
409 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
410 	} else {
411 		v |= CNTRL_WIN_3_3;
412 		*carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
413 	}
414 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
415 }
416 
control_tx_polarity_invert(struct i2c_client * c,bool invert)417 static inline void control_tx_polarity_invert(struct i2c_client *c,
418 					      bool invert)
419 {
420 	cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
421 			invert ? CNTRL_CPL : 0);
422 }
423 
424 /*
425  * IR Rx & Tx Clock Register helpers
426  */
txclk_tx_s_carrier(struct i2c_client * c,unsigned int freq,u16 * divider)427 static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
428 				       unsigned int freq,
429 				       u16 *divider)
430 {
431 	*divider = carrier_freq_to_clock_divider(freq);
432 	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
433 	return clock_divider_to_carrier_freq(*divider);
434 }
435 
rxclk_rx_s_carrier(struct i2c_client * c,unsigned int freq,u16 * divider)436 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
437 				       unsigned int freq,
438 				       u16 *divider)
439 {
440 	*divider = carrier_freq_to_clock_divider(freq);
441 	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
442 	return clock_divider_to_carrier_freq(*divider);
443 }
444 
txclk_tx_s_max_pulse_width(struct i2c_client * c,u32 ns,u16 * divider)445 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
446 				      u16 *divider)
447 {
448 	u64 pulse_clocks;
449 
450 	if (ns > IR_MAX_DURATION)
451 		ns = IR_MAX_DURATION;
452 	pulse_clocks = ns_to_pulse_clocks(ns);
453 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
454 	cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
455 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
456 }
457 
rxclk_rx_s_max_pulse_width(struct i2c_client * c,u32 ns,u16 * divider)458 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
459 				      u16 *divider)
460 {
461 	u64 pulse_clocks;
462 
463 	if (ns > IR_MAX_DURATION)
464 		ns = IR_MAX_DURATION;
465 	pulse_clocks = ns_to_pulse_clocks(ns);
466 	*divider = pulse_clocks_to_clock_divider(pulse_clocks);
467 	cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
468 	return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
469 }
470 
471 /*
472  * IR Tx Carrier Duty Cycle register helpers
473  */
cduty_tx_s_duty_cycle(struct i2c_client * c,unsigned int duty_cycle)474 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
475 					  unsigned int duty_cycle)
476 {
477 	u32 n;
478 	n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
479 	if (n != 0)
480 		n--;
481 	if (n > 15)
482 		n = 15;
483 	cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
484 	return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
485 }
486 
487 /*
488  * IR Filter Register helpers
489  */
filter_rx_s_min_width(struct i2c_client * c,u32 min_width_ns)490 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
491 {
492 	u32 count = ns_to_lpf_count(min_width_ns);
493 	cx25840_write4(c, CX25840_IR_FILTR_REG, count);
494 	return lpf_count_to_ns(count);
495 }
496 
497 /*
498  * IR IRQ Enable Register helpers
499  */
irqenable_rx(struct v4l2_subdev * sd,u32 mask)500 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
501 {
502 	struct cx25840_state *state = to_state(sd);
503 
504 	if (is_cx23885(state) || is_cx23887(state))
505 		mask ^= IRQEN_MSK;
506 	mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
507 	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
508 			~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
509 }
510 
irqenable_tx(struct v4l2_subdev * sd,u32 mask)511 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
512 {
513 	struct cx25840_state *state = to_state(sd);
514 
515 	if (is_cx23885(state) || is_cx23887(state))
516 		mask ^= IRQEN_MSK;
517 	mask &= IRQEN_TSE;
518 	cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
519 }
520 
521 /*
522  * V4L2 Subdevice IR Ops
523  */
cx25840_ir_irq_handler(struct v4l2_subdev * sd,u32 status,bool * handled)524 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
525 {
526 	struct cx25840_state *state = to_state(sd);
527 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
528 	struct i2c_client *c = NULL;
529 	unsigned long flags;
530 
531 	union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
532 	unsigned int i, j, k;
533 	u32 events, v;
534 	int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
535 	u32 cntrl, irqen, stats;
536 
537 	*handled = false;
538 	if (ir_state == NULL)
539 		return -ENODEV;
540 
541 	c = ir_state->c;
542 
543 	/* Only support the IR controller for the CX2388[57] AV Core for now */
544 	if (!(is_cx23885(state) || is_cx23887(state)))
545 		return -ENODEV;
546 
547 	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
548 	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
549 	if (is_cx23885(state) || is_cx23887(state))
550 		irqen ^= IRQEN_MSK;
551 	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
552 
553 	tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
554 	rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
555 	rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
556 	ror = stats & STATS_ROR; /* Rx FIFO Over Run */
557 
558 	tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
559 	rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
560 	rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
561 	roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
562 
563 	v4l2_dbg(2, ir_debug, sd, "IR IRQ Status:  %s %s %s %s %s %s\n",
564 		 tsr ? "tsr" : "   ", rsr ? "rsr" : "   ",
565 		 rto ? "rto" : "   ", ror ? "ror" : "   ",
566 		 stats & STATS_TBY ? "tby" : "   ",
567 		 stats & STATS_RBY ? "rby" : "   ");
568 
569 	v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
570 		 tse ? "tse" : "   ", rse ? "rse" : "   ",
571 		 rte ? "rte" : "   ", roe ? "roe" : "   ");
572 
573 	/*
574 	 * Transmitter interrupt service
575 	 */
576 	if (tse && tsr) {
577 		/*
578 		 * TODO:
579 		 * Check the watermark threshold setting
580 		 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
581 		 * Push the data to the hardware FIFO.
582 		 * If there was nothing more to send in the tx_kfifo, disable
583 		 *	the TSR IRQ and notify the v4l2_device.
584 		 * If there was something in the tx_kfifo, check the tx_kfifo
585 		 *      level and notify the v4l2_device, if it is low.
586 		 */
587 		/* For now, inhibit TSR interrupt until Tx is implemented */
588 		irqenable_tx(sd, 0);
589 		events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
590 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
591 		*handled = true;
592 	}
593 
594 	/*
595 	 * Receiver interrupt service
596 	 */
597 	kror = 0;
598 	if ((rse && rsr) || (rte && rto)) {
599 		/*
600 		 * Receive data on RSR to clear the STATS_RSR.
601 		 * Receive data on RTO, since we may not have yet hit the RSR
602 		 * watermark when we receive the RTO.
603 		 */
604 		for (i = 0, v = FIFO_RX_NDV;
605 		     (v & FIFO_RX_NDV) && !kror; i = 0) {
606 			for (j = 0;
607 			     (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
608 				v = cx25840_read4(c, CX25840_IR_FIFO_REG);
609 				rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
610 				i++;
611 			}
612 			if (i == 0)
613 				break;
614 			j = i * sizeof(union cx25840_ir_fifo_rec);
615 			k = kfifo_in_locked(&ir_state->rx_kfifo,
616 					    (unsigned char *) rx_data, j,
617 					    &ir_state->rx_kfifo_lock);
618 			if (k != j)
619 				kror++; /* rx_kfifo over run */
620 		}
621 		*handled = true;
622 	}
623 
624 	events = 0;
625 	v = 0;
626 	if (kror) {
627 		events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
628 		v4l2_err(sd, "IR receiver software FIFO overrun\n");
629 	}
630 	if (roe && ror) {
631 		/*
632 		 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
633 		 * the Rx FIFO Over Run status (STATS_ROR)
634 		 */
635 		v |= CNTRL_RFE;
636 		events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
637 		v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
638 	}
639 	if (rte && rto) {
640 		/*
641 		 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
642 		 * the Rx Pulse Width Timer Time Out (STATS_RTO)
643 		 */
644 		v |= CNTRL_RXE;
645 		events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
646 	}
647 	if (v) {
648 		/* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
649 		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
650 		cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
651 		*handled = true;
652 	}
653 	spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
654 	if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
655 		events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
656 	spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
657 
658 	if (events)
659 		v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
660 	return 0;
661 }
662 
663 /* Receiver */
cx25840_ir_rx_read(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)664 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
665 			      ssize_t *num)
666 {
667 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
668 	bool invert;
669 	u16 divider;
670 	unsigned int i, n;
671 	union cx25840_ir_fifo_rec *p;
672 	unsigned u, v, w;
673 
674 	if (ir_state == NULL)
675 		return -ENODEV;
676 
677 	invert = (bool) atomic_read(&ir_state->rx_invert);
678 	divider = (u16) atomic_read(&ir_state->rxclk_divider);
679 
680 	n = count / sizeof(union cx25840_ir_fifo_rec)
681 		* sizeof(union cx25840_ir_fifo_rec);
682 	if (n == 0) {
683 		*num = 0;
684 		return 0;
685 	}
686 
687 	n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
688 			     &ir_state->rx_kfifo_lock);
689 
690 	n /= sizeof(union cx25840_ir_fifo_rec);
691 	*num = n * sizeof(union cx25840_ir_fifo_rec);
692 
693 	for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
694 
695 		if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
696 			/* Assume RTO was because of no IR light input */
697 			u = 0;
698 			w = 1;
699 		} else {
700 			u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
701 			if (invert)
702 				u = u ? 0 : 1;
703 			w = 0;
704 		}
705 
706 		v = (unsigned) pulse_width_count_to_ns(
707 				  (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
708 		if (v > IR_MAX_DURATION)
709 			v = IR_MAX_DURATION;
710 
711 		init_ir_raw_event(&p->ir_core_data);
712 		p->ir_core_data.pulse = u;
713 		p->ir_core_data.duration = v;
714 		p->ir_core_data.timeout = w;
715 
716 		v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns  %s  %s\n",
717 			 v, u ? "mark" : "space", w ? "(timed out)" : "");
718 		if (w)
719 			v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
720 	}
721 	return 0;
722 }
723 
cx25840_ir_rx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)724 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
725 				      struct v4l2_subdev_ir_parameters *p)
726 {
727 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
728 
729 	if (ir_state == NULL)
730 		return -ENODEV;
731 
732 	mutex_lock(&ir_state->rx_params_lock);
733 	memcpy(p, &ir_state->rx_params,
734 				      sizeof(struct v4l2_subdev_ir_parameters));
735 	mutex_unlock(&ir_state->rx_params_lock);
736 	return 0;
737 }
738 
cx25840_ir_rx_shutdown(struct v4l2_subdev * sd)739 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
740 {
741 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
742 	struct i2c_client *c;
743 
744 	if (ir_state == NULL)
745 		return -ENODEV;
746 
747 	c = ir_state->c;
748 	mutex_lock(&ir_state->rx_params_lock);
749 
750 	/* Disable or slow down all IR Rx circuits and counters */
751 	irqenable_rx(sd, 0);
752 	control_rx_enable(c, false);
753 	control_rx_demodulation_enable(c, false);
754 	control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
755 	filter_rx_s_min_width(c, 0);
756 	cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
757 
758 	ir_state->rx_params.shutdown = true;
759 
760 	mutex_unlock(&ir_state->rx_params_lock);
761 	return 0;
762 }
763 
cx25840_ir_rx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)764 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
765 				      struct v4l2_subdev_ir_parameters *p)
766 {
767 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
768 	struct i2c_client *c;
769 	struct v4l2_subdev_ir_parameters *o;
770 	u16 rxclk_divider;
771 
772 	if (ir_state == NULL)
773 		return -ENODEV;
774 
775 	if (p->shutdown)
776 		return cx25840_ir_rx_shutdown(sd);
777 
778 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
779 		return -ENOSYS;
780 
781 	c = ir_state->c;
782 	o = &ir_state->rx_params;
783 
784 	mutex_lock(&ir_state->rx_params_lock);
785 
786 	o->shutdown = p->shutdown;
787 
788 	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
789 	o->mode = p->mode;
790 
791 	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
792 	o->bytes_per_data_element = p->bytes_per_data_element;
793 
794 	/* Before we tweak the hardware, we have to disable the receiver */
795 	irqenable_rx(sd, 0);
796 	control_rx_enable(c, false);
797 
798 	control_rx_demodulation_enable(c, p->modulation);
799 	o->modulation = p->modulation;
800 
801 	if (p->modulation) {
802 		p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
803 						     &rxclk_divider);
804 
805 		o->carrier_freq = p->carrier_freq;
806 
807 		p->duty_cycle = 50;
808 		o->duty_cycle = p->duty_cycle;
809 
810 		control_rx_s_carrier_window(c, p->carrier_freq,
811 					    &p->carrier_range_lower,
812 					    &p->carrier_range_upper);
813 		o->carrier_range_lower = p->carrier_range_lower;
814 		o->carrier_range_upper = p->carrier_range_upper;
815 
816 		p->max_pulse_width =
817 			(u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
818 	} else {
819 		p->max_pulse_width =
820 			    rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
821 						       &rxclk_divider);
822 	}
823 	o->max_pulse_width = p->max_pulse_width;
824 	atomic_set(&ir_state->rxclk_divider, rxclk_divider);
825 
826 	p->noise_filter_min_width =
827 			    filter_rx_s_min_width(c, p->noise_filter_min_width);
828 	o->noise_filter_min_width = p->noise_filter_min_width;
829 
830 	p->resolution = clock_divider_to_resolution(rxclk_divider);
831 	o->resolution = p->resolution;
832 
833 	/* FIXME - make this dependent on resolution for better performance */
834 	control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
835 
836 	control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
837 
838 	o->invert_level = p->invert_level;
839 	atomic_set(&ir_state->rx_invert, p->invert_level);
840 
841 	o->interrupt_enable = p->interrupt_enable;
842 	o->enable = p->enable;
843 	if (p->enable) {
844 		unsigned long flags;
845 
846 		spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
847 		kfifo_reset(&ir_state->rx_kfifo);
848 		spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
849 		if (p->interrupt_enable)
850 			irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
851 		control_rx_enable(c, p->enable);
852 	}
853 
854 	mutex_unlock(&ir_state->rx_params_lock);
855 	return 0;
856 }
857 
858 /* Transmitter */
cx25840_ir_tx_write(struct v4l2_subdev * sd,u8 * buf,size_t count,ssize_t * num)859 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
860 			       ssize_t *num)
861 {
862 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
863 	struct i2c_client *c;
864 
865 	if (ir_state == NULL)
866 		return -ENODEV;
867 
868 	c = ir_state->c;
869 #if 0
870 	/*
871 	 * FIXME - the code below is an incomplete and untested sketch of what
872 	 * may need to be done.  The critical part is to get 4 (or 8) pulses
873 	 * from the tx_kfifo, or converted from ns to the proper units from the
874 	 * input, and push them off to the hardware Tx FIFO right away, if the
875 	 * HW TX fifo needs service.  The rest can be pushed to the tx_kfifo in
876 	 * a less critical timeframe.  Also watch out for overruning the
877 	 * tx_kfifo - don't let it happen and let the caller know not all his
878 	 * pulses were written.
879 	 */
880 	u32 *ns_pulse = (u32 *) buf;
881 	unsigned int n;
882 	u32 fifo_pulse[FIFO_TX_DEPTH];
883 	u32 mark;
884 
885 	/* Compute how much we can fit in the tx kfifo */
886 	n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
887 	n = min(n, (unsigned int) count);
888 	n /= sizeof(u32);
889 
890 	/* FIXME - turn on Tx Fifo service interrupt
891 	 * check hardware fifo level, and other stuff
892 	 */
893 	for (i = 0; i < n; ) {
894 		for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
895 			mark = ns_pulse[i] & LEVEL_MASK;
896 			fifo_pulse[j] = ns_to_pulse_width_count(
897 					 ns_pulse[i] &
898 					       ~LEVEL_MASK,
899 					 ir_state->txclk_divider);
900 			if (mark)
901 				fifo_pulse[j] &= FIFO_RXTX_LVL;
902 			i++;
903 		}
904 		kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
905 							       j * sizeof(u32));
906 	}
907 	*num = n * sizeof(u32);
908 #else
909 	/* For now enable the Tx FIFO Service interrupt & pretend we did work */
910 	irqenable_tx(sd, IRQEN_TSE);
911 	*num = count;
912 #endif
913 	return 0;
914 }
915 
cx25840_ir_tx_g_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)916 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
917 				      struct v4l2_subdev_ir_parameters *p)
918 {
919 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
920 
921 	if (ir_state == NULL)
922 		return -ENODEV;
923 
924 	mutex_lock(&ir_state->tx_params_lock);
925 	memcpy(p, &ir_state->tx_params,
926 				      sizeof(struct v4l2_subdev_ir_parameters));
927 	mutex_unlock(&ir_state->tx_params_lock);
928 	return 0;
929 }
930 
cx25840_ir_tx_shutdown(struct v4l2_subdev * sd)931 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
932 {
933 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
934 	struct i2c_client *c;
935 
936 	if (ir_state == NULL)
937 		return -ENODEV;
938 
939 	c = ir_state->c;
940 	mutex_lock(&ir_state->tx_params_lock);
941 
942 	/* Disable or slow down all IR Tx circuits and counters */
943 	irqenable_tx(sd, 0);
944 	control_tx_enable(c, false);
945 	control_tx_modulation_enable(c, false);
946 	cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
947 
948 	ir_state->tx_params.shutdown = true;
949 
950 	mutex_unlock(&ir_state->tx_params_lock);
951 	return 0;
952 }
953 
cx25840_ir_tx_s_parameters(struct v4l2_subdev * sd,struct v4l2_subdev_ir_parameters * p)954 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
955 				      struct v4l2_subdev_ir_parameters *p)
956 {
957 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
958 	struct i2c_client *c;
959 	struct v4l2_subdev_ir_parameters *o;
960 	u16 txclk_divider;
961 
962 	if (ir_state == NULL)
963 		return -ENODEV;
964 
965 	if (p->shutdown)
966 		return cx25840_ir_tx_shutdown(sd);
967 
968 	if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
969 		return -ENOSYS;
970 
971 	c = ir_state->c;
972 	o = &ir_state->tx_params;
973 	mutex_lock(&ir_state->tx_params_lock);
974 
975 	o->shutdown = p->shutdown;
976 
977 	p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
978 	o->mode = p->mode;
979 
980 	p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
981 	o->bytes_per_data_element = p->bytes_per_data_element;
982 
983 	/* Before we tweak the hardware, we have to disable the transmitter */
984 	irqenable_tx(sd, 0);
985 	control_tx_enable(c, false);
986 
987 	control_tx_modulation_enable(c, p->modulation);
988 	o->modulation = p->modulation;
989 
990 	if (p->modulation) {
991 		p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
992 						     &txclk_divider);
993 		o->carrier_freq = p->carrier_freq;
994 
995 		p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
996 		o->duty_cycle = p->duty_cycle;
997 
998 		p->max_pulse_width =
999 			(u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
1000 	} else {
1001 		p->max_pulse_width =
1002 			    txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
1003 						       &txclk_divider);
1004 	}
1005 	o->max_pulse_width = p->max_pulse_width;
1006 	atomic_set(&ir_state->txclk_divider, txclk_divider);
1007 
1008 	p->resolution = clock_divider_to_resolution(txclk_divider);
1009 	o->resolution = p->resolution;
1010 
1011 	/* FIXME - make this dependent on resolution for better performance */
1012 	control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
1013 
1014 	control_tx_polarity_invert(c, p->invert_carrier_sense);
1015 	o->invert_carrier_sense = p->invert_carrier_sense;
1016 
1017 	/*
1018 	 * FIXME: we don't have hardware help for IO pin level inversion
1019 	 * here like we have on the CX23888.
1020 	 * Act on this with some mix of logical inversion of data levels,
1021 	 * carrier polarity, and carrier duty cycle.
1022 	 */
1023 	o->invert_level = p->invert_level;
1024 
1025 	o->interrupt_enable = p->interrupt_enable;
1026 	o->enable = p->enable;
1027 	if (p->enable) {
1028 		/* reset tx_fifo here */
1029 		if (p->interrupt_enable)
1030 			irqenable_tx(sd, IRQEN_TSE);
1031 		control_tx_enable(c, p->enable);
1032 	}
1033 
1034 	mutex_unlock(&ir_state->tx_params_lock);
1035 	return 0;
1036 }
1037 
1038 
1039 /*
1040  * V4L2 Subdevice Core Ops support
1041  */
cx25840_ir_log_status(struct v4l2_subdev * sd)1042 int cx25840_ir_log_status(struct v4l2_subdev *sd)
1043 {
1044 	struct cx25840_state *state = to_state(sd);
1045 	struct i2c_client *c = state->c;
1046 	char *s;
1047 	int i, j;
1048 	u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1049 
1050 	/* The CX23888 chip doesn't have an IR controller on the A/V core */
1051 	if (is_cx23888(state))
1052 		return 0;
1053 
1054 	cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1055 	txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1056 	rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1057 	cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1058 	stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1059 	irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1060 	if (is_cx23885(state) || is_cx23887(state))
1061 		irqen ^= IRQEN_MSK;
1062 	filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1063 
1064 	v4l2_info(sd, "IR Receiver:\n");
1065 	v4l2_info(sd, "\tEnabled:                           %s\n",
1066 		  cntrl & CNTRL_RXE ? "yes" : "no");
1067 	v4l2_info(sd, "\tDemodulation from a carrier:       %s\n",
1068 		  cntrl & CNTRL_DMD ? "enabled" : "disabled");
1069 	v4l2_info(sd, "\tFIFO:                              %s\n",
1070 		  cntrl & CNTRL_RFE ? "enabled" : "disabled");
1071 	switch (cntrl & CNTRL_EDG) {
1072 	case CNTRL_EDG_NONE:
1073 		s = "disabled";
1074 		break;
1075 	case CNTRL_EDG_FALL:
1076 		s = "falling edge";
1077 		break;
1078 	case CNTRL_EDG_RISE:
1079 		s = "rising edge";
1080 		break;
1081 	case CNTRL_EDG_BOTH:
1082 		s = "rising & falling edges";
1083 		break;
1084 	default:
1085 		s = "??? edge";
1086 		break;
1087 	}
1088 	v4l2_info(sd, "\tPulse timers' start/stop trigger:  %s\n", s);
1089 	v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1090 		  cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1091 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1092 		  cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1093 	v4l2_info(sd, "\tLoopback mode:                     %s\n",
1094 		  cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1095 	if (cntrl & CNTRL_DMD) {
1096 		v4l2_info(sd, "\tExpected carrier (16 clocks):      %u Hz\n",
1097 			  clock_divider_to_carrier_freq(rxclk));
1098 		switch (cntrl & CNTRL_WIN) {
1099 		case CNTRL_WIN_3_3:
1100 			i = 3;
1101 			j = 3;
1102 			break;
1103 		case CNTRL_WIN_4_3:
1104 			i = 4;
1105 			j = 3;
1106 			break;
1107 		case CNTRL_WIN_3_4:
1108 			i = 3;
1109 			j = 4;
1110 			break;
1111 		case CNTRL_WIN_4_4:
1112 			i = 4;
1113 			j = 4;
1114 			break;
1115 		default:
1116 			i = 0;
1117 			j = 0;
1118 			break;
1119 		}
1120 		v4l2_info(sd, "\tNext carrier edge window:          16 clocks "
1121 			  "-%1d/+%1d, %u to %u Hz\n", i, j,
1122 			  clock_divider_to_freq(rxclk, 16 + j),
1123 			  clock_divider_to_freq(rxclk, 16 - i));
1124 	}
1125 	v4l2_info(sd, "\tMax measurable pulse width:        %u us, %llu ns\n",
1126 		  pulse_width_count_to_us(FIFO_RXTX, rxclk),
1127 		  pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1128 	v4l2_info(sd, "\tLow pass filter:                   %s\n",
1129 		  filtr ? "enabled" : "disabled");
1130 	if (filtr)
1131 		v4l2_info(sd, "\tMin acceptable pulse width (LPF):  %u us, "
1132 			  "%u ns\n",
1133 			  lpf_count_to_us(filtr),
1134 			  lpf_count_to_ns(filtr));
1135 	v4l2_info(sd, "\tPulse width timer timed-out:       %s\n",
1136 		  stats & STATS_RTO ? "yes" : "no");
1137 	v4l2_info(sd, "\tPulse width timer time-out intr:   %s\n",
1138 		  irqen & IRQEN_RTE ? "enabled" : "disabled");
1139 	v4l2_info(sd, "\tFIFO overrun:                      %s\n",
1140 		  stats & STATS_ROR ? "yes" : "no");
1141 	v4l2_info(sd, "\tFIFO overrun interrupt:            %s\n",
1142 		  irqen & IRQEN_ROE ? "enabled" : "disabled");
1143 	v4l2_info(sd, "\tBusy:                              %s\n",
1144 		  stats & STATS_RBY ? "yes" : "no");
1145 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1146 		  stats & STATS_RSR ? "yes" : "no");
1147 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1148 		  irqen & IRQEN_RSE ? "enabled" : "disabled");
1149 
1150 	v4l2_info(sd, "IR Transmitter:\n");
1151 	v4l2_info(sd, "\tEnabled:                           %s\n",
1152 		  cntrl & CNTRL_TXE ? "yes" : "no");
1153 	v4l2_info(sd, "\tModulation onto a carrier:         %s\n",
1154 		  cntrl & CNTRL_MOD ? "enabled" : "disabled");
1155 	v4l2_info(sd, "\tFIFO:                              %s\n",
1156 		  cntrl & CNTRL_TFE ? "enabled" : "disabled");
1157 	v4l2_info(sd, "\tFIFO interrupt watermark:          %s\n",
1158 		  cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1159 	v4l2_info(sd, "\tCarrier polarity:                  %s\n",
1160 		  cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1161 				    : "space:noburst mark:burst");
1162 	if (cntrl & CNTRL_MOD) {
1163 		v4l2_info(sd, "\tCarrier (16 clocks):               %u Hz\n",
1164 			  clock_divider_to_carrier_freq(txclk));
1165 		v4l2_info(sd, "\tCarrier duty cycle:                %2u/16\n",
1166 			  cduty + 1);
1167 	}
1168 	v4l2_info(sd, "\tMax pulse width:                   %u us, %llu ns\n",
1169 		  pulse_width_count_to_us(FIFO_RXTX, txclk),
1170 		  pulse_width_count_to_ns(FIFO_RXTX, txclk));
1171 	v4l2_info(sd, "\tBusy:                              %s\n",
1172 		  stats & STATS_TBY ? "yes" : "no");
1173 	v4l2_info(sd, "\tFIFO service requested:            %s\n",
1174 		  stats & STATS_TSR ? "yes" : "no");
1175 	v4l2_info(sd, "\tFIFO service request interrupt:    %s\n",
1176 		  irqen & IRQEN_TSE ? "enabled" : "disabled");
1177 
1178 	return 0;
1179 }
1180 
1181 
1182 const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1183 	.rx_read = cx25840_ir_rx_read,
1184 	.rx_g_parameters = cx25840_ir_rx_g_parameters,
1185 	.rx_s_parameters = cx25840_ir_rx_s_parameters,
1186 
1187 	.tx_write = cx25840_ir_tx_write,
1188 	.tx_g_parameters = cx25840_ir_tx_g_parameters,
1189 	.tx_s_parameters = cx25840_ir_tx_s_parameters,
1190 };
1191 
1192 
1193 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1194 	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1195 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1196 
1197 	.enable = false,
1198 	.interrupt_enable = false,
1199 	.shutdown = true,
1200 
1201 	.modulation = true,
1202 	.carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1203 
1204 	/* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1205 	/* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1206 	.noise_filter_min_width = 333333, /* ns */
1207 	.carrier_range_lower = 35000,
1208 	.carrier_range_upper = 37000,
1209 	.invert_level = false,
1210 };
1211 
1212 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1213 	.bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1214 	.mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1215 
1216 	.enable = false,
1217 	.interrupt_enable = false,
1218 	.shutdown = true,
1219 
1220 	.modulation = true,
1221 	.carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1222 	.duty_cycle = 25,      /* 25 %   - RC-5 carrier */
1223 	.invert_level = false,
1224 	.invert_carrier_sense = false,
1225 };
1226 
cx25840_ir_probe(struct v4l2_subdev * sd)1227 int cx25840_ir_probe(struct v4l2_subdev *sd)
1228 {
1229 	struct cx25840_state *state = to_state(sd);
1230 	struct cx25840_ir_state *ir_state;
1231 	struct v4l2_subdev_ir_parameters default_params;
1232 
1233 	/* Only init the IR controller for the CX2388[57] AV Core for now */
1234 	if (!(is_cx23885(state) || is_cx23887(state)))
1235 		return 0;
1236 
1237 	ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
1238 	if (ir_state == NULL)
1239 		return -ENOMEM;
1240 
1241 	spin_lock_init(&ir_state->rx_kfifo_lock);
1242 	if (kfifo_alloc(&ir_state->rx_kfifo,
1243 			CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
1244 		kfree(ir_state);
1245 		return -ENOMEM;
1246 	}
1247 
1248 	ir_state->c = state->c;
1249 	state->ir_state = ir_state;
1250 
1251 	/* Ensure no interrupts arrive yet */
1252 	if (is_cx23885(state) || is_cx23887(state))
1253 		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1254 	else
1255 		cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1256 
1257 	mutex_init(&ir_state->rx_params_lock);
1258 	memcpy(&default_params, &default_rx_params,
1259 		       sizeof(struct v4l2_subdev_ir_parameters));
1260 	v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1261 
1262 	mutex_init(&ir_state->tx_params_lock);
1263 	memcpy(&default_params, &default_tx_params,
1264 		       sizeof(struct v4l2_subdev_ir_parameters));
1265 	v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1266 
1267 	return 0;
1268 }
1269 
cx25840_ir_remove(struct v4l2_subdev * sd)1270 int cx25840_ir_remove(struct v4l2_subdev *sd)
1271 {
1272 	struct cx25840_state *state = to_state(sd);
1273 	struct cx25840_ir_state *ir_state = to_ir_state(sd);
1274 
1275 	if (ir_state == NULL)
1276 		return -ENODEV;
1277 
1278 	cx25840_ir_rx_shutdown(sd);
1279 	cx25840_ir_tx_shutdown(sd);
1280 
1281 	kfifo_free(&ir_state->rx_kfifo);
1282 	kfree(ir_state);
1283 	state->ir_state = NULL;
1284 	return 0;
1285 }
1286