1 #ifndef FWH_LOCK_H
2 #define FWH_LOCK_H
3
4
5 enum fwh_lock_state {
6 FWH_UNLOCKED = 0,
7 FWH_DENY_WRITE = 1,
8 FWH_IMMUTABLE = 2,
9 FWH_DENY_READ = 4,
10 };
11
12 struct fwh_xxlock_thunk {
13 enum fwh_lock_state val;
14 flstate_t state;
15 };
16
17
18 #define FWH_XXLOCK_ONEBLOCK_LOCK ((struct fwh_xxlock_thunk){ FWH_DENY_WRITE, FL_LOCKING})
19 #define FWH_XXLOCK_ONEBLOCK_UNLOCK ((struct fwh_xxlock_thunk){ FWH_UNLOCKED, FL_UNLOCKING})
20
21 /*
22 * This locking/unlock is specific to firmware hub parts. Only one
23 * is known that supports the Intel command set. Firmware
24 * hub parts cannot be interleaved as they are on the LPC bus
25 * so this code has not been tested with interleaved chips,
26 * and will likely fail in that context.
27 */
fwh_xxlock_oneblock(struct map_info * map,struct flchip * chip,unsigned long adr,int len,void * thunk)28 static int fwh_xxlock_oneblock(struct map_info *map, struct flchip *chip,
29 unsigned long adr, int len, void *thunk)
30 {
31 struct cfi_private *cfi = map->fldrv_priv;
32 struct fwh_xxlock_thunk *xxlt = (struct fwh_xxlock_thunk *)thunk;
33 int ret;
34
35 /* Refuse the operation if the we cannot look behind the chip */
36 if (chip->start < 0x400000) {
37 pr_debug( "MTD %s(): chip->start: %lx wanted >= 0x400000\n",
38 __func__, chip->start );
39 return -EIO;
40 }
41 /*
42 * lock block registers:
43 * - on 64k boundariesand
44 * - bit 1 set high
45 * - block lock registers are 4MiB lower - overflow subtract (danger)
46 *
47 * The address manipulation is first done on the logical address
48 * which is 0 at the start of the chip, and then the offset of
49 * the individual chip is addted to it. Any other order a weird
50 * map offset could cause problems.
51 */
52 adr = (adr & ~0xffffUL) | 0x2;
53 adr += chip->start - 0x400000;
54
55 /*
56 * This is easy because these are writes to registers and not writes
57 * to flash memory - that means that we don't have to check status
58 * and timeout.
59 */
60 mutex_lock(&chip->mutex);
61 ret = get_chip(map, chip, adr, FL_LOCKING);
62 if (ret) {
63 mutex_unlock(&chip->mutex);
64 return ret;
65 }
66
67 chip->oldstate = chip->state;
68 chip->state = xxlt->state;
69 map_write(map, CMD(xxlt->val), adr);
70
71 /* Done and happy. */
72 chip->state = chip->oldstate;
73 put_chip(map, chip, adr);
74 mutex_unlock(&chip->mutex);
75 return 0;
76 }
77
78
fwh_lock_varsize(struct mtd_info * mtd,loff_t ofs,uint64_t len)79 static int fwh_lock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len)
80 {
81 int ret;
82
83 ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
84 (void *)&FWH_XXLOCK_ONEBLOCK_LOCK);
85
86 return ret;
87 }
88
89
fwh_unlock_varsize(struct mtd_info * mtd,loff_t ofs,uint64_t len)90 static int fwh_unlock_varsize(struct mtd_info *mtd, loff_t ofs, uint64_t len)
91 {
92 int ret;
93
94 ret = cfi_varsize_frob(mtd, fwh_xxlock_oneblock, ofs, len,
95 (void *)&FWH_XXLOCK_ONEBLOCK_UNLOCK);
96
97 return ret;
98 }
99
fixup_use_fwh_lock(struct mtd_info * mtd)100 static void fixup_use_fwh_lock(struct mtd_info *mtd)
101 {
102 printk(KERN_NOTICE "using fwh lock/unlock method\n");
103 /* Setup for the chips with the fwh lock method */
104 mtd->_lock = fwh_lock_varsize;
105 mtd->_unlock = fwh_unlock_varsize;
106 }
107 #endif /* FWH_LOCK_H */
108