• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright © 2012 Mike Dunn <mikedunn@newsguy.com>
3  *
4  * mtd nand driver for M-Systems DiskOnChip G4
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * Tested on the Palm Treo 680.  The G4 is also present on Toshiba Portege, Asus
12  * P526, some HTC smartphones (Wizard, Prophet, ...), O2 XDA Zinc, maybe others.
13  * Should work on these as well.  Let me know!
14  *
15  * TODO:
16  *
17  *  Mechanism for management of password-protected areas
18  *
19  *  Hamming ecc when reading oob only
20  *
21  *  According to the M-Sys documentation, this device is also available in a
22  *  "dual-die" configuration having a 256MB capacity, but no mechanism for
23  *  detecting this variant is documented.  Currently this driver assumes 128MB
24  *  capacity.
25  *
26  *  Support for multiple cascaded devices ("floors").  Not sure which gadgets
27  *  contain multiple G4s in a cascaded configuration, if any.
28  *
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/string.h>
35 #include <linux/sched.h>
36 #include <linux/delay.h>
37 #include <linux/module.h>
38 #include <linux/export.h>
39 #include <linux/platform_device.h>
40 #include <linux/io.h>
41 #include <linux/bitops.h>
42 #include <linux/mtd/partitions.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/bch.h>
46 #include <linux/bitrev.h>
47 
48 /*
49  * You'll want to ignore badblocks if you're reading a partition that contains
50  * data written by the TrueFFS library (i.e., by PalmOS, Windows, etc), since
51  * it does not use mtd nand's method for marking bad blocks (using oob area).
52  * This will also skip the check of the "page written" flag.
53  */
54 static bool ignore_badblocks;
55 module_param(ignore_badblocks, bool, 0);
56 MODULE_PARM_DESC(ignore_badblocks, "no badblock checking performed");
57 
58 struct docg4_priv {
59 	struct mtd_info	*mtd;
60 	struct device *dev;
61 	void __iomem *virtadr;
62 	int status;
63 	struct {
64 		unsigned int command;
65 		int column;
66 		int page;
67 	} last_command;
68 	uint8_t oob_buf[16];
69 	uint8_t ecc_buf[7];
70 	int oob_page;
71 	struct bch_control *bch;
72 };
73 
74 /*
75  * Defines prefixed with DOCG4 are unique to the diskonchip G4.  All others are
76  * shared with other diskonchip devices (P3, G3 at least).
77  *
78  * Functions with names prefixed with docg4_ are mtd / nand interface functions
79  * (though they may also be called internally).  All others are internal.
80  */
81 
82 #define DOC_IOSPACE_DATA		0x0800
83 
84 /* register offsets */
85 #define DOC_CHIPID			0x1000
86 #define DOC_DEVICESELECT		0x100a
87 #define DOC_ASICMODE			0x100c
88 #define DOC_DATAEND			0x101e
89 #define DOC_NOP				0x103e
90 
91 #define DOC_FLASHSEQUENCE		0x1032
92 #define DOC_FLASHCOMMAND		0x1034
93 #define DOC_FLASHADDRESS		0x1036
94 #define DOC_FLASHCONTROL		0x1038
95 #define DOC_ECCCONF0			0x1040
96 #define DOC_ECCCONF1			0x1042
97 #define DOC_HAMMINGPARITY		0x1046
98 #define DOC_BCH_SYNDROM(idx)		(0x1048 + idx)
99 
100 #define DOC_ASICMODECONFIRM		0x1072
101 #define DOC_CHIPID_INV			0x1074
102 #define DOC_POWERMODE			0x107c
103 
104 #define DOCG4_MYSTERY_REG		0x1050
105 
106 /* apparently used only to write oob bytes 6 and 7 */
107 #define DOCG4_OOB_6_7			0x1052
108 
109 /* DOC_FLASHSEQUENCE register commands */
110 #define DOC_SEQ_RESET			0x00
111 #define DOCG4_SEQ_PAGE_READ		0x03
112 #define DOCG4_SEQ_FLUSH			0x29
113 #define DOCG4_SEQ_PAGEWRITE		0x16
114 #define DOCG4_SEQ_PAGEPROG		0x1e
115 #define DOCG4_SEQ_BLOCKERASE		0x24
116 
117 /* DOC_FLASHCOMMAND register commands */
118 #define DOCG4_CMD_PAGE_READ             0x00
119 #define DOC_CMD_ERASECYCLE2		0xd0
120 #define DOCG4_CMD_FLUSH                 0x70
121 #define DOCG4_CMD_READ2                 0x30
122 #define DOC_CMD_PROG_BLOCK_ADDR		0x60
123 #define DOCG4_CMD_PAGEWRITE		0x80
124 #define DOC_CMD_PROG_CYCLE2		0x10
125 #define DOC_CMD_RESET			0xff
126 
127 /* DOC_POWERMODE register bits */
128 #define DOC_POWERDOWN_READY		0x80
129 
130 /* DOC_FLASHCONTROL register bits */
131 #define DOC_CTRL_CE			0x10
132 #define DOC_CTRL_UNKNOWN		0x40
133 #define DOC_CTRL_FLASHREADY		0x01
134 
135 /* DOC_ECCCONF0 register bits */
136 #define DOC_ECCCONF0_READ_MODE		0x8000
137 #define DOC_ECCCONF0_UNKNOWN		0x2000
138 #define DOC_ECCCONF0_ECC_ENABLE	        0x1000
139 #define DOC_ECCCONF0_DATA_BYTES_MASK	0x07ff
140 
141 /* DOC_ECCCONF1 register bits */
142 #define DOC_ECCCONF1_BCH_SYNDROM_ERR	0x80
143 #define DOC_ECCCONF1_ECC_ENABLE         0x07
144 #define DOC_ECCCONF1_PAGE_IS_WRITTEN	0x20
145 
146 /* DOC_ASICMODE register bits */
147 #define DOC_ASICMODE_RESET		0x00
148 #define DOC_ASICMODE_NORMAL		0x01
149 #define DOC_ASICMODE_POWERDOWN		0x02
150 #define DOC_ASICMODE_MDWREN		0x04
151 #define DOC_ASICMODE_BDETCT_RESET	0x08
152 #define DOC_ASICMODE_RSTIN_RESET	0x10
153 #define DOC_ASICMODE_RAM_WE		0x20
154 
155 /* good status values read after read/write/erase operations */
156 #define DOCG4_PROGSTATUS_GOOD          0x51
157 #define DOCG4_PROGSTATUS_GOOD_2        0xe0
158 
159 /*
160  * On read operations (page and oob-only), the first byte read from I/O reg is a
161  * status.  On error, it reads 0x73; otherwise, it reads either 0x71 (first read
162  * after reset only) or 0x51, so bit 1 is presumed to be an error indicator.
163  */
164 #define DOCG4_READ_ERROR           0x02 /* bit 1 indicates read error */
165 
166 /* anatomy of the device */
167 #define DOCG4_CHIP_SIZE        0x8000000
168 #define DOCG4_PAGE_SIZE        0x200
169 #define DOCG4_PAGES_PER_BLOCK  0x200
170 #define DOCG4_BLOCK_SIZE       (DOCG4_PAGES_PER_BLOCK * DOCG4_PAGE_SIZE)
171 #define DOCG4_NUMBLOCKS        (DOCG4_CHIP_SIZE / DOCG4_BLOCK_SIZE)
172 #define DOCG4_OOB_SIZE         0x10
173 #define DOCG4_CHIP_SHIFT       27    /* log_2(DOCG4_CHIP_SIZE) */
174 #define DOCG4_PAGE_SHIFT       9     /* log_2(DOCG4_PAGE_SIZE) */
175 #define DOCG4_ERASE_SHIFT      18    /* log_2(DOCG4_BLOCK_SIZE) */
176 
177 /* all but the last byte is included in ecc calculation */
178 #define DOCG4_BCH_SIZE         (DOCG4_PAGE_SIZE + DOCG4_OOB_SIZE - 1)
179 
180 #define DOCG4_USERDATA_LEN     520 /* 512 byte page plus 8 oob avail to user */
181 
182 /* expected values from the ID registers */
183 #define DOCG4_IDREG1_VALUE     0x0400
184 #define DOCG4_IDREG2_VALUE     0xfbff
185 
186 /* primitive polynomial used to build the Galois field used by hw ecc gen */
187 #define DOCG4_PRIMITIVE_POLY   0x4443
188 
189 #define DOCG4_M                14  /* Galois field is of order 2^14 */
190 #define DOCG4_T                4   /* BCH alg corrects up to 4 bit errors */
191 
192 #define DOCG4_FACTORY_BBT_PAGE 16 /* page where read-only factory bbt lives */
193 
194 /*
195  * Oob bytes 0 - 6 are available to the user.
196  * Byte 7 is hamming ecc for first 7 bytes.  Bytes 8 - 14 are hw-generated ecc.
197  * Byte 15 (the last) is used by the driver as a "page written" flag.
198  */
199 static struct nand_ecclayout docg4_oobinfo = {
200 	.eccbytes = 9,
201 	.eccpos = {7, 8, 9, 10, 11, 12, 13, 14, 15},
202 	.oobavail = 7,
203 	.oobfree = { {0, 7} }
204 };
205 
206 /*
207  * The device has a nop register which M-Sys claims is for the purpose of
208  * inserting precise delays.  But beware; at least some operations fail if the
209  * nop writes are replaced with a generic delay!
210  */
write_nop(void __iomem * docptr)211 static inline void write_nop(void __iomem *docptr)
212 {
213 	writew(0, docptr + DOC_NOP);
214 }
215 
docg4_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)216 static void docg4_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
217 {
218 	int i;
219 	struct nand_chip *nand = mtd->priv;
220 	uint16_t *p = (uint16_t *) buf;
221 	len >>= 1;
222 
223 	for (i = 0; i < len; i++)
224 		p[i] = readw(nand->IO_ADDR_R);
225 }
226 
docg4_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)227 static void docg4_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
228 {
229 	int i;
230 	struct nand_chip *nand = mtd->priv;
231 	uint16_t *p = (uint16_t *) buf;
232 	len >>= 1;
233 
234 	for (i = 0; i < len; i++)
235 		writew(p[i], nand->IO_ADDR_W);
236 }
237 
poll_status(struct docg4_priv * doc)238 static int poll_status(struct docg4_priv *doc)
239 {
240 	/*
241 	 * Busy-wait for the FLASHREADY bit to be set in the FLASHCONTROL
242 	 * register.  Operations known to take a long time (e.g., block erase)
243 	 * should sleep for a while before calling this.
244 	 */
245 
246 	uint16_t flash_status;
247 	unsigned int timeo;
248 	void __iomem *docptr = doc->virtadr;
249 
250 	dev_dbg(doc->dev, "%s...\n", __func__);
251 
252 	/* hardware quirk requires reading twice initially */
253 	flash_status = readw(docptr + DOC_FLASHCONTROL);
254 
255 	timeo = 1000;
256 	do {
257 		cpu_relax();
258 		flash_status = readb(docptr + DOC_FLASHCONTROL);
259 	} while (!(flash_status & DOC_CTRL_FLASHREADY) && --timeo);
260 
261 
262 	if (!timeo) {
263 		dev_err(doc->dev, "%s: timed out!\n", __func__);
264 		return NAND_STATUS_FAIL;
265 	}
266 
267 	if (unlikely(timeo < 50))
268 		dev_warn(doc->dev, "%s: nearly timed out; %d remaining\n",
269 			 __func__, timeo);
270 
271 	return 0;
272 }
273 
274 
docg4_wait(struct mtd_info * mtd,struct nand_chip * nand)275 static int docg4_wait(struct mtd_info *mtd, struct nand_chip *nand)
276 {
277 
278 	struct docg4_priv *doc = nand->priv;
279 	int status = NAND_STATUS_WP;       /* inverse logic?? */
280 	dev_dbg(doc->dev, "%s...\n", __func__);
281 
282 	/* report any previously unreported error */
283 	if (doc->status) {
284 		status |= doc->status;
285 		doc->status = 0;
286 		return status;
287 	}
288 
289 	status |= poll_status(doc);
290 	return status;
291 }
292 
docg4_select_chip(struct mtd_info * mtd,int chip)293 static void docg4_select_chip(struct mtd_info *mtd, int chip)
294 {
295 	/*
296 	 * Select among multiple cascaded chips ("floors").  Multiple floors are
297 	 * not yet supported, so the only valid non-negative value is 0.
298 	 */
299 	struct nand_chip *nand = mtd->priv;
300 	struct docg4_priv *doc = nand->priv;
301 	void __iomem *docptr = doc->virtadr;
302 
303 	dev_dbg(doc->dev, "%s: chip %d\n", __func__, chip);
304 
305 	if (chip < 0)
306 		return;		/* deselected */
307 
308 	if (chip > 0)
309 		dev_warn(doc->dev, "multiple floors currently unsupported\n");
310 
311 	writew(0, docptr + DOC_DEVICESELECT);
312 }
313 
reset(struct mtd_info * mtd)314 static void reset(struct mtd_info *mtd)
315 {
316 	/* full device reset */
317 
318 	struct nand_chip *nand = mtd->priv;
319 	struct docg4_priv *doc = nand->priv;
320 	void __iomem *docptr = doc->virtadr;
321 
322 	writew(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN,
323 	       docptr + DOC_ASICMODE);
324 	writew(~(DOC_ASICMODE_RESET | DOC_ASICMODE_MDWREN),
325 	       docptr + DOC_ASICMODECONFIRM);
326 	write_nop(docptr);
327 
328 	writew(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN,
329 	       docptr + DOC_ASICMODE);
330 	writew(~(DOC_ASICMODE_NORMAL | DOC_ASICMODE_MDWREN),
331 	       docptr + DOC_ASICMODECONFIRM);
332 
333 	writew(DOC_ECCCONF1_ECC_ENABLE, docptr + DOC_ECCCONF1);
334 
335 	poll_status(doc);
336 }
337 
read_hw_ecc(void __iomem * docptr,uint8_t * ecc_buf)338 static void read_hw_ecc(void __iomem *docptr, uint8_t *ecc_buf)
339 {
340 	/* read the 7 hw-generated ecc bytes */
341 
342 	int i;
343 	for (i = 0; i < 7; i++) { /* hw quirk; read twice */
344 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
345 		ecc_buf[i] = readb(docptr + DOC_BCH_SYNDROM(i));
346 	}
347 }
348 
correct_data(struct mtd_info * mtd,uint8_t * buf,int page)349 static int correct_data(struct mtd_info *mtd, uint8_t *buf, int page)
350 {
351 	/*
352 	 * Called after a page read when hardware reports bitflips.
353 	 * Up to four bitflips can be corrected.
354 	 */
355 
356 	struct nand_chip *nand = mtd->priv;
357 	struct docg4_priv *doc = nand->priv;
358 	void __iomem *docptr = doc->virtadr;
359 	int i, numerrs, errpos[4];
360 	const uint8_t blank_read_hwecc[8] = {
361 		0xcf, 0x72, 0xfc, 0x1b, 0xa9, 0xc7, 0xb9, 0 };
362 
363 	read_hw_ecc(docptr, doc->ecc_buf); /* read 7 hw-generated ecc bytes */
364 
365 	/* check if read error is due to a blank page */
366 	if (!memcmp(doc->ecc_buf, blank_read_hwecc, 7))
367 		return 0;	/* yes */
368 
369 	/* skip additional check of "written flag" if ignore_badblocks */
370 	if (ignore_badblocks == false) {
371 
372 		/*
373 		 * If the hw ecc bytes are not those of a blank page, there's
374 		 * still a chance that the page is blank, but was read with
375 		 * errors.  Check the "written flag" in last oob byte, which
376 		 * is set to zero when a page is written.  If more than half
377 		 * the bits are set, assume a blank page.  Unfortunately, the
378 		 * bit flips(s) are not reported in stats.
379 		 */
380 
381 		if (doc->oob_buf[15]) {
382 			int bit, numsetbits = 0;
383 			unsigned long written_flag = doc->oob_buf[15];
384 			for_each_set_bit(bit, &written_flag, 8)
385 				numsetbits++;
386 			if (numsetbits > 4) { /* assume blank */
387 				dev_warn(doc->dev,
388 					 "error(s) in blank page "
389 					 "at offset %08x\n",
390 					 page * DOCG4_PAGE_SIZE);
391 				return 0;
392 			}
393 		}
394 	}
395 
396 	/*
397 	 * The hardware ecc unit produces oob_ecc ^ calc_ecc.  The kernel's bch
398 	 * algorithm is used to decode this.  However the hw operates on page
399 	 * data in a bit order that is the reverse of that of the bch alg,
400 	 * requiring that the bits be reversed on the result.  Thanks to Ivan
401 	 * Djelic for his analysis!
402 	 */
403 	for (i = 0; i < 7; i++)
404 		doc->ecc_buf[i] = bitrev8(doc->ecc_buf[i]);
405 
406 	numerrs = decode_bch(doc->bch, NULL, DOCG4_USERDATA_LEN, NULL,
407 			     doc->ecc_buf, NULL, errpos);
408 
409 	if (numerrs == -EBADMSG) {
410 		dev_warn(doc->dev, "uncorrectable errors at offset %08x\n",
411 			 page * DOCG4_PAGE_SIZE);
412 		return -EBADMSG;
413 	}
414 
415 	BUG_ON(numerrs < 0);	/* -EINVAL, or anything other than -EBADMSG */
416 
417 	/* undo last step in BCH alg (modulo mirroring not needed) */
418 	for (i = 0; i < numerrs; i++)
419 		errpos[i] = (errpos[i] & ~7)|(7-(errpos[i] & 7));
420 
421 	/* fix the errors */
422 	for (i = 0; i < numerrs; i++) {
423 
424 		/* ignore if error within oob ecc bytes */
425 		if (errpos[i] > DOCG4_USERDATA_LEN * 8)
426 			continue;
427 
428 		/* if error within oob area preceeding ecc bytes... */
429 		if (errpos[i] > DOCG4_PAGE_SIZE * 8)
430 			change_bit(errpos[i] - DOCG4_PAGE_SIZE * 8,
431 				   (unsigned long *)doc->oob_buf);
432 
433 		else    /* error in page data */
434 			change_bit(errpos[i], (unsigned long *)buf);
435 	}
436 
437 	dev_notice(doc->dev, "%d error(s) corrected at offset %08x\n",
438 		   numerrs, page * DOCG4_PAGE_SIZE);
439 
440 	return numerrs;
441 }
442 
docg4_read_byte(struct mtd_info * mtd)443 static uint8_t docg4_read_byte(struct mtd_info *mtd)
444 {
445 	struct nand_chip *nand = mtd->priv;
446 	struct docg4_priv *doc = nand->priv;
447 
448 	dev_dbg(doc->dev, "%s\n", __func__);
449 
450 	if (doc->last_command.command == NAND_CMD_STATUS) {
451 		int status;
452 
453 		/*
454 		 * Previous nand command was status request, so nand
455 		 * infrastructure code expects to read the status here.  If an
456 		 * error occurred in a previous operation, report it.
457 		 */
458 		doc->last_command.command = 0;
459 
460 		if (doc->status) {
461 			status = doc->status;
462 			doc->status = 0;
463 		}
464 
465 		/* why is NAND_STATUS_WP inverse logic?? */
466 		else
467 			status = NAND_STATUS_WP | NAND_STATUS_READY;
468 
469 		return status;
470 	}
471 
472 	dev_warn(doc->dev, "unexpectd call to read_byte()\n");
473 
474 	return 0;
475 }
476 
write_addr(struct docg4_priv * doc,uint32_t docg4_addr)477 static void write_addr(struct docg4_priv *doc, uint32_t docg4_addr)
478 {
479 	/* write the four address bytes packed in docg4_addr to the device */
480 
481 	void __iomem *docptr = doc->virtadr;
482 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
483 	docg4_addr >>= 8;
484 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
485 	docg4_addr >>= 8;
486 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
487 	docg4_addr >>= 8;
488 	writeb(docg4_addr & 0xff, docptr + DOC_FLASHADDRESS);
489 }
490 
read_progstatus(struct docg4_priv * doc)491 static int read_progstatus(struct docg4_priv *doc)
492 {
493 	/*
494 	 * This apparently checks the status of programming.  Done after an
495 	 * erasure, and after page data is written.  On error, the status is
496 	 * saved, to be later retrieved by the nand infrastructure code.
497 	 */
498 	void __iomem *docptr = doc->virtadr;
499 
500 	/* status is read from the I/O reg */
501 	uint16_t status1 = readw(docptr + DOC_IOSPACE_DATA);
502 	uint16_t status2 = readw(docptr + DOC_IOSPACE_DATA);
503 	uint16_t status3 = readw(docptr + DOCG4_MYSTERY_REG);
504 
505 	dev_dbg(doc->dev, "docg4: %s: %02x %02x %02x\n",
506 	      __func__, status1, status2, status3);
507 
508 	if (status1 != DOCG4_PROGSTATUS_GOOD
509 	    || status2 != DOCG4_PROGSTATUS_GOOD_2
510 	    || status3 != DOCG4_PROGSTATUS_GOOD_2) {
511 		doc->status = NAND_STATUS_FAIL;
512 		dev_warn(doc->dev, "read_progstatus failed: "
513 			 "%02x, %02x, %02x\n", status1, status2, status3);
514 		return -EIO;
515 	}
516 	return 0;
517 }
518 
pageprog(struct mtd_info * mtd)519 static int pageprog(struct mtd_info *mtd)
520 {
521 	/*
522 	 * Final step in writing a page.  Writes the contents of its
523 	 * internal buffer out to the flash array, or some such.
524 	 */
525 
526 	struct nand_chip *nand = mtd->priv;
527 	struct docg4_priv *doc = nand->priv;
528 	void __iomem *docptr = doc->virtadr;
529 	int retval = 0;
530 
531 	dev_dbg(doc->dev, "docg4: %s\n", __func__);
532 
533 	writew(DOCG4_SEQ_PAGEPROG, docptr + DOC_FLASHSEQUENCE);
534 	writew(DOC_CMD_PROG_CYCLE2, docptr + DOC_FLASHCOMMAND);
535 	write_nop(docptr);
536 	write_nop(docptr);
537 
538 	/* Just busy-wait; usleep_range() slows things down noticeably. */
539 	poll_status(doc);
540 
541 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
542 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
543 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
544 	write_nop(docptr);
545 	write_nop(docptr);
546 	write_nop(docptr);
547 	write_nop(docptr);
548 	write_nop(docptr);
549 
550 	retval = read_progstatus(doc);
551 	writew(0, docptr + DOC_DATAEND);
552 	write_nop(docptr);
553 	poll_status(doc);
554 	write_nop(docptr);
555 
556 	return retval;
557 }
558 
sequence_reset(struct mtd_info * mtd)559 static void sequence_reset(struct mtd_info *mtd)
560 {
561 	/* common starting sequence for all operations */
562 
563 	struct nand_chip *nand = mtd->priv;
564 	struct docg4_priv *doc = nand->priv;
565 	void __iomem *docptr = doc->virtadr;
566 
567 	writew(DOC_CTRL_UNKNOWN | DOC_CTRL_CE, docptr + DOC_FLASHCONTROL);
568 	writew(DOC_SEQ_RESET, docptr + DOC_FLASHSEQUENCE);
569 	writew(DOC_CMD_RESET, docptr + DOC_FLASHCOMMAND);
570 	write_nop(docptr);
571 	write_nop(docptr);
572 	poll_status(doc);
573 	write_nop(docptr);
574 }
575 
read_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)576 static void read_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
577 {
578 	/* first step in reading a page */
579 
580 	struct nand_chip *nand = mtd->priv;
581 	struct docg4_priv *doc = nand->priv;
582 	void __iomem *docptr = doc->virtadr;
583 
584 	dev_dbg(doc->dev,
585 	      "docg4: %s: g4 page %08x\n", __func__, docg4_addr);
586 
587 	sequence_reset(mtd);
588 
589 	writew(DOCG4_SEQ_PAGE_READ, docptr + DOC_FLASHSEQUENCE);
590 	writew(DOCG4_CMD_PAGE_READ, docptr + DOC_FLASHCOMMAND);
591 	write_nop(docptr);
592 
593 	write_addr(doc, docg4_addr);
594 
595 	write_nop(docptr);
596 	writew(DOCG4_CMD_READ2, docptr + DOC_FLASHCOMMAND);
597 	write_nop(docptr);
598 	write_nop(docptr);
599 
600 	poll_status(doc);
601 }
602 
write_page_prologue(struct mtd_info * mtd,uint32_t docg4_addr)603 static void write_page_prologue(struct mtd_info *mtd, uint32_t docg4_addr)
604 {
605 	/* first step in writing a page */
606 
607 	struct nand_chip *nand = mtd->priv;
608 	struct docg4_priv *doc = nand->priv;
609 	void __iomem *docptr = doc->virtadr;
610 
611 	dev_dbg(doc->dev,
612 	      "docg4: %s: g4 addr: %x\n", __func__, docg4_addr);
613 	sequence_reset(mtd);
614 	writew(DOCG4_SEQ_PAGEWRITE, docptr + DOC_FLASHSEQUENCE);
615 	writew(DOCG4_CMD_PAGEWRITE, docptr + DOC_FLASHCOMMAND);
616 	write_nop(docptr);
617 	write_addr(doc, docg4_addr);
618 	write_nop(docptr);
619 	write_nop(docptr);
620 	poll_status(doc);
621 }
622 
mtd_to_docg4_address(int page,int column)623 static uint32_t mtd_to_docg4_address(int page, int column)
624 {
625 	/*
626 	 * Convert mtd address to format used by the device, 32 bit packed.
627 	 *
628 	 * Some notes on G4 addressing... The M-Sys documentation on this device
629 	 * claims that pages are 2K in length, and indeed, the format of the
630 	 * address used by the device reflects that.  But within each page are
631 	 * four 512 byte "sub-pages", each with its own oob data that is
632 	 * read/written immediately after the 512 bytes of page data.  This oob
633 	 * data contains the ecc bytes for the preceeding 512 bytes.
634 	 *
635 	 * Rather than tell the mtd nand infrastructure that page size is 2k,
636 	 * with four sub-pages each, we engage in a little subterfuge and tell
637 	 * the infrastructure code that pages are 512 bytes in size.  This is
638 	 * done because during the course of reverse-engineering the device, I
639 	 * never observed an instance where an entire 2K "page" was read or
640 	 * written as a unit.  Each "sub-page" is always addressed individually,
641 	 * its data read/written, and ecc handled before the next "sub-page" is
642 	 * addressed.
643 	 *
644 	 * This requires us to convert addresses passed by the mtd nand
645 	 * infrastructure code to those used by the device.
646 	 *
647 	 * The address that is written to the device consists of four bytes: the
648 	 * first two are the 2k page number, and the second is the index into
649 	 * the page.  The index is in terms of 16-bit half-words and includes
650 	 * the preceeding oob data, so e.g., the index into the second
651 	 * "sub-page" is 0x108, and the full device address of the start of mtd
652 	 * page 0x201 is 0x00800108.
653 	 */
654 	int g4_page = page / 4;	                      /* device's 2K page */
655 	int g4_index = (page % 4) * 0x108 + column/2; /* offset into page */
656 	return (g4_page << 16) | g4_index;	      /* pack */
657 }
658 
docg4_command(struct mtd_info * mtd,unsigned command,int column,int page_addr)659 static void docg4_command(struct mtd_info *mtd, unsigned command, int column,
660 			  int page_addr)
661 {
662 	/* handle standard nand commands */
663 
664 	struct nand_chip *nand = mtd->priv;
665 	struct docg4_priv *doc = nand->priv;
666 	uint32_t g4_addr = mtd_to_docg4_address(page_addr, column);
667 
668 	dev_dbg(doc->dev, "%s %x, page_addr=%x, column=%x\n",
669 	      __func__, command, page_addr, column);
670 
671 	/*
672 	 * Save the command and its arguments.  This enables emulation of
673 	 * standard flash devices, and also some optimizations.
674 	 */
675 	doc->last_command.command = command;
676 	doc->last_command.column = column;
677 	doc->last_command.page = page_addr;
678 
679 	switch (command) {
680 
681 	case NAND_CMD_RESET:
682 		reset(mtd);
683 		break;
684 
685 	case NAND_CMD_READ0:
686 		read_page_prologue(mtd, g4_addr);
687 		break;
688 
689 	case NAND_CMD_STATUS:
690 		/* next call to read_byte() will expect a status */
691 		break;
692 
693 	case NAND_CMD_SEQIN:
694 		write_page_prologue(mtd, g4_addr);
695 
696 		/* hack for deferred write of oob bytes */
697 		if (doc->oob_page == page_addr)
698 			memcpy(nand->oob_poi, doc->oob_buf, 16);
699 		break;
700 
701 	case NAND_CMD_PAGEPROG:
702 		pageprog(mtd);
703 		break;
704 
705 	/* we don't expect these, based on review of nand_base.c */
706 	case NAND_CMD_READOOB:
707 	case NAND_CMD_READID:
708 	case NAND_CMD_ERASE1:
709 	case NAND_CMD_ERASE2:
710 		dev_warn(doc->dev, "docg4_command: "
711 			 "unexpected nand command 0x%x\n", command);
712 		break;
713 
714 	}
715 }
716 
read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int page,bool use_ecc)717 static int read_page(struct mtd_info *mtd, struct nand_chip *nand,
718 		     uint8_t *buf, int page, bool use_ecc)
719 {
720 	struct docg4_priv *doc = nand->priv;
721 	void __iomem *docptr = doc->virtadr;
722 	uint16_t status, edc_err, *buf16;
723 
724 	dev_dbg(doc->dev, "%s: page %08x\n", __func__, page);
725 
726 	writew(DOC_ECCCONF0_READ_MODE |
727 	       DOC_ECCCONF0_ECC_ENABLE |
728 	       DOC_ECCCONF0_UNKNOWN |
729 	       DOCG4_BCH_SIZE,
730 	       docptr + DOC_ECCCONF0);
731 	write_nop(docptr);
732 	write_nop(docptr);
733 	write_nop(docptr);
734 	write_nop(docptr);
735 	write_nop(docptr);
736 
737 	/* the 1st byte from the I/O reg is a status; the rest is page data */
738 	status = readw(docptr + DOC_IOSPACE_DATA);
739 	if (status & DOCG4_READ_ERROR) {
740 		dev_err(doc->dev,
741 			"docg4_read_page: bad status: 0x%02x\n", status);
742 		writew(0, docptr + DOC_DATAEND);
743 		return -EIO;
744 	}
745 
746 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
747 
748 	docg4_read_buf(mtd, buf, DOCG4_PAGE_SIZE); /* read the page data */
749 
750 	/*
751 	 * Diskonchips read oob immediately after a page read.  Mtd
752 	 * infrastructure issues a separate command for reading oob after the
753 	 * page is read.  So we save the oob bytes in a local buffer and just
754 	 * copy it if the next command reads oob from the same page.
755 	 */
756 
757 	/* first 14 oob bytes read from I/O reg */
758 	docg4_read_buf(mtd, doc->oob_buf, 14);
759 
760 	/* last 2 read from another reg */
761 	buf16 = (uint16_t *)(doc->oob_buf + 14);
762 	*buf16 = readw(docptr + DOCG4_MYSTERY_REG);
763 
764 	write_nop(docptr);
765 
766 	if (likely(use_ecc == true)) {
767 
768 		/* read the register that tells us if bitflip(s) detected  */
769 		edc_err = readw(docptr + DOC_ECCCONF1);
770 		edc_err = readw(docptr + DOC_ECCCONF1);
771 		dev_dbg(doc->dev, "%s: edc_err = 0x%02x\n", __func__, edc_err);
772 
773 		/* If bitflips are reported, attempt to correct with ecc */
774 		if (edc_err & DOC_ECCCONF1_BCH_SYNDROM_ERR) {
775 			int bits_corrected = correct_data(mtd, buf, page);
776 			if (bits_corrected == -EBADMSG)
777 				mtd->ecc_stats.failed++;
778 			else
779 				mtd->ecc_stats.corrected += bits_corrected;
780 		}
781 	}
782 
783 	writew(0, docptr + DOC_DATAEND);
784 	return 0;
785 }
786 
787 
docg4_read_page_raw(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int page)788 static int docg4_read_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
789 			       uint8_t *buf, int page)
790 {
791 	return read_page(mtd, nand, buf, page, false);
792 }
793 
docg4_read_page(struct mtd_info * mtd,struct nand_chip * nand,uint8_t * buf,int page)794 static int docg4_read_page(struct mtd_info *mtd, struct nand_chip *nand,
795 			   uint8_t *buf, int page)
796 {
797 	return read_page(mtd, nand, buf, page, true);
798 }
799 
docg4_read_oob(struct mtd_info * mtd,struct nand_chip * nand,int page,int sndcmd)800 static int docg4_read_oob(struct mtd_info *mtd, struct nand_chip *nand,
801 			  int page, int sndcmd)
802 {
803 	struct docg4_priv *doc = nand->priv;
804 	void __iomem *docptr = doc->virtadr;
805 	uint16_t status;
806 
807 	dev_dbg(doc->dev, "%s: page %x\n", __func__, page);
808 
809 	/*
810 	 * Oob bytes are read as part of a normal page read.  If the previous
811 	 * nand command was a read of the page whose oob is now being read, just
812 	 * copy the oob bytes that we saved in a local buffer and avoid a
813 	 * separate oob read.
814 	 */
815 	if (doc->last_command.command == NAND_CMD_READ0 &&
816 	    doc->last_command.page == page) {
817 		memcpy(nand->oob_poi, doc->oob_buf, 16);
818 		return 0;
819 	}
820 
821 	/*
822 	 * Separate read of oob data only.
823 	 */
824 	docg4_command(mtd, NAND_CMD_READ0, nand->ecc.size, page);
825 
826 	writew(DOC_ECCCONF0_READ_MODE | DOCG4_OOB_SIZE, docptr + DOC_ECCCONF0);
827 	write_nop(docptr);
828 	write_nop(docptr);
829 	write_nop(docptr);
830 	write_nop(docptr);
831 	write_nop(docptr);
832 
833 	/* the 1st byte from the I/O reg is a status; the rest is oob data */
834 	status = readw(docptr + DOC_IOSPACE_DATA);
835 	if (status & DOCG4_READ_ERROR) {
836 		dev_warn(doc->dev,
837 			 "docg4_read_oob failed: status = 0x%02x\n", status);
838 		return -EIO;
839 	}
840 
841 	dev_dbg(doc->dev, "%s: status = 0x%x\n", __func__, status);
842 
843 	docg4_read_buf(mtd, nand->oob_poi, 16);
844 
845 	write_nop(docptr);
846 	write_nop(docptr);
847 	write_nop(docptr);
848 	writew(0, docptr + DOC_DATAEND);
849 	write_nop(docptr);
850 
851 	return 0;
852 }
853 
docg4_erase_block(struct mtd_info * mtd,int page)854 static void docg4_erase_block(struct mtd_info *mtd, int page)
855 {
856 	struct nand_chip *nand = mtd->priv;
857 	struct docg4_priv *doc = nand->priv;
858 	void __iomem *docptr = doc->virtadr;
859 	uint16_t g4_page;
860 
861 	dev_dbg(doc->dev, "%s: page %04x\n", __func__, page);
862 
863 	sequence_reset(mtd);
864 
865 	writew(DOCG4_SEQ_BLOCKERASE, docptr + DOC_FLASHSEQUENCE);
866 	writew(DOC_CMD_PROG_BLOCK_ADDR, docptr + DOC_FLASHCOMMAND);
867 	write_nop(docptr);
868 
869 	/* only 2 bytes of address are written to specify erase block */
870 	g4_page = (uint16_t)(page / 4);  /* to g4's 2k page addressing */
871 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
872 	g4_page >>= 8;
873 	writeb(g4_page & 0xff, docptr + DOC_FLASHADDRESS);
874 	write_nop(docptr);
875 
876 	/* start the erasure */
877 	writew(DOC_CMD_ERASECYCLE2, docptr + DOC_FLASHCOMMAND);
878 	write_nop(docptr);
879 	write_nop(docptr);
880 
881 	usleep_range(500, 1000); /* erasure is long; take a snooze */
882 	poll_status(doc);
883 	writew(DOCG4_SEQ_FLUSH, docptr + DOC_FLASHSEQUENCE);
884 	writew(DOCG4_CMD_FLUSH, docptr + DOC_FLASHCOMMAND);
885 	writew(DOC_ECCCONF0_READ_MODE | 4, docptr + DOC_ECCCONF0);
886 	write_nop(docptr);
887 	write_nop(docptr);
888 	write_nop(docptr);
889 	write_nop(docptr);
890 	write_nop(docptr);
891 
892 	read_progstatus(doc);
893 
894 	writew(0, docptr + DOC_DATAEND);
895 	write_nop(docptr);
896 	poll_status(doc);
897 	write_nop(docptr);
898 }
899 
write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf,bool use_ecc)900 static void write_page(struct mtd_info *mtd, struct nand_chip *nand,
901 		       const uint8_t *buf, bool use_ecc)
902 {
903 	struct docg4_priv *doc = nand->priv;
904 	void __iomem *docptr = doc->virtadr;
905 	uint8_t ecc_buf[8];
906 
907 	dev_dbg(doc->dev, "%s...\n", __func__);
908 
909 	writew(DOC_ECCCONF0_ECC_ENABLE |
910 	       DOC_ECCCONF0_UNKNOWN |
911 	       DOCG4_BCH_SIZE,
912 	       docptr + DOC_ECCCONF0);
913 	write_nop(docptr);
914 
915 	/* write the page data */
916 	docg4_write_buf16(mtd, buf, DOCG4_PAGE_SIZE);
917 
918 	/* oob bytes 0 through 5 are written to I/O reg */
919 	docg4_write_buf16(mtd, nand->oob_poi, 6);
920 
921 	/* oob byte 6 written to a separate reg */
922 	writew(nand->oob_poi[6], docptr + DOCG4_OOB_6_7);
923 
924 	write_nop(docptr);
925 	write_nop(docptr);
926 
927 	/* write hw-generated ecc bytes to oob */
928 	if (likely(use_ecc == true)) {
929 		/* oob byte 7 is hamming code */
930 		uint8_t hamming = readb(docptr + DOC_HAMMINGPARITY);
931 		hamming = readb(docptr + DOC_HAMMINGPARITY); /* 2nd read */
932 		writew(hamming, docptr + DOCG4_OOB_6_7);
933 		write_nop(docptr);
934 
935 		/* read the 7 bch bytes from ecc regs */
936 		read_hw_ecc(docptr, ecc_buf);
937 		ecc_buf[7] = 0;         /* clear the "page written" flag */
938 	}
939 
940 	/* write user-supplied bytes to oob */
941 	else {
942 		writew(nand->oob_poi[7], docptr + DOCG4_OOB_6_7);
943 		write_nop(docptr);
944 		memcpy(ecc_buf, &nand->oob_poi[8], 8);
945 	}
946 
947 	docg4_write_buf16(mtd, ecc_buf, 8);
948 	write_nop(docptr);
949 	write_nop(docptr);
950 	writew(0, docptr + DOC_DATAEND);
951 	write_nop(docptr);
952 }
953 
docg4_write_page_raw(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf)954 static void docg4_write_page_raw(struct mtd_info *mtd, struct nand_chip *nand,
955 				 const uint8_t *buf)
956 {
957 	return write_page(mtd, nand, buf, false);
958 }
959 
docg4_write_page(struct mtd_info * mtd,struct nand_chip * nand,const uint8_t * buf)960 static void docg4_write_page(struct mtd_info *mtd, struct nand_chip *nand,
961 			     const uint8_t *buf)
962 {
963 	return write_page(mtd, nand, buf, true);
964 }
965 
docg4_write_oob(struct mtd_info * mtd,struct nand_chip * nand,int page)966 static int docg4_write_oob(struct mtd_info *mtd, struct nand_chip *nand,
967 			   int page)
968 {
969 	/*
970 	 * Writing oob-only is not really supported, because MLC nand must write
971 	 * oob bytes at the same time as page data.  Nonetheless, we save the
972 	 * oob buffer contents here, and then write it along with the page data
973 	 * if the same page is subsequently written.  This allows user space
974 	 * utilities that write the oob data prior to the page data to work
975 	 * (e.g., nandwrite).  The disdvantage is that, if the intention was to
976 	 * write oob only, the operation is quietly ignored.  Also, oob can get
977 	 * corrupted if two concurrent processes are running nandwrite.
978 	 */
979 
980 	/* note that bytes 7..14 are hw generated hamming/ecc and overwritten */
981 	struct docg4_priv *doc = nand->priv;
982 	doc->oob_page = page;
983 	memcpy(doc->oob_buf, nand->oob_poi, 16);
984 	return 0;
985 }
986 
read_factory_bbt(struct mtd_info * mtd)987 static int __init read_factory_bbt(struct mtd_info *mtd)
988 {
989 	/*
990 	 * The device contains a read-only factory bad block table.  Read it and
991 	 * update the memory-based bbt accordingly.
992 	 */
993 
994 	struct nand_chip *nand = mtd->priv;
995 	struct docg4_priv *doc = nand->priv;
996 	uint32_t g4_addr = mtd_to_docg4_address(DOCG4_FACTORY_BBT_PAGE, 0);
997 	uint8_t *buf;
998 	int i, block, status;
999 
1000 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1001 	if (buf == NULL)
1002 		return -ENOMEM;
1003 
1004 	read_page_prologue(mtd, g4_addr);
1005 	status = docg4_read_page(mtd, nand, buf, DOCG4_FACTORY_BBT_PAGE);
1006 	if (status)
1007 		goto exit;
1008 
1009 	/*
1010 	 * If no memory-based bbt was created, exit.  This will happen if module
1011 	 * parameter ignore_badblocks is set.  Then why even call this function?
1012 	 * For an unknown reason, block erase always fails if it's the first
1013 	 * operation after device power-up.  The above read ensures it never is.
1014 	 * Ugly, I know.
1015 	 */
1016 	if (nand->bbt == NULL)  /* no memory-based bbt */
1017 		goto exit;
1018 
1019 	/*
1020 	 * Parse factory bbt and update memory-based bbt.  Factory bbt format is
1021 	 * simple: one bit per block, block numbers increase left to right (msb
1022 	 * to lsb).  Bit clear means bad block.
1023 	 */
1024 	for (i = block = 0; block < DOCG4_NUMBLOCKS; block += 8, i++) {
1025 		int bitnum;
1026 		unsigned long bits = ~buf[i];
1027 		for_each_set_bit(bitnum, &bits, 8) {
1028 			int badblock = block + 7 - bitnum;
1029 			nand->bbt[badblock / 4] |=
1030 				0x03 << ((badblock % 4) * 2);
1031 			mtd->ecc_stats.badblocks++;
1032 			dev_notice(doc->dev, "factory-marked bad block: %d\n",
1033 				   badblock);
1034 		}
1035 	}
1036  exit:
1037 	kfree(buf);
1038 	return status;
1039 }
1040 
docg4_block_markbad(struct mtd_info * mtd,loff_t ofs)1041 static int docg4_block_markbad(struct mtd_info *mtd, loff_t ofs)
1042 {
1043 	/*
1044 	 * Mark a block as bad.  Bad blocks are marked in the oob area of the
1045 	 * first page of the block.  The default scan_bbt() in the nand
1046 	 * infrastructure code works fine for building the memory-based bbt
1047 	 * during initialization, as does the nand infrastructure function that
1048 	 * checks if a block is bad by reading the bbt.  This function replaces
1049 	 * the nand default because writes to oob-only are not supported.
1050 	 */
1051 
1052 	int ret, i;
1053 	uint8_t *buf;
1054 	struct nand_chip *nand = mtd->priv;
1055 	struct docg4_priv *doc = nand->priv;
1056 	struct nand_bbt_descr *bbtd = nand->badblock_pattern;
1057 	int block = (int)(ofs >> nand->bbt_erase_shift);
1058 	int page = (int)(ofs >> nand->page_shift);
1059 	uint32_t g4_addr = mtd_to_docg4_address(page, 0);
1060 
1061 	dev_dbg(doc->dev, "%s: %08llx\n", __func__, ofs);
1062 
1063 	if (unlikely(ofs & (DOCG4_BLOCK_SIZE - 1)))
1064 		dev_warn(doc->dev, "%s: ofs %llx not start of block!\n",
1065 			 __func__, ofs);
1066 
1067 	/* allocate blank buffer for page data */
1068 	buf = kzalloc(DOCG4_PAGE_SIZE, GFP_KERNEL);
1069 	if (buf == NULL)
1070 		return -ENOMEM;
1071 
1072 	/* update bbt in memory */
1073 	nand->bbt[block / 4] |= 0x01 << ((block & 0x03) * 2);
1074 
1075 	/* write bit-wise negation of pattern to oob buffer */
1076 	memset(nand->oob_poi, 0xff, mtd->oobsize);
1077 	for (i = 0; i < bbtd->len; i++)
1078 		nand->oob_poi[bbtd->offs + i] = ~bbtd->pattern[i];
1079 
1080 	/* write first page of block */
1081 	write_page_prologue(mtd, g4_addr);
1082 	docg4_write_page(mtd, nand, buf);
1083 	ret = pageprog(mtd);
1084 	if (!ret)
1085 		mtd->ecc_stats.badblocks++;
1086 
1087 	kfree(buf);
1088 
1089 	return ret;
1090 }
1091 
docg4_block_neverbad(struct mtd_info * mtd,loff_t ofs,int getchip)1092 static int docg4_block_neverbad(struct mtd_info *mtd, loff_t ofs, int getchip)
1093 {
1094 	/* only called when module_param ignore_badblocks is set */
1095 	return 0;
1096 }
1097 
docg4_suspend(struct platform_device * pdev,pm_message_t state)1098 static int docg4_suspend(struct platform_device *pdev, pm_message_t state)
1099 {
1100 	/*
1101 	 * Put the device into "deep power-down" mode.  Note that CE# must be
1102 	 * deasserted for this to take effect.  The xscale, e.g., can be
1103 	 * configured to float this signal when the processor enters power-down,
1104 	 * and a suitable pull-up ensures its deassertion.
1105 	 */
1106 
1107 	int i;
1108 	uint8_t pwr_down;
1109 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1110 	void __iomem *docptr = doc->virtadr;
1111 
1112 	dev_dbg(doc->dev, "%s...\n", __func__);
1113 
1114 	/* poll the register that tells us we're ready to go to sleep */
1115 	for (i = 0; i < 10; i++) {
1116 		pwr_down = readb(docptr + DOC_POWERMODE);
1117 		if (pwr_down & DOC_POWERDOWN_READY)
1118 			break;
1119 		usleep_range(1000, 4000);
1120 	}
1121 
1122 	if (pwr_down & DOC_POWERDOWN_READY) {
1123 		dev_err(doc->dev, "suspend failed; "
1124 			"timeout polling DOC_POWERDOWN_READY\n");
1125 		return -EIO;
1126 	}
1127 
1128 	writew(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN,
1129 	       docptr + DOC_ASICMODE);
1130 	writew(~(DOC_ASICMODE_POWERDOWN | DOC_ASICMODE_MDWREN),
1131 	       docptr + DOC_ASICMODECONFIRM);
1132 
1133 	write_nop(docptr);
1134 
1135 	return 0;
1136 }
1137 
docg4_resume(struct platform_device * pdev)1138 static int docg4_resume(struct platform_device *pdev)
1139 {
1140 
1141 	/*
1142 	 * Exit power-down.  Twelve consecutive reads of the address below
1143 	 * accomplishes this, assuming CE# has been asserted.
1144 	 */
1145 
1146 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1147 	void __iomem *docptr = doc->virtadr;
1148 	int i;
1149 
1150 	dev_dbg(doc->dev, "%s...\n", __func__);
1151 
1152 	for (i = 0; i < 12; i++)
1153 		readb(docptr + 0x1fff);
1154 
1155 	return 0;
1156 }
1157 
init_mtd_structs(struct mtd_info * mtd)1158 static void __init init_mtd_structs(struct mtd_info *mtd)
1159 {
1160 	/* initialize mtd and nand data structures */
1161 
1162 	/*
1163 	 * Note that some of the following initializations are not usually
1164 	 * required within a nand driver because they are performed by the nand
1165 	 * infrastructure code as part of nand_scan().  In this case they need
1166 	 * to be initialized here because we skip call to nand_scan_ident() (the
1167 	 * first half of nand_scan()).  The call to nand_scan_ident() is skipped
1168 	 * because for this device the chip id is not read in the manner of a
1169 	 * standard nand device.  Unfortunately, nand_scan_ident() does other
1170 	 * things as well, such as call nand_set_defaults().
1171 	 */
1172 
1173 	struct nand_chip *nand = mtd->priv;
1174 	struct docg4_priv *doc = nand->priv;
1175 
1176 	mtd->size = DOCG4_CHIP_SIZE;
1177 	mtd->name = "Msys_Diskonchip_G4";
1178 	mtd->writesize = DOCG4_PAGE_SIZE;
1179 	mtd->erasesize = DOCG4_BLOCK_SIZE;
1180 	mtd->oobsize = DOCG4_OOB_SIZE;
1181 	nand->chipsize = DOCG4_CHIP_SIZE;
1182 	nand->chip_shift = DOCG4_CHIP_SHIFT;
1183 	nand->bbt_erase_shift = nand->phys_erase_shift = DOCG4_ERASE_SHIFT;
1184 	nand->chip_delay = 20;
1185 	nand->page_shift = DOCG4_PAGE_SHIFT;
1186 	nand->pagemask = 0x3ffff;
1187 	nand->badblockpos = NAND_LARGE_BADBLOCK_POS;
1188 	nand->badblockbits = 8;
1189 	nand->ecc.layout = &docg4_oobinfo;
1190 	nand->ecc.mode = NAND_ECC_HW_SYNDROME;
1191 	nand->ecc.size = DOCG4_PAGE_SIZE;
1192 	nand->ecc.prepad = 8;
1193 	nand->ecc.bytes	= 8;
1194 	nand->ecc.strength = DOCG4_T;
1195 	nand->options =
1196 		NAND_BUSWIDTH_16 | NAND_NO_SUBPAGE_WRITE | NAND_NO_AUTOINCR;
1197 	nand->IO_ADDR_R = nand->IO_ADDR_W = doc->virtadr + DOC_IOSPACE_DATA;
1198 	nand->controller = &nand->hwcontrol;
1199 	spin_lock_init(&nand->controller->lock);
1200 	init_waitqueue_head(&nand->controller->wq);
1201 
1202 	/* methods */
1203 	nand->cmdfunc = docg4_command;
1204 	nand->waitfunc = docg4_wait;
1205 	nand->select_chip = docg4_select_chip;
1206 	nand->read_byte = docg4_read_byte;
1207 	nand->block_markbad = docg4_block_markbad;
1208 	nand->read_buf = docg4_read_buf;
1209 	nand->write_buf = docg4_write_buf16;
1210 	nand->scan_bbt = nand_default_bbt;
1211 	nand->erase_cmd = docg4_erase_block;
1212 	nand->ecc.read_page = docg4_read_page;
1213 	nand->ecc.write_page = docg4_write_page;
1214 	nand->ecc.read_page_raw = docg4_read_page_raw;
1215 	nand->ecc.write_page_raw = docg4_write_page_raw;
1216 	nand->ecc.read_oob = docg4_read_oob;
1217 	nand->ecc.write_oob = docg4_write_oob;
1218 
1219 	/*
1220 	 * The way the nand infrastructure code is written, a memory-based bbt
1221 	 * is not created if NAND_SKIP_BBTSCAN is set.  With no memory bbt,
1222 	 * nand->block_bad() is used.  So when ignoring bad blocks, we skip the
1223 	 * scan and define a dummy block_bad() which always returns 0.
1224 	 */
1225 	if (ignore_badblocks) {
1226 		nand->options |= NAND_SKIP_BBTSCAN;
1227 		nand->block_bad	= docg4_block_neverbad;
1228 	}
1229 
1230 }
1231 
read_id_reg(struct mtd_info * mtd)1232 static int __init read_id_reg(struct mtd_info *mtd)
1233 {
1234 	struct nand_chip *nand = mtd->priv;
1235 	struct docg4_priv *doc = nand->priv;
1236 	void __iomem *docptr = doc->virtadr;
1237 	uint16_t id1, id2;
1238 
1239 	/* check for presence of g4 chip by reading id registers */
1240 	id1 = readw(docptr + DOC_CHIPID);
1241 	id1 = readw(docptr + DOCG4_MYSTERY_REG);
1242 	id2 = readw(docptr + DOC_CHIPID_INV);
1243 	id2 = readw(docptr + DOCG4_MYSTERY_REG);
1244 
1245 	if (id1 == DOCG4_IDREG1_VALUE && id2 == DOCG4_IDREG2_VALUE) {
1246 		dev_info(doc->dev,
1247 			 "NAND device: 128MiB Diskonchip G4 detected\n");
1248 		return 0;
1249 	}
1250 
1251 	return -ENODEV;
1252 }
1253 
1254 static char const *part_probes[] = { "cmdlinepart", "saftlpart", NULL };
1255 
probe_docg4(struct platform_device * pdev)1256 static int __init probe_docg4(struct platform_device *pdev)
1257 {
1258 	struct mtd_info *mtd;
1259 	struct nand_chip *nand;
1260 	void __iomem *virtadr;
1261 	struct docg4_priv *doc;
1262 	int len, retval;
1263 	struct resource *r;
1264 	struct device *dev = &pdev->dev;
1265 
1266 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1267 	if (r == NULL) {
1268 		dev_err(dev, "no io memory resource defined!\n");
1269 		return -ENODEV;
1270 	}
1271 
1272 	virtadr = ioremap(r->start, resource_size(r));
1273 	if (!virtadr) {
1274 		dev_err(dev, "Diskonchip ioremap failed: %pR\n", r);
1275 		return -EIO;
1276 	}
1277 
1278 	len = sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1279 		sizeof(struct docg4_priv);
1280 	mtd = kzalloc(len, GFP_KERNEL);
1281 	if (mtd == NULL) {
1282 		retval = -ENOMEM;
1283 		goto fail;
1284 	}
1285 	nand = (struct nand_chip *) (mtd + 1);
1286 	doc = (struct docg4_priv *) (nand + 1);
1287 	mtd->priv = nand;
1288 	nand->priv = doc;
1289 	mtd->owner = THIS_MODULE;
1290 	doc->virtadr = virtadr;
1291 	doc->dev = dev;
1292 
1293 	init_mtd_structs(mtd);
1294 
1295 	/* initialize kernel bch algorithm */
1296 	doc->bch = init_bch(DOCG4_M, DOCG4_T, DOCG4_PRIMITIVE_POLY);
1297 	if (doc->bch == NULL) {
1298 		retval = -EINVAL;
1299 		goto fail;
1300 	}
1301 
1302 	platform_set_drvdata(pdev, doc);
1303 
1304 	reset(mtd);
1305 	retval = read_id_reg(mtd);
1306 	if (retval == -ENODEV) {
1307 		dev_warn(dev, "No diskonchip G4 device found.\n");
1308 		goto fail;
1309 	}
1310 
1311 	retval = nand_scan_tail(mtd);
1312 	if (retval)
1313 		goto fail;
1314 
1315 	retval = read_factory_bbt(mtd);
1316 	if (retval)
1317 		goto fail;
1318 
1319 	retval = mtd_device_parse_register(mtd, part_probes, NULL, NULL, 0);
1320 	if (retval)
1321 		goto fail;
1322 
1323 	doc->mtd = mtd;
1324 	return 0;
1325 
1326  fail:
1327 	iounmap(virtadr);
1328 	if (mtd) {
1329 		/* re-declarations avoid compiler warning */
1330 		struct nand_chip *nand = mtd->priv;
1331 		struct docg4_priv *doc = nand->priv;
1332 		nand_release(mtd); /* deletes partitions and mtd devices */
1333 		platform_set_drvdata(pdev, NULL);
1334 		free_bch(doc->bch);
1335 		kfree(mtd);
1336 	}
1337 
1338 	return retval;
1339 }
1340 
cleanup_docg4(struct platform_device * pdev)1341 static int __exit cleanup_docg4(struct platform_device *pdev)
1342 {
1343 	struct docg4_priv *doc = platform_get_drvdata(pdev);
1344 	nand_release(doc->mtd);
1345 	platform_set_drvdata(pdev, NULL);
1346 	free_bch(doc->bch);
1347 	kfree(doc->mtd);
1348 	iounmap(doc->virtadr);
1349 	return 0;
1350 }
1351 
1352 static struct platform_driver docg4_driver = {
1353 	.driver		= {
1354 		.name	= "docg4",
1355 		.owner	= THIS_MODULE,
1356 	},
1357 	.suspend	= docg4_suspend,
1358 	.resume		= docg4_resume,
1359 	.remove		= __exit_p(cleanup_docg4),
1360 };
1361 
docg4_init(void)1362 static int __init docg4_init(void)
1363 {
1364 	return platform_driver_probe(&docg4_driver, probe_docg4);
1365 }
1366 
docg4_exit(void)1367 static void __exit docg4_exit(void)
1368 {
1369 	platform_driver_unregister(&docg4_driver);
1370 }
1371 
1372 module_init(docg4_init);
1373 module_exit(docg4_exit);
1374 
1375 MODULE_LICENSE("GPL");
1376 MODULE_AUTHOR("Mike Dunn");
1377 MODULE_DESCRIPTION("M-Systems DiskOnChip G4 device driver");
1378