• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright(c) 2007 Atheros Corporation. All rights reserved.
3  *
4  * Derived from Intel e1000 driver
5  * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License as published by the Free
9  * Software Foundation; either version 2 of the License, or (at your option)
10  * any later version.
11  *
12  * This program is distributed in the hope that it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program; if not, write to the Free Software Foundation, Inc., 59
19  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
20  */
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/mii.h>
24 #include <linux/crc32.h>
25 
26 #include "atl1e.h"
27 
28 /*
29  * check_eeprom_exist
30  * return 0 if eeprom exist
31  */
atl1e_check_eeprom_exist(struct atl1e_hw * hw)32 int atl1e_check_eeprom_exist(struct atl1e_hw *hw)
33 {
34 	u32 value;
35 
36 	value = AT_READ_REG(hw, REG_SPI_FLASH_CTRL);
37 	if (value & SPI_FLASH_CTRL_EN_VPD) {
38 		value &= ~SPI_FLASH_CTRL_EN_VPD;
39 		AT_WRITE_REG(hw, REG_SPI_FLASH_CTRL, value);
40 	}
41 	value = AT_READ_REGW(hw, REG_PCIE_CAP_LIST);
42 	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
43 }
44 
atl1e_hw_set_mac_addr(struct atl1e_hw * hw)45 void atl1e_hw_set_mac_addr(struct atl1e_hw *hw)
46 {
47 	u32 value;
48 	/*
49 	 * 00-0B-6A-F6-00-DC
50 	 * 0:  6AF600DC 1: 000B
51 	 * low dword
52 	 */
53 	value = (((u32)hw->mac_addr[2]) << 24) |
54 		(((u32)hw->mac_addr[3]) << 16) |
55 		(((u32)hw->mac_addr[4]) << 8)  |
56 		(((u32)hw->mac_addr[5])) ;
57 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value);
58 	/* hight dword */
59 	value = (((u32)hw->mac_addr[0]) << 8) |
60 		(((u32)hw->mac_addr[1])) ;
61 	AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value);
62 }
63 
64 /*
65  * atl1e_get_permanent_address
66  * return 0 if get valid mac address,
67  */
atl1e_get_permanent_address(struct atl1e_hw * hw)68 static int atl1e_get_permanent_address(struct atl1e_hw *hw)
69 {
70 	u32 addr[2];
71 	u32 i;
72 	u32 twsi_ctrl_data;
73 	u8  eth_addr[ETH_ALEN];
74 
75 	if (is_valid_ether_addr(hw->perm_mac_addr))
76 		return 0;
77 
78 	/* init */
79 	addr[0] = addr[1] = 0;
80 
81 	if (!atl1e_check_eeprom_exist(hw)) {
82 		/* eeprom exist */
83 		twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
84 		twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART;
85 		AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data);
86 		for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) {
87 			msleep(10);
88 			twsi_ctrl_data = AT_READ_REG(hw, REG_TWSI_CTRL);
89 			if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0)
90 				break;
91 		}
92 		if (i >= AT_TWSI_EEPROM_TIMEOUT)
93 			return AT_ERR_TIMEOUT;
94 	}
95 
96 	/* maybe MAC-address is from BIOS */
97 	addr[0] = AT_READ_REG(hw, REG_MAC_STA_ADDR);
98 	addr[1] = AT_READ_REG(hw, REG_MAC_STA_ADDR + 4);
99 	*(u32 *) &eth_addr[2] = swab32(addr[0]);
100 	*(u16 *) &eth_addr[0] = swab16(*(u16 *)&addr[1]);
101 
102 	if (is_valid_ether_addr(eth_addr)) {
103 		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
104 		return 0;
105 	}
106 
107 	return AT_ERR_EEPROM;
108 }
109 
atl1e_write_eeprom(struct atl1e_hw * hw,u32 offset,u32 value)110 bool atl1e_write_eeprom(struct atl1e_hw *hw, u32 offset, u32 value)
111 {
112 	return true;
113 }
114 
atl1e_read_eeprom(struct atl1e_hw * hw,u32 offset,u32 * p_value)115 bool atl1e_read_eeprom(struct atl1e_hw *hw, u32 offset, u32 *p_value)
116 {
117 	int i;
118 	u32 control;
119 
120 	if (offset & 3)
121 		return false; /* address do not align */
122 
123 	AT_WRITE_REG(hw, REG_VPD_DATA, 0);
124 	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
125 	AT_WRITE_REG(hw, REG_VPD_CAP, control);
126 
127 	for (i = 0; i < 10; i++) {
128 		msleep(2);
129 		control = AT_READ_REG(hw, REG_VPD_CAP);
130 		if (control & VPD_CAP_VPD_FLAG)
131 			break;
132 	}
133 	if (control & VPD_CAP_VPD_FLAG) {
134 		*p_value = AT_READ_REG(hw, REG_VPD_DATA);
135 		return true;
136 	}
137 	return false; /* timeout */
138 }
139 
atl1e_force_ps(struct atl1e_hw * hw)140 void atl1e_force_ps(struct atl1e_hw *hw)
141 {
142 	AT_WRITE_REGW(hw, REG_GPHY_CTRL,
143 			GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET);
144 }
145 
146 /*
147  * Reads the adapter's MAC address from the EEPROM
148  *
149  * hw - Struct containing variables accessed by shared code
150  */
atl1e_read_mac_addr(struct atl1e_hw * hw)151 int atl1e_read_mac_addr(struct atl1e_hw *hw)
152 {
153 	int err = 0;
154 
155 	err = atl1e_get_permanent_address(hw);
156 	if (err)
157 		return AT_ERR_EEPROM;
158 	memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr));
159 	return 0;
160 }
161 
162 /*
163  * atl1e_hash_mc_addr
164  *  purpose
165  *      set hash value for a multicast address
166  */
atl1e_hash_mc_addr(struct atl1e_hw * hw,u8 * mc_addr)167 u32 atl1e_hash_mc_addr(struct atl1e_hw *hw, u8 *mc_addr)
168 {
169 	u32 crc32;
170 	u32 value = 0;
171 	int i;
172 
173 	crc32 = ether_crc_le(6, mc_addr);
174 	for (i = 0; i < 32; i++)
175 		value |= (((crc32 >> i) & 1) << (31 - i));
176 
177 	return value;
178 }
179 
180 /*
181  * Sets the bit in the multicast table corresponding to the hash value.
182  * hw - Struct containing variables accessed by shared code
183  * hash_value - Multicast address hash value
184  */
atl1e_hash_set(struct atl1e_hw * hw,u32 hash_value)185 void atl1e_hash_set(struct atl1e_hw *hw, u32 hash_value)
186 {
187 	u32 hash_bit, hash_reg;
188 	u32 mta;
189 
190 	/*
191 	 * The HASH Table  is a register array of 2 32-bit registers.
192 	 * It is treated like an array of 64 bits.  We want to set
193 	 * bit BitArray[hash_value]. So we figure out what register
194 	 * the bit is in, read it, OR in the new bit, then write
195 	 * back the new value.  The register is determined by the
196 	 * upper 7 bits of the hash value and the bit within that
197 	 * register are determined by the lower 5 bits of the value.
198 	 */
199 	hash_reg = (hash_value >> 31) & 0x1;
200 	hash_bit = (hash_value >> 26) & 0x1F;
201 
202 	mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg);
203 
204 	mta |= (1 << hash_bit);
205 
206 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta);
207 }
208 /*
209  * Reads the value from a PHY register
210  * hw - Struct containing variables accessed by shared code
211  * reg_addr - address of the PHY register to read
212  */
atl1e_read_phy_reg(struct atl1e_hw * hw,u16 reg_addr,u16 * phy_data)213 int atl1e_read_phy_reg(struct atl1e_hw *hw, u16 reg_addr, u16 *phy_data)
214 {
215 	u32 val;
216 	int i;
217 
218 	val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
219 		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW |
220 		MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
221 
222 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
223 
224 	wmb();
225 
226 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
227 		udelay(2);
228 		val = AT_READ_REG(hw, REG_MDIO_CTRL);
229 		if (!(val & (MDIO_START | MDIO_BUSY)))
230 			break;
231 		wmb();
232 	}
233 	if (!(val & (MDIO_START | MDIO_BUSY))) {
234 		*phy_data = (u16)val;
235 		return 0;
236 	}
237 
238 	return AT_ERR_PHY;
239 }
240 
241 /*
242  * Writes a value to a PHY register
243  * hw - Struct containing variables accessed by shared code
244  * reg_addr - address of the PHY register to write
245  * data - data to write to the PHY
246  */
atl1e_write_phy_reg(struct atl1e_hw * hw,u32 reg_addr,u16 phy_data)247 int atl1e_write_phy_reg(struct atl1e_hw *hw, u32 reg_addr, u16 phy_data)
248 {
249 	int i;
250 	u32 val;
251 
252 	val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
253 	       (reg_addr&MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
254 	       MDIO_SUP_PREAMBLE |
255 	       MDIO_START |
256 	       MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
257 
258 	AT_WRITE_REG(hw, REG_MDIO_CTRL, val);
259 	wmb();
260 
261 	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
262 		udelay(2);
263 		val = AT_READ_REG(hw, REG_MDIO_CTRL);
264 		if (!(val & (MDIO_START | MDIO_BUSY)))
265 			break;
266 		wmb();
267 	}
268 
269 	if (!(val & (MDIO_START | MDIO_BUSY)))
270 		return 0;
271 
272 	return AT_ERR_PHY;
273 }
274 
275 /*
276  * atl1e_init_pcie - init PCIE module
277  */
atl1e_init_pcie(struct atl1e_hw * hw)278 static void atl1e_init_pcie(struct atl1e_hw *hw)
279 {
280 	u32 value;
281 	/* comment 2lines below to save more power when sususpend
282 	   value = LTSSM_TEST_MODE_DEF;
283 	   AT_WRITE_REG(hw, REG_LTSSM_TEST_MODE, value);
284 	 */
285 
286 	/* pcie flow control mode change */
287 	value = AT_READ_REG(hw, 0x1008);
288 	value |= 0x8000;
289 	AT_WRITE_REG(hw, 0x1008, value);
290 }
291 /*
292  * Configures PHY autoneg and flow control advertisement settings
293  *
294  * hw - Struct containing variables accessed by shared code
295  */
atl1e_phy_setup_autoneg_adv(struct atl1e_hw * hw)296 static int atl1e_phy_setup_autoneg_adv(struct atl1e_hw *hw)
297 {
298 	s32 ret_val;
299 	u16 mii_autoneg_adv_reg;
300 	u16 mii_1000t_ctrl_reg;
301 
302 	if (0 != hw->mii_autoneg_adv_reg)
303 		return 0;
304 	/* Read the MII Auto-Neg Advertisement Register (Address 4/9). */
305 	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
306 	mii_1000t_ctrl_reg  = MII_AT001_CR_1000T_DEFAULT_CAP_MASK;
307 
308 	/*
309 	 * Need to parse autoneg_advertised  and set up
310 	 * the appropriate PHY registers.  First we will parse for
311 	 * autoneg_advertised software override.  Since we can advertise
312 	 * a plethora of combinations, we need to check each bit
313 	 * individually.
314 	 */
315 
316 	/*
317 	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
318 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
319 	 * the  1000Base-T control Register (Address 9).
320 	 */
321 	mii_autoneg_adv_reg &= ~ADVERTISE_ALL;
322 	mii_1000t_ctrl_reg  &= ~MII_AT001_CR_1000T_SPEED_MASK;
323 
324 	/*
325 	 * Need to parse MediaType and setup the
326 	 * appropriate PHY registers.
327 	 */
328 	switch (hw->media_type) {
329 	case MEDIA_TYPE_AUTO_SENSOR:
330 		mii_autoneg_adv_reg |= ADVERTISE_ALL;
331 		hw->autoneg_advertised = ADVERTISE_ALL;
332 		if (hw->nic_type == athr_l1e) {
333 			mii_1000t_ctrl_reg |= ADVERTISE_1000FULL;
334 			hw->autoneg_advertised |= ADVERTISE_1000_FULL;
335 		}
336 		break;
337 
338 	case MEDIA_TYPE_100M_FULL:
339 		mii_autoneg_adv_reg   |= ADVERTISE_100FULL;
340 		hw->autoneg_advertised = ADVERTISE_100_FULL;
341 		break;
342 
343 	case MEDIA_TYPE_100M_HALF:
344 		mii_autoneg_adv_reg   |= ADVERTISE_100_HALF;
345 		hw->autoneg_advertised = ADVERTISE_100_HALF;
346 		break;
347 
348 	case MEDIA_TYPE_10M_FULL:
349 		mii_autoneg_adv_reg   |= ADVERTISE_10_FULL;
350 		hw->autoneg_advertised = ADVERTISE_10_FULL;
351 		break;
352 
353 	default:
354 		mii_autoneg_adv_reg   |= ADVERTISE_10_HALF;
355 		hw->autoneg_advertised = ADVERTISE_10_HALF;
356 		break;
357 	}
358 
359 	/* flow control fixed to enable all */
360 	mii_autoneg_adv_reg |= (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP);
361 
362 	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
363 	hw->mii_1000t_ctrl_reg  = mii_1000t_ctrl_reg;
364 
365 	ret_val = atl1e_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
366 	if (ret_val)
367 		return ret_val;
368 
369 	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
370 		ret_val = atl1e_write_phy_reg(hw, MII_CTRL1000,
371 					   mii_1000t_ctrl_reg);
372 		if (ret_val)
373 			return ret_val;
374 	}
375 
376 	return 0;
377 }
378 
379 
380 /*
381  * Resets the PHY and make all config validate
382  *
383  * hw - Struct containing variables accessed by shared code
384  *
385  * Sets bit 15 and 12 of the MII control regiser (for F001 bug)
386  */
atl1e_phy_commit(struct atl1e_hw * hw)387 int atl1e_phy_commit(struct atl1e_hw *hw)
388 {
389 	struct atl1e_adapter *adapter = hw->adapter;
390 	int ret_val;
391 	u16 phy_data;
392 
393 	phy_data = BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART;
394 
395 	ret_val = atl1e_write_phy_reg(hw, MII_BMCR, phy_data);
396 	if (ret_val) {
397 		u32 val;
398 		int i;
399 		/**************************************
400 		 * pcie serdes link may be down !
401 		 **************************************/
402 		for (i = 0; i < 25; i++) {
403 			msleep(1);
404 			val = AT_READ_REG(hw, REG_MDIO_CTRL);
405 			if (!(val & (MDIO_START | MDIO_BUSY)))
406 				break;
407 		}
408 
409 		if (0 != (val & (MDIO_START | MDIO_BUSY))) {
410 			netdev_err(adapter->netdev,
411 				   "pcie linkdown at least for 25ms\n");
412 			return ret_val;
413 		}
414 
415 		netdev_err(adapter->netdev, "pcie linkup after %d ms\n", i);
416 	}
417 	return 0;
418 }
419 
atl1e_phy_init(struct atl1e_hw * hw)420 int atl1e_phy_init(struct atl1e_hw *hw)
421 {
422 	struct atl1e_adapter *adapter = hw->adapter;
423 	s32 ret_val;
424 	u16 phy_val;
425 
426 	if (hw->phy_configured) {
427 		if (hw->re_autoneg) {
428 			hw->re_autoneg = false;
429 			return atl1e_restart_autoneg(hw);
430 		}
431 		return 0;
432 	}
433 
434 	/* RESET GPHY Core */
435 	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT);
436 	msleep(2);
437 	AT_WRITE_REGW(hw, REG_GPHY_CTRL, GPHY_CTRL_DEFAULT |
438 		      GPHY_CTRL_EXT_RESET);
439 	msleep(2);
440 
441 	/* patches */
442 	/* p1. eable hibernation mode */
443 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0xB);
444 	if (ret_val)
445 		return ret_val;
446 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0xBC00);
447 	if (ret_val)
448 		return ret_val;
449 	/* p2. set Class A/B for all modes */
450 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0);
451 	if (ret_val)
452 		return ret_val;
453 	phy_val = 0x02ef;
454 	/* remove Class AB */
455 	/* phy_val = hw->emi_ca ? 0x02ef : 0x02df; */
456 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, phy_val);
457 	if (ret_val)
458 		return ret_val;
459 	/* p3. 10B ??? */
460 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x12);
461 	if (ret_val)
462 		return ret_val;
463 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x4C04);
464 	if (ret_val)
465 		return ret_val;
466 	/* p4. 1000T power */
467 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x4);
468 	if (ret_val)
469 		return ret_val;
470 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x8BBB);
471 	if (ret_val)
472 		return ret_val;
473 
474 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_ADDR, 0x5);
475 	if (ret_val)
476 		return ret_val;
477 	ret_val = atl1e_write_phy_reg(hw, MII_DBG_DATA, 0x2C46);
478 	if (ret_val)
479 		return ret_val;
480 
481 	msleep(1);
482 
483 	/*Enable PHY LinkChange Interrupt */
484 	ret_val = atl1e_write_phy_reg(hw, MII_INT_CTRL, 0xC00);
485 	if (ret_val) {
486 		netdev_err(adapter->netdev,
487 			   "Error enable PHY linkChange Interrupt\n");
488 		return ret_val;
489 	}
490 	/* setup AutoNeg parameters */
491 	ret_val = atl1e_phy_setup_autoneg_adv(hw);
492 	if (ret_val) {
493 		netdev_err(adapter->netdev,
494 			   "Error Setting up Auto-Negotiation\n");
495 		return ret_val;
496 	}
497 	/* SW.Reset & En-Auto-Neg to restart Auto-Neg*/
498 	netdev_dbg(adapter->netdev, "Restarting Auto-Negotiation\n");
499 	ret_val = atl1e_phy_commit(hw);
500 	if (ret_val) {
501 		netdev_err(adapter->netdev, "Error resetting the phy\n");
502 		return ret_val;
503 	}
504 
505 	hw->phy_configured = true;
506 
507 	return 0;
508 }
509 
510 /*
511  * Reset the transmit and receive units; mask and clear all interrupts.
512  * hw - Struct containing variables accessed by shared code
513  * return : 0  or  idle status (if error)
514  */
atl1e_reset_hw(struct atl1e_hw * hw)515 int atl1e_reset_hw(struct atl1e_hw *hw)
516 {
517 	struct atl1e_adapter *adapter = hw->adapter;
518 	struct pci_dev *pdev = adapter->pdev;
519 
520 	u32 idle_status_data = 0;
521 	u16 pci_cfg_cmd_word = 0;
522 	int timeout = 0;
523 
524 	/* Workaround for PCI problem when BIOS sets MMRBC incorrectly. */
525 	pci_read_config_word(pdev, PCI_REG_COMMAND, &pci_cfg_cmd_word);
526 	if ((pci_cfg_cmd_word & (CMD_IO_SPACE |
527 				CMD_MEMORY_SPACE | CMD_BUS_MASTER))
528 			!= (CMD_IO_SPACE | CMD_MEMORY_SPACE | CMD_BUS_MASTER)) {
529 		pci_cfg_cmd_word |= (CMD_IO_SPACE |
530 				     CMD_MEMORY_SPACE | CMD_BUS_MASTER);
531 		pci_write_config_word(pdev, PCI_REG_COMMAND, pci_cfg_cmd_word);
532 	}
533 
534 	/*
535 	 * Issue Soft Reset to the MAC.  This will reset the chip's
536 	 * transmit, receive, DMA.  It will not effect
537 	 * the current PCI configuration.  The global reset bit is self-
538 	 * clearing, and should clear within a microsecond.
539 	 */
540 	AT_WRITE_REG(hw, REG_MASTER_CTRL,
541 			MASTER_CTRL_LED_MODE | MASTER_CTRL_SOFT_RST);
542 	wmb();
543 	msleep(1);
544 
545 	/* Wait at least 10ms for All module to be Idle */
546 	for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) {
547 		idle_status_data = AT_READ_REG(hw, REG_IDLE_STATUS);
548 		if (idle_status_data == 0)
549 			break;
550 		msleep(1);
551 		cpu_relax();
552 	}
553 
554 	if (timeout >= AT_HW_MAX_IDLE_DELAY) {
555 		netdev_err(adapter->netdev,
556 			   "MAC state machine can't be idle since disabled for 10ms second\n");
557 		return AT_ERR_TIMEOUT;
558 	}
559 
560 	return 0;
561 }
562 
563 
564 /*
565  * Performs basic configuration of the adapter.
566  *
567  * hw - Struct containing variables accessed by shared code
568  * Assumes that the controller has previously been reset and is in a
569  * post-reset uninitialized state. Initializes multicast table,
570  * and  Calls routines to setup link
571  * Leaves the transmit and receive units disabled and uninitialized.
572  */
atl1e_init_hw(struct atl1e_hw * hw)573 int atl1e_init_hw(struct atl1e_hw *hw)
574 {
575 	s32 ret_val = 0;
576 
577 	atl1e_init_pcie(hw);
578 
579 	/* Zero out the Multicast HASH table */
580 	/* clear the old settings from the multicast hash table */
581 	AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0);
582 	AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0);
583 
584 	ret_val = atl1e_phy_init(hw);
585 
586 	return ret_val;
587 }
588 
589 /*
590  * Detects the current speed and duplex settings of the hardware.
591  *
592  * hw - Struct containing variables accessed by shared code
593  * speed - Speed of the connection
594  * duplex - Duplex setting of the connection
595  */
atl1e_get_speed_and_duplex(struct atl1e_hw * hw,u16 * speed,u16 * duplex)596 int atl1e_get_speed_and_duplex(struct atl1e_hw *hw, u16 *speed, u16 *duplex)
597 {
598 	int err;
599 	u16 phy_data;
600 
601 	/* Read   PHY Specific Status Register (17) */
602 	err = atl1e_read_phy_reg(hw, MII_AT001_PSSR, &phy_data);
603 	if (err)
604 		return err;
605 
606 	if (!(phy_data & MII_AT001_PSSR_SPD_DPLX_RESOLVED))
607 		return AT_ERR_PHY_RES;
608 
609 	switch (phy_data & MII_AT001_PSSR_SPEED) {
610 	case MII_AT001_PSSR_1000MBS:
611 		*speed = SPEED_1000;
612 		break;
613 	case MII_AT001_PSSR_100MBS:
614 		*speed = SPEED_100;
615 		break;
616 	case MII_AT001_PSSR_10MBS:
617 		*speed = SPEED_10;
618 		break;
619 	default:
620 		return AT_ERR_PHY_SPEED;
621 		break;
622 	}
623 
624 	if (phy_data & MII_AT001_PSSR_DPLX)
625 		*duplex = FULL_DUPLEX;
626 	else
627 		*duplex = HALF_DUPLEX;
628 
629 	return 0;
630 }
631 
atl1e_restart_autoneg(struct atl1e_hw * hw)632 int atl1e_restart_autoneg(struct atl1e_hw *hw)
633 {
634 	int err = 0;
635 
636 	err = atl1e_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
637 	if (err)
638 		return err;
639 
640 	if (hw->nic_type == athr_l1e || hw->nic_type == athr_l2e_revA) {
641 		err = atl1e_write_phy_reg(hw, MII_CTRL1000,
642 				       hw->mii_1000t_ctrl_reg);
643 		if (err)
644 			return err;
645 	}
646 
647 	err = atl1e_write_phy_reg(hw, MII_BMCR,
648 			BMCR_RESET | BMCR_ANENABLE | BMCR_ANRESTART);
649 	return err;
650 }
651 
652