• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7  *
8  * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9  * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10  *
11  * References:
12  *  o IOC3 ASIC specification 4.51, 1996-04-18
13  *  o IEEE 802.3 specification, 2000 edition
14  *  o DP38840A Specification, National Semiconductor, March 1997
15  *
16  * To do:
17  *
18  *  o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19  *  o Handle allocation failures in ioc3_init_rings().
20  *  o Use prefetching for large packets.  What is a good lower limit for
21  *    prefetching?
22  *  o We're probably allocating a bit too much memory.
23  *  o Use hardware checksums.
24  *  o Convert to using a IOC3 meta driver.
25  *  o Which PHYs might possibly be attached to the IOC3 in real live,
26  *    which workarounds are required for them?  Do we ever have Lucent's?
27  *  o For the 2.5 branch kill the mii-tool ioctls.
28  */
29 
30 #define IOC3_NAME	"ioc3-eth"
31 #define IOC3_VERSION	"2.6.3-4"
32 
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/errno.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/crc32.h>
41 #include <linux/mii.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/gfp.h>
48 
49 #ifdef CONFIG_SERIAL_8250
50 #include <linux/serial_core.h>
51 #include <linux/serial_8250.h>
52 #include <linux/serial_reg.h>
53 #endif
54 
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/ethtool.h>
58 #include <linux/skbuff.h>
59 #include <net/ip.h>
60 
61 #include <asm/byteorder.h>
62 #include <asm/io.h>
63 #include <asm/pgtable.h>
64 #include <asm/uaccess.h>
65 #include <asm/sn/types.h>
66 #include <asm/sn/ioc3.h>
67 #include <asm/pci/bridge.h>
68 
69 /*
70  * 64 RX buffers.  This is tunable in the range of 16 <= x < 512.  The
71  * value must be a power of two.
72  */
73 #define RX_BUFFS 64
74 
75 #define ETCSR_FD	((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
76 #define ETCSR_HD	((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
77 
78 /* Private per NIC data of the driver.  */
79 struct ioc3_private {
80 	struct ioc3 *regs;
81 	unsigned long *rxr;		/* pointer to receiver ring */
82 	struct ioc3_etxd *txr;
83 	struct sk_buff *rx_skbs[512];
84 	struct sk_buff *tx_skbs[128];
85 	int rx_ci;			/* RX consumer index */
86 	int rx_pi;			/* RX producer index */
87 	int tx_ci;			/* TX consumer index */
88 	int tx_pi;			/* TX producer index */
89 	int txqlen;
90 	u32 emcr, ehar_h, ehar_l;
91 	spinlock_t ioc3_lock;
92 	struct mii_if_info mii;
93 
94 	struct pci_dev *pdev;
95 
96 	/* Members used by autonegotiation  */
97 	struct timer_list ioc3_timer;
98 };
99 
priv_netdev(struct ioc3_private * dev)100 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
101 {
102 	return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
103 }
104 
105 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
106 static void ioc3_set_multicast_list(struct net_device *dev);
107 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void ioc3_timeout(struct net_device *dev);
109 static inline unsigned int ioc3_hash(const unsigned char *addr);
110 static inline void ioc3_stop(struct ioc3_private *ip);
111 static void ioc3_init(struct net_device *dev);
112 
113 static const char ioc3_str[] = "IOC3 Ethernet";
114 static const struct ethtool_ops ioc3_ethtool_ops;
115 
116 /* We use this to acquire receive skb's that we can DMA directly into. */
117 
118 #define IOC3_CACHELINE	128UL
119 
aligned_rx_skb_addr(unsigned long addr)120 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
121 {
122 	return (~addr + 1) & (IOC3_CACHELINE - 1UL);
123 }
124 
ioc3_alloc_skb(unsigned long length,unsigned int gfp_mask)125 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
126 	unsigned int gfp_mask)
127 {
128 	struct sk_buff *skb;
129 
130 	skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
131 	if (likely(skb)) {
132 		int offset = aligned_rx_skb_addr((unsigned long) skb->data);
133 		if (offset)
134 			skb_reserve(skb, offset);
135 	}
136 
137 	return skb;
138 }
139 
ioc3_map(void * ptr,unsigned long vdev)140 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
141 {
142 #ifdef CONFIG_SGI_IP27
143 	vdev <<= 57;   /* Shift to PCI64_ATTR_VIRTUAL */
144 
145 	return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
146 	       ((unsigned long)ptr & TO_PHYS_MASK);
147 #else
148 	return virt_to_bus(ptr);
149 #endif
150 }
151 
152 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
153    1644 while it's actually 1664.  This one was nasty to track down ...  */
154 #define RX_OFFSET		10
155 #define RX_BUF_ALLOC_SIZE	(1664 + RX_OFFSET + IOC3_CACHELINE)
156 
157 /* DMA barrier to separate cached and uncached accesses.  */
158 #define BARRIER()							\
159 	__asm__("sync" ::: "memory")
160 
161 
162 #define IOC3_SIZE 0x100000
163 
164 /*
165  * IOC3 is a big endian device
166  *
167  * Unorthodox but makes the users of these macros more readable - the pointer
168  * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
169  * in the environment.
170  */
171 #define ioc3_r_mcr()		be32_to_cpu(ioc3->mcr)
172 #define ioc3_w_mcr(v)		do { ioc3->mcr = cpu_to_be32(v); } while (0)
173 #define ioc3_w_gpcr_s(v)	do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
174 #define ioc3_r_emcr()		be32_to_cpu(ioc3->emcr)
175 #define ioc3_w_emcr(v)		do { ioc3->emcr = cpu_to_be32(v); } while (0)
176 #define ioc3_r_eisr()		be32_to_cpu(ioc3->eisr)
177 #define ioc3_w_eisr(v)		do { ioc3->eisr = cpu_to_be32(v); } while (0)
178 #define ioc3_r_eier()		be32_to_cpu(ioc3->eier)
179 #define ioc3_w_eier(v)		do { ioc3->eier = cpu_to_be32(v); } while (0)
180 #define ioc3_r_ercsr()		be32_to_cpu(ioc3->ercsr)
181 #define ioc3_w_ercsr(v)		do { ioc3->ercsr = cpu_to_be32(v); } while (0)
182 #define ioc3_r_erbr_h()		be32_to_cpu(ioc3->erbr_h)
183 #define ioc3_w_erbr_h(v)	do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
184 #define ioc3_r_erbr_l()		be32_to_cpu(ioc3->erbr_l)
185 #define ioc3_w_erbr_l(v)	do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
186 #define ioc3_r_erbar()		be32_to_cpu(ioc3->erbar)
187 #define ioc3_w_erbar(v)		do { ioc3->erbar = cpu_to_be32(v); } while (0)
188 #define ioc3_r_ercir()		be32_to_cpu(ioc3->ercir)
189 #define ioc3_w_ercir(v)		do { ioc3->ercir = cpu_to_be32(v); } while (0)
190 #define ioc3_r_erpir()		be32_to_cpu(ioc3->erpir)
191 #define ioc3_w_erpir(v)		do { ioc3->erpir = cpu_to_be32(v); } while (0)
192 #define ioc3_r_ertr()		be32_to_cpu(ioc3->ertr)
193 #define ioc3_w_ertr(v)		do { ioc3->ertr = cpu_to_be32(v); } while (0)
194 #define ioc3_r_etcsr()		be32_to_cpu(ioc3->etcsr)
195 #define ioc3_w_etcsr(v)		do { ioc3->etcsr = cpu_to_be32(v); } while (0)
196 #define ioc3_r_ersr()		be32_to_cpu(ioc3->ersr)
197 #define ioc3_w_ersr(v)		do { ioc3->ersr = cpu_to_be32(v); } while (0)
198 #define ioc3_r_etcdc()		be32_to_cpu(ioc3->etcdc)
199 #define ioc3_w_etcdc(v)		do { ioc3->etcdc = cpu_to_be32(v); } while (0)
200 #define ioc3_r_ebir()		be32_to_cpu(ioc3->ebir)
201 #define ioc3_w_ebir(v)		do { ioc3->ebir = cpu_to_be32(v); } while (0)
202 #define ioc3_r_etbr_h()		be32_to_cpu(ioc3->etbr_h)
203 #define ioc3_w_etbr_h(v)	do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
204 #define ioc3_r_etbr_l()		be32_to_cpu(ioc3->etbr_l)
205 #define ioc3_w_etbr_l(v)	do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
206 #define ioc3_r_etcir()		be32_to_cpu(ioc3->etcir)
207 #define ioc3_w_etcir(v)		do { ioc3->etcir = cpu_to_be32(v); } while (0)
208 #define ioc3_r_etpir()		be32_to_cpu(ioc3->etpir)
209 #define ioc3_w_etpir(v)		do { ioc3->etpir = cpu_to_be32(v); } while (0)
210 #define ioc3_r_emar_h()		be32_to_cpu(ioc3->emar_h)
211 #define ioc3_w_emar_h(v)	do { ioc3->emar_h = cpu_to_be32(v); } while (0)
212 #define ioc3_r_emar_l()		be32_to_cpu(ioc3->emar_l)
213 #define ioc3_w_emar_l(v)	do { ioc3->emar_l = cpu_to_be32(v); } while (0)
214 #define ioc3_r_ehar_h()		be32_to_cpu(ioc3->ehar_h)
215 #define ioc3_w_ehar_h(v)	do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
216 #define ioc3_r_ehar_l()		be32_to_cpu(ioc3->ehar_l)
217 #define ioc3_w_ehar_l(v)	do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
218 #define ioc3_r_micr()		be32_to_cpu(ioc3->micr)
219 #define ioc3_w_micr(v)		do { ioc3->micr = cpu_to_be32(v); } while (0)
220 #define ioc3_r_midr_r()		be32_to_cpu(ioc3->midr_r)
221 #define ioc3_w_midr_r(v)	do { ioc3->midr_r = cpu_to_be32(v); } while (0)
222 #define ioc3_r_midr_w()		be32_to_cpu(ioc3->midr_w)
223 #define ioc3_w_midr_w(v)	do { ioc3->midr_w = cpu_to_be32(v); } while (0)
224 
mcr_pack(u32 pulse,u32 sample)225 static inline u32 mcr_pack(u32 pulse, u32 sample)
226 {
227 	return (pulse << 10) | (sample << 2);
228 }
229 
nic_wait(struct ioc3 * ioc3)230 static int nic_wait(struct ioc3 *ioc3)
231 {
232 	u32 mcr;
233 
234         do {
235                 mcr = ioc3_r_mcr();
236         } while (!(mcr & 2));
237 
238         return mcr & 1;
239 }
240 
nic_reset(struct ioc3 * ioc3)241 static int nic_reset(struct ioc3 *ioc3)
242 {
243         int presence;
244 
245 	ioc3_w_mcr(mcr_pack(500, 65));
246 	presence = nic_wait(ioc3);
247 
248 	ioc3_w_mcr(mcr_pack(0, 500));
249 	nic_wait(ioc3);
250 
251         return presence;
252 }
253 
nic_read_bit(struct ioc3 * ioc3)254 static inline int nic_read_bit(struct ioc3 *ioc3)
255 {
256 	int result;
257 
258 	ioc3_w_mcr(mcr_pack(6, 13));
259 	result = nic_wait(ioc3);
260 	ioc3_w_mcr(mcr_pack(0, 100));
261 	nic_wait(ioc3);
262 
263 	return result;
264 }
265 
nic_write_bit(struct ioc3 * ioc3,int bit)266 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
267 {
268 	if (bit)
269 		ioc3_w_mcr(mcr_pack(6, 110));
270 	else
271 		ioc3_w_mcr(mcr_pack(80, 30));
272 
273 	nic_wait(ioc3);
274 }
275 
276 /*
277  * Read a byte from an iButton device
278  */
nic_read_byte(struct ioc3 * ioc3)279 static u32 nic_read_byte(struct ioc3 *ioc3)
280 {
281 	u32 result = 0;
282 	int i;
283 
284 	for (i = 0; i < 8; i++)
285 		result = (result >> 1) | (nic_read_bit(ioc3) << 7);
286 
287 	return result;
288 }
289 
290 /*
291  * Write a byte to an iButton device
292  */
nic_write_byte(struct ioc3 * ioc3,int byte)293 static void nic_write_byte(struct ioc3 *ioc3, int byte)
294 {
295 	int i, bit;
296 
297 	for (i = 8; i; i--) {
298 		bit = byte & 1;
299 		byte >>= 1;
300 
301 		nic_write_bit(ioc3, bit);
302 	}
303 }
304 
nic_find(struct ioc3 * ioc3,int * last)305 static u64 nic_find(struct ioc3 *ioc3, int *last)
306 {
307 	int a, b, index, disc;
308 	u64 address = 0;
309 
310 	nic_reset(ioc3);
311 	/* Search ROM.  */
312 	nic_write_byte(ioc3, 0xf0);
313 
314 	/* Algorithm from ``Book of iButton Standards''.  */
315 	for (index = 0, disc = 0; index < 64; index++) {
316 		a = nic_read_bit(ioc3);
317 		b = nic_read_bit(ioc3);
318 
319 		if (a && b) {
320 			printk("NIC search failed (not fatal).\n");
321 			*last = 0;
322 			return 0;
323 		}
324 
325 		if (!a && !b) {
326 			if (index == *last) {
327 				address |= 1UL << index;
328 			} else if (index > *last) {
329 				address &= ~(1UL << index);
330 				disc = index;
331 			} else if ((address & (1UL << index)) == 0)
332 				disc = index;
333 			nic_write_bit(ioc3, address & (1UL << index));
334 			continue;
335 		} else {
336 			if (a)
337 				address |= 1UL << index;
338 			else
339 				address &= ~(1UL << index);
340 			nic_write_bit(ioc3, a);
341 			continue;
342 		}
343 	}
344 
345 	*last = disc;
346 
347 	return address;
348 }
349 
nic_init(struct ioc3 * ioc3)350 static int nic_init(struct ioc3 *ioc3)
351 {
352 	const char *unknown = "unknown";
353 	const char *type = unknown;
354 	u8 crc;
355 	u8 serial[6];
356 	int save = 0, i;
357 
358 	while (1) {
359 		u64 reg;
360 		reg = nic_find(ioc3, &save);
361 
362 		switch (reg & 0xff) {
363 		case 0x91:
364 			type = "DS1981U";
365 			break;
366 		default:
367 			if (save == 0) {
368 				/* Let the caller try again.  */
369 				return -1;
370 			}
371 			continue;
372 		}
373 
374 		nic_reset(ioc3);
375 
376 		/* Match ROM.  */
377 		nic_write_byte(ioc3, 0x55);
378 		for (i = 0; i < 8; i++)
379 			nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
380 
381 		reg >>= 8; /* Shift out type.  */
382 		for (i = 0; i < 6; i++) {
383 			serial[i] = reg & 0xff;
384 			reg >>= 8;
385 		}
386 		crc = reg & 0xff;
387 		break;
388 	}
389 
390 	printk("Found %s NIC", type);
391 	if (type != unknown)
392 		printk (" registration number %pM, CRC %02x", serial, crc);
393 	printk(".\n");
394 
395 	return 0;
396 }
397 
398 /*
399  * Read the NIC (Number-In-a-Can) device used to store the MAC address on
400  * SN0 / SN00 nodeboards and PCI cards.
401  */
ioc3_get_eaddr_nic(struct ioc3_private * ip)402 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
403 {
404 	struct ioc3 *ioc3 = ip->regs;
405 	u8 nic[14];
406 	int tries = 2; /* There may be some problem with the battery?  */
407 	int i;
408 
409 	ioc3_w_gpcr_s(1 << 21);
410 
411 	while (tries--) {
412 		if (!nic_init(ioc3))
413 			break;
414 		udelay(500);
415 	}
416 
417 	if (tries < 0) {
418 		printk("Failed to read MAC address\n");
419 		return;
420 	}
421 
422 	/* Read Memory.  */
423 	nic_write_byte(ioc3, 0xf0);
424 	nic_write_byte(ioc3, 0x00);
425 	nic_write_byte(ioc3, 0x00);
426 
427 	for (i = 13; i >= 0; i--)
428 		nic[i] = nic_read_byte(ioc3);
429 
430 	for (i = 2; i < 8; i++)
431 		priv_netdev(ip)->dev_addr[i - 2] = nic[i];
432 }
433 
434 /*
435  * Ok, this is hosed by design.  It's necessary to know what machine the
436  * NIC is in in order to know how to read the NIC address.  We also have
437  * to know if it's a PCI card or a NIC in on the node board ...
438  */
ioc3_get_eaddr(struct ioc3_private * ip)439 static void ioc3_get_eaddr(struct ioc3_private *ip)
440 {
441 	ioc3_get_eaddr_nic(ip);
442 
443 	printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
444 }
445 
__ioc3_set_mac_address(struct net_device * dev)446 static void __ioc3_set_mac_address(struct net_device *dev)
447 {
448 	struct ioc3_private *ip = netdev_priv(dev);
449 	struct ioc3 *ioc3 = ip->regs;
450 
451 	ioc3_w_emar_h((dev->dev_addr[5] <<  8) | dev->dev_addr[4]);
452 	ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
453 	              (dev->dev_addr[1] <<  8) | dev->dev_addr[0]);
454 }
455 
ioc3_set_mac_address(struct net_device * dev,void * addr)456 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
457 {
458 	struct ioc3_private *ip = netdev_priv(dev);
459 	struct sockaddr *sa = addr;
460 
461 	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
462 
463 	spin_lock_irq(&ip->ioc3_lock);
464 	__ioc3_set_mac_address(dev);
465 	spin_unlock_irq(&ip->ioc3_lock);
466 
467 	return 0;
468 }
469 
470 /*
471  * Caller must hold the ioc3_lock ever for MII readers.  This is also
472  * used to protect the transmitter side but it's low contention.
473  */
ioc3_mdio_read(struct net_device * dev,int phy,int reg)474 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
475 {
476 	struct ioc3_private *ip = netdev_priv(dev);
477 	struct ioc3 *ioc3 = ip->regs;
478 
479 	while (ioc3_r_micr() & MICR_BUSY);
480 	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
481 	while (ioc3_r_micr() & MICR_BUSY);
482 
483 	return ioc3_r_midr_r() & MIDR_DATA_MASK;
484 }
485 
ioc3_mdio_write(struct net_device * dev,int phy,int reg,int data)486 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
487 {
488 	struct ioc3_private *ip = netdev_priv(dev);
489 	struct ioc3 *ioc3 = ip->regs;
490 
491 	while (ioc3_r_micr() & MICR_BUSY);
492 	ioc3_w_midr_w(data);
493 	ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
494 	while (ioc3_r_micr() & MICR_BUSY);
495 }
496 
497 static int ioc3_mii_init(struct ioc3_private *ip);
498 
ioc3_get_stats(struct net_device * dev)499 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
500 {
501 	struct ioc3_private *ip = netdev_priv(dev);
502 	struct ioc3 *ioc3 = ip->regs;
503 
504 	dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
505 	return &dev->stats;
506 }
507 
ioc3_tcpudp_checksum(struct sk_buff * skb,uint32_t hwsum,int len)508 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
509 {
510 	struct ethhdr *eh = eth_hdr(skb);
511 	uint32_t csum, ehsum;
512 	unsigned int proto;
513 	struct iphdr *ih;
514 	uint16_t *ew;
515 	unsigned char *cp;
516 
517 	/*
518 	 * Did hardware handle the checksum at all?  The cases we can handle
519 	 * are:
520 	 *
521 	 * - TCP and UDP checksums of IPv4 only.
522 	 * - IPv6 would be doable but we keep that for later ...
523 	 * - Only unfragmented packets.  Did somebody already tell you
524 	 *   fragmentation is evil?
525 	 * - don't care about packet size.  Worst case when processing a
526 	 *   malformed packet we'll try to access the packet at ip header +
527 	 *   64 bytes which is still inside the skb.  Even in the unlikely
528 	 *   case where the checksum is right the higher layers will still
529 	 *   drop the packet as appropriate.
530 	 */
531 	if (eh->h_proto != htons(ETH_P_IP))
532 		return;
533 
534 	ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
535 	if (ip_is_fragment(ih))
536 		return;
537 
538 	proto = ih->protocol;
539 	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
540 		return;
541 
542 	/* Same as tx - compute csum of pseudo header  */
543 	csum = hwsum +
544 	       (ih->tot_len - (ih->ihl << 2)) +
545 	       htons((uint16_t)ih->protocol) +
546 	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
547 	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
548 
549 	/* Sum up ethernet dest addr, src addr and protocol  */
550 	ew = (uint16_t *) eh;
551 	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
552 
553 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
554 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
555 
556 	csum += 0xffff ^ ehsum;
557 
558 	/* In the next step we also subtract the 1's complement
559 	   checksum of the trailing ethernet CRC.  */
560 	cp = (char *)eh + len;	/* points at trailing CRC */
561 	if (len & 1) {
562 		csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
563 		csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
564 	} else {
565 		csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
566 		csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
567 	}
568 
569 	csum = (csum & 0xffff) + (csum >> 16);
570 	csum = (csum & 0xffff) + (csum >> 16);
571 
572 	if (csum == 0xffff)
573 		skb->ip_summed = CHECKSUM_UNNECESSARY;
574 }
575 
ioc3_rx(struct net_device * dev)576 static inline void ioc3_rx(struct net_device *dev)
577 {
578 	struct ioc3_private *ip = netdev_priv(dev);
579 	struct sk_buff *skb, *new_skb;
580 	struct ioc3 *ioc3 = ip->regs;
581 	int rx_entry, n_entry, len;
582 	struct ioc3_erxbuf *rxb;
583 	unsigned long *rxr;
584 	u32 w0, err;
585 
586 	rxr = (unsigned long *) ip->rxr;		/* Ring base */
587 	rx_entry = ip->rx_ci;				/* RX consume index */
588 	n_entry = ip->rx_pi;
589 
590 	skb = ip->rx_skbs[rx_entry];
591 	rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
592 	w0 = be32_to_cpu(rxb->w0);
593 
594 	while (w0 & ERXBUF_V) {
595 		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
596 		if (err & ERXBUF_GOODPKT) {
597 			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
598 			skb_trim(skb, len);
599 			skb->protocol = eth_type_trans(skb, dev);
600 
601 			new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
602 			if (!new_skb) {
603 				/* Ouch, drop packet and just recycle packet
604 				   to keep the ring filled.  */
605 				dev->stats.rx_dropped++;
606 				new_skb = skb;
607 				goto next;
608 			}
609 
610 			if (likely(dev->features & NETIF_F_RXCSUM))
611 				ioc3_tcpudp_checksum(skb,
612 					w0 & ERXBUF_IPCKSUM_MASK, len);
613 
614 			netif_rx(skb);
615 
616 			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
617 
618 			/* Because we reserve afterwards. */
619 			skb_put(new_skb, (1664 + RX_OFFSET));
620 			rxb = (struct ioc3_erxbuf *) new_skb->data;
621 			skb_reserve(new_skb, RX_OFFSET);
622 
623 			dev->stats.rx_packets++;		/* Statistics */
624 			dev->stats.rx_bytes += len;
625 		} else {
626 			/* The frame is invalid and the skb never
627 			   reached the network layer so we can just
628 			   recycle it.  */
629 			new_skb = skb;
630 			dev->stats.rx_errors++;
631 		}
632 		if (err & ERXBUF_CRCERR)	/* Statistics */
633 			dev->stats.rx_crc_errors++;
634 		if (err & ERXBUF_FRAMERR)
635 			dev->stats.rx_frame_errors++;
636 next:
637 		ip->rx_skbs[n_entry] = new_skb;
638 		rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
639 		rxb->w0 = 0;				/* Clear valid flag */
640 		n_entry = (n_entry + 1) & 511;		/* Update erpir */
641 
642 		/* Now go on to the next ring entry.  */
643 		rx_entry = (rx_entry + 1) & 511;
644 		skb = ip->rx_skbs[rx_entry];
645 		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
646 		w0 = be32_to_cpu(rxb->w0);
647 	}
648 	ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
649 	ip->rx_pi = n_entry;
650 	ip->rx_ci = rx_entry;
651 }
652 
ioc3_tx(struct net_device * dev)653 static inline void ioc3_tx(struct net_device *dev)
654 {
655 	struct ioc3_private *ip = netdev_priv(dev);
656 	unsigned long packets, bytes;
657 	struct ioc3 *ioc3 = ip->regs;
658 	int tx_entry, o_entry;
659 	struct sk_buff *skb;
660 	u32 etcir;
661 
662 	spin_lock(&ip->ioc3_lock);
663 	etcir = ioc3_r_etcir();
664 
665 	tx_entry = (etcir >> 7) & 127;
666 	o_entry = ip->tx_ci;
667 	packets = 0;
668 	bytes = 0;
669 
670 	while (o_entry != tx_entry) {
671 		packets++;
672 		skb = ip->tx_skbs[o_entry];
673 		bytes += skb->len;
674 		dev_kfree_skb_irq(skb);
675 		ip->tx_skbs[o_entry] = NULL;
676 
677 		o_entry = (o_entry + 1) & 127;		/* Next */
678 
679 		etcir = ioc3_r_etcir();			/* More pkts sent?  */
680 		tx_entry = (etcir >> 7) & 127;
681 	}
682 
683 	dev->stats.tx_packets += packets;
684 	dev->stats.tx_bytes += bytes;
685 	ip->txqlen -= packets;
686 
687 	if (ip->txqlen < 128)
688 		netif_wake_queue(dev);
689 
690 	ip->tx_ci = o_entry;
691 	spin_unlock(&ip->ioc3_lock);
692 }
693 
694 /*
695  * Deal with fatal IOC3 errors.  This condition might be caused by a hard or
696  * software problems, so we should try to recover
697  * more gracefully if this ever happens.  In theory we might be flooded
698  * with such error interrupts if something really goes wrong, so we might
699  * also consider to take the interface down.
700  */
ioc3_error(struct net_device * dev,u32 eisr)701 static void ioc3_error(struct net_device *dev, u32 eisr)
702 {
703 	struct ioc3_private *ip = netdev_priv(dev);
704 	unsigned char *iface = dev->name;
705 
706 	spin_lock(&ip->ioc3_lock);
707 
708 	if (eisr & EISR_RXOFLO)
709 		printk(KERN_ERR "%s: RX overflow.\n", iface);
710 	if (eisr & EISR_RXBUFOFLO)
711 		printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
712 	if (eisr & EISR_RXMEMERR)
713 		printk(KERN_ERR "%s: RX PCI error.\n", iface);
714 	if (eisr & EISR_RXPARERR)
715 		printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
716 	if (eisr & EISR_TXBUFUFLO)
717 		printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
718 	if (eisr & EISR_TXMEMERR)
719 		printk(KERN_ERR "%s: TX PCI error.\n", iface);
720 
721 	ioc3_stop(ip);
722 	ioc3_init(dev);
723 	ioc3_mii_init(ip);
724 
725 	netif_wake_queue(dev);
726 
727 	spin_unlock(&ip->ioc3_lock);
728 }
729 
730 /* The interrupt handler does all of the Rx thread work and cleans up
731    after the Tx thread.  */
ioc3_interrupt(int irq,void * _dev)732 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
733 {
734 	struct net_device *dev = (struct net_device *)_dev;
735 	struct ioc3_private *ip = netdev_priv(dev);
736 	struct ioc3 *ioc3 = ip->regs;
737 	const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
738 	                    EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
739 	                    EISR_TXEXPLICIT | EISR_TXMEMERR;
740 	u32 eisr;
741 
742 	eisr = ioc3_r_eisr() & enabled;
743 
744 	ioc3_w_eisr(eisr);
745 	(void) ioc3_r_eisr();				/* Flush */
746 
747 	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
748 	            EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
749 		ioc3_error(dev, eisr);
750 	if (eisr & EISR_RXTIMERINT)
751 		ioc3_rx(dev);
752 	if (eisr & EISR_TXEXPLICIT)
753 		ioc3_tx(dev);
754 
755 	return IRQ_HANDLED;
756 }
757 
ioc3_setup_duplex(struct ioc3_private * ip)758 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
759 {
760 	struct ioc3 *ioc3 = ip->regs;
761 
762 	if (ip->mii.full_duplex) {
763 		ioc3_w_etcsr(ETCSR_FD);
764 		ip->emcr |= EMCR_DUPLEX;
765 	} else {
766 		ioc3_w_etcsr(ETCSR_HD);
767 		ip->emcr &= ~EMCR_DUPLEX;
768 	}
769 	ioc3_w_emcr(ip->emcr);
770 }
771 
ioc3_timer(unsigned long data)772 static void ioc3_timer(unsigned long data)
773 {
774 	struct ioc3_private *ip = (struct ioc3_private *) data;
775 
776 	/* Print the link status if it has changed */
777 	mii_check_media(&ip->mii, 1, 0);
778 	ioc3_setup_duplex(ip);
779 
780 	ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
781 	add_timer(&ip->ioc3_timer);
782 }
783 
784 /*
785  * Try to find a PHY.  There is no apparent relation between the MII addresses
786  * in the SGI documentation and what we find in reality, so we simply probe
787  * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
788  * onboard IOC3s has the special oddity that probing doesn't seem to find it
789  * yet the interface seems to work fine, so if probing fails we for now will
790  * simply default to PHY 31 instead of bailing out.
791  */
ioc3_mii_init(struct ioc3_private * ip)792 static int ioc3_mii_init(struct ioc3_private *ip)
793 {
794 	struct net_device *dev = priv_netdev(ip);
795 	int i, found = 0, res = 0;
796 	int ioc3_phy_workaround = 1;
797 	u16 word;
798 
799 	for (i = 0; i < 32; i++) {
800 		word = ioc3_mdio_read(dev, i, MII_PHYSID1);
801 
802 		if (word != 0xffff && word != 0x0000) {
803 			found = 1;
804 			break;			/* Found a PHY		*/
805 		}
806 	}
807 
808 	if (!found) {
809 		if (ioc3_phy_workaround)
810 			i = 31;
811 		else {
812 			ip->mii.phy_id = -1;
813 			res = -ENODEV;
814 			goto out;
815 		}
816 	}
817 
818 	ip->mii.phy_id = i;
819 
820 out:
821 	return res;
822 }
823 
ioc3_mii_start(struct ioc3_private * ip)824 static void ioc3_mii_start(struct ioc3_private *ip)
825 {
826 	ip->ioc3_timer.expires = jiffies + (12 * HZ)/10;  /* 1.2 sec. */
827 	ip->ioc3_timer.data = (unsigned long) ip;
828 	ip->ioc3_timer.function = ioc3_timer;
829 	add_timer(&ip->ioc3_timer);
830 }
831 
ioc3_clean_rx_ring(struct ioc3_private * ip)832 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
833 {
834 	struct sk_buff *skb;
835 	int i;
836 
837 	for (i = ip->rx_ci; i & 15; i++) {
838 		ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
839 		ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
840 	}
841 	ip->rx_pi &= 511;
842 	ip->rx_ci &= 511;
843 
844 	for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
845 		struct ioc3_erxbuf *rxb;
846 		skb = ip->rx_skbs[i];
847 		rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
848 		rxb->w0 = 0;
849 	}
850 }
851 
ioc3_clean_tx_ring(struct ioc3_private * ip)852 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
853 {
854 	struct sk_buff *skb;
855 	int i;
856 
857 	for (i=0; i < 128; i++) {
858 		skb = ip->tx_skbs[i];
859 		if (skb) {
860 			ip->tx_skbs[i] = NULL;
861 			dev_kfree_skb_any(skb);
862 		}
863 		ip->txr[i].cmd = 0;
864 	}
865 	ip->tx_pi = 0;
866 	ip->tx_ci = 0;
867 }
868 
ioc3_free_rings(struct ioc3_private * ip)869 static void ioc3_free_rings(struct ioc3_private *ip)
870 {
871 	struct sk_buff *skb;
872 	int rx_entry, n_entry;
873 
874 	if (ip->txr) {
875 		ioc3_clean_tx_ring(ip);
876 		free_pages((unsigned long)ip->txr, 2);
877 		ip->txr = NULL;
878 	}
879 
880 	if (ip->rxr) {
881 		n_entry = ip->rx_ci;
882 		rx_entry = ip->rx_pi;
883 
884 		while (n_entry != rx_entry) {
885 			skb = ip->rx_skbs[n_entry];
886 			if (skb)
887 				dev_kfree_skb_any(skb);
888 
889 			n_entry = (n_entry + 1) & 511;
890 		}
891 		free_page((unsigned long)ip->rxr);
892 		ip->rxr = NULL;
893 	}
894 }
895 
ioc3_alloc_rings(struct net_device * dev)896 static void ioc3_alloc_rings(struct net_device *dev)
897 {
898 	struct ioc3_private *ip = netdev_priv(dev);
899 	struct ioc3_erxbuf *rxb;
900 	unsigned long *rxr;
901 	int i;
902 
903 	if (ip->rxr == NULL) {
904 		/* Allocate and initialize rx ring.  4kb = 512 entries  */
905 		ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906 		rxr = (unsigned long *) ip->rxr;
907 		if (!rxr)
908 			printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
909 
910 		/* Now the rx buffers.  The RX ring may be larger but
911 		   we only allocate 16 buffers for now.  Need to tune
912 		   this for performance and memory later.  */
913 		for (i = 0; i < RX_BUFFS; i++) {
914 			struct sk_buff *skb;
915 
916 			skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
917 			if (!skb) {
918 				show_free_areas(0);
919 				continue;
920 			}
921 
922 			ip->rx_skbs[i] = skb;
923 
924 			/* Because we reserve afterwards. */
925 			skb_put(skb, (1664 + RX_OFFSET));
926 			rxb = (struct ioc3_erxbuf *) skb->data;
927 			rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
928 			skb_reserve(skb, RX_OFFSET);
929 		}
930 		ip->rx_ci = 0;
931 		ip->rx_pi = RX_BUFFS;
932 	}
933 
934 	if (ip->txr == NULL) {
935 		/* Allocate and initialize tx rings.  16kb = 128 bufs.  */
936 		ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
937 		if (!ip->txr)
938 			printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
939 		ip->tx_pi = 0;
940 		ip->tx_ci = 0;
941 	}
942 }
943 
ioc3_init_rings(struct net_device * dev)944 static void ioc3_init_rings(struct net_device *dev)
945 {
946 	struct ioc3_private *ip = netdev_priv(dev);
947 	struct ioc3 *ioc3 = ip->regs;
948 	unsigned long ring;
949 
950 	ioc3_free_rings(ip);
951 	ioc3_alloc_rings(dev);
952 
953 	ioc3_clean_rx_ring(ip);
954 	ioc3_clean_tx_ring(ip);
955 
956 	/* Now the rx ring base, consume & produce registers.  */
957 	ring = ioc3_map(ip->rxr, 0);
958 	ioc3_w_erbr_h(ring >> 32);
959 	ioc3_w_erbr_l(ring & 0xffffffff);
960 	ioc3_w_ercir(ip->rx_ci << 3);
961 	ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
962 
963 	ring = ioc3_map(ip->txr, 0);
964 
965 	ip->txqlen = 0;					/* nothing queued  */
966 
967 	/* Now the tx ring base, consume & produce registers.  */
968 	ioc3_w_etbr_h(ring >> 32);
969 	ioc3_w_etbr_l(ring & 0xffffffff);
970 	ioc3_w_etpir(ip->tx_pi << 7);
971 	ioc3_w_etcir(ip->tx_ci << 7);
972 	(void) ioc3_r_etcir();				/* Flush */
973 }
974 
ioc3_ssram_disc(struct ioc3_private * ip)975 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
976 {
977 	struct ioc3 *ioc3 = ip->regs;
978 	volatile u32 *ssram0 = &ioc3->ssram[0x0000];
979 	volatile u32 *ssram1 = &ioc3->ssram[0x4000];
980 	unsigned int pattern = 0x5555;
981 
982 	/* Assume the larger size SSRAM and enable parity checking */
983 	ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
984 
985 	*ssram0 = pattern;
986 	*ssram1 = ~pattern & IOC3_SSRAM_DM;
987 
988 	if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
989 	    (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
990 		/* set ssram size to 64 KB */
991 		ip->emcr = EMCR_RAMPAR;
992 		ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
993 	} else
994 		ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
995 }
996 
ioc3_init(struct net_device * dev)997 static void ioc3_init(struct net_device *dev)
998 {
999 	struct ioc3_private *ip = netdev_priv(dev);
1000 	struct ioc3 *ioc3 = ip->regs;
1001 
1002 	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
1003 
1004 	ioc3_w_emcr(EMCR_RST);			/* Reset		*/
1005 	(void) ioc3_r_emcr();			/* Flush WB		*/
1006 	udelay(4);				/* Give it time ...	*/
1007 	ioc3_w_emcr(0);
1008 	(void) ioc3_r_emcr();
1009 
1010 	/* Misc registers  */
1011 #ifdef CONFIG_SGI_IP27
1012 	ioc3_w_erbar(PCI64_ATTR_BAR >> 32);	/* Barrier on last store */
1013 #else
1014 	ioc3_w_erbar(0);			/* Let PCI API get it right */
1015 #endif
1016 	(void) ioc3_r_etcdc();			/* Clear on read */
1017 	ioc3_w_ercsr(15);			/* RX low watermark  */
1018 	ioc3_w_ertr(0);				/* Interrupt immediately */
1019 	__ioc3_set_mac_address(dev);
1020 	ioc3_w_ehar_h(ip->ehar_h);
1021 	ioc3_w_ehar_l(ip->ehar_l);
1022 	ioc3_w_ersr(42);			/* XXX should be random */
1023 
1024 	ioc3_init_rings(dev);
1025 
1026 	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1027 	             EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1028 	ioc3_w_emcr(ip->emcr);
1029 	ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1030 	            EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1031 	            EISR_TXEXPLICIT | EISR_TXMEMERR);
1032 	(void) ioc3_r_eier();
1033 }
1034 
ioc3_stop(struct ioc3_private * ip)1035 static inline void ioc3_stop(struct ioc3_private *ip)
1036 {
1037 	struct ioc3 *ioc3 = ip->regs;
1038 
1039 	ioc3_w_emcr(0);				/* Shutup */
1040 	ioc3_w_eier(0);				/* Disable interrupts */
1041 	(void) ioc3_r_eier();			/* Flush */
1042 }
1043 
ioc3_open(struct net_device * dev)1044 static int ioc3_open(struct net_device *dev)
1045 {
1046 	struct ioc3_private *ip = netdev_priv(dev);
1047 
1048 	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1049 		printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1050 
1051 		return -EAGAIN;
1052 	}
1053 
1054 	ip->ehar_h = 0;
1055 	ip->ehar_l = 0;
1056 	ioc3_init(dev);
1057 	ioc3_mii_start(ip);
1058 
1059 	netif_start_queue(dev);
1060 	return 0;
1061 }
1062 
ioc3_close(struct net_device * dev)1063 static int ioc3_close(struct net_device *dev)
1064 {
1065 	struct ioc3_private *ip = netdev_priv(dev);
1066 
1067 	del_timer_sync(&ip->ioc3_timer);
1068 
1069 	netif_stop_queue(dev);
1070 
1071 	ioc3_stop(ip);
1072 	free_irq(dev->irq, dev);
1073 
1074 	ioc3_free_rings(ip);
1075 	return 0;
1076 }
1077 
1078 /*
1079  * MENET cards have four IOC3 chips, which are attached to two sets of
1080  * PCI slot resources each: the primary connections are on slots
1081  * 0..3 and the secondaries are on 4..7
1082  *
1083  * All four ethernets are brought out to connectors; six serial ports
1084  * (a pair from each of the first three IOC3s) are brought out to
1085  * MiniDINs; all other subdevices are left swinging in the wind, leave
1086  * them disabled.
1087  */
1088 
ioc3_adjacent_is_ioc3(struct pci_dev * pdev,int slot)1089 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1090 {
1091 	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1092 	int ret = 0;
1093 
1094 	if (dev) {
1095 		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1096 			dev->device == PCI_DEVICE_ID_SGI_IOC3)
1097 			ret = 1;
1098 		pci_dev_put(dev);
1099 	}
1100 
1101 	return ret;
1102 }
1103 
ioc3_is_menet(struct pci_dev * pdev)1104 static int ioc3_is_menet(struct pci_dev *pdev)
1105 {
1106 	return pdev->bus->parent == NULL &&
1107 	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1108 	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1109 	       ioc3_adjacent_is_ioc3(pdev, 2);
1110 }
1111 
1112 #ifdef CONFIG_SERIAL_8250
1113 /*
1114  * Note about serial ports and consoles:
1115  * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1116  * connected to the master node (look in ip27_setup_console() and
1117  * ip27prom_console_write()).
1118  *
1119  * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1120  * addresses on a partitioned machine. Since we currently use the ioc3
1121  * serial ports, we use dynamic serial port discovery that the serial.c
1122  * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1123  * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1124  * than UARTB's, although UARTA on o200s has traditionally been known as
1125  * port 0. So, we just use one serial port from each ioc3 (since the
1126  * serial driver adds addresses to get to higher ports).
1127  *
1128  * The first one to do a register_console becomes the preferred console
1129  * (if there is no kernel command line console= directive). /dev/console
1130  * (ie 5, 1) is then "aliased" into the device number returned by the
1131  * "device" routine referred to in this console structure
1132  * (ip27prom_console_dev).
1133  *
1134  * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1135  * around ioc3 oddities in this respect.
1136  *
1137  * The IOC3 serials use a 22MHz clock rate with an additional divider which
1138  * can be programmed in the SCR register if the DLAB bit is set.
1139  *
1140  * Register to interrupt zero because we share the interrupt with
1141  * the serial driver which we don't properly support yet.
1142  *
1143  * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1144  * registered.
1145  */
ioc3_8250_register(struct ioc3_uartregs __iomem * uart)1146 static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1147 {
1148 #define COSMISC_CONSTANT 6
1149 
1150 	struct uart_port port = {
1151 		.irq		= 0,
1152 		.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1153 		.iotype		= UPIO_MEM,
1154 		.regshift	= 0,
1155 		.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1156 
1157 		.membase	= (unsigned char __iomem *) uart,
1158 		.mapbase	= (unsigned long) uart,
1159 	};
1160 	unsigned char lcr;
1161 
1162 	lcr = uart->iu_lcr;
1163 	uart->iu_lcr = lcr | UART_LCR_DLAB;
1164 	uart->iu_scr = COSMISC_CONSTANT,
1165 	uart->iu_lcr = lcr;
1166 	uart->iu_lcr;
1167 	serial8250_register_port(&port);
1168 }
1169 
ioc3_serial_probe(struct pci_dev * pdev,struct ioc3 * ioc3)1170 static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1171 {
1172 	/*
1173 	 * We need to recognice and treat the fourth MENET serial as it
1174 	 * does not have an SuperIO chip attached to it, therefore attempting
1175 	 * to access it will result in bus errors.  We call something an
1176 	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1177 	 * in it.  This is paranoid but we want to avoid blowing up on a
1178 	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1179 	 * not paranoid enough ...
1180 	 */
1181 	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1182 		return;
1183 
1184 	/*
1185 	 * Switch IOC3 to PIO mode.  It probably already was but let's be
1186 	 * paranoid
1187 	 */
1188 	ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1189 	ioc3->gpcr_s;
1190 	ioc3->gppr_6 = 0;
1191 	ioc3->gppr_6;
1192 	ioc3->gppr_7 = 0;
1193 	ioc3->gppr_7;
1194 	ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1195 	ioc3->sscr_a;
1196 	ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1197 	ioc3->sscr_b;
1198 	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1199 	ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1200 			    SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1201 			    SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1202 			    SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1203 	ioc3->sio_iec |= SIO_IR_SA_INT;
1204 	ioc3->sscr_a = 0;
1205 	ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1206 			    SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1207 			    SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1208 			    SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1209 	ioc3->sio_iec |= SIO_IR_SB_INT;
1210 	ioc3->sscr_b = 0;
1211 
1212 	ioc3_8250_register(&ioc3->sregs.uarta);
1213 	ioc3_8250_register(&ioc3->sregs.uartb);
1214 }
1215 #endif
1216 
1217 static const struct net_device_ops ioc3_netdev_ops = {
1218 	.ndo_open		= ioc3_open,
1219 	.ndo_stop		= ioc3_close,
1220 	.ndo_start_xmit		= ioc3_start_xmit,
1221 	.ndo_tx_timeout		= ioc3_timeout,
1222 	.ndo_get_stats		= ioc3_get_stats,
1223 	.ndo_set_rx_mode	= ioc3_set_multicast_list,
1224 	.ndo_do_ioctl		= ioc3_ioctl,
1225 	.ndo_validate_addr	= eth_validate_addr,
1226 	.ndo_set_mac_address	= ioc3_set_mac_address,
1227 	.ndo_change_mtu		= eth_change_mtu,
1228 };
1229 
ioc3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1230 static int __devinit ioc3_probe(struct pci_dev *pdev,
1231 	const struct pci_device_id *ent)
1232 {
1233 	unsigned int sw_physid1, sw_physid2;
1234 	struct net_device *dev = NULL;
1235 	struct ioc3_private *ip;
1236 	struct ioc3 *ioc3;
1237 	unsigned long ioc3_base, ioc3_size;
1238 	u32 vendor, model, rev;
1239 	int err, pci_using_dac;
1240 
1241 	/* Configure DMA attributes. */
1242 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1243 	if (!err) {
1244 		pci_using_dac = 1;
1245 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1246 		if (err < 0) {
1247 			printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1248 			       "for consistent allocations\n", pci_name(pdev));
1249 			goto out;
1250 		}
1251 	} else {
1252 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1253 		if (err) {
1254 			printk(KERN_ERR "%s: No usable DMA configuration, "
1255 			       "aborting.\n", pci_name(pdev));
1256 			goto out;
1257 		}
1258 		pci_using_dac = 0;
1259 	}
1260 
1261 	if (pci_enable_device(pdev))
1262 		return -ENODEV;
1263 
1264 	dev = alloc_etherdev(sizeof(struct ioc3_private));
1265 	if (!dev) {
1266 		err = -ENOMEM;
1267 		goto out_disable;
1268 	}
1269 
1270 	if (pci_using_dac)
1271 		dev->features |= NETIF_F_HIGHDMA;
1272 
1273 	err = pci_request_regions(pdev, "ioc3");
1274 	if (err)
1275 		goto out_free;
1276 
1277 	SET_NETDEV_DEV(dev, &pdev->dev);
1278 
1279 	ip = netdev_priv(dev);
1280 
1281 	dev->irq = pdev->irq;
1282 
1283 	ioc3_base = pci_resource_start(pdev, 0);
1284 	ioc3_size = pci_resource_len(pdev, 0);
1285 	ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1286 	if (!ioc3) {
1287 		printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1288 		       pci_name(pdev));
1289 		err = -ENOMEM;
1290 		goto out_res;
1291 	}
1292 	ip->regs = ioc3;
1293 
1294 #ifdef CONFIG_SERIAL_8250
1295 	ioc3_serial_probe(pdev, ioc3);
1296 #endif
1297 
1298 	spin_lock_init(&ip->ioc3_lock);
1299 	init_timer(&ip->ioc3_timer);
1300 
1301 	ioc3_stop(ip);
1302 	ioc3_init(dev);
1303 
1304 	ip->pdev = pdev;
1305 
1306 	ip->mii.phy_id_mask = 0x1f;
1307 	ip->mii.reg_num_mask = 0x1f;
1308 	ip->mii.dev = dev;
1309 	ip->mii.mdio_read = ioc3_mdio_read;
1310 	ip->mii.mdio_write = ioc3_mdio_write;
1311 
1312 	ioc3_mii_init(ip);
1313 
1314 	if (ip->mii.phy_id == -1) {
1315 		printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1316 		       pci_name(pdev));
1317 		err = -ENODEV;
1318 		goto out_stop;
1319 	}
1320 
1321 	ioc3_mii_start(ip);
1322 	ioc3_ssram_disc(ip);
1323 	ioc3_get_eaddr(ip);
1324 
1325 	/* The IOC3-specific entries in the device structure. */
1326 	dev->watchdog_timeo	= 5 * HZ;
1327 	dev->netdev_ops		= &ioc3_netdev_ops;
1328 	dev->ethtool_ops	= &ioc3_ethtool_ops;
1329 	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1330 	dev->features		= NETIF_F_IP_CSUM;
1331 
1332 	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1333 	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1334 
1335 	err = register_netdev(dev);
1336 	if (err)
1337 		goto out_stop;
1338 
1339 	mii_check_media(&ip->mii, 1, 1);
1340 	ioc3_setup_duplex(ip);
1341 
1342 	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1343 	model  = (sw_physid2 >> 4) & 0x3f;
1344 	rev    = sw_physid2 & 0xf;
1345 	printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1346 	       "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1347 	printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1348 	       ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1349 
1350 	return 0;
1351 
1352 out_stop:
1353 	ioc3_stop(ip);
1354 	del_timer_sync(&ip->ioc3_timer);
1355 	ioc3_free_rings(ip);
1356 out_res:
1357 	pci_release_regions(pdev);
1358 out_free:
1359 	free_netdev(dev);
1360 out_disable:
1361 	/*
1362 	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1363 	 * such a weird device ...
1364 	 */
1365 out:
1366 	return err;
1367 }
1368 
ioc3_remove_one(struct pci_dev * pdev)1369 static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1370 {
1371 	struct net_device *dev = pci_get_drvdata(pdev);
1372 	struct ioc3_private *ip = netdev_priv(dev);
1373 	struct ioc3 *ioc3 = ip->regs;
1374 
1375 	unregister_netdev(dev);
1376 	del_timer_sync(&ip->ioc3_timer);
1377 
1378 	iounmap(ioc3);
1379 	pci_release_regions(pdev);
1380 	free_netdev(dev);
1381 	/*
1382 	 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1383 	 * such a weird device ...
1384 	 */
1385 }
1386 
1387 static DEFINE_PCI_DEVICE_TABLE(ioc3_pci_tbl) = {
1388 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1389 	{ 0 }
1390 };
1391 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1392 
1393 static struct pci_driver ioc3_driver = {
1394 	.name		= "ioc3-eth",
1395 	.id_table	= ioc3_pci_tbl,
1396 	.probe		= ioc3_probe,
1397 	.remove		= __devexit_p(ioc3_remove_one),
1398 };
1399 
ioc3_init_module(void)1400 static int __init ioc3_init_module(void)
1401 {
1402 	return pci_register_driver(&ioc3_driver);
1403 }
1404 
ioc3_cleanup_module(void)1405 static void __exit ioc3_cleanup_module(void)
1406 {
1407 	pci_unregister_driver(&ioc3_driver);
1408 }
1409 
ioc3_start_xmit(struct sk_buff * skb,struct net_device * dev)1410 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1411 {
1412 	unsigned long data;
1413 	struct ioc3_private *ip = netdev_priv(dev);
1414 	struct ioc3 *ioc3 = ip->regs;
1415 	unsigned int len;
1416 	struct ioc3_etxd *desc;
1417 	uint32_t w0 = 0;
1418 	int produce;
1419 
1420 	/*
1421 	 * IOC3 has a fairly simple minded checksumming hardware which simply
1422 	 * adds up the 1's complement checksum for the entire packet and
1423 	 * inserts it at an offset which can be specified in the descriptor
1424 	 * into the transmit packet.  This means we have to compensate for the
1425 	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1426 	 * manually.
1427 	 */
1428 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1429 		const struct iphdr *ih = ip_hdr(skb);
1430 		const int proto = ntohs(ih->protocol);
1431 		unsigned int csoff;
1432 		uint32_t csum, ehsum;
1433 		uint16_t *eh;
1434 
1435 		/* The MAC header.  skb->mac seem the logic approach
1436 		   to find the MAC header - except it's a NULL pointer ...  */
1437 		eh = (uint16_t *) skb->data;
1438 
1439 		/* Sum up dest addr, src addr and protocol  */
1440 		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1441 
1442 		/* Fold ehsum.  can't use csum_fold which negates also ...  */
1443 		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1444 		ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1445 
1446 		/* Skip IP header; it's sum is always zero and was
1447 		   already filled in by ip_output.c */
1448 		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1449 		                          ih->tot_len - (ih->ihl << 2),
1450 		                          proto, 0xffff ^ ehsum);
1451 
1452 		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1453 		csum = (csum & 0xffff) + (csum >> 16);
1454 
1455 		csoff = ETH_HLEN + (ih->ihl << 2);
1456 		if (proto == IPPROTO_UDP) {
1457 			csoff += offsetof(struct udphdr, check);
1458 			udp_hdr(skb)->check = csum;
1459 		}
1460 		if (proto == IPPROTO_TCP) {
1461 			csoff += offsetof(struct tcphdr, check);
1462 			tcp_hdr(skb)->check = csum;
1463 		}
1464 
1465 		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1466 	}
1467 
1468 	spin_lock_irq(&ip->ioc3_lock);
1469 
1470 	data = (unsigned long) skb->data;
1471 	len = skb->len;
1472 
1473 	produce = ip->tx_pi;
1474 	desc = &ip->txr[produce];
1475 
1476 	if (len <= 104) {
1477 		/* Short packet, let's copy it directly into the ring.  */
1478 		skb_copy_from_linear_data(skb, desc->data, skb->len);
1479 		if (len < ETH_ZLEN) {
1480 			/* Very short packet, pad with zeros at the end. */
1481 			memset(desc->data + len, 0, ETH_ZLEN - len);
1482 			len = ETH_ZLEN;
1483 		}
1484 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1485 		desc->bufcnt = cpu_to_be32(len);
1486 	} else if ((data ^ (data + len - 1)) & 0x4000) {
1487 		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1488 		unsigned long s1 = b2 - data;
1489 		unsigned long s2 = data + len - b2;
1490 
1491 		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1492 		                           ETXD_B1V | ETXD_B2V | w0);
1493 		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1494 		                           (s2 << ETXD_B2CNT_SHIFT));
1495 		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1496 		desc->p2     = cpu_to_be64(ioc3_map((void *) b2, 1));
1497 	} else {
1498 		/* Normal sized packet that doesn't cross a page boundary. */
1499 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1500 		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1501 		desc->p1     = cpu_to_be64(ioc3_map(skb->data, 1));
1502 	}
1503 
1504 	BARRIER();
1505 
1506 	ip->tx_skbs[produce] = skb;			/* Remember skb */
1507 	produce = (produce + 1) & 127;
1508 	ip->tx_pi = produce;
1509 	ioc3_w_etpir(produce << 7);			/* Fire ... */
1510 
1511 	ip->txqlen++;
1512 
1513 	if (ip->txqlen >= 127)
1514 		netif_stop_queue(dev);
1515 
1516 	spin_unlock_irq(&ip->ioc3_lock);
1517 
1518 	return NETDEV_TX_OK;
1519 }
1520 
ioc3_timeout(struct net_device * dev)1521 static void ioc3_timeout(struct net_device *dev)
1522 {
1523 	struct ioc3_private *ip = netdev_priv(dev);
1524 
1525 	printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1526 
1527 	spin_lock_irq(&ip->ioc3_lock);
1528 
1529 	ioc3_stop(ip);
1530 	ioc3_init(dev);
1531 	ioc3_mii_init(ip);
1532 	ioc3_mii_start(ip);
1533 
1534 	spin_unlock_irq(&ip->ioc3_lock);
1535 
1536 	netif_wake_queue(dev);
1537 }
1538 
1539 /*
1540  * Given a multicast ethernet address, this routine calculates the
1541  * address's bit index in the logical address filter mask
1542  */
1543 
ioc3_hash(const unsigned char * addr)1544 static inline unsigned int ioc3_hash(const unsigned char *addr)
1545 {
1546 	unsigned int temp = 0;
1547 	u32 crc;
1548 	int bits;
1549 
1550 	crc = ether_crc_le(ETH_ALEN, addr);
1551 
1552 	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1553 	for (bits = 6; --bits >= 0; ) {
1554 		temp <<= 1;
1555 		temp |= (crc & 0x1);
1556 		crc >>= 1;
1557 	}
1558 
1559 	return temp;
1560 }
1561 
ioc3_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1562 static void ioc3_get_drvinfo (struct net_device *dev,
1563 	struct ethtool_drvinfo *info)
1564 {
1565 	struct ioc3_private *ip = netdev_priv(dev);
1566 
1567         strcpy (info->driver, IOC3_NAME);
1568         strcpy (info->version, IOC3_VERSION);
1569         strcpy (info->bus_info, pci_name(ip->pdev));
1570 }
1571 
ioc3_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1572 static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1573 {
1574 	struct ioc3_private *ip = netdev_priv(dev);
1575 	int rc;
1576 
1577 	spin_lock_irq(&ip->ioc3_lock);
1578 	rc = mii_ethtool_gset(&ip->mii, cmd);
1579 	spin_unlock_irq(&ip->ioc3_lock);
1580 
1581 	return rc;
1582 }
1583 
ioc3_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1584 static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1585 {
1586 	struct ioc3_private *ip = netdev_priv(dev);
1587 	int rc;
1588 
1589 	spin_lock_irq(&ip->ioc3_lock);
1590 	rc = mii_ethtool_sset(&ip->mii, cmd);
1591 	spin_unlock_irq(&ip->ioc3_lock);
1592 
1593 	return rc;
1594 }
1595 
ioc3_nway_reset(struct net_device * dev)1596 static int ioc3_nway_reset(struct net_device *dev)
1597 {
1598 	struct ioc3_private *ip = netdev_priv(dev);
1599 	int rc;
1600 
1601 	spin_lock_irq(&ip->ioc3_lock);
1602 	rc = mii_nway_restart(&ip->mii);
1603 	spin_unlock_irq(&ip->ioc3_lock);
1604 
1605 	return rc;
1606 }
1607 
ioc3_get_link(struct net_device * dev)1608 static u32 ioc3_get_link(struct net_device *dev)
1609 {
1610 	struct ioc3_private *ip = netdev_priv(dev);
1611 	int rc;
1612 
1613 	spin_lock_irq(&ip->ioc3_lock);
1614 	rc = mii_link_ok(&ip->mii);
1615 	spin_unlock_irq(&ip->ioc3_lock);
1616 
1617 	return rc;
1618 }
1619 
1620 static const struct ethtool_ops ioc3_ethtool_ops = {
1621 	.get_drvinfo		= ioc3_get_drvinfo,
1622 	.get_settings		= ioc3_get_settings,
1623 	.set_settings		= ioc3_set_settings,
1624 	.nway_reset		= ioc3_nway_reset,
1625 	.get_link		= ioc3_get_link,
1626 };
1627 
ioc3_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1628 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1629 {
1630 	struct ioc3_private *ip = netdev_priv(dev);
1631 	int rc;
1632 
1633 	spin_lock_irq(&ip->ioc3_lock);
1634 	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1635 	spin_unlock_irq(&ip->ioc3_lock);
1636 
1637 	return rc;
1638 }
1639 
ioc3_set_multicast_list(struct net_device * dev)1640 static void ioc3_set_multicast_list(struct net_device *dev)
1641 {
1642 	struct netdev_hw_addr *ha;
1643 	struct ioc3_private *ip = netdev_priv(dev);
1644 	struct ioc3 *ioc3 = ip->regs;
1645 	u64 ehar = 0;
1646 
1647 	netif_stop_queue(dev);				/* Lock out others. */
1648 
1649 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1650 		ip->emcr |= EMCR_PROMISC;
1651 		ioc3_w_emcr(ip->emcr);
1652 		(void) ioc3_r_emcr();
1653 	} else {
1654 		ip->emcr &= ~EMCR_PROMISC;
1655 		ioc3_w_emcr(ip->emcr);			/* Clear promiscuous. */
1656 		(void) ioc3_r_emcr();
1657 
1658 		if ((dev->flags & IFF_ALLMULTI) ||
1659 		    (netdev_mc_count(dev) > 64)) {
1660 			/* Too many for hashing to make sense or we want all
1661 			   multicast packets anyway,  so skip computing all the
1662 			   hashes and just accept all packets.  */
1663 			ip->ehar_h = 0xffffffff;
1664 			ip->ehar_l = 0xffffffff;
1665 		} else {
1666 			netdev_for_each_mc_addr(ha, dev) {
1667 				ehar |= (1UL << ioc3_hash(ha->addr));
1668 			}
1669 			ip->ehar_h = ehar >> 32;
1670 			ip->ehar_l = ehar & 0xffffffff;
1671 		}
1672 		ioc3_w_ehar_h(ip->ehar_h);
1673 		ioc3_w_ehar_l(ip->ehar_l);
1674 	}
1675 
1676 	netif_wake_queue(dev);			/* Let us get going again. */
1677 }
1678 
1679 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1680 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1681 MODULE_LICENSE("GPL");
1682 
1683 module_init(ioc3_init_module);
1684 module_exit(ioc3_cleanup_module);
1685