1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
7 *
8 * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
9 * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
10 *
11 * References:
12 * o IOC3 ASIC specification 4.51, 1996-04-18
13 * o IEEE 802.3 specification, 2000 edition
14 * o DP38840A Specification, National Semiconductor, March 1997
15 *
16 * To do:
17 *
18 * o Handle allocation failures in ioc3_alloc_skb() more gracefully.
19 * o Handle allocation failures in ioc3_init_rings().
20 * o Use prefetching for large packets. What is a good lower limit for
21 * prefetching?
22 * o We're probably allocating a bit too much memory.
23 * o Use hardware checksums.
24 * o Convert to using a IOC3 meta driver.
25 * o Which PHYs might possibly be attached to the IOC3 in real live,
26 * which workarounds are required for them? Do we ever have Lucent's?
27 * o For the 2.5 branch kill the mii-tool ioctls.
28 */
29
30 #define IOC3_NAME "ioc3-eth"
31 #define IOC3_VERSION "2.6.3-4"
32
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/kernel.h>
36 #include <linux/mm.h>
37 #include <linux/errno.h>
38 #include <linux/module.h>
39 #include <linux/pci.h>
40 #include <linux/crc32.h>
41 #include <linux/mii.h>
42 #include <linux/in.h>
43 #include <linux/ip.h>
44 #include <linux/tcp.h>
45 #include <linux/udp.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/gfp.h>
48
49 #ifdef CONFIG_SERIAL_8250
50 #include <linux/serial_core.h>
51 #include <linux/serial_8250.h>
52 #include <linux/serial_reg.h>
53 #endif
54
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/ethtool.h>
58 #include <linux/skbuff.h>
59 #include <net/ip.h>
60
61 #include <asm/byteorder.h>
62 #include <asm/io.h>
63 #include <asm/pgtable.h>
64 #include <asm/uaccess.h>
65 #include <asm/sn/types.h>
66 #include <asm/sn/ioc3.h>
67 #include <asm/pci/bridge.h>
68
69 /*
70 * 64 RX buffers. This is tunable in the range of 16 <= x < 512. The
71 * value must be a power of two.
72 */
73 #define RX_BUFFS 64
74
75 #define ETCSR_FD ((17<<ETCSR_IPGR2_SHIFT) | (11<<ETCSR_IPGR1_SHIFT) | 21)
76 #define ETCSR_HD ((21<<ETCSR_IPGR2_SHIFT) | (21<<ETCSR_IPGR1_SHIFT) | 21)
77
78 /* Private per NIC data of the driver. */
79 struct ioc3_private {
80 struct ioc3 *regs;
81 unsigned long *rxr; /* pointer to receiver ring */
82 struct ioc3_etxd *txr;
83 struct sk_buff *rx_skbs[512];
84 struct sk_buff *tx_skbs[128];
85 int rx_ci; /* RX consumer index */
86 int rx_pi; /* RX producer index */
87 int tx_ci; /* TX consumer index */
88 int tx_pi; /* TX producer index */
89 int txqlen;
90 u32 emcr, ehar_h, ehar_l;
91 spinlock_t ioc3_lock;
92 struct mii_if_info mii;
93
94 struct pci_dev *pdev;
95
96 /* Members used by autonegotiation */
97 struct timer_list ioc3_timer;
98 };
99
priv_netdev(struct ioc3_private * dev)100 static inline struct net_device *priv_netdev(struct ioc3_private *dev)
101 {
102 return (void *)dev - ((sizeof(struct net_device) + 31) & ~31);
103 }
104
105 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
106 static void ioc3_set_multicast_list(struct net_device *dev);
107 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
108 static void ioc3_timeout(struct net_device *dev);
109 static inline unsigned int ioc3_hash(const unsigned char *addr);
110 static inline void ioc3_stop(struct ioc3_private *ip);
111 static void ioc3_init(struct net_device *dev);
112
113 static const char ioc3_str[] = "IOC3 Ethernet";
114 static const struct ethtool_ops ioc3_ethtool_ops;
115
116 /* We use this to acquire receive skb's that we can DMA directly into. */
117
118 #define IOC3_CACHELINE 128UL
119
aligned_rx_skb_addr(unsigned long addr)120 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
121 {
122 return (~addr + 1) & (IOC3_CACHELINE - 1UL);
123 }
124
ioc3_alloc_skb(unsigned long length,unsigned int gfp_mask)125 static inline struct sk_buff * ioc3_alloc_skb(unsigned long length,
126 unsigned int gfp_mask)
127 {
128 struct sk_buff *skb;
129
130 skb = alloc_skb(length + IOC3_CACHELINE - 1, gfp_mask);
131 if (likely(skb)) {
132 int offset = aligned_rx_skb_addr((unsigned long) skb->data);
133 if (offset)
134 skb_reserve(skb, offset);
135 }
136
137 return skb;
138 }
139
ioc3_map(void * ptr,unsigned long vdev)140 static inline unsigned long ioc3_map(void *ptr, unsigned long vdev)
141 {
142 #ifdef CONFIG_SGI_IP27
143 vdev <<= 57; /* Shift to PCI64_ATTR_VIRTUAL */
144
145 return vdev | (0xaUL << PCI64_ATTR_TARG_SHFT) | PCI64_ATTR_PREF |
146 ((unsigned long)ptr & TO_PHYS_MASK);
147 #else
148 return virt_to_bus(ptr);
149 #endif
150 }
151
152 /* BEWARE: The IOC3 documentation documents the size of rx buffers as
153 1644 while it's actually 1664. This one was nasty to track down ... */
154 #define RX_OFFSET 10
155 #define RX_BUF_ALLOC_SIZE (1664 + RX_OFFSET + IOC3_CACHELINE)
156
157 /* DMA barrier to separate cached and uncached accesses. */
158 #define BARRIER() \
159 __asm__("sync" ::: "memory")
160
161
162 #define IOC3_SIZE 0x100000
163
164 /*
165 * IOC3 is a big endian device
166 *
167 * Unorthodox but makes the users of these macros more readable - the pointer
168 * to the IOC3's memory mapped registers is expected as struct ioc3 * ioc3
169 * in the environment.
170 */
171 #define ioc3_r_mcr() be32_to_cpu(ioc3->mcr)
172 #define ioc3_w_mcr(v) do { ioc3->mcr = cpu_to_be32(v); } while (0)
173 #define ioc3_w_gpcr_s(v) do { ioc3->gpcr_s = cpu_to_be32(v); } while (0)
174 #define ioc3_r_emcr() be32_to_cpu(ioc3->emcr)
175 #define ioc3_w_emcr(v) do { ioc3->emcr = cpu_to_be32(v); } while (0)
176 #define ioc3_r_eisr() be32_to_cpu(ioc3->eisr)
177 #define ioc3_w_eisr(v) do { ioc3->eisr = cpu_to_be32(v); } while (0)
178 #define ioc3_r_eier() be32_to_cpu(ioc3->eier)
179 #define ioc3_w_eier(v) do { ioc3->eier = cpu_to_be32(v); } while (0)
180 #define ioc3_r_ercsr() be32_to_cpu(ioc3->ercsr)
181 #define ioc3_w_ercsr(v) do { ioc3->ercsr = cpu_to_be32(v); } while (0)
182 #define ioc3_r_erbr_h() be32_to_cpu(ioc3->erbr_h)
183 #define ioc3_w_erbr_h(v) do { ioc3->erbr_h = cpu_to_be32(v); } while (0)
184 #define ioc3_r_erbr_l() be32_to_cpu(ioc3->erbr_l)
185 #define ioc3_w_erbr_l(v) do { ioc3->erbr_l = cpu_to_be32(v); } while (0)
186 #define ioc3_r_erbar() be32_to_cpu(ioc3->erbar)
187 #define ioc3_w_erbar(v) do { ioc3->erbar = cpu_to_be32(v); } while (0)
188 #define ioc3_r_ercir() be32_to_cpu(ioc3->ercir)
189 #define ioc3_w_ercir(v) do { ioc3->ercir = cpu_to_be32(v); } while (0)
190 #define ioc3_r_erpir() be32_to_cpu(ioc3->erpir)
191 #define ioc3_w_erpir(v) do { ioc3->erpir = cpu_to_be32(v); } while (0)
192 #define ioc3_r_ertr() be32_to_cpu(ioc3->ertr)
193 #define ioc3_w_ertr(v) do { ioc3->ertr = cpu_to_be32(v); } while (0)
194 #define ioc3_r_etcsr() be32_to_cpu(ioc3->etcsr)
195 #define ioc3_w_etcsr(v) do { ioc3->etcsr = cpu_to_be32(v); } while (0)
196 #define ioc3_r_ersr() be32_to_cpu(ioc3->ersr)
197 #define ioc3_w_ersr(v) do { ioc3->ersr = cpu_to_be32(v); } while (0)
198 #define ioc3_r_etcdc() be32_to_cpu(ioc3->etcdc)
199 #define ioc3_w_etcdc(v) do { ioc3->etcdc = cpu_to_be32(v); } while (0)
200 #define ioc3_r_ebir() be32_to_cpu(ioc3->ebir)
201 #define ioc3_w_ebir(v) do { ioc3->ebir = cpu_to_be32(v); } while (0)
202 #define ioc3_r_etbr_h() be32_to_cpu(ioc3->etbr_h)
203 #define ioc3_w_etbr_h(v) do { ioc3->etbr_h = cpu_to_be32(v); } while (0)
204 #define ioc3_r_etbr_l() be32_to_cpu(ioc3->etbr_l)
205 #define ioc3_w_etbr_l(v) do { ioc3->etbr_l = cpu_to_be32(v); } while (0)
206 #define ioc3_r_etcir() be32_to_cpu(ioc3->etcir)
207 #define ioc3_w_etcir(v) do { ioc3->etcir = cpu_to_be32(v); } while (0)
208 #define ioc3_r_etpir() be32_to_cpu(ioc3->etpir)
209 #define ioc3_w_etpir(v) do { ioc3->etpir = cpu_to_be32(v); } while (0)
210 #define ioc3_r_emar_h() be32_to_cpu(ioc3->emar_h)
211 #define ioc3_w_emar_h(v) do { ioc3->emar_h = cpu_to_be32(v); } while (0)
212 #define ioc3_r_emar_l() be32_to_cpu(ioc3->emar_l)
213 #define ioc3_w_emar_l(v) do { ioc3->emar_l = cpu_to_be32(v); } while (0)
214 #define ioc3_r_ehar_h() be32_to_cpu(ioc3->ehar_h)
215 #define ioc3_w_ehar_h(v) do { ioc3->ehar_h = cpu_to_be32(v); } while (0)
216 #define ioc3_r_ehar_l() be32_to_cpu(ioc3->ehar_l)
217 #define ioc3_w_ehar_l(v) do { ioc3->ehar_l = cpu_to_be32(v); } while (0)
218 #define ioc3_r_micr() be32_to_cpu(ioc3->micr)
219 #define ioc3_w_micr(v) do { ioc3->micr = cpu_to_be32(v); } while (0)
220 #define ioc3_r_midr_r() be32_to_cpu(ioc3->midr_r)
221 #define ioc3_w_midr_r(v) do { ioc3->midr_r = cpu_to_be32(v); } while (0)
222 #define ioc3_r_midr_w() be32_to_cpu(ioc3->midr_w)
223 #define ioc3_w_midr_w(v) do { ioc3->midr_w = cpu_to_be32(v); } while (0)
224
mcr_pack(u32 pulse,u32 sample)225 static inline u32 mcr_pack(u32 pulse, u32 sample)
226 {
227 return (pulse << 10) | (sample << 2);
228 }
229
nic_wait(struct ioc3 * ioc3)230 static int nic_wait(struct ioc3 *ioc3)
231 {
232 u32 mcr;
233
234 do {
235 mcr = ioc3_r_mcr();
236 } while (!(mcr & 2));
237
238 return mcr & 1;
239 }
240
nic_reset(struct ioc3 * ioc3)241 static int nic_reset(struct ioc3 *ioc3)
242 {
243 int presence;
244
245 ioc3_w_mcr(mcr_pack(500, 65));
246 presence = nic_wait(ioc3);
247
248 ioc3_w_mcr(mcr_pack(0, 500));
249 nic_wait(ioc3);
250
251 return presence;
252 }
253
nic_read_bit(struct ioc3 * ioc3)254 static inline int nic_read_bit(struct ioc3 *ioc3)
255 {
256 int result;
257
258 ioc3_w_mcr(mcr_pack(6, 13));
259 result = nic_wait(ioc3);
260 ioc3_w_mcr(mcr_pack(0, 100));
261 nic_wait(ioc3);
262
263 return result;
264 }
265
nic_write_bit(struct ioc3 * ioc3,int bit)266 static inline void nic_write_bit(struct ioc3 *ioc3, int bit)
267 {
268 if (bit)
269 ioc3_w_mcr(mcr_pack(6, 110));
270 else
271 ioc3_w_mcr(mcr_pack(80, 30));
272
273 nic_wait(ioc3);
274 }
275
276 /*
277 * Read a byte from an iButton device
278 */
nic_read_byte(struct ioc3 * ioc3)279 static u32 nic_read_byte(struct ioc3 *ioc3)
280 {
281 u32 result = 0;
282 int i;
283
284 for (i = 0; i < 8; i++)
285 result = (result >> 1) | (nic_read_bit(ioc3) << 7);
286
287 return result;
288 }
289
290 /*
291 * Write a byte to an iButton device
292 */
nic_write_byte(struct ioc3 * ioc3,int byte)293 static void nic_write_byte(struct ioc3 *ioc3, int byte)
294 {
295 int i, bit;
296
297 for (i = 8; i; i--) {
298 bit = byte & 1;
299 byte >>= 1;
300
301 nic_write_bit(ioc3, bit);
302 }
303 }
304
nic_find(struct ioc3 * ioc3,int * last)305 static u64 nic_find(struct ioc3 *ioc3, int *last)
306 {
307 int a, b, index, disc;
308 u64 address = 0;
309
310 nic_reset(ioc3);
311 /* Search ROM. */
312 nic_write_byte(ioc3, 0xf0);
313
314 /* Algorithm from ``Book of iButton Standards''. */
315 for (index = 0, disc = 0; index < 64; index++) {
316 a = nic_read_bit(ioc3);
317 b = nic_read_bit(ioc3);
318
319 if (a && b) {
320 printk("NIC search failed (not fatal).\n");
321 *last = 0;
322 return 0;
323 }
324
325 if (!a && !b) {
326 if (index == *last) {
327 address |= 1UL << index;
328 } else if (index > *last) {
329 address &= ~(1UL << index);
330 disc = index;
331 } else if ((address & (1UL << index)) == 0)
332 disc = index;
333 nic_write_bit(ioc3, address & (1UL << index));
334 continue;
335 } else {
336 if (a)
337 address |= 1UL << index;
338 else
339 address &= ~(1UL << index);
340 nic_write_bit(ioc3, a);
341 continue;
342 }
343 }
344
345 *last = disc;
346
347 return address;
348 }
349
nic_init(struct ioc3 * ioc3)350 static int nic_init(struct ioc3 *ioc3)
351 {
352 const char *unknown = "unknown";
353 const char *type = unknown;
354 u8 crc;
355 u8 serial[6];
356 int save = 0, i;
357
358 while (1) {
359 u64 reg;
360 reg = nic_find(ioc3, &save);
361
362 switch (reg & 0xff) {
363 case 0x91:
364 type = "DS1981U";
365 break;
366 default:
367 if (save == 0) {
368 /* Let the caller try again. */
369 return -1;
370 }
371 continue;
372 }
373
374 nic_reset(ioc3);
375
376 /* Match ROM. */
377 nic_write_byte(ioc3, 0x55);
378 for (i = 0; i < 8; i++)
379 nic_write_byte(ioc3, (reg >> (i << 3)) & 0xff);
380
381 reg >>= 8; /* Shift out type. */
382 for (i = 0; i < 6; i++) {
383 serial[i] = reg & 0xff;
384 reg >>= 8;
385 }
386 crc = reg & 0xff;
387 break;
388 }
389
390 printk("Found %s NIC", type);
391 if (type != unknown)
392 printk (" registration number %pM, CRC %02x", serial, crc);
393 printk(".\n");
394
395 return 0;
396 }
397
398 /*
399 * Read the NIC (Number-In-a-Can) device used to store the MAC address on
400 * SN0 / SN00 nodeboards and PCI cards.
401 */
ioc3_get_eaddr_nic(struct ioc3_private * ip)402 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
403 {
404 struct ioc3 *ioc3 = ip->regs;
405 u8 nic[14];
406 int tries = 2; /* There may be some problem with the battery? */
407 int i;
408
409 ioc3_w_gpcr_s(1 << 21);
410
411 while (tries--) {
412 if (!nic_init(ioc3))
413 break;
414 udelay(500);
415 }
416
417 if (tries < 0) {
418 printk("Failed to read MAC address\n");
419 return;
420 }
421
422 /* Read Memory. */
423 nic_write_byte(ioc3, 0xf0);
424 nic_write_byte(ioc3, 0x00);
425 nic_write_byte(ioc3, 0x00);
426
427 for (i = 13; i >= 0; i--)
428 nic[i] = nic_read_byte(ioc3);
429
430 for (i = 2; i < 8; i++)
431 priv_netdev(ip)->dev_addr[i - 2] = nic[i];
432 }
433
434 /*
435 * Ok, this is hosed by design. It's necessary to know what machine the
436 * NIC is in in order to know how to read the NIC address. We also have
437 * to know if it's a PCI card or a NIC in on the node board ...
438 */
ioc3_get_eaddr(struct ioc3_private * ip)439 static void ioc3_get_eaddr(struct ioc3_private *ip)
440 {
441 ioc3_get_eaddr_nic(ip);
442
443 printk("Ethernet address is %pM.\n", priv_netdev(ip)->dev_addr);
444 }
445
__ioc3_set_mac_address(struct net_device * dev)446 static void __ioc3_set_mac_address(struct net_device *dev)
447 {
448 struct ioc3_private *ip = netdev_priv(dev);
449 struct ioc3 *ioc3 = ip->regs;
450
451 ioc3_w_emar_h((dev->dev_addr[5] << 8) | dev->dev_addr[4]);
452 ioc3_w_emar_l((dev->dev_addr[3] << 24) | (dev->dev_addr[2] << 16) |
453 (dev->dev_addr[1] << 8) | dev->dev_addr[0]);
454 }
455
ioc3_set_mac_address(struct net_device * dev,void * addr)456 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
457 {
458 struct ioc3_private *ip = netdev_priv(dev);
459 struct sockaddr *sa = addr;
460
461 memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
462
463 spin_lock_irq(&ip->ioc3_lock);
464 __ioc3_set_mac_address(dev);
465 spin_unlock_irq(&ip->ioc3_lock);
466
467 return 0;
468 }
469
470 /*
471 * Caller must hold the ioc3_lock ever for MII readers. This is also
472 * used to protect the transmitter side but it's low contention.
473 */
ioc3_mdio_read(struct net_device * dev,int phy,int reg)474 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
475 {
476 struct ioc3_private *ip = netdev_priv(dev);
477 struct ioc3 *ioc3 = ip->regs;
478
479 while (ioc3_r_micr() & MICR_BUSY);
480 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG);
481 while (ioc3_r_micr() & MICR_BUSY);
482
483 return ioc3_r_midr_r() & MIDR_DATA_MASK;
484 }
485
ioc3_mdio_write(struct net_device * dev,int phy,int reg,int data)486 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
487 {
488 struct ioc3_private *ip = netdev_priv(dev);
489 struct ioc3 *ioc3 = ip->regs;
490
491 while (ioc3_r_micr() & MICR_BUSY);
492 ioc3_w_midr_w(data);
493 ioc3_w_micr((phy << MICR_PHYADDR_SHIFT) | reg);
494 while (ioc3_r_micr() & MICR_BUSY);
495 }
496
497 static int ioc3_mii_init(struct ioc3_private *ip);
498
ioc3_get_stats(struct net_device * dev)499 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
500 {
501 struct ioc3_private *ip = netdev_priv(dev);
502 struct ioc3 *ioc3 = ip->regs;
503
504 dev->stats.collisions += (ioc3_r_etcdc() & ETCDC_COLLCNT_MASK);
505 return &dev->stats;
506 }
507
ioc3_tcpudp_checksum(struct sk_buff * skb,uint32_t hwsum,int len)508 static void ioc3_tcpudp_checksum(struct sk_buff *skb, uint32_t hwsum, int len)
509 {
510 struct ethhdr *eh = eth_hdr(skb);
511 uint32_t csum, ehsum;
512 unsigned int proto;
513 struct iphdr *ih;
514 uint16_t *ew;
515 unsigned char *cp;
516
517 /*
518 * Did hardware handle the checksum at all? The cases we can handle
519 * are:
520 *
521 * - TCP and UDP checksums of IPv4 only.
522 * - IPv6 would be doable but we keep that for later ...
523 * - Only unfragmented packets. Did somebody already tell you
524 * fragmentation is evil?
525 * - don't care about packet size. Worst case when processing a
526 * malformed packet we'll try to access the packet at ip header +
527 * 64 bytes which is still inside the skb. Even in the unlikely
528 * case where the checksum is right the higher layers will still
529 * drop the packet as appropriate.
530 */
531 if (eh->h_proto != htons(ETH_P_IP))
532 return;
533
534 ih = (struct iphdr *) ((char *)eh + ETH_HLEN);
535 if (ip_is_fragment(ih))
536 return;
537
538 proto = ih->protocol;
539 if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
540 return;
541
542 /* Same as tx - compute csum of pseudo header */
543 csum = hwsum +
544 (ih->tot_len - (ih->ihl << 2)) +
545 htons((uint16_t)ih->protocol) +
546 (ih->saddr >> 16) + (ih->saddr & 0xffff) +
547 (ih->daddr >> 16) + (ih->daddr & 0xffff);
548
549 /* Sum up ethernet dest addr, src addr and protocol */
550 ew = (uint16_t *) eh;
551 ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
552
553 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
554 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
555
556 csum += 0xffff ^ ehsum;
557
558 /* In the next step we also subtract the 1's complement
559 checksum of the trailing ethernet CRC. */
560 cp = (char *)eh + len; /* points at trailing CRC */
561 if (len & 1) {
562 csum += 0xffff ^ (uint16_t) ((cp[1] << 8) | cp[0]);
563 csum += 0xffff ^ (uint16_t) ((cp[3] << 8) | cp[2]);
564 } else {
565 csum += 0xffff ^ (uint16_t) ((cp[0] << 8) | cp[1]);
566 csum += 0xffff ^ (uint16_t) ((cp[2] << 8) | cp[3]);
567 }
568
569 csum = (csum & 0xffff) + (csum >> 16);
570 csum = (csum & 0xffff) + (csum >> 16);
571
572 if (csum == 0xffff)
573 skb->ip_summed = CHECKSUM_UNNECESSARY;
574 }
575
ioc3_rx(struct net_device * dev)576 static inline void ioc3_rx(struct net_device *dev)
577 {
578 struct ioc3_private *ip = netdev_priv(dev);
579 struct sk_buff *skb, *new_skb;
580 struct ioc3 *ioc3 = ip->regs;
581 int rx_entry, n_entry, len;
582 struct ioc3_erxbuf *rxb;
583 unsigned long *rxr;
584 u32 w0, err;
585
586 rxr = (unsigned long *) ip->rxr; /* Ring base */
587 rx_entry = ip->rx_ci; /* RX consume index */
588 n_entry = ip->rx_pi;
589
590 skb = ip->rx_skbs[rx_entry];
591 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
592 w0 = be32_to_cpu(rxb->w0);
593
594 while (w0 & ERXBUF_V) {
595 err = be32_to_cpu(rxb->err); /* It's valid ... */
596 if (err & ERXBUF_GOODPKT) {
597 len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
598 skb_trim(skb, len);
599 skb->protocol = eth_type_trans(skb, dev);
600
601 new_skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
602 if (!new_skb) {
603 /* Ouch, drop packet and just recycle packet
604 to keep the ring filled. */
605 dev->stats.rx_dropped++;
606 new_skb = skb;
607 goto next;
608 }
609
610 if (likely(dev->features & NETIF_F_RXCSUM))
611 ioc3_tcpudp_checksum(skb,
612 w0 & ERXBUF_IPCKSUM_MASK, len);
613
614 netif_rx(skb);
615
616 ip->rx_skbs[rx_entry] = NULL; /* Poison */
617
618 /* Because we reserve afterwards. */
619 skb_put(new_skb, (1664 + RX_OFFSET));
620 rxb = (struct ioc3_erxbuf *) new_skb->data;
621 skb_reserve(new_skb, RX_OFFSET);
622
623 dev->stats.rx_packets++; /* Statistics */
624 dev->stats.rx_bytes += len;
625 } else {
626 /* The frame is invalid and the skb never
627 reached the network layer so we can just
628 recycle it. */
629 new_skb = skb;
630 dev->stats.rx_errors++;
631 }
632 if (err & ERXBUF_CRCERR) /* Statistics */
633 dev->stats.rx_crc_errors++;
634 if (err & ERXBUF_FRAMERR)
635 dev->stats.rx_frame_errors++;
636 next:
637 ip->rx_skbs[n_entry] = new_skb;
638 rxr[n_entry] = cpu_to_be64(ioc3_map(rxb, 1));
639 rxb->w0 = 0; /* Clear valid flag */
640 n_entry = (n_entry + 1) & 511; /* Update erpir */
641
642 /* Now go on to the next ring entry. */
643 rx_entry = (rx_entry + 1) & 511;
644 skb = ip->rx_skbs[rx_entry];
645 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
646 w0 = be32_to_cpu(rxb->w0);
647 }
648 ioc3_w_erpir((n_entry << 3) | ERPIR_ARM);
649 ip->rx_pi = n_entry;
650 ip->rx_ci = rx_entry;
651 }
652
ioc3_tx(struct net_device * dev)653 static inline void ioc3_tx(struct net_device *dev)
654 {
655 struct ioc3_private *ip = netdev_priv(dev);
656 unsigned long packets, bytes;
657 struct ioc3 *ioc3 = ip->regs;
658 int tx_entry, o_entry;
659 struct sk_buff *skb;
660 u32 etcir;
661
662 spin_lock(&ip->ioc3_lock);
663 etcir = ioc3_r_etcir();
664
665 tx_entry = (etcir >> 7) & 127;
666 o_entry = ip->tx_ci;
667 packets = 0;
668 bytes = 0;
669
670 while (o_entry != tx_entry) {
671 packets++;
672 skb = ip->tx_skbs[o_entry];
673 bytes += skb->len;
674 dev_kfree_skb_irq(skb);
675 ip->tx_skbs[o_entry] = NULL;
676
677 o_entry = (o_entry + 1) & 127; /* Next */
678
679 etcir = ioc3_r_etcir(); /* More pkts sent? */
680 tx_entry = (etcir >> 7) & 127;
681 }
682
683 dev->stats.tx_packets += packets;
684 dev->stats.tx_bytes += bytes;
685 ip->txqlen -= packets;
686
687 if (ip->txqlen < 128)
688 netif_wake_queue(dev);
689
690 ip->tx_ci = o_entry;
691 spin_unlock(&ip->ioc3_lock);
692 }
693
694 /*
695 * Deal with fatal IOC3 errors. This condition might be caused by a hard or
696 * software problems, so we should try to recover
697 * more gracefully if this ever happens. In theory we might be flooded
698 * with such error interrupts if something really goes wrong, so we might
699 * also consider to take the interface down.
700 */
ioc3_error(struct net_device * dev,u32 eisr)701 static void ioc3_error(struct net_device *dev, u32 eisr)
702 {
703 struct ioc3_private *ip = netdev_priv(dev);
704 unsigned char *iface = dev->name;
705
706 spin_lock(&ip->ioc3_lock);
707
708 if (eisr & EISR_RXOFLO)
709 printk(KERN_ERR "%s: RX overflow.\n", iface);
710 if (eisr & EISR_RXBUFOFLO)
711 printk(KERN_ERR "%s: RX buffer overflow.\n", iface);
712 if (eisr & EISR_RXMEMERR)
713 printk(KERN_ERR "%s: RX PCI error.\n", iface);
714 if (eisr & EISR_RXPARERR)
715 printk(KERN_ERR "%s: RX SSRAM parity error.\n", iface);
716 if (eisr & EISR_TXBUFUFLO)
717 printk(KERN_ERR "%s: TX buffer underflow.\n", iface);
718 if (eisr & EISR_TXMEMERR)
719 printk(KERN_ERR "%s: TX PCI error.\n", iface);
720
721 ioc3_stop(ip);
722 ioc3_init(dev);
723 ioc3_mii_init(ip);
724
725 netif_wake_queue(dev);
726
727 spin_unlock(&ip->ioc3_lock);
728 }
729
730 /* The interrupt handler does all of the Rx thread work and cleans up
731 after the Tx thread. */
ioc3_interrupt(int irq,void * _dev)732 static irqreturn_t ioc3_interrupt(int irq, void *_dev)
733 {
734 struct net_device *dev = (struct net_device *)_dev;
735 struct ioc3_private *ip = netdev_priv(dev);
736 struct ioc3 *ioc3 = ip->regs;
737 const u32 enabled = EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
738 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
739 EISR_TXEXPLICIT | EISR_TXMEMERR;
740 u32 eisr;
741
742 eisr = ioc3_r_eisr() & enabled;
743
744 ioc3_w_eisr(eisr);
745 (void) ioc3_r_eisr(); /* Flush */
746
747 if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
748 EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
749 ioc3_error(dev, eisr);
750 if (eisr & EISR_RXTIMERINT)
751 ioc3_rx(dev);
752 if (eisr & EISR_TXEXPLICIT)
753 ioc3_tx(dev);
754
755 return IRQ_HANDLED;
756 }
757
ioc3_setup_duplex(struct ioc3_private * ip)758 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
759 {
760 struct ioc3 *ioc3 = ip->regs;
761
762 if (ip->mii.full_duplex) {
763 ioc3_w_etcsr(ETCSR_FD);
764 ip->emcr |= EMCR_DUPLEX;
765 } else {
766 ioc3_w_etcsr(ETCSR_HD);
767 ip->emcr &= ~EMCR_DUPLEX;
768 }
769 ioc3_w_emcr(ip->emcr);
770 }
771
ioc3_timer(unsigned long data)772 static void ioc3_timer(unsigned long data)
773 {
774 struct ioc3_private *ip = (struct ioc3_private *) data;
775
776 /* Print the link status if it has changed */
777 mii_check_media(&ip->mii, 1, 0);
778 ioc3_setup_duplex(ip);
779
780 ip->ioc3_timer.expires = jiffies + ((12 * HZ)/10); /* 1.2s */
781 add_timer(&ip->ioc3_timer);
782 }
783
784 /*
785 * Try to find a PHY. There is no apparent relation between the MII addresses
786 * in the SGI documentation and what we find in reality, so we simply probe
787 * for the PHY. It seems IOC3 PHYs usually live on address 31. One of my
788 * onboard IOC3s has the special oddity that probing doesn't seem to find it
789 * yet the interface seems to work fine, so if probing fails we for now will
790 * simply default to PHY 31 instead of bailing out.
791 */
ioc3_mii_init(struct ioc3_private * ip)792 static int ioc3_mii_init(struct ioc3_private *ip)
793 {
794 struct net_device *dev = priv_netdev(ip);
795 int i, found = 0, res = 0;
796 int ioc3_phy_workaround = 1;
797 u16 word;
798
799 for (i = 0; i < 32; i++) {
800 word = ioc3_mdio_read(dev, i, MII_PHYSID1);
801
802 if (word != 0xffff && word != 0x0000) {
803 found = 1;
804 break; /* Found a PHY */
805 }
806 }
807
808 if (!found) {
809 if (ioc3_phy_workaround)
810 i = 31;
811 else {
812 ip->mii.phy_id = -1;
813 res = -ENODEV;
814 goto out;
815 }
816 }
817
818 ip->mii.phy_id = i;
819
820 out:
821 return res;
822 }
823
ioc3_mii_start(struct ioc3_private * ip)824 static void ioc3_mii_start(struct ioc3_private *ip)
825 {
826 ip->ioc3_timer.expires = jiffies + (12 * HZ)/10; /* 1.2 sec. */
827 ip->ioc3_timer.data = (unsigned long) ip;
828 ip->ioc3_timer.function = ioc3_timer;
829 add_timer(&ip->ioc3_timer);
830 }
831
ioc3_clean_rx_ring(struct ioc3_private * ip)832 static inline void ioc3_clean_rx_ring(struct ioc3_private *ip)
833 {
834 struct sk_buff *skb;
835 int i;
836
837 for (i = ip->rx_ci; i & 15; i++) {
838 ip->rx_skbs[ip->rx_pi] = ip->rx_skbs[ip->rx_ci];
839 ip->rxr[ip->rx_pi++] = ip->rxr[ip->rx_ci++];
840 }
841 ip->rx_pi &= 511;
842 ip->rx_ci &= 511;
843
844 for (i = ip->rx_ci; i != ip->rx_pi; i = (i+1) & 511) {
845 struct ioc3_erxbuf *rxb;
846 skb = ip->rx_skbs[i];
847 rxb = (struct ioc3_erxbuf *) (skb->data - RX_OFFSET);
848 rxb->w0 = 0;
849 }
850 }
851
ioc3_clean_tx_ring(struct ioc3_private * ip)852 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
853 {
854 struct sk_buff *skb;
855 int i;
856
857 for (i=0; i < 128; i++) {
858 skb = ip->tx_skbs[i];
859 if (skb) {
860 ip->tx_skbs[i] = NULL;
861 dev_kfree_skb_any(skb);
862 }
863 ip->txr[i].cmd = 0;
864 }
865 ip->tx_pi = 0;
866 ip->tx_ci = 0;
867 }
868
ioc3_free_rings(struct ioc3_private * ip)869 static void ioc3_free_rings(struct ioc3_private *ip)
870 {
871 struct sk_buff *skb;
872 int rx_entry, n_entry;
873
874 if (ip->txr) {
875 ioc3_clean_tx_ring(ip);
876 free_pages((unsigned long)ip->txr, 2);
877 ip->txr = NULL;
878 }
879
880 if (ip->rxr) {
881 n_entry = ip->rx_ci;
882 rx_entry = ip->rx_pi;
883
884 while (n_entry != rx_entry) {
885 skb = ip->rx_skbs[n_entry];
886 if (skb)
887 dev_kfree_skb_any(skb);
888
889 n_entry = (n_entry + 1) & 511;
890 }
891 free_page((unsigned long)ip->rxr);
892 ip->rxr = NULL;
893 }
894 }
895
ioc3_alloc_rings(struct net_device * dev)896 static void ioc3_alloc_rings(struct net_device *dev)
897 {
898 struct ioc3_private *ip = netdev_priv(dev);
899 struct ioc3_erxbuf *rxb;
900 unsigned long *rxr;
901 int i;
902
903 if (ip->rxr == NULL) {
904 /* Allocate and initialize rx ring. 4kb = 512 entries */
905 ip->rxr = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
906 rxr = (unsigned long *) ip->rxr;
907 if (!rxr)
908 printk("ioc3_alloc_rings(): get_zeroed_page() failed!\n");
909
910 /* Now the rx buffers. The RX ring may be larger but
911 we only allocate 16 buffers for now. Need to tune
912 this for performance and memory later. */
913 for (i = 0; i < RX_BUFFS; i++) {
914 struct sk_buff *skb;
915
916 skb = ioc3_alloc_skb(RX_BUF_ALLOC_SIZE, GFP_ATOMIC);
917 if (!skb) {
918 show_free_areas(0);
919 continue;
920 }
921
922 ip->rx_skbs[i] = skb;
923
924 /* Because we reserve afterwards. */
925 skb_put(skb, (1664 + RX_OFFSET));
926 rxb = (struct ioc3_erxbuf *) skb->data;
927 rxr[i] = cpu_to_be64(ioc3_map(rxb, 1));
928 skb_reserve(skb, RX_OFFSET);
929 }
930 ip->rx_ci = 0;
931 ip->rx_pi = RX_BUFFS;
932 }
933
934 if (ip->txr == NULL) {
935 /* Allocate and initialize tx rings. 16kb = 128 bufs. */
936 ip->txr = (struct ioc3_etxd *)__get_free_pages(GFP_KERNEL, 2);
937 if (!ip->txr)
938 printk("ioc3_alloc_rings(): __get_free_pages() failed!\n");
939 ip->tx_pi = 0;
940 ip->tx_ci = 0;
941 }
942 }
943
ioc3_init_rings(struct net_device * dev)944 static void ioc3_init_rings(struct net_device *dev)
945 {
946 struct ioc3_private *ip = netdev_priv(dev);
947 struct ioc3 *ioc3 = ip->regs;
948 unsigned long ring;
949
950 ioc3_free_rings(ip);
951 ioc3_alloc_rings(dev);
952
953 ioc3_clean_rx_ring(ip);
954 ioc3_clean_tx_ring(ip);
955
956 /* Now the rx ring base, consume & produce registers. */
957 ring = ioc3_map(ip->rxr, 0);
958 ioc3_w_erbr_h(ring >> 32);
959 ioc3_w_erbr_l(ring & 0xffffffff);
960 ioc3_w_ercir(ip->rx_ci << 3);
961 ioc3_w_erpir((ip->rx_pi << 3) | ERPIR_ARM);
962
963 ring = ioc3_map(ip->txr, 0);
964
965 ip->txqlen = 0; /* nothing queued */
966
967 /* Now the tx ring base, consume & produce registers. */
968 ioc3_w_etbr_h(ring >> 32);
969 ioc3_w_etbr_l(ring & 0xffffffff);
970 ioc3_w_etpir(ip->tx_pi << 7);
971 ioc3_w_etcir(ip->tx_ci << 7);
972 (void) ioc3_r_etcir(); /* Flush */
973 }
974
ioc3_ssram_disc(struct ioc3_private * ip)975 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
976 {
977 struct ioc3 *ioc3 = ip->regs;
978 volatile u32 *ssram0 = &ioc3->ssram[0x0000];
979 volatile u32 *ssram1 = &ioc3->ssram[0x4000];
980 unsigned int pattern = 0x5555;
981
982 /* Assume the larger size SSRAM and enable parity checking */
983 ioc3_w_emcr(ioc3_r_emcr() | (EMCR_BUFSIZ | EMCR_RAMPAR));
984
985 *ssram0 = pattern;
986 *ssram1 = ~pattern & IOC3_SSRAM_DM;
987
988 if ((*ssram0 & IOC3_SSRAM_DM) != pattern ||
989 (*ssram1 & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
990 /* set ssram size to 64 KB */
991 ip->emcr = EMCR_RAMPAR;
992 ioc3_w_emcr(ioc3_r_emcr() & ~EMCR_BUFSIZ);
993 } else
994 ip->emcr = EMCR_BUFSIZ | EMCR_RAMPAR;
995 }
996
ioc3_init(struct net_device * dev)997 static void ioc3_init(struct net_device *dev)
998 {
999 struct ioc3_private *ip = netdev_priv(dev);
1000 struct ioc3 *ioc3 = ip->regs;
1001
1002 del_timer_sync(&ip->ioc3_timer); /* Kill if running */
1003
1004 ioc3_w_emcr(EMCR_RST); /* Reset */
1005 (void) ioc3_r_emcr(); /* Flush WB */
1006 udelay(4); /* Give it time ... */
1007 ioc3_w_emcr(0);
1008 (void) ioc3_r_emcr();
1009
1010 /* Misc registers */
1011 #ifdef CONFIG_SGI_IP27
1012 ioc3_w_erbar(PCI64_ATTR_BAR >> 32); /* Barrier on last store */
1013 #else
1014 ioc3_w_erbar(0); /* Let PCI API get it right */
1015 #endif
1016 (void) ioc3_r_etcdc(); /* Clear on read */
1017 ioc3_w_ercsr(15); /* RX low watermark */
1018 ioc3_w_ertr(0); /* Interrupt immediately */
1019 __ioc3_set_mac_address(dev);
1020 ioc3_w_ehar_h(ip->ehar_h);
1021 ioc3_w_ehar_l(ip->ehar_l);
1022 ioc3_w_ersr(42); /* XXX should be random */
1023
1024 ioc3_init_rings(dev);
1025
1026 ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
1027 EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
1028 ioc3_w_emcr(ip->emcr);
1029 ioc3_w_eier(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
1030 EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
1031 EISR_TXEXPLICIT | EISR_TXMEMERR);
1032 (void) ioc3_r_eier();
1033 }
1034
ioc3_stop(struct ioc3_private * ip)1035 static inline void ioc3_stop(struct ioc3_private *ip)
1036 {
1037 struct ioc3 *ioc3 = ip->regs;
1038
1039 ioc3_w_emcr(0); /* Shutup */
1040 ioc3_w_eier(0); /* Disable interrupts */
1041 (void) ioc3_r_eier(); /* Flush */
1042 }
1043
ioc3_open(struct net_device * dev)1044 static int ioc3_open(struct net_device *dev)
1045 {
1046 struct ioc3_private *ip = netdev_priv(dev);
1047
1048 if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
1049 printk(KERN_ERR "%s: Can't get irq %d\n", dev->name, dev->irq);
1050
1051 return -EAGAIN;
1052 }
1053
1054 ip->ehar_h = 0;
1055 ip->ehar_l = 0;
1056 ioc3_init(dev);
1057 ioc3_mii_start(ip);
1058
1059 netif_start_queue(dev);
1060 return 0;
1061 }
1062
ioc3_close(struct net_device * dev)1063 static int ioc3_close(struct net_device *dev)
1064 {
1065 struct ioc3_private *ip = netdev_priv(dev);
1066
1067 del_timer_sync(&ip->ioc3_timer);
1068
1069 netif_stop_queue(dev);
1070
1071 ioc3_stop(ip);
1072 free_irq(dev->irq, dev);
1073
1074 ioc3_free_rings(ip);
1075 return 0;
1076 }
1077
1078 /*
1079 * MENET cards have four IOC3 chips, which are attached to two sets of
1080 * PCI slot resources each: the primary connections are on slots
1081 * 0..3 and the secondaries are on 4..7
1082 *
1083 * All four ethernets are brought out to connectors; six serial ports
1084 * (a pair from each of the first three IOC3s) are brought out to
1085 * MiniDINs; all other subdevices are left swinging in the wind, leave
1086 * them disabled.
1087 */
1088
ioc3_adjacent_is_ioc3(struct pci_dev * pdev,int slot)1089 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1090 {
1091 struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1092 int ret = 0;
1093
1094 if (dev) {
1095 if (dev->vendor == PCI_VENDOR_ID_SGI &&
1096 dev->device == PCI_DEVICE_ID_SGI_IOC3)
1097 ret = 1;
1098 pci_dev_put(dev);
1099 }
1100
1101 return ret;
1102 }
1103
ioc3_is_menet(struct pci_dev * pdev)1104 static int ioc3_is_menet(struct pci_dev *pdev)
1105 {
1106 return pdev->bus->parent == NULL &&
1107 ioc3_adjacent_is_ioc3(pdev, 0) &&
1108 ioc3_adjacent_is_ioc3(pdev, 1) &&
1109 ioc3_adjacent_is_ioc3(pdev, 2);
1110 }
1111
1112 #ifdef CONFIG_SERIAL_8250
1113 /*
1114 * Note about serial ports and consoles:
1115 * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1116 * connected to the master node (look in ip27_setup_console() and
1117 * ip27prom_console_write()).
1118 *
1119 * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1120 * addresses on a partitioned machine. Since we currently use the ioc3
1121 * serial ports, we use dynamic serial port discovery that the serial.c
1122 * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1123 * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1124 * than UARTB's, although UARTA on o200s has traditionally been known as
1125 * port 0. So, we just use one serial port from each ioc3 (since the
1126 * serial driver adds addresses to get to higher ports).
1127 *
1128 * The first one to do a register_console becomes the preferred console
1129 * (if there is no kernel command line console= directive). /dev/console
1130 * (ie 5, 1) is then "aliased" into the device number returned by the
1131 * "device" routine referred to in this console structure
1132 * (ip27prom_console_dev).
1133 *
1134 * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1135 * around ioc3 oddities in this respect.
1136 *
1137 * The IOC3 serials use a 22MHz clock rate with an additional divider which
1138 * can be programmed in the SCR register if the DLAB bit is set.
1139 *
1140 * Register to interrupt zero because we share the interrupt with
1141 * the serial driver which we don't properly support yet.
1142 *
1143 * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1144 * registered.
1145 */
ioc3_8250_register(struct ioc3_uartregs __iomem * uart)1146 static void __devinit ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1147 {
1148 #define COSMISC_CONSTANT 6
1149
1150 struct uart_port port = {
1151 .irq = 0,
1152 .flags = UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1153 .iotype = UPIO_MEM,
1154 .regshift = 0,
1155 .uartclk = (22000000 << 1) / COSMISC_CONSTANT,
1156
1157 .membase = (unsigned char __iomem *) uart,
1158 .mapbase = (unsigned long) uart,
1159 };
1160 unsigned char lcr;
1161
1162 lcr = uart->iu_lcr;
1163 uart->iu_lcr = lcr | UART_LCR_DLAB;
1164 uart->iu_scr = COSMISC_CONSTANT,
1165 uart->iu_lcr = lcr;
1166 uart->iu_lcr;
1167 serial8250_register_port(&port);
1168 }
1169
ioc3_serial_probe(struct pci_dev * pdev,struct ioc3 * ioc3)1170 static void __devinit ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1171 {
1172 /*
1173 * We need to recognice and treat the fourth MENET serial as it
1174 * does not have an SuperIO chip attached to it, therefore attempting
1175 * to access it will result in bus errors. We call something an
1176 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1177 * in it. This is paranoid but we want to avoid blowing up on a
1178 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1179 * not paranoid enough ...
1180 */
1181 if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1182 return;
1183
1184 /*
1185 * Switch IOC3 to PIO mode. It probably already was but let's be
1186 * paranoid
1187 */
1188 ioc3->gpcr_s = GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL;
1189 ioc3->gpcr_s;
1190 ioc3->gppr_6 = 0;
1191 ioc3->gppr_6;
1192 ioc3->gppr_7 = 0;
1193 ioc3->gppr_7;
1194 ioc3->sscr_a = ioc3->sscr_a & ~SSCR_DMA_EN;
1195 ioc3->sscr_a;
1196 ioc3->sscr_b = ioc3->sscr_b & ~SSCR_DMA_EN;
1197 ioc3->sscr_b;
1198 /* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1199 ioc3->sio_iec &= ~ (SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1200 SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1201 SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1202 SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1203 ioc3->sio_iec |= SIO_IR_SA_INT;
1204 ioc3->sscr_a = 0;
1205 ioc3->sio_iec &= ~ (SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1206 SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1207 SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1208 SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1209 ioc3->sio_iec |= SIO_IR_SB_INT;
1210 ioc3->sscr_b = 0;
1211
1212 ioc3_8250_register(&ioc3->sregs.uarta);
1213 ioc3_8250_register(&ioc3->sregs.uartb);
1214 }
1215 #endif
1216
1217 static const struct net_device_ops ioc3_netdev_ops = {
1218 .ndo_open = ioc3_open,
1219 .ndo_stop = ioc3_close,
1220 .ndo_start_xmit = ioc3_start_xmit,
1221 .ndo_tx_timeout = ioc3_timeout,
1222 .ndo_get_stats = ioc3_get_stats,
1223 .ndo_set_rx_mode = ioc3_set_multicast_list,
1224 .ndo_do_ioctl = ioc3_ioctl,
1225 .ndo_validate_addr = eth_validate_addr,
1226 .ndo_set_mac_address = ioc3_set_mac_address,
1227 .ndo_change_mtu = eth_change_mtu,
1228 };
1229
ioc3_probe(struct pci_dev * pdev,const struct pci_device_id * ent)1230 static int __devinit ioc3_probe(struct pci_dev *pdev,
1231 const struct pci_device_id *ent)
1232 {
1233 unsigned int sw_physid1, sw_physid2;
1234 struct net_device *dev = NULL;
1235 struct ioc3_private *ip;
1236 struct ioc3 *ioc3;
1237 unsigned long ioc3_base, ioc3_size;
1238 u32 vendor, model, rev;
1239 int err, pci_using_dac;
1240
1241 /* Configure DMA attributes. */
1242 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1243 if (!err) {
1244 pci_using_dac = 1;
1245 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1246 if (err < 0) {
1247 printk(KERN_ERR "%s: Unable to obtain 64 bit DMA "
1248 "for consistent allocations\n", pci_name(pdev));
1249 goto out;
1250 }
1251 } else {
1252 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1253 if (err) {
1254 printk(KERN_ERR "%s: No usable DMA configuration, "
1255 "aborting.\n", pci_name(pdev));
1256 goto out;
1257 }
1258 pci_using_dac = 0;
1259 }
1260
1261 if (pci_enable_device(pdev))
1262 return -ENODEV;
1263
1264 dev = alloc_etherdev(sizeof(struct ioc3_private));
1265 if (!dev) {
1266 err = -ENOMEM;
1267 goto out_disable;
1268 }
1269
1270 if (pci_using_dac)
1271 dev->features |= NETIF_F_HIGHDMA;
1272
1273 err = pci_request_regions(pdev, "ioc3");
1274 if (err)
1275 goto out_free;
1276
1277 SET_NETDEV_DEV(dev, &pdev->dev);
1278
1279 ip = netdev_priv(dev);
1280
1281 dev->irq = pdev->irq;
1282
1283 ioc3_base = pci_resource_start(pdev, 0);
1284 ioc3_size = pci_resource_len(pdev, 0);
1285 ioc3 = (struct ioc3 *) ioremap(ioc3_base, ioc3_size);
1286 if (!ioc3) {
1287 printk(KERN_CRIT "ioc3eth(%s): ioremap failed, goodbye.\n",
1288 pci_name(pdev));
1289 err = -ENOMEM;
1290 goto out_res;
1291 }
1292 ip->regs = ioc3;
1293
1294 #ifdef CONFIG_SERIAL_8250
1295 ioc3_serial_probe(pdev, ioc3);
1296 #endif
1297
1298 spin_lock_init(&ip->ioc3_lock);
1299 init_timer(&ip->ioc3_timer);
1300
1301 ioc3_stop(ip);
1302 ioc3_init(dev);
1303
1304 ip->pdev = pdev;
1305
1306 ip->mii.phy_id_mask = 0x1f;
1307 ip->mii.reg_num_mask = 0x1f;
1308 ip->mii.dev = dev;
1309 ip->mii.mdio_read = ioc3_mdio_read;
1310 ip->mii.mdio_write = ioc3_mdio_write;
1311
1312 ioc3_mii_init(ip);
1313
1314 if (ip->mii.phy_id == -1) {
1315 printk(KERN_CRIT "ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1316 pci_name(pdev));
1317 err = -ENODEV;
1318 goto out_stop;
1319 }
1320
1321 ioc3_mii_start(ip);
1322 ioc3_ssram_disc(ip);
1323 ioc3_get_eaddr(ip);
1324
1325 /* The IOC3-specific entries in the device structure. */
1326 dev->watchdog_timeo = 5 * HZ;
1327 dev->netdev_ops = &ioc3_netdev_ops;
1328 dev->ethtool_ops = &ioc3_ethtool_ops;
1329 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1330 dev->features = NETIF_F_IP_CSUM;
1331
1332 sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1333 sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1334
1335 err = register_netdev(dev);
1336 if (err)
1337 goto out_stop;
1338
1339 mii_check_media(&ip->mii, 1, 1);
1340 ioc3_setup_duplex(ip);
1341
1342 vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1343 model = (sw_physid2 >> 4) & 0x3f;
1344 rev = sw_physid2 & 0xf;
1345 printk(KERN_INFO "%s: Using PHY %d, vendor 0x%x, model %d, "
1346 "rev %d.\n", dev->name, ip->mii.phy_id, vendor, model, rev);
1347 printk(KERN_INFO "%s: IOC3 SSRAM has %d kbyte.\n", dev->name,
1348 ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1349
1350 return 0;
1351
1352 out_stop:
1353 ioc3_stop(ip);
1354 del_timer_sync(&ip->ioc3_timer);
1355 ioc3_free_rings(ip);
1356 out_res:
1357 pci_release_regions(pdev);
1358 out_free:
1359 free_netdev(dev);
1360 out_disable:
1361 /*
1362 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1363 * such a weird device ...
1364 */
1365 out:
1366 return err;
1367 }
1368
ioc3_remove_one(struct pci_dev * pdev)1369 static void __devexit ioc3_remove_one (struct pci_dev *pdev)
1370 {
1371 struct net_device *dev = pci_get_drvdata(pdev);
1372 struct ioc3_private *ip = netdev_priv(dev);
1373 struct ioc3 *ioc3 = ip->regs;
1374
1375 unregister_netdev(dev);
1376 del_timer_sync(&ip->ioc3_timer);
1377
1378 iounmap(ioc3);
1379 pci_release_regions(pdev);
1380 free_netdev(dev);
1381 /*
1382 * We should call pci_disable_device(pdev); here if the IOC3 wasn't
1383 * such a weird device ...
1384 */
1385 }
1386
1387 static DEFINE_PCI_DEVICE_TABLE(ioc3_pci_tbl) = {
1388 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1389 { 0 }
1390 };
1391 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1392
1393 static struct pci_driver ioc3_driver = {
1394 .name = "ioc3-eth",
1395 .id_table = ioc3_pci_tbl,
1396 .probe = ioc3_probe,
1397 .remove = __devexit_p(ioc3_remove_one),
1398 };
1399
ioc3_init_module(void)1400 static int __init ioc3_init_module(void)
1401 {
1402 return pci_register_driver(&ioc3_driver);
1403 }
1404
ioc3_cleanup_module(void)1405 static void __exit ioc3_cleanup_module(void)
1406 {
1407 pci_unregister_driver(&ioc3_driver);
1408 }
1409
ioc3_start_xmit(struct sk_buff * skb,struct net_device * dev)1410 static int ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1411 {
1412 unsigned long data;
1413 struct ioc3_private *ip = netdev_priv(dev);
1414 struct ioc3 *ioc3 = ip->regs;
1415 unsigned int len;
1416 struct ioc3_etxd *desc;
1417 uint32_t w0 = 0;
1418 int produce;
1419
1420 /*
1421 * IOC3 has a fairly simple minded checksumming hardware which simply
1422 * adds up the 1's complement checksum for the entire packet and
1423 * inserts it at an offset which can be specified in the descriptor
1424 * into the transmit packet. This means we have to compensate for the
1425 * MAC header which should not be summed and the TCP/UDP pseudo headers
1426 * manually.
1427 */
1428 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1429 const struct iphdr *ih = ip_hdr(skb);
1430 const int proto = ntohs(ih->protocol);
1431 unsigned int csoff;
1432 uint32_t csum, ehsum;
1433 uint16_t *eh;
1434
1435 /* The MAC header. skb->mac seem the logic approach
1436 to find the MAC header - except it's a NULL pointer ... */
1437 eh = (uint16_t *) skb->data;
1438
1439 /* Sum up dest addr, src addr and protocol */
1440 ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1441
1442 /* Fold ehsum. can't use csum_fold which negates also ... */
1443 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1444 ehsum = (ehsum & 0xffff) + (ehsum >> 16);
1445
1446 /* Skip IP header; it's sum is always zero and was
1447 already filled in by ip_output.c */
1448 csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1449 ih->tot_len - (ih->ihl << 2),
1450 proto, 0xffff ^ ehsum);
1451
1452 csum = (csum & 0xffff) + (csum >> 16); /* Fold again */
1453 csum = (csum & 0xffff) + (csum >> 16);
1454
1455 csoff = ETH_HLEN + (ih->ihl << 2);
1456 if (proto == IPPROTO_UDP) {
1457 csoff += offsetof(struct udphdr, check);
1458 udp_hdr(skb)->check = csum;
1459 }
1460 if (proto == IPPROTO_TCP) {
1461 csoff += offsetof(struct tcphdr, check);
1462 tcp_hdr(skb)->check = csum;
1463 }
1464
1465 w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1466 }
1467
1468 spin_lock_irq(&ip->ioc3_lock);
1469
1470 data = (unsigned long) skb->data;
1471 len = skb->len;
1472
1473 produce = ip->tx_pi;
1474 desc = &ip->txr[produce];
1475
1476 if (len <= 104) {
1477 /* Short packet, let's copy it directly into the ring. */
1478 skb_copy_from_linear_data(skb, desc->data, skb->len);
1479 if (len < ETH_ZLEN) {
1480 /* Very short packet, pad with zeros at the end. */
1481 memset(desc->data + len, 0, ETH_ZLEN - len);
1482 len = ETH_ZLEN;
1483 }
1484 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1485 desc->bufcnt = cpu_to_be32(len);
1486 } else if ((data ^ (data + len - 1)) & 0x4000) {
1487 unsigned long b2 = (data | 0x3fffUL) + 1UL;
1488 unsigned long s1 = b2 - data;
1489 unsigned long s2 = data + len - b2;
1490
1491 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE |
1492 ETXD_B1V | ETXD_B2V | w0);
1493 desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1494 (s2 << ETXD_B2CNT_SHIFT));
1495 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1496 desc->p2 = cpu_to_be64(ioc3_map((void *) b2, 1));
1497 } else {
1498 /* Normal sized packet that doesn't cross a page boundary. */
1499 desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1500 desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1501 desc->p1 = cpu_to_be64(ioc3_map(skb->data, 1));
1502 }
1503
1504 BARRIER();
1505
1506 ip->tx_skbs[produce] = skb; /* Remember skb */
1507 produce = (produce + 1) & 127;
1508 ip->tx_pi = produce;
1509 ioc3_w_etpir(produce << 7); /* Fire ... */
1510
1511 ip->txqlen++;
1512
1513 if (ip->txqlen >= 127)
1514 netif_stop_queue(dev);
1515
1516 spin_unlock_irq(&ip->ioc3_lock);
1517
1518 return NETDEV_TX_OK;
1519 }
1520
ioc3_timeout(struct net_device * dev)1521 static void ioc3_timeout(struct net_device *dev)
1522 {
1523 struct ioc3_private *ip = netdev_priv(dev);
1524
1525 printk(KERN_ERR "%s: transmit timed out, resetting\n", dev->name);
1526
1527 spin_lock_irq(&ip->ioc3_lock);
1528
1529 ioc3_stop(ip);
1530 ioc3_init(dev);
1531 ioc3_mii_init(ip);
1532 ioc3_mii_start(ip);
1533
1534 spin_unlock_irq(&ip->ioc3_lock);
1535
1536 netif_wake_queue(dev);
1537 }
1538
1539 /*
1540 * Given a multicast ethernet address, this routine calculates the
1541 * address's bit index in the logical address filter mask
1542 */
1543
ioc3_hash(const unsigned char * addr)1544 static inline unsigned int ioc3_hash(const unsigned char *addr)
1545 {
1546 unsigned int temp = 0;
1547 u32 crc;
1548 int bits;
1549
1550 crc = ether_crc_le(ETH_ALEN, addr);
1551
1552 crc &= 0x3f; /* bit reverse lowest 6 bits for hash index */
1553 for (bits = 6; --bits >= 0; ) {
1554 temp <<= 1;
1555 temp |= (crc & 0x1);
1556 crc >>= 1;
1557 }
1558
1559 return temp;
1560 }
1561
ioc3_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1562 static void ioc3_get_drvinfo (struct net_device *dev,
1563 struct ethtool_drvinfo *info)
1564 {
1565 struct ioc3_private *ip = netdev_priv(dev);
1566
1567 strcpy (info->driver, IOC3_NAME);
1568 strcpy (info->version, IOC3_VERSION);
1569 strcpy (info->bus_info, pci_name(ip->pdev));
1570 }
1571
ioc3_get_settings(struct net_device * dev,struct ethtool_cmd * cmd)1572 static int ioc3_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1573 {
1574 struct ioc3_private *ip = netdev_priv(dev);
1575 int rc;
1576
1577 spin_lock_irq(&ip->ioc3_lock);
1578 rc = mii_ethtool_gset(&ip->mii, cmd);
1579 spin_unlock_irq(&ip->ioc3_lock);
1580
1581 return rc;
1582 }
1583
ioc3_set_settings(struct net_device * dev,struct ethtool_cmd * cmd)1584 static int ioc3_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1585 {
1586 struct ioc3_private *ip = netdev_priv(dev);
1587 int rc;
1588
1589 spin_lock_irq(&ip->ioc3_lock);
1590 rc = mii_ethtool_sset(&ip->mii, cmd);
1591 spin_unlock_irq(&ip->ioc3_lock);
1592
1593 return rc;
1594 }
1595
ioc3_nway_reset(struct net_device * dev)1596 static int ioc3_nway_reset(struct net_device *dev)
1597 {
1598 struct ioc3_private *ip = netdev_priv(dev);
1599 int rc;
1600
1601 spin_lock_irq(&ip->ioc3_lock);
1602 rc = mii_nway_restart(&ip->mii);
1603 spin_unlock_irq(&ip->ioc3_lock);
1604
1605 return rc;
1606 }
1607
ioc3_get_link(struct net_device * dev)1608 static u32 ioc3_get_link(struct net_device *dev)
1609 {
1610 struct ioc3_private *ip = netdev_priv(dev);
1611 int rc;
1612
1613 spin_lock_irq(&ip->ioc3_lock);
1614 rc = mii_link_ok(&ip->mii);
1615 spin_unlock_irq(&ip->ioc3_lock);
1616
1617 return rc;
1618 }
1619
1620 static const struct ethtool_ops ioc3_ethtool_ops = {
1621 .get_drvinfo = ioc3_get_drvinfo,
1622 .get_settings = ioc3_get_settings,
1623 .set_settings = ioc3_set_settings,
1624 .nway_reset = ioc3_nway_reset,
1625 .get_link = ioc3_get_link,
1626 };
1627
ioc3_ioctl(struct net_device * dev,struct ifreq * rq,int cmd)1628 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1629 {
1630 struct ioc3_private *ip = netdev_priv(dev);
1631 int rc;
1632
1633 spin_lock_irq(&ip->ioc3_lock);
1634 rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1635 spin_unlock_irq(&ip->ioc3_lock);
1636
1637 return rc;
1638 }
1639
ioc3_set_multicast_list(struct net_device * dev)1640 static void ioc3_set_multicast_list(struct net_device *dev)
1641 {
1642 struct netdev_hw_addr *ha;
1643 struct ioc3_private *ip = netdev_priv(dev);
1644 struct ioc3 *ioc3 = ip->regs;
1645 u64 ehar = 0;
1646
1647 netif_stop_queue(dev); /* Lock out others. */
1648
1649 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
1650 ip->emcr |= EMCR_PROMISC;
1651 ioc3_w_emcr(ip->emcr);
1652 (void) ioc3_r_emcr();
1653 } else {
1654 ip->emcr &= ~EMCR_PROMISC;
1655 ioc3_w_emcr(ip->emcr); /* Clear promiscuous. */
1656 (void) ioc3_r_emcr();
1657
1658 if ((dev->flags & IFF_ALLMULTI) ||
1659 (netdev_mc_count(dev) > 64)) {
1660 /* Too many for hashing to make sense or we want all
1661 multicast packets anyway, so skip computing all the
1662 hashes and just accept all packets. */
1663 ip->ehar_h = 0xffffffff;
1664 ip->ehar_l = 0xffffffff;
1665 } else {
1666 netdev_for_each_mc_addr(ha, dev) {
1667 ehar |= (1UL << ioc3_hash(ha->addr));
1668 }
1669 ip->ehar_h = ehar >> 32;
1670 ip->ehar_l = ehar & 0xffffffff;
1671 }
1672 ioc3_w_ehar_h(ip->ehar_h);
1673 ioc3_w_ehar_l(ip->ehar_l);
1674 }
1675
1676 netif_wake_queue(dev); /* Let us get going again. */
1677 }
1678
1679 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1680 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1681 MODULE_LICENSE("GPL");
1682
1683 module_init(ioc3_init_module);
1684 module_exit(ioc3_cleanup_module);
1685