• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /******************************************************************************
2 
3   Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
4 
5   802.11 status code portion of this file from ethereal-0.10.6:
6     Copyright 2000, Axis Communications AB
7     Ethereal - Network traffic analyzer
8     By Gerald Combs <gerald@ethereal.com>
9     Copyright 1998 Gerald Combs
10 
11   This program is free software; you can redistribute it and/or modify it
12   under the terms of version 2 of the GNU General Public License as
13   published by the Free Software Foundation.
14 
15   This program is distributed in the hope that it will be useful, but WITHOUT
16   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
18   more details.
19 
20   You should have received a copy of the GNU General Public License along with
21   this program; if not, write to the Free Software Foundation, Inc., 59
22   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
23 
24   The full GNU General Public License is included in this distribution in the
25   file called LICENSE.
26 
27   Contact Information:
28   Intel Linux Wireless <ilw@linux.intel.com>
29   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
30 
31 ******************************************************************************/
32 
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <net/cfg80211-wext.h>
36 #include "ipw2200.h"
37 #include "ipw.h"
38 
39 
40 #ifndef KBUILD_EXTMOD
41 #define VK "k"
42 #else
43 #define VK
44 #endif
45 
46 #ifdef CONFIG_IPW2200_DEBUG
47 #define VD "d"
48 #else
49 #define VD
50 #endif
51 
52 #ifdef CONFIG_IPW2200_MONITOR
53 #define VM "m"
54 #else
55 #define VM
56 #endif
57 
58 #ifdef CONFIG_IPW2200_PROMISCUOUS
59 #define VP "p"
60 #else
61 #define VP
62 #endif
63 
64 #ifdef CONFIG_IPW2200_RADIOTAP
65 #define VR "r"
66 #else
67 #define VR
68 #endif
69 
70 #ifdef CONFIG_IPW2200_QOS
71 #define VQ "q"
72 #else
73 #define VQ
74 #endif
75 
76 #define IPW2200_VERSION "1.2.2" VK VD VM VP VR VQ
77 #define DRV_DESCRIPTION	"Intel(R) PRO/Wireless 2200/2915 Network Driver"
78 #define DRV_COPYRIGHT	"Copyright(c) 2003-2006 Intel Corporation"
79 #define DRV_VERSION     IPW2200_VERSION
80 
81 #define ETH_P_80211_STATS (ETH_P_80211_RAW + 1)
82 
83 MODULE_DESCRIPTION(DRV_DESCRIPTION);
84 MODULE_VERSION(DRV_VERSION);
85 MODULE_AUTHOR(DRV_COPYRIGHT);
86 MODULE_LICENSE("GPL");
87 MODULE_FIRMWARE("ipw2200-ibss.fw");
88 #ifdef CONFIG_IPW2200_MONITOR
89 MODULE_FIRMWARE("ipw2200-sniffer.fw");
90 #endif
91 MODULE_FIRMWARE("ipw2200-bss.fw");
92 
93 static int cmdlog = 0;
94 static int debug = 0;
95 static int default_channel = 0;
96 static int network_mode = 0;
97 
98 static u32 ipw_debug_level;
99 static int associate;
100 static int auto_create = 1;
101 static int led_support = 1;
102 static int disable = 0;
103 static int bt_coexist = 0;
104 static int hwcrypto = 0;
105 static int roaming = 1;
106 static const char ipw_modes[] = {
107 	'a', 'b', 'g', '?'
108 };
109 static int antenna = CFG_SYS_ANTENNA_BOTH;
110 
111 #ifdef CONFIG_IPW2200_PROMISCUOUS
112 static int rtap_iface = 0;     /* def: 0 -- do not create rtap interface */
113 #endif
114 
115 static struct ieee80211_rate ipw2200_rates[] = {
116 	{ .bitrate = 10 },
117 	{ .bitrate = 20, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
118 	{ .bitrate = 55, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
119 	{ .bitrate = 110, .flags = IEEE80211_RATE_SHORT_PREAMBLE },
120 	{ .bitrate = 60 },
121 	{ .bitrate = 90 },
122 	{ .bitrate = 120 },
123 	{ .bitrate = 180 },
124 	{ .bitrate = 240 },
125 	{ .bitrate = 360 },
126 	{ .bitrate = 480 },
127 	{ .bitrate = 540 }
128 };
129 
130 #define ipw2200_a_rates		(ipw2200_rates + 4)
131 #define ipw2200_num_a_rates	8
132 #define ipw2200_bg_rates	(ipw2200_rates + 0)
133 #define ipw2200_num_bg_rates	12
134 
135 /* Ugly macro to convert literal channel numbers into their mhz equivalents
136  * There are certianly some conditions that will break this (like feeding it '30')
137  * but they shouldn't arise since nothing talks on channel 30. */
138 #define ieee80211chan2mhz(x) \
139 	(((x) <= 14) ? \
140 	(((x) == 14) ? 2484 : ((x) * 5) + 2407) : \
141 	((x) + 1000) * 5)
142 
143 #ifdef CONFIG_IPW2200_QOS
144 static int qos_enable = 0;
145 static int qos_burst_enable = 0;
146 static int qos_no_ack_mask = 0;
147 static int burst_duration_CCK = 0;
148 static int burst_duration_OFDM = 0;
149 
150 static struct libipw_qos_parameters def_qos_parameters_OFDM = {
151 	{QOS_TX0_CW_MIN_OFDM, QOS_TX1_CW_MIN_OFDM, QOS_TX2_CW_MIN_OFDM,
152 	 QOS_TX3_CW_MIN_OFDM},
153 	{QOS_TX0_CW_MAX_OFDM, QOS_TX1_CW_MAX_OFDM, QOS_TX2_CW_MAX_OFDM,
154 	 QOS_TX3_CW_MAX_OFDM},
155 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
156 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
157 	{QOS_TX0_TXOP_LIMIT_OFDM, QOS_TX1_TXOP_LIMIT_OFDM,
158 	 QOS_TX2_TXOP_LIMIT_OFDM, QOS_TX3_TXOP_LIMIT_OFDM}
159 };
160 
161 static struct libipw_qos_parameters def_qos_parameters_CCK = {
162 	{QOS_TX0_CW_MIN_CCK, QOS_TX1_CW_MIN_CCK, QOS_TX2_CW_MIN_CCK,
163 	 QOS_TX3_CW_MIN_CCK},
164 	{QOS_TX0_CW_MAX_CCK, QOS_TX1_CW_MAX_CCK, QOS_TX2_CW_MAX_CCK,
165 	 QOS_TX3_CW_MAX_CCK},
166 	{QOS_TX0_AIFS, QOS_TX1_AIFS, QOS_TX2_AIFS, QOS_TX3_AIFS},
167 	{QOS_TX0_ACM, QOS_TX1_ACM, QOS_TX2_ACM, QOS_TX3_ACM},
168 	{QOS_TX0_TXOP_LIMIT_CCK, QOS_TX1_TXOP_LIMIT_CCK, QOS_TX2_TXOP_LIMIT_CCK,
169 	 QOS_TX3_TXOP_LIMIT_CCK}
170 };
171 
172 static struct libipw_qos_parameters def_parameters_OFDM = {
173 	{DEF_TX0_CW_MIN_OFDM, DEF_TX1_CW_MIN_OFDM, DEF_TX2_CW_MIN_OFDM,
174 	 DEF_TX3_CW_MIN_OFDM},
175 	{DEF_TX0_CW_MAX_OFDM, DEF_TX1_CW_MAX_OFDM, DEF_TX2_CW_MAX_OFDM,
176 	 DEF_TX3_CW_MAX_OFDM},
177 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
178 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
179 	{DEF_TX0_TXOP_LIMIT_OFDM, DEF_TX1_TXOP_LIMIT_OFDM,
180 	 DEF_TX2_TXOP_LIMIT_OFDM, DEF_TX3_TXOP_LIMIT_OFDM}
181 };
182 
183 static struct libipw_qos_parameters def_parameters_CCK = {
184 	{DEF_TX0_CW_MIN_CCK, DEF_TX1_CW_MIN_CCK, DEF_TX2_CW_MIN_CCK,
185 	 DEF_TX3_CW_MIN_CCK},
186 	{DEF_TX0_CW_MAX_CCK, DEF_TX1_CW_MAX_CCK, DEF_TX2_CW_MAX_CCK,
187 	 DEF_TX3_CW_MAX_CCK},
188 	{DEF_TX0_AIFS, DEF_TX1_AIFS, DEF_TX2_AIFS, DEF_TX3_AIFS},
189 	{DEF_TX0_ACM, DEF_TX1_ACM, DEF_TX2_ACM, DEF_TX3_ACM},
190 	{DEF_TX0_TXOP_LIMIT_CCK, DEF_TX1_TXOP_LIMIT_CCK, DEF_TX2_TXOP_LIMIT_CCK,
191 	 DEF_TX3_TXOP_LIMIT_CCK}
192 };
193 
194 static u8 qos_oui[QOS_OUI_LEN] = { 0x00, 0x50, 0xF2 };
195 
196 static int from_priority_to_tx_queue[] = {
197 	IPW_TX_QUEUE_1, IPW_TX_QUEUE_2, IPW_TX_QUEUE_2, IPW_TX_QUEUE_1,
198 	IPW_TX_QUEUE_3, IPW_TX_QUEUE_3, IPW_TX_QUEUE_4, IPW_TX_QUEUE_4
199 };
200 
201 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv);
202 
203 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
204 				       *qos_param);
205 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
206 				     *qos_param);
207 #endif				/* CONFIG_IPW2200_QOS */
208 
209 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev);
210 static void ipw_remove_current_network(struct ipw_priv *priv);
211 static void ipw_rx(struct ipw_priv *priv);
212 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
213 				struct clx2_tx_queue *txq, int qindex);
214 static int ipw_queue_reset(struct ipw_priv *priv);
215 
216 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
217 			     int len, int sync);
218 
219 static void ipw_tx_queue_free(struct ipw_priv *);
220 
221 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *);
222 static void ipw_rx_queue_free(struct ipw_priv *, struct ipw_rx_queue *);
223 static void ipw_rx_queue_replenish(void *);
224 static int ipw_up(struct ipw_priv *);
225 static void ipw_bg_up(struct work_struct *work);
226 static void ipw_down(struct ipw_priv *);
227 static void ipw_bg_down(struct work_struct *work);
228 static int ipw_config(struct ipw_priv *);
229 static int init_supported_rates(struct ipw_priv *priv,
230 				struct ipw_supported_rates *prates);
231 static void ipw_set_hwcrypto_keys(struct ipw_priv *);
232 static void ipw_send_wep_keys(struct ipw_priv *, int);
233 
snprint_line(char * buf,size_t count,const u8 * data,u32 len,u32 ofs)234 static int snprint_line(char *buf, size_t count,
235 			const u8 * data, u32 len, u32 ofs)
236 {
237 	int out, i, j, l;
238 	char c;
239 
240 	out = snprintf(buf, count, "%08X", ofs);
241 
242 	for (l = 0, i = 0; i < 2; i++) {
243 		out += snprintf(buf + out, count - out, " ");
244 		for (j = 0; j < 8 && l < len; j++, l++)
245 			out += snprintf(buf + out, count - out, "%02X ",
246 					data[(i * 8 + j)]);
247 		for (; j < 8; j++)
248 			out += snprintf(buf + out, count - out, "   ");
249 	}
250 
251 	out += snprintf(buf + out, count - out, " ");
252 	for (l = 0, i = 0; i < 2; i++) {
253 		out += snprintf(buf + out, count - out, " ");
254 		for (j = 0; j < 8 && l < len; j++, l++) {
255 			c = data[(i * 8 + j)];
256 			if (!isascii(c) || !isprint(c))
257 				c = '.';
258 
259 			out += snprintf(buf + out, count - out, "%c", c);
260 		}
261 
262 		for (; j < 8; j++)
263 			out += snprintf(buf + out, count - out, " ");
264 	}
265 
266 	return out;
267 }
268 
printk_buf(int level,const u8 * data,u32 len)269 static void printk_buf(int level, const u8 * data, u32 len)
270 {
271 	char line[81];
272 	u32 ofs = 0;
273 	if (!(ipw_debug_level & level))
274 		return;
275 
276 	while (len) {
277 		snprint_line(line, sizeof(line), &data[ofs],
278 			     min(len, 16U), ofs);
279 		printk(KERN_DEBUG "%s\n", line);
280 		ofs += 16;
281 		len -= min(len, 16U);
282 	}
283 }
284 
snprintk_buf(u8 * output,size_t size,const u8 * data,size_t len)285 static int snprintk_buf(u8 * output, size_t size, const u8 * data, size_t len)
286 {
287 	size_t out = size;
288 	u32 ofs = 0;
289 	int total = 0;
290 
291 	while (size && len) {
292 		out = snprint_line(output, size, &data[ofs],
293 				   min_t(size_t, len, 16U), ofs);
294 
295 		ofs += 16;
296 		output += out;
297 		size -= out;
298 		len -= min_t(size_t, len, 16U);
299 		total += out;
300 	}
301 	return total;
302 }
303 
304 /* alias for 32-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
305 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg);
306 #define ipw_read_reg32(a, b) _ipw_read_reg32(a, b)
307 
308 /* alias for 8-bit indirect read (for SRAM/reg above 4K), with debug wrapper */
309 static u8 _ipw_read_reg8(struct ipw_priv *ipw, u32 reg);
310 #define ipw_read_reg8(a, b) _ipw_read_reg8(a, b)
311 
312 /* 8-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
313 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value);
ipw_write_reg8(struct ipw_priv * a,u32 b,u8 c)314 static inline void ipw_write_reg8(struct ipw_priv *a, u32 b, u8 c)
315 {
316 	IPW_DEBUG_IO("%s %d: write_indirect8(0x%08X, 0x%08X)\n", __FILE__,
317 		     __LINE__, (u32) (b), (u32) (c));
318 	_ipw_write_reg8(a, b, c);
319 }
320 
321 /* 16-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
322 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value);
ipw_write_reg16(struct ipw_priv * a,u32 b,u16 c)323 static inline void ipw_write_reg16(struct ipw_priv *a, u32 b, u16 c)
324 {
325 	IPW_DEBUG_IO("%s %d: write_indirect16(0x%08X, 0x%08X)\n", __FILE__,
326 		     __LINE__, (u32) (b), (u32) (c));
327 	_ipw_write_reg16(a, b, c);
328 }
329 
330 /* 32-bit indirect write (for SRAM/reg above 4K), with debug wrapper */
331 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value);
ipw_write_reg32(struct ipw_priv * a,u32 b,u32 c)332 static inline void ipw_write_reg32(struct ipw_priv *a, u32 b, u32 c)
333 {
334 	IPW_DEBUG_IO("%s %d: write_indirect32(0x%08X, 0x%08X)\n", __FILE__,
335 		     __LINE__, (u32) (b), (u32) (c));
336 	_ipw_write_reg32(a, b, c);
337 }
338 
339 /* 8-bit direct write (low 4K) */
_ipw_write8(struct ipw_priv * ipw,unsigned long ofs,u8 val)340 static inline void _ipw_write8(struct ipw_priv *ipw, unsigned long ofs,
341 		u8 val)
342 {
343 	writeb(val, ipw->hw_base + ofs);
344 }
345 
346 /* 8-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
347 #define ipw_write8(ipw, ofs, val) do { \
348 	IPW_DEBUG_IO("%s %d: write_direct8(0x%08X, 0x%08X)\n", __FILE__, \
349 			__LINE__, (u32)(ofs), (u32)(val)); \
350 	_ipw_write8(ipw, ofs, val); \
351 } while (0)
352 
353 /* 16-bit direct write (low 4K) */
_ipw_write16(struct ipw_priv * ipw,unsigned long ofs,u16 val)354 static inline void _ipw_write16(struct ipw_priv *ipw, unsigned long ofs,
355 		u16 val)
356 {
357 	writew(val, ipw->hw_base + ofs);
358 }
359 
360 /* 16-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
361 #define ipw_write16(ipw, ofs, val) do { \
362 	IPW_DEBUG_IO("%s %d: write_direct16(0x%08X, 0x%08X)\n", __FILE__, \
363 			__LINE__, (u32)(ofs), (u32)(val)); \
364 	_ipw_write16(ipw, ofs, val); \
365 } while (0)
366 
367 /* 32-bit direct write (low 4K) */
_ipw_write32(struct ipw_priv * ipw,unsigned long ofs,u32 val)368 static inline void _ipw_write32(struct ipw_priv *ipw, unsigned long ofs,
369 		u32 val)
370 {
371 	writel(val, ipw->hw_base + ofs);
372 }
373 
374 /* 32-bit direct write (for low 4K of SRAM/regs), with debug wrapper */
375 #define ipw_write32(ipw, ofs, val) do { \
376 	IPW_DEBUG_IO("%s %d: write_direct32(0x%08X, 0x%08X)\n", __FILE__, \
377 			__LINE__, (u32)(ofs), (u32)(val)); \
378 	_ipw_write32(ipw, ofs, val); \
379 } while (0)
380 
381 /* 8-bit direct read (low 4K) */
_ipw_read8(struct ipw_priv * ipw,unsigned long ofs)382 static inline u8 _ipw_read8(struct ipw_priv *ipw, unsigned long ofs)
383 {
384 	return readb(ipw->hw_base + ofs);
385 }
386 
387 /* alias to 8-bit direct read (low 4K of SRAM/regs), with debug wrapper */
388 #define ipw_read8(ipw, ofs) ({ \
389 	IPW_DEBUG_IO("%s %d: read_direct8(0x%08X)\n", __FILE__, __LINE__, \
390 			(u32)(ofs)); \
391 	_ipw_read8(ipw, ofs); \
392 })
393 
394 /* 16-bit direct read (low 4K) */
_ipw_read16(struct ipw_priv * ipw,unsigned long ofs)395 static inline u16 _ipw_read16(struct ipw_priv *ipw, unsigned long ofs)
396 {
397 	return readw(ipw->hw_base + ofs);
398 }
399 
400 /* alias to 16-bit direct read (low 4K of SRAM/regs), with debug wrapper */
401 #define ipw_read16(ipw, ofs) ({ \
402 	IPW_DEBUG_IO("%s %d: read_direct16(0x%08X)\n", __FILE__, __LINE__, \
403 			(u32)(ofs)); \
404 	_ipw_read16(ipw, ofs); \
405 })
406 
407 /* 32-bit direct read (low 4K) */
_ipw_read32(struct ipw_priv * ipw,unsigned long ofs)408 static inline u32 _ipw_read32(struct ipw_priv *ipw, unsigned long ofs)
409 {
410 	return readl(ipw->hw_base + ofs);
411 }
412 
413 /* alias to 32-bit direct read (low 4K of SRAM/regs), with debug wrapper */
414 #define ipw_read32(ipw, ofs) ({ \
415 	IPW_DEBUG_IO("%s %d: read_direct32(0x%08X)\n", __FILE__, __LINE__, \
416 			(u32)(ofs)); \
417 	_ipw_read32(ipw, ofs); \
418 })
419 
420 static void _ipw_read_indirect(struct ipw_priv *, u32, u8 *, int);
421 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
422 #define ipw_read_indirect(a, b, c, d) ({ \
423 	IPW_DEBUG_IO("%s %d: read_indirect(0x%08X) %u bytes\n", __FILE__, \
424 			__LINE__, (u32)(b), (u32)(d)); \
425 	_ipw_read_indirect(a, b, c, d); \
426 })
427 
428 /* alias to multi-byte read (SRAM/regs above 4K), with debug wrapper */
429 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * data,
430 				int num);
431 #define ipw_write_indirect(a, b, c, d) do { \
432 	IPW_DEBUG_IO("%s %d: write_indirect(0x%08X) %u bytes\n", __FILE__, \
433 			__LINE__, (u32)(b), (u32)(d)); \
434 	_ipw_write_indirect(a, b, c, d); \
435 } while (0)
436 
437 /* 32-bit indirect write (above 4K) */
_ipw_write_reg32(struct ipw_priv * priv,u32 reg,u32 value)438 static void _ipw_write_reg32(struct ipw_priv *priv, u32 reg, u32 value)
439 {
440 	IPW_DEBUG_IO(" %p : reg = 0x%8X : value = 0x%8X\n", priv, reg, value);
441 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
442 	_ipw_write32(priv, IPW_INDIRECT_DATA, value);
443 }
444 
445 /* 8-bit indirect write (above 4K) */
_ipw_write_reg8(struct ipw_priv * priv,u32 reg,u8 value)446 static void _ipw_write_reg8(struct ipw_priv *priv, u32 reg, u8 value)
447 {
448 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
449 	u32 dif_len = reg - aligned_addr;
450 
451 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
452 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
453 	_ipw_write8(priv, IPW_INDIRECT_DATA + dif_len, value);
454 }
455 
456 /* 16-bit indirect write (above 4K) */
_ipw_write_reg16(struct ipw_priv * priv,u32 reg,u16 value)457 static void _ipw_write_reg16(struct ipw_priv *priv, u32 reg, u16 value)
458 {
459 	u32 aligned_addr = reg & IPW_INDIRECT_ADDR_MASK;	/* dword align */
460 	u32 dif_len = (reg - aligned_addr) & (~0x1ul);
461 
462 	IPW_DEBUG_IO(" reg = 0x%8X : value = 0x%8X\n", reg, value);
463 	_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
464 	_ipw_write16(priv, IPW_INDIRECT_DATA + dif_len, value);
465 }
466 
467 /* 8-bit indirect read (above 4K) */
_ipw_read_reg8(struct ipw_priv * priv,u32 reg)468 static u8 _ipw_read_reg8(struct ipw_priv *priv, u32 reg)
469 {
470 	u32 word;
471 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg & IPW_INDIRECT_ADDR_MASK);
472 	IPW_DEBUG_IO(" reg = 0x%8X :\n", reg);
473 	word = _ipw_read32(priv, IPW_INDIRECT_DATA);
474 	return (word >> ((reg & 0x3) * 8)) & 0xff;
475 }
476 
477 /* 32-bit indirect read (above 4K) */
_ipw_read_reg32(struct ipw_priv * priv,u32 reg)478 static u32 _ipw_read_reg32(struct ipw_priv *priv, u32 reg)
479 {
480 	u32 value;
481 
482 	IPW_DEBUG_IO("%p : reg = 0x%08x\n", priv, reg);
483 
484 	_ipw_write32(priv, IPW_INDIRECT_ADDR, reg);
485 	value = _ipw_read32(priv, IPW_INDIRECT_DATA);
486 	IPW_DEBUG_IO(" reg = 0x%4X : value = 0x%4x\n", reg, value);
487 	return value;
488 }
489 
490 /* General purpose, no alignment requirement, iterative (multi-byte) read, */
491 /*    for area above 1st 4K of SRAM/reg space */
_ipw_read_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)492 static void _ipw_read_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
493 			       int num)
494 {
495 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
496 	u32 dif_len = addr - aligned_addr;
497 	u32 i;
498 
499 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
500 
501 	if (num <= 0) {
502 		return;
503 	}
504 
505 	/* Read the first dword (or portion) byte by byte */
506 	if (unlikely(dif_len)) {
507 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
508 		/* Start reading at aligned_addr + dif_len */
509 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--)
510 			*buf++ = _ipw_read8(priv, IPW_INDIRECT_DATA + i);
511 		aligned_addr += 4;
512 	}
513 
514 	/* Read all of the middle dwords as dwords, with auto-increment */
515 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
516 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
517 		*(u32 *) buf = _ipw_read32(priv, IPW_AUTOINC_DATA);
518 
519 	/* Read the last dword (or portion) byte by byte */
520 	if (unlikely(num)) {
521 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
522 		for (i = 0; num > 0; i++, num--)
523 			*buf++ = ipw_read8(priv, IPW_INDIRECT_DATA + i);
524 	}
525 }
526 
527 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
528 /*    for area above 1st 4K of SRAM/reg space */
_ipw_write_indirect(struct ipw_priv * priv,u32 addr,u8 * buf,int num)529 static void _ipw_write_indirect(struct ipw_priv *priv, u32 addr, u8 * buf,
530 				int num)
531 {
532 	u32 aligned_addr = addr & IPW_INDIRECT_ADDR_MASK;	/* dword align */
533 	u32 dif_len = addr - aligned_addr;
534 	u32 i;
535 
536 	IPW_DEBUG_IO("addr = %i, buf = %p, num = %i\n", addr, buf, num);
537 
538 	if (num <= 0) {
539 		return;
540 	}
541 
542 	/* Write the first dword (or portion) byte by byte */
543 	if (unlikely(dif_len)) {
544 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
545 		/* Start writing at aligned_addr + dif_len */
546 		for (i = dif_len; ((i < 4) && (num > 0)); i++, num--, buf++)
547 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
548 		aligned_addr += 4;
549 	}
550 
551 	/* Write all of the middle dwords as dwords, with auto-increment */
552 	_ipw_write32(priv, IPW_AUTOINC_ADDR, aligned_addr);
553 	for (; num >= 4; buf += 4, aligned_addr += 4, num -= 4)
554 		_ipw_write32(priv, IPW_AUTOINC_DATA, *(u32 *) buf);
555 
556 	/* Write the last dword (or portion) byte by byte */
557 	if (unlikely(num)) {
558 		_ipw_write32(priv, IPW_INDIRECT_ADDR, aligned_addr);
559 		for (i = 0; num > 0; i++, num--, buf++)
560 			_ipw_write8(priv, IPW_INDIRECT_DATA + i, *buf);
561 	}
562 }
563 
564 /* General purpose, no alignment requirement, iterative (multi-byte) write, */
565 /*    for 1st 4K of SRAM/regs space */
ipw_write_direct(struct ipw_priv * priv,u32 addr,void * buf,int num)566 static void ipw_write_direct(struct ipw_priv *priv, u32 addr, void *buf,
567 			     int num)
568 {
569 	memcpy_toio((priv->hw_base + addr), buf, num);
570 }
571 
572 /* Set bit(s) in low 4K of SRAM/regs */
ipw_set_bit(struct ipw_priv * priv,u32 reg,u32 mask)573 static inline void ipw_set_bit(struct ipw_priv *priv, u32 reg, u32 mask)
574 {
575 	ipw_write32(priv, reg, ipw_read32(priv, reg) | mask);
576 }
577 
578 /* Clear bit(s) in low 4K of SRAM/regs */
ipw_clear_bit(struct ipw_priv * priv,u32 reg,u32 mask)579 static inline void ipw_clear_bit(struct ipw_priv *priv, u32 reg, u32 mask)
580 {
581 	ipw_write32(priv, reg, ipw_read32(priv, reg) & ~mask);
582 }
583 
__ipw_enable_interrupts(struct ipw_priv * priv)584 static inline void __ipw_enable_interrupts(struct ipw_priv *priv)
585 {
586 	if (priv->status & STATUS_INT_ENABLED)
587 		return;
588 	priv->status |= STATUS_INT_ENABLED;
589 	ipw_write32(priv, IPW_INTA_MASK_R, IPW_INTA_MASK_ALL);
590 }
591 
__ipw_disable_interrupts(struct ipw_priv * priv)592 static inline void __ipw_disable_interrupts(struct ipw_priv *priv)
593 {
594 	if (!(priv->status & STATUS_INT_ENABLED))
595 		return;
596 	priv->status &= ~STATUS_INT_ENABLED;
597 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
598 }
599 
ipw_enable_interrupts(struct ipw_priv * priv)600 static inline void ipw_enable_interrupts(struct ipw_priv *priv)
601 {
602 	unsigned long flags;
603 
604 	spin_lock_irqsave(&priv->irq_lock, flags);
605 	__ipw_enable_interrupts(priv);
606 	spin_unlock_irqrestore(&priv->irq_lock, flags);
607 }
608 
ipw_disable_interrupts(struct ipw_priv * priv)609 static inline void ipw_disable_interrupts(struct ipw_priv *priv)
610 {
611 	unsigned long flags;
612 
613 	spin_lock_irqsave(&priv->irq_lock, flags);
614 	__ipw_disable_interrupts(priv);
615 	spin_unlock_irqrestore(&priv->irq_lock, flags);
616 }
617 
ipw_error_desc(u32 val)618 static char *ipw_error_desc(u32 val)
619 {
620 	switch (val) {
621 	case IPW_FW_ERROR_OK:
622 		return "ERROR_OK";
623 	case IPW_FW_ERROR_FAIL:
624 		return "ERROR_FAIL";
625 	case IPW_FW_ERROR_MEMORY_UNDERFLOW:
626 		return "MEMORY_UNDERFLOW";
627 	case IPW_FW_ERROR_MEMORY_OVERFLOW:
628 		return "MEMORY_OVERFLOW";
629 	case IPW_FW_ERROR_BAD_PARAM:
630 		return "BAD_PARAM";
631 	case IPW_FW_ERROR_BAD_CHECKSUM:
632 		return "BAD_CHECKSUM";
633 	case IPW_FW_ERROR_NMI_INTERRUPT:
634 		return "NMI_INTERRUPT";
635 	case IPW_FW_ERROR_BAD_DATABASE:
636 		return "BAD_DATABASE";
637 	case IPW_FW_ERROR_ALLOC_FAIL:
638 		return "ALLOC_FAIL";
639 	case IPW_FW_ERROR_DMA_UNDERRUN:
640 		return "DMA_UNDERRUN";
641 	case IPW_FW_ERROR_DMA_STATUS:
642 		return "DMA_STATUS";
643 	case IPW_FW_ERROR_DINO_ERROR:
644 		return "DINO_ERROR";
645 	case IPW_FW_ERROR_EEPROM_ERROR:
646 		return "EEPROM_ERROR";
647 	case IPW_FW_ERROR_SYSASSERT:
648 		return "SYSASSERT";
649 	case IPW_FW_ERROR_FATAL_ERROR:
650 		return "FATAL_ERROR";
651 	default:
652 		return "UNKNOWN_ERROR";
653 	}
654 }
655 
ipw_dump_error_log(struct ipw_priv * priv,struct ipw_fw_error * error)656 static void ipw_dump_error_log(struct ipw_priv *priv,
657 			       struct ipw_fw_error *error)
658 {
659 	u32 i;
660 
661 	if (!error) {
662 		IPW_ERROR("Error allocating and capturing error log.  "
663 			  "Nothing to dump.\n");
664 		return;
665 	}
666 
667 	IPW_ERROR("Start IPW Error Log Dump:\n");
668 	IPW_ERROR("Status: 0x%08X, Config: %08X\n",
669 		  error->status, error->config);
670 
671 	for (i = 0; i < error->elem_len; i++)
672 		IPW_ERROR("%s %i 0x%08x  0x%08x  0x%08x  0x%08x  0x%08x\n",
673 			  ipw_error_desc(error->elem[i].desc),
674 			  error->elem[i].time,
675 			  error->elem[i].blink1,
676 			  error->elem[i].blink2,
677 			  error->elem[i].link1,
678 			  error->elem[i].link2, error->elem[i].data);
679 	for (i = 0; i < error->log_len; i++)
680 		IPW_ERROR("%i\t0x%08x\t%i\n",
681 			  error->log[i].time,
682 			  error->log[i].data, error->log[i].event);
683 }
684 
ipw_is_init(struct ipw_priv * priv)685 static inline int ipw_is_init(struct ipw_priv *priv)
686 {
687 	return (priv->status & STATUS_INIT) ? 1 : 0;
688 }
689 
ipw_get_ordinal(struct ipw_priv * priv,u32 ord,void * val,u32 * len)690 static int ipw_get_ordinal(struct ipw_priv *priv, u32 ord, void *val, u32 * len)
691 {
692 	u32 addr, field_info, field_len, field_count, total_len;
693 
694 	IPW_DEBUG_ORD("ordinal = %i\n", ord);
695 
696 	if (!priv || !val || !len) {
697 		IPW_DEBUG_ORD("Invalid argument\n");
698 		return -EINVAL;
699 	}
700 
701 	/* verify device ordinal tables have been initialized */
702 	if (!priv->table0_addr || !priv->table1_addr || !priv->table2_addr) {
703 		IPW_DEBUG_ORD("Access ordinals before initialization\n");
704 		return -EINVAL;
705 	}
706 
707 	switch (IPW_ORD_TABLE_ID_MASK & ord) {
708 	case IPW_ORD_TABLE_0_MASK:
709 		/*
710 		 * TABLE 0: Direct access to a table of 32 bit values
711 		 *
712 		 * This is a very simple table with the data directly
713 		 * read from the table
714 		 */
715 
716 		/* remove the table id from the ordinal */
717 		ord &= IPW_ORD_TABLE_VALUE_MASK;
718 
719 		/* boundary check */
720 		if (ord > priv->table0_len) {
721 			IPW_DEBUG_ORD("ordinal value (%i) longer then "
722 				      "max (%i)\n", ord, priv->table0_len);
723 			return -EINVAL;
724 		}
725 
726 		/* verify we have enough room to store the value */
727 		if (*len < sizeof(u32)) {
728 			IPW_DEBUG_ORD("ordinal buffer length too small, "
729 				      "need %zd\n", sizeof(u32));
730 			return -EINVAL;
731 		}
732 
733 		IPW_DEBUG_ORD("Reading TABLE0[%i] from offset 0x%08x\n",
734 			      ord, priv->table0_addr + (ord << 2));
735 
736 		*len = sizeof(u32);
737 		ord <<= 2;
738 		*((u32 *) val) = ipw_read32(priv, priv->table0_addr + ord);
739 		break;
740 
741 	case IPW_ORD_TABLE_1_MASK:
742 		/*
743 		 * TABLE 1: Indirect access to a table of 32 bit values
744 		 *
745 		 * This is a fairly large table of u32 values each
746 		 * representing starting addr for the data (which is
747 		 * also a u32)
748 		 */
749 
750 		/* remove the table id from the ordinal */
751 		ord &= IPW_ORD_TABLE_VALUE_MASK;
752 
753 		/* boundary check */
754 		if (ord > priv->table1_len) {
755 			IPW_DEBUG_ORD("ordinal value too long\n");
756 			return -EINVAL;
757 		}
758 
759 		/* verify we have enough room to store the value */
760 		if (*len < sizeof(u32)) {
761 			IPW_DEBUG_ORD("ordinal buffer length too small, "
762 				      "need %zd\n", sizeof(u32));
763 			return -EINVAL;
764 		}
765 
766 		*((u32 *) val) =
767 		    ipw_read_reg32(priv, (priv->table1_addr + (ord << 2)));
768 		*len = sizeof(u32);
769 		break;
770 
771 	case IPW_ORD_TABLE_2_MASK:
772 		/*
773 		 * TABLE 2: Indirect access to a table of variable sized values
774 		 *
775 		 * This table consist of six values, each containing
776 		 *     - dword containing the starting offset of the data
777 		 *     - dword containing the lengh in the first 16bits
778 		 *       and the count in the second 16bits
779 		 */
780 
781 		/* remove the table id from the ordinal */
782 		ord &= IPW_ORD_TABLE_VALUE_MASK;
783 
784 		/* boundary check */
785 		if (ord > priv->table2_len) {
786 			IPW_DEBUG_ORD("ordinal value too long\n");
787 			return -EINVAL;
788 		}
789 
790 		/* get the address of statistic */
791 		addr = ipw_read_reg32(priv, priv->table2_addr + (ord << 3));
792 
793 		/* get the second DW of statistics ;
794 		 * two 16-bit words - first is length, second is count */
795 		field_info =
796 		    ipw_read_reg32(priv,
797 				   priv->table2_addr + (ord << 3) +
798 				   sizeof(u32));
799 
800 		/* get each entry length */
801 		field_len = *((u16 *) & field_info);
802 
803 		/* get number of entries */
804 		field_count = *(((u16 *) & field_info) + 1);
805 
806 		/* abort if not enough memory */
807 		total_len = field_len * field_count;
808 		if (total_len > *len) {
809 			*len = total_len;
810 			return -EINVAL;
811 		}
812 
813 		*len = total_len;
814 		if (!total_len)
815 			return 0;
816 
817 		IPW_DEBUG_ORD("addr = 0x%08x, total_len = %i, "
818 			      "field_info = 0x%08x\n",
819 			      addr, total_len, field_info);
820 		ipw_read_indirect(priv, addr, val, total_len);
821 		break;
822 
823 	default:
824 		IPW_DEBUG_ORD("Invalid ordinal!\n");
825 		return -EINVAL;
826 
827 	}
828 
829 	return 0;
830 }
831 
ipw_init_ordinals(struct ipw_priv * priv)832 static void ipw_init_ordinals(struct ipw_priv *priv)
833 {
834 	priv->table0_addr = IPW_ORDINALS_TABLE_LOWER;
835 	priv->table0_len = ipw_read32(priv, priv->table0_addr);
836 
837 	IPW_DEBUG_ORD("table 0 offset at 0x%08x, len = %i\n",
838 		      priv->table0_addr, priv->table0_len);
839 
840 	priv->table1_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_1);
841 	priv->table1_len = ipw_read_reg32(priv, priv->table1_addr);
842 
843 	IPW_DEBUG_ORD("table 1 offset at 0x%08x, len = %i\n",
844 		      priv->table1_addr, priv->table1_len);
845 
846 	priv->table2_addr = ipw_read32(priv, IPW_ORDINALS_TABLE_2);
847 	priv->table2_len = ipw_read_reg32(priv, priv->table2_addr);
848 	priv->table2_len &= 0x0000ffff;	/* use first two bytes */
849 
850 	IPW_DEBUG_ORD("table 2 offset at 0x%08x, len = %i\n",
851 		      priv->table2_addr, priv->table2_len);
852 
853 }
854 
ipw_register_toggle(u32 reg)855 static u32 ipw_register_toggle(u32 reg)
856 {
857 	reg &= ~IPW_START_STANDBY;
858 	if (reg & IPW_GATE_ODMA)
859 		reg &= ~IPW_GATE_ODMA;
860 	if (reg & IPW_GATE_IDMA)
861 		reg &= ~IPW_GATE_IDMA;
862 	if (reg & IPW_GATE_ADMA)
863 		reg &= ~IPW_GATE_ADMA;
864 	return reg;
865 }
866 
867 /*
868  * LED behavior:
869  * - On radio ON, turn on any LEDs that require to be on during start
870  * - On initialization, start unassociated blink
871  * - On association, disable unassociated blink
872  * - On disassociation, start unassociated blink
873  * - On radio OFF, turn off any LEDs started during radio on
874  *
875  */
876 #define LD_TIME_LINK_ON msecs_to_jiffies(300)
877 #define LD_TIME_LINK_OFF msecs_to_jiffies(2700)
878 #define LD_TIME_ACT_ON msecs_to_jiffies(250)
879 
ipw_led_link_on(struct ipw_priv * priv)880 static void ipw_led_link_on(struct ipw_priv *priv)
881 {
882 	unsigned long flags;
883 	u32 led;
884 
885 	/* If configured to not use LEDs, or nic_type is 1,
886 	 * then we don't toggle a LINK led */
887 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
888 		return;
889 
890 	spin_lock_irqsave(&priv->lock, flags);
891 
892 	if (!(priv->status & STATUS_RF_KILL_MASK) &&
893 	    !(priv->status & STATUS_LED_LINK_ON)) {
894 		IPW_DEBUG_LED("Link LED On\n");
895 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
896 		led |= priv->led_association_on;
897 
898 		led = ipw_register_toggle(led);
899 
900 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
901 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
902 
903 		priv->status |= STATUS_LED_LINK_ON;
904 
905 		/* If we aren't associated, schedule turning the LED off */
906 		if (!(priv->status & STATUS_ASSOCIATED))
907 			schedule_delayed_work(&priv->led_link_off,
908 					      LD_TIME_LINK_ON);
909 	}
910 
911 	spin_unlock_irqrestore(&priv->lock, flags);
912 }
913 
ipw_bg_led_link_on(struct work_struct * work)914 static void ipw_bg_led_link_on(struct work_struct *work)
915 {
916 	struct ipw_priv *priv =
917 		container_of(work, struct ipw_priv, led_link_on.work);
918 	mutex_lock(&priv->mutex);
919 	ipw_led_link_on(priv);
920 	mutex_unlock(&priv->mutex);
921 }
922 
ipw_led_link_off(struct ipw_priv * priv)923 static void ipw_led_link_off(struct ipw_priv *priv)
924 {
925 	unsigned long flags;
926 	u32 led;
927 
928 	/* If configured not to use LEDs, or nic type is 1,
929 	 * then we don't goggle the LINK led. */
930 	if (priv->config & CFG_NO_LED || priv->nic_type == EEPROM_NIC_TYPE_1)
931 		return;
932 
933 	spin_lock_irqsave(&priv->lock, flags);
934 
935 	if (priv->status & STATUS_LED_LINK_ON) {
936 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
937 		led &= priv->led_association_off;
938 		led = ipw_register_toggle(led);
939 
940 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
941 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
942 
943 		IPW_DEBUG_LED("Link LED Off\n");
944 
945 		priv->status &= ~STATUS_LED_LINK_ON;
946 
947 		/* If we aren't associated and the radio is on, schedule
948 		 * turning the LED on (blink while unassociated) */
949 		if (!(priv->status & STATUS_RF_KILL_MASK) &&
950 		    !(priv->status & STATUS_ASSOCIATED))
951 			schedule_delayed_work(&priv->led_link_on,
952 					      LD_TIME_LINK_OFF);
953 
954 	}
955 
956 	spin_unlock_irqrestore(&priv->lock, flags);
957 }
958 
ipw_bg_led_link_off(struct work_struct * work)959 static void ipw_bg_led_link_off(struct work_struct *work)
960 {
961 	struct ipw_priv *priv =
962 		container_of(work, struct ipw_priv, led_link_off.work);
963 	mutex_lock(&priv->mutex);
964 	ipw_led_link_off(priv);
965 	mutex_unlock(&priv->mutex);
966 }
967 
__ipw_led_activity_on(struct ipw_priv * priv)968 static void __ipw_led_activity_on(struct ipw_priv *priv)
969 {
970 	u32 led;
971 
972 	if (priv->config & CFG_NO_LED)
973 		return;
974 
975 	if (priv->status & STATUS_RF_KILL_MASK)
976 		return;
977 
978 	if (!(priv->status & STATUS_LED_ACT_ON)) {
979 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
980 		led |= priv->led_activity_on;
981 
982 		led = ipw_register_toggle(led);
983 
984 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
985 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
986 
987 		IPW_DEBUG_LED("Activity LED On\n");
988 
989 		priv->status |= STATUS_LED_ACT_ON;
990 
991 		cancel_delayed_work(&priv->led_act_off);
992 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
993 	} else {
994 		/* Reschedule LED off for full time period */
995 		cancel_delayed_work(&priv->led_act_off);
996 		schedule_delayed_work(&priv->led_act_off, LD_TIME_ACT_ON);
997 	}
998 }
999 
1000 #if 0
1001 void ipw_led_activity_on(struct ipw_priv *priv)
1002 {
1003 	unsigned long flags;
1004 	spin_lock_irqsave(&priv->lock, flags);
1005 	__ipw_led_activity_on(priv);
1006 	spin_unlock_irqrestore(&priv->lock, flags);
1007 }
1008 #endif  /*  0  */
1009 
ipw_led_activity_off(struct ipw_priv * priv)1010 static void ipw_led_activity_off(struct ipw_priv *priv)
1011 {
1012 	unsigned long flags;
1013 	u32 led;
1014 
1015 	if (priv->config & CFG_NO_LED)
1016 		return;
1017 
1018 	spin_lock_irqsave(&priv->lock, flags);
1019 
1020 	if (priv->status & STATUS_LED_ACT_ON) {
1021 		led = ipw_read_reg32(priv, IPW_EVENT_REG);
1022 		led &= priv->led_activity_off;
1023 
1024 		led = ipw_register_toggle(led);
1025 
1026 		IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1027 		ipw_write_reg32(priv, IPW_EVENT_REG, led);
1028 
1029 		IPW_DEBUG_LED("Activity LED Off\n");
1030 
1031 		priv->status &= ~STATUS_LED_ACT_ON;
1032 	}
1033 
1034 	spin_unlock_irqrestore(&priv->lock, flags);
1035 }
1036 
ipw_bg_led_activity_off(struct work_struct * work)1037 static void ipw_bg_led_activity_off(struct work_struct *work)
1038 {
1039 	struct ipw_priv *priv =
1040 		container_of(work, struct ipw_priv, led_act_off.work);
1041 	mutex_lock(&priv->mutex);
1042 	ipw_led_activity_off(priv);
1043 	mutex_unlock(&priv->mutex);
1044 }
1045 
ipw_led_band_on(struct ipw_priv * priv)1046 static void ipw_led_band_on(struct ipw_priv *priv)
1047 {
1048 	unsigned long flags;
1049 	u32 led;
1050 
1051 	/* Only nic type 1 supports mode LEDs */
1052 	if (priv->config & CFG_NO_LED ||
1053 	    priv->nic_type != EEPROM_NIC_TYPE_1 || !priv->assoc_network)
1054 		return;
1055 
1056 	spin_lock_irqsave(&priv->lock, flags);
1057 
1058 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1059 	if (priv->assoc_network->mode == IEEE_A) {
1060 		led |= priv->led_ofdm_on;
1061 		led &= priv->led_association_off;
1062 		IPW_DEBUG_LED("Mode LED On: 802.11a\n");
1063 	} else if (priv->assoc_network->mode == IEEE_G) {
1064 		led |= priv->led_ofdm_on;
1065 		led |= priv->led_association_on;
1066 		IPW_DEBUG_LED("Mode LED On: 802.11g\n");
1067 	} else {
1068 		led &= priv->led_ofdm_off;
1069 		led |= priv->led_association_on;
1070 		IPW_DEBUG_LED("Mode LED On: 802.11b\n");
1071 	}
1072 
1073 	led = ipw_register_toggle(led);
1074 
1075 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1076 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1077 
1078 	spin_unlock_irqrestore(&priv->lock, flags);
1079 }
1080 
ipw_led_band_off(struct ipw_priv * priv)1081 static void ipw_led_band_off(struct ipw_priv *priv)
1082 {
1083 	unsigned long flags;
1084 	u32 led;
1085 
1086 	/* Only nic type 1 supports mode LEDs */
1087 	if (priv->config & CFG_NO_LED || priv->nic_type != EEPROM_NIC_TYPE_1)
1088 		return;
1089 
1090 	spin_lock_irqsave(&priv->lock, flags);
1091 
1092 	led = ipw_read_reg32(priv, IPW_EVENT_REG);
1093 	led &= priv->led_ofdm_off;
1094 	led &= priv->led_association_off;
1095 
1096 	led = ipw_register_toggle(led);
1097 
1098 	IPW_DEBUG_LED("Reg: 0x%08X\n", led);
1099 	ipw_write_reg32(priv, IPW_EVENT_REG, led);
1100 
1101 	spin_unlock_irqrestore(&priv->lock, flags);
1102 }
1103 
ipw_led_radio_on(struct ipw_priv * priv)1104 static void ipw_led_radio_on(struct ipw_priv *priv)
1105 {
1106 	ipw_led_link_on(priv);
1107 }
1108 
ipw_led_radio_off(struct ipw_priv * priv)1109 static void ipw_led_radio_off(struct ipw_priv *priv)
1110 {
1111 	ipw_led_activity_off(priv);
1112 	ipw_led_link_off(priv);
1113 }
1114 
ipw_led_link_up(struct ipw_priv * priv)1115 static void ipw_led_link_up(struct ipw_priv *priv)
1116 {
1117 	/* Set the Link Led on for all nic types */
1118 	ipw_led_link_on(priv);
1119 }
1120 
ipw_led_link_down(struct ipw_priv * priv)1121 static void ipw_led_link_down(struct ipw_priv *priv)
1122 {
1123 	ipw_led_activity_off(priv);
1124 	ipw_led_link_off(priv);
1125 
1126 	if (priv->status & STATUS_RF_KILL_MASK)
1127 		ipw_led_radio_off(priv);
1128 }
1129 
ipw_led_init(struct ipw_priv * priv)1130 static void ipw_led_init(struct ipw_priv *priv)
1131 {
1132 	priv->nic_type = priv->eeprom[EEPROM_NIC_TYPE];
1133 
1134 	/* Set the default PINs for the link and activity leds */
1135 	priv->led_activity_on = IPW_ACTIVITY_LED;
1136 	priv->led_activity_off = ~(IPW_ACTIVITY_LED);
1137 
1138 	priv->led_association_on = IPW_ASSOCIATED_LED;
1139 	priv->led_association_off = ~(IPW_ASSOCIATED_LED);
1140 
1141 	/* Set the default PINs for the OFDM leds */
1142 	priv->led_ofdm_on = IPW_OFDM_LED;
1143 	priv->led_ofdm_off = ~(IPW_OFDM_LED);
1144 
1145 	switch (priv->nic_type) {
1146 	case EEPROM_NIC_TYPE_1:
1147 		/* In this NIC type, the LEDs are reversed.... */
1148 		priv->led_activity_on = IPW_ASSOCIATED_LED;
1149 		priv->led_activity_off = ~(IPW_ASSOCIATED_LED);
1150 		priv->led_association_on = IPW_ACTIVITY_LED;
1151 		priv->led_association_off = ~(IPW_ACTIVITY_LED);
1152 
1153 		if (!(priv->config & CFG_NO_LED))
1154 			ipw_led_band_on(priv);
1155 
1156 		/* And we don't blink link LEDs for this nic, so
1157 		 * just return here */
1158 		return;
1159 
1160 	case EEPROM_NIC_TYPE_3:
1161 	case EEPROM_NIC_TYPE_2:
1162 	case EEPROM_NIC_TYPE_4:
1163 	case EEPROM_NIC_TYPE_0:
1164 		break;
1165 
1166 	default:
1167 		IPW_DEBUG_INFO("Unknown NIC type from EEPROM: %d\n",
1168 			       priv->nic_type);
1169 		priv->nic_type = EEPROM_NIC_TYPE_0;
1170 		break;
1171 	}
1172 
1173 	if (!(priv->config & CFG_NO_LED)) {
1174 		if (priv->status & STATUS_ASSOCIATED)
1175 			ipw_led_link_on(priv);
1176 		else
1177 			ipw_led_link_off(priv);
1178 	}
1179 }
1180 
ipw_led_shutdown(struct ipw_priv * priv)1181 static void ipw_led_shutdown(struct ipw_priv *priv)
1182 {
1183 	ipw_led_activity_off(priv);
1184 	ipw_led_link_off(priv);
1185 	ipw_led_band_off(priv);
1186 	cancel_delayed_work(&priv->led_link_on);
1187 	cancel_delayed_work(&priv->led_link_off);
1188 	cancel_delayed_work(&priv->led_act_off);
1189 }
1190 
1191 /*
1192  * The following adds a new attribute to the sysfs representation
1193  * of this device driver (i.e. a new file in /sys/bus/pci/drivers/ipw/)
1194  * used for controlling the debug level.
1195  *
1196  * See the level definitions in ipw for details.
1197  */
show_debug_level(struct device_driver * d,char * buf)1198 static ssize_t show_debug_level(struct device_driver *d, char *buf)
1199 {
1200 	return sprintf(buf, "0x%08X\n", ipw_debug_level);
1201 }
1202 
store_debug_level(struct device_driver * d,const char * buf,size_t count)1203 static ssize_t store_debug_level(struct device_driver *d, const char *buf,
1204 				 size_t count)
1205 {
1206 	char *p = (char *)buf;
1207 	u32 val;
1208 
1209 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1210 		p++;
1211 		if (p[0] == 'x' || p[0] == 'X')
1212 			p++;
1213 		val = simple_strtoul(p, &p, 16);
1214 	} else
1215 		val = simple_strtoul(p, &p, 10);
1216 	if (p == buf)
1217 		printk(KERN_INFO DRV_NAME
1218 		       ": %s is not in hex or decimal form.\n", buf);
1219 	else
1220 		ipw_debug_level = val;
1221 
1222 	return strnlen(buf, count);
1223 }
1224 
1225 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO,
1226 		   show_debug_level, store_debug_level);
1227 
ipw_get_event_log_len(struct ipw_priv * priv)1228 static inline u32 ipw_get_event_log_len(struct ipw_priv *priv)
1229 {
1230 	/* length = 1st dword in log */
1231 	return ipw_read_reg32(priv, ipw_read32(priv, IPW_EVENT_LOG));
1232 }
1233 
ipw_capture_event_log(struct ipw_priv * priv,u32 log_len,struct ipw_event * log)1234 static void ipw_capture_event_log(struct ipw_priv *priv,
1235 				  u32 log_len, struct ipw_event *log)
1236 {
1237 	u32 base;
1238 
1239 	if (log_len) {
1240 		base = ipw_read32(priv, IPW_EVENT_LOG);
1241 		ipw_read_indirect(priv, base + sizeof(base) + sizeof(u32),
1242 				  (u8 *) log, sizeof(*log) * log_len);
1243 	}
1244 }
1245 
ipw_alloc_error_log(struct ipw_priv * priv)1246 static struct ipw_fw_error *ipw_alloc_error_log(struct ipw_priv *priv)
1247 {
1248 	struct ipw_fw_error *error;
1249 	u32 log_len = ipw_get_event_log_len(priv);
1250 	u32 base = ipw_read32(priv, IPW_ERROR_LOG);
1251 	u32 elem_len = ipw_read_reg32(priv, base);
1252 
1253 	error = kmalloc(sizeof(*error) +
1254 			sizeof(*error->elem) * elem_len +
1255 			sizeof(*error->log) * log_len, GFP_ATOMIC);
1256 	if (!error) {
1257 		IPW_ERROR("Memory allocation for firmware error log "
1258 			  "failed.\n");
1259 		return NULL;
1260 	}
1261 	error->jiffies = jiffies;
1262 	error->status = priv->status;
1263 	error->config = priv->config;
1264 	error->elem_len = elem_len;
1265 	error->log_len = log_len;
1266 	error->elem = (struct ipw_error_elem *)error->payload;
1267 	error->log = (struct ipw_event *)(error->elem + elem_len);
1268 
1269 	ipw_capture_event_log(priv, log_len, error->log);
1270 
1271 	if (elem_len)
1272 		ipw_read_indirect(priv, base + sizeof(base), (u8 *) error->elem,
1273 				  sizeof(*error->elem) * elem_len);
1274 
1275 	return error;
1276 }
1277 
show_event_log(struct device * d,struct device_attribute * attr,char * buf)1278 static ssize_t show_event_log(struct device *d,
1279 			      struct device_attribute *attr, char *buf)
1280 {
1281 	struct ipw_priv *priv = dev_get_drvdata(d);
1282 	u32 log_len = ipw_get_event_log_len(priv);
1283 	u32 log_size;
1284 	struct ipw_event *log;
1285 	u32 len = 0, i;
1286 
1287 	/* not using min() because of its strict type checking */
1288 	log_size = PAGE_SIZE / sizeof(*log) > log_len ?
1289 			sizeof(*log) * log_len : PAGE_SIZE;
1290 	log = kzalloc(log_size, GFP_KERNEL);
1291 	if (!log) {
1292 		IPW_ERROR("Unable to allocate memory for log\n");
1293 		return 0;
1294 	}
1295 	log_len = log_size / sizeof(*log);
1296 	ipw_capture_event_log(priv, log_len, log);
1297 
1298 	len += snprintf(buf + len, PAGE_SIZE - len, "%08X", log_len);
1299 	for (i = 0; i < log_len; i++)
1300 		len += snprintf(buf + len, PAGE_SIZE - len,
1301 				"\n%08X%08X%08X",
1302 				log[i].time, log[i].event, log[i].data);
1303 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1304 	kfree(log);
1305 	return len;
1306 }
1307 
1308 static DEVICE_ATTR(event_log, S_IRUGO, show_event_log, NULL);
1309 
show_error(struct device * d,struct device_attribute * attr,char * buf)1310 static ssize_t show_error(struct device *d,
1311 			  struct device_attribute *attr, char *buf)
1312 {
1313 	struct ipw_priv *priv = dev_get_drvdata(d);
1314 	u32 len = 0, i;
1315 	if (!priv->error)
1316 		return 0;
1317 	len += snprintf(buf + len, PAGE_SIZE - len,
1318 			"%08lX%08X%08X%08X",
1319 			priv->error->jiffies,
1320 			priv->error->status,
1321 			priv->error->config, priv->error->elem_len);
1322 	for (i = 0; i < priv->error->elem_len; i++)
1323 		len += snprintf(buf + len, PAGE_SIZE - len,
1324 				"\n%08X%08X%08X%08X%08X%08X%08X",
1325 				priv->error->elem[i].time,
1326 				priv->error->elem[i].desc,
1327 				priv->error->elem[i].blink1,
1328 				priv->error->elem[i].blink2,
1329 				priv->error->elem[i].link1,
1330 				priv->error->elem[i].link2,
1331 				priv->error->elem[i].data);
1332 
1333 	len += snprintf(buf + len, PAGE_SIZE - len,
1334 			"\n%08X", priv->error->log_len);
1335 	for (i = 0; i < priv->error->log_len; i++)
1336 		len += snprintf(buf + len, PAGE_SIZE - len,
1337 				"\n%08X%08X%08X",
1338 				priv->error->log[i].time,
1339 				priv->error->log[i].event,
1340 				priv->error->log[i].data);
1341 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1342 	return len;
1343 }
1344 
clear_error(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1345 static ssize_t clear_error(struct device *d,
1346 			   struct device_attribute *attr,
1347 			   const char *buf, size_t count)
1348 {
1349 	struct ipw_priv *priv = dev_get_drvdata(d);
1350 
1351 	kfree(priv->error);
1352 	priv->error = NULL;
1353 	return count;
1354 }
1355 
1356 static DEVICE_ATTR(error, S_IRUGO | S_IWUSR, show_error, clear_error);
1357 
show_cmd_log(struct device * d,struct device_attribute * attr,char * buf)1358 static ssize_t show_cmd_log(struct device *d,
1359 			    struct device_attribute *attr, char *buf)
1360 {
1361 	struct ipw_priv *priv = dev_get_drvdata(d);
1362 	u32 len = 0, i;
1363 	if (!priv->cmdlog)
1364 		return 0;
1365 	for (i = (priv->cmdlog_pos + 1) % priv->cmdlog_len;
1366 	     (i != priv->cmdlog_pos) && (PAGE_SIZE - len);
1367 	     i = (i + 1) % priv->cmdlog_len) {
1368 		len +=
1369 		    snprintf(buf + len, PAGE_SIZE - len,
1370 			     "\n%08lX%08X%08X%08X\n", priv->cmdlog[i].jiffies,
1371 			     priv->cmdlog[i].retcode, priv->cmdlog[i].cmd.cmd,
1372 			     priv->cmdlog[i].cmd.len);
1373 		len +=
1374 		    snprintk_buf(buf + len, PAGE_SIZE - len,
1375 				 (u8 *) priv->cmdlog[i].cmd.param,
1376 				 priv->cmdlog[i].cmd.len);
1377 		len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1378 	}
1379 	len += snprintf(buf + len, PAGE_SIZE - len, "\n");
1380 	return len;
1381 }
1382 
1383 static DEVICE_ATTR(cmd_log, S_IRUGO, show_cmd_log, NULL);
1384 
1385 #ifdef CONFIG_IPW2200_PROMISCUOUS
1386 static void ipw_prom_free(struct ipw_priv *priv);
1387 static int ipw_prom_alloc(struct ipw_priv *priv);
store_rtap_iface(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1388 static ssize_t store_rtap_iface(struct device *d,
1389 			 struct device_attribute *attr,
1390 			 const char *buf, size_t count)
1391 {
1392 	struct ipw_priv *priv = dev_get_drvdata(d);
1393 	int rc = 0;
1394 
1395 	if (count < 1)
1396 		return -EINVAL;
1397 
1398 	switch (buf[0]) {
1399 	case '0':
1400 		if (!rtap_iface)
1401 			return count;
1402 
1403 		if (netif_running(priv->prom_net_dev)) {
1404 			IPW_WARNING("Interface is up.  Cannot unregister.\n");
1405 			return count;
1406 		}
1407 
1408 		ipw_prom_free(priv);
1409 		rtap_iface = 0;
1410 		break;
1411 
1412 	case '1':
1413 		if (rtap_iface)
1414 			return count;
1415 
1416 		rc = ipw_prom_alloc(priv);
1417 		if (!rc)
1418 			rtap_iface = 1;
1419 		break;
1420 
1421 	default:
1422 		return -EINVAL;
1423 	}
1424 
1425 	if (rc) {
1426 		IPW_ERROR("Failed to register promiscuous network "
1427 			  "device (error %d).\n", rc);
1428 	}
1429 
1430 	return count;
1431 }
1432 
show_rtap_iface(struct device * d,struct device_attribute * attr,char * buf)1433 static ssize_t show_rtap_iface(struct device *d,
1434 			struct device_attribute *attr,
1435 			char *buf)
1436 {
1437 	struct ipw_priv *priv = dev_get_drvdata(d);
1438 	if (rtap_iface)
1439 		return sprintf(buf, "%s", priv->prom_net_dev->name);
1440 	else {
1441 		buf[0] = '-';
1442 		buf[1] = '1';
1443 		buf[2] = '\0';
1444 		return 3;
1445 	}
1446 }
1447 
1448 static DEVICE_ATTR(rtap_iface, S_IWUSR | S_IRUSR, show_rtap_iface,
1449 		   store_rtap_iface);
1450 
store_rtap_filter(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1451 static ssize_t store_rtap_filter(struct device *d,
1452 			 struct device_attribute *attr,
1453 			 const char *buf, size_t count)
1454 {
1455 	struct ipw_priv *priv = dev_get_drvdata(d);
1456 
1457 	if (!priv->prom_priv) {
1458 		IPW_ERROR("Attempting to set filter without "
1459 			  "rtap_iface enabled.\n");
1460 		return -EPERM;
1461 	}
1462 
1463 	priv->prom_priv->filter = simple_strtol(buf, NULL, 0);
1464 
1465 	IPW_DEBUG_INFO("Setting rtap filter to " BIT_FMT16 "\n",
1466 		       BIT_ARG16(priv->prom_priv->filter));
1467 
1468 	return count;
1469 }
1470 
show_rtap_filter(struct device * d,struct device_attribute * attr,char * buf)1471 static ssize_t show_rtap_filter(struct device *d,
1472 			struct device_attribute *attr,
1473 			char *buf)
1474 {
1475 	struct ipw_priv *priv = dev_get_drvdata(d);
1476 	return sprintf(buf, "0x%04X",
1477 		       priv->prom_priv ? priv->prom_priv->filter : 0);
1478 }
1479 
1480 static DEVICE_ATTR(rtap_filter, S_IWUSR | S_IRUSR, show_rtap_filter,
1481 		   store_rtap_filter);
1482 #endif
1483 
show_scan_age(struct device * d,struct device_attribute * attr,char * buf)1484 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
1485 			     char *buf)
1486 {
1487 	struct ipw_priv *priv = dev_get_drvdata(d);
1488 	return sprintf(buf, "%d\n", priv->ieee->scan_age);
1489 }
1490 
store_scan_age(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1491 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
1492 			      const char *buf, size_t count)
1493 {
1494 	struct ipw_priv *priv = dev_get_drvdata(d);
1495 	struct net_device *dev = priv->net_dev;
1496 	char buffer[] = "00000000";
1497 	unsigned long len =
1498 	    (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
1499 	unsigned long val;
1500 	char *p = buffer;
1501 
1502 	IPW_DEBUG_INFO("enter\n");
1503 
1504 	strncpy(buffer, buf, len);
1505 	buffer[len] = 0;
1506 
1507 	if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
1508 		p++;
1509 		if (p[0] == 'x' || p[0] == 'X')
1510 			p++;
1511 		val = simple_strtoul(p, &p, 16);
1512 	} else
1513 		val = simple_strtoul(p, &p, 10);
1514 	if (p == buffer) {
1515 		IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
1516 	} else {
1517 		priv->ieee->scan_age = val;
1518 		IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
1519 	}
1520 
1521 	IPW_DEBUG_INFO("exit\n");
1522 	return len;
1523 }
1524 
1525 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
1526 
show_led(struct device * d,struct device_attribute * attr,char * buf)1527 static ssize_t show_led(struct device *d, struct device_attribute *attr,
1528 			char *buf)
1529 {
1530 	struct ipw_priv *priv = dev_get_drvdata(d);
1531 	return sprintf(buf, "%d\n", (priv->config & CFG_NO_LED) ? 0 : 1);
1532 }
1533 
store_led(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1534 static ssize_t store_led(struct device *d, struct device_attribute *attr,
1535 			 const char *buf, size_t count)
1536 {
1537 	struct ipw_priv *priv = dev_get_drvdata(d);
1538 
1539 	IPW_DEBUG_INFO("enter\n");
1540 
1541 	if (count == 0)
1542 		return 0;
1543 
1544 	if (*buf == 0) {
1545 		IPW_DEBUG_LED("Disabling LED control.\n");
1546 		priv->config |= CFG_NO_LED;
1547 		ipw_led_shutdown(priv);
1548 	} else {
1549 		IPW_DEBUG_LED("Enabling LED control.\n");
1550 		priv->config &= ~CFG_NO_LED;
1551 		ipw_led_init(priv);
1552 	}
1553 
1554 	IPW_DEBUG_INFO("exit\n");
1555 	return count;
1556 }
1557 
1558 static DEVICE_ATTR(led, S_IWUSR | S_IRUGO, show_led, store_led);
1559 
show_status(struct device * d,struct device_attribute * attr,char * buf)1560 static ssize_t show_status(struct device *d,
1561 			   struct device_attribute *attr, char *buf)
1562 {
1563 	struct ipw_priv *p = dev_get_drvdata(d);
1564 	return sprintf(buf, "0x%08x\n", (int)p->status);
1565 }
1566 
1567 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
1568 
show_cfg(struct device * d,struct device_attribute * attr,char * buf)1569 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
1570 			char *buf)
1571 {
1572 	struct ipw_priv *p = dev_get_drvdata(d);
1573 	return sprintf(buf, "0x%08x\n", (int)p->config);
1574 }
1575 
1576 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
1577 
show_nic_type(struct device * d,struct device_attribute * attr,char * buf)1578 static ssize_t show_nic_type(struct device *d,
1579 			     struct device_attribute *attr, char *buf)
1580 {
1581 	struct ipw_priv *priv = dev_get_drvdata(d);
1582 	return sprintf(buf, "TYPE: %d\n", priv->nic_type);
1583 }
1584 
1585 static DEVICE_ATTR(nic_type, S_IRUGO, show_nic_type, NULL);
1586 
show_ucode_version(struct device * d,struct device_attribute * attr,char * buf)1587 static ssize_t show_ucode_version(struct device *d,
1588 				  struct device_attribute *attr, char *buf)
1589 {
1590 	u32 len = sizeof(u32), tmp = 0;
1591 	struct ipw_priv *p = dev_get_drvdata(d);
1592 
1593 	if (ipw_get_ordinal(p, IPW_ORD_STAT_UCODE_VERSION, &tmp, &len))
1594 		return 0;
1595 
1596 	return sprintf(buf, "0x%08x\n", tmp);
1597 }
1598 
1599 static DEVICE_ATTR(ucode_version, S_IWUSR | S_IRUGO, show_ucode_version, NULL);
1600 
show_rtc(struct device * d,struct device_attribute * attr,char * buf)1601 static ssize_t show_rtc(struct device *d, struct device_attribute *attr,
1602 			char *buf)
1603 {
1604 	u32 len = sizeof(u32), tmp = 0;
1605 	struct ipw_priv *p = dev_get_drvdata(d);
1606 
1607 	if (ipw_get_ordinal(p, IPW_ORD_STAT_RTC, &tmp, &len))
1608 		return 0;
1609 
1610 	return sprintf(buf, "0x%08x\n", tmp);
1611 }
1612 
1613 static DEVICE_ATTR(rtc, S_IWUSR | S_IRUGO, show_rtc, NULL);
1614 
1615 /*
1616  * Add a device attribute to view/control the delay between eeprom
1617  * operations.
1618  */
show_eeprom_delay(struct device * d,struct device_attribute * attr,char * buf)1619 static ssize_t show_eeprom_delay(struct device *d,
1620 				 struct device_attribute *attr, char *buf)
1621 {
1622 	struct ipw_priv *p = dev_get_drvdata(d);
1623 	int n = p->eeprom_delay;
1624 	return sprintf(buf, "%i\n", n);
1625 }
store_eeprom_delay(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1626 static ssize_t store_eeprom_delay(struct device *d,
1627 				  struct device_attribute *attr,
1628 				  const char *buf, size_t count)
1629 {
1630 	struct ipw_priv *p = dev_get_drvdata(d);
1631 	sscanf(buf, "%i", &p->eeprom_delay);
1632 	return strnlen(buf, count);
1633 }
1634 
1635 static DEVICE_ATTR(eeprom_delay, S_IWUSR | S_IRUGO,
1636 		   show_eeprom_delay, store_eeprom_delay);
1637 
show_command_event_reg(struct device * d,struct device_attribute * attr,char * buf)1638 static ssize_t show_command_event_reg(struct device *d,
1639 				      struct device_attribute *attr, char *buf)
1640 {
1641 	u32 reg = 0;
1642 	struct ipw_priv *p = dev_get_drvdata(d);
1643 
1644 	reg = ipw_read_reg32(p, IPW_INTERNAL_CMD_EVENT);
1645 	return sprintf(buf, "0x%08x\n", reg);
1646 }
store_command_event_reg(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1647 static ssize_t store_command_event_reg(struct device *d,
1648 				       struct device_attribute *attr,
1649 				       const char *buf, size_t count)
1650 {
1651 	u32 reg;
1652 	struct ipw_priv *p = dev_get_drvdata(d);
1653 
1654 	sscanf(buf, "%x", &reg);
1655 	ipw_write_reg32(p, IPW_INTERNAL_CMD_EVENT, reg);
1656 	return strnlen(buf, count);
1657 }
1658 
1659 static DEVICE_ATTR(command_event_reg, S_IWUSR | S_IRUGO,
1660 		   show_command_event_reg, store_command_event_reg);
1661 
show_mem_gpio_reg(struct device * d,struct device_attribute * attr,char * buf)1662 static ssize_t show_mem_gpio_reg(struct device *d,
1663 				 struct device_attribute *attr, char *buf)
1664 {
1665 	u32 reg = 0;
1666 	struct ipw_priv *p = dev_get_drvdata(d);
1667 
1668 	reg = ipw_read_reg32(p, 0x301100);
1669 	return sprintf(buf, "0x%08x\n", reg);
1670 }
store_mem_gpio_reg(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1671 static ssize_t store_mem_gpio_reg(struct device *d,
1672 				  struct device_attribute *attr,
1673 				  const char *buf, size_t count)
1674 {
1675 	u32 reg;
1676 	struct ipw_priv *p = dev_get_drvdata(d);
1677 
1678 	sscanf(buf, "%x", &reg);
1679 	ipw_write_reg32(p, 0x301100, reg);
1680 	return strnlen(buf, count);
1681 }
1682 
1683 static DEVICE_ATTR(mem_gpio_reg, S_IWUSR | S_IRUGO,
1684 		   show_mem_gpio_reg, store_mem_gpio_reg);
1685 
show_indirect_dword(struct device * d,struct device_attribute * attr,char * buf)1686 static ssize_t show_indirect_dword(struct device *d,
1687 				   struct device_attribute *attr, char *buf)
1688 {
1689 	u32 reg = 0;
1690 	struct ipw_priv *priv = dev_get_drvdata(d);
1691 
1692 	if (priv->status & STATUS_INDIRECT_DWORD)
1693 		reg = ipw_read_reg32(priv, priv->indirect_dword);
1694 	else
1695 		reg = 0;
1696 
1697 	return sprintf(buf, "0x%08x\n", reg);
1698 }
store_indirect_dword(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1699 static ssize_t store_indirect_dword(struct device *d,
1700 				    struct device_attribute *attr,
1701 				    const char *buf, size_t count)
1702 {
1703 	struct ipw_priv *priv = dev_get_drvdata(d);
1704 
1705 	sscanf(buf, "%x", &priv->indirect_dword);
1706 	priv->status |= STATUS_INDIRECT_DWORD;
1707 	return strnlen(buf, count);
1708 }
1709 
1710 static DEVICE_ATTR(indirect_dword, S_IWUSR | S_IRUGO,
1711 		   show_indirect_dword, store_indirect_dword);
1712 
show_indirect_byte(struct device * d,struct device_attribute * attr,char * buf)1713 static ssize_t show_indirect_byte(struct device *d,
1714 				  struct device_attribute *attr, char *buf)
1715 {
1716 	u8 reg = 0;
1717 	struct ipw_priv *priv = dev_get_drvdata(d);
1718 
1719 	if (priv->status & STATUS_INDIRECT_BYTE)
1720 		reg = ipw_read_reg8(priv, priv->indirect_byte);
1721 	else
1722 		reg = 0;
1723 
1724 	return sprintf(buf, "0x%02x\n", reg);
1725 }
store_indirect_byte(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1726 static ssize_t store_indirect_byte(struct device *d,
1727 				   struct device_attribute *attr,
1728 				   const char *buf, size_t count)
1729 {
1730 	struct ipw_priv *priv = dev_get_drvdata(d);
1731 
1732 	sscanf(buf, "%x", &priv->indirect_byte);
1733 	priv->status |= STATUS_INDIRECT_BYTE;
1734 	return strnlen(buf, count);
1735 }
1736 
1737 static DEVICE_ATTR(indirect_byte, S_IWUSR | S_IRUGO,
1738 		   show_indirect_byte, store_indirect_byte);
1739 
show_direct_dword(struct device * d,struct device_attribute * attr,char * buf)1740 static ssize_t show_direct_dword(struct device *d,
1741 				 struct device_attribute *attr, char *buf)
1742 {
1743 	u32 reg = 0;
1744 	struct ipw_priv *priv = dev_get_drvdata(d);
1745 
1746 	if (priv->status & STATUS_DIRECT_DWORD)
1747 		reg = ipw_read32(priv, priv->direct_dword);
1748 	else
1749 		reg = 0;
1750 
1751 	return sprintf(buf, "0x%08x\n", reg);
1752 }
store_direct_dword(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1753 static ssize_t store_direct_dword(struct device *d,
1754 				  struct device_attribute *attr,
1755 				  const char *buf, size_t count)
1756 {
1757 	struct ipw_priv *priv = dev_get_drvdata(d);
1758 
1759 	sscanf(buf, "%x", &priv->direct_dword);
1760 	priv->status |= STATUS_DIRECT_DWORD;
1761 	return strnlen(buf, count);
1762 }
1763 
1764 static DEVICE_ATTR(direct_dword, S_IWUSR | S_IRUGO,
1765 		   show_direct_dword, store_direct_dword);
1766 
rf_kill_active(struct ipw_priv * priv)1767 static int rf_kill_active(struct ipw_priv *priv)
1768 {
1769 	if (0 == (ipw_read32(priv, 0x30) & 0x10000)) {
1770 		priv->status |= STATUS_RF_KILL_HW;
1771 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
1772 	} else {
1773 		priv->status &= ~STATUS_RF_KILL_HW;
1774 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, false);
1775 	}
1776 
1777 	return (priv->status & STATUS_RF_KILL_HW) ? 1 : 0;
1778 }
1779 
show_rf_kill(struct device * d,struct device_attribute * attr,char * buf)1780 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
1781 			    char *buf)
1782 {
1783 	/* 0 - RF kill not enabled
1784 	   1 - SW based RF kill active (sysfs)
1785 	   2 - HW based RF kill active
1786 	   3 - Both HW and SW baed RF kill active */
1787 	struct ipw_priv *priv = dev_get_drvdata(d);
1788 	int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
1789 	    (rf_kill_active(priv) ? 0x2 : 0x0);
1790 	return sprintf(buf, "%i\n", val);
1791 }
1792 
ipw_radio_kill_sw(struct ipw_priv * priv,int disable_radio)1793 static int ipw_radio_kill_sw(struct ipw_priv *priv, int disable_radio)
1794 {
1795 	if ((disable_radio ? 1 : 0) ==
1796 	    ((priv->status & STATUS_RF_KILL_SW) ? 1 : 0))
1797 		return 0;
1798 
1799 	IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO  %s\n",
1800 			  disable_radio ? "OFF" : "ON");
1801 
1802 	if (disable_radio) {
1803 		priv->status |= STATUS_RF_KILL_SW;
1804 
1805 		cancel_delayed_work(&priv->request_scan);
1806 		cancel_delayed_work(&priv->request_direct_scan);
1807 		cancel_delayed_work(&priv->request_passive_scan);
1808 		cancel_delayed_work(&priv->scan_event);
1809 		schedule_work(&priv->down);
1810 	} else {
1811 		priv->status &= ~STATUS_RF_KILL_SW;
1812 		if (rf_kill_active(priv)) {
1813 			IPW_DEBUG_RF_KILL("Can not turn radio back on - "
1814 					  "disabled by HW switch\n");
1815 			/* Make sure the RF_KILL check timer is running */
1816 			cancel_delayed_work(&priv->rf_kill);
1817 			schedule_delayed_work(&priv->rf_kill,
1818 					      round_jiffies_relative(2 * HZ));
1819 		} else
1820 			schedule_work(&priv->up);
1821 	}
1822 
1823 	return 1;
1824 }
1825 
store_rf_kill(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1826 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
1827 			     const char *buf, size_t count)
1828 {
1829 	struct ipw_priv *priv = dev_get_drvdata(d);
1830 
1831 	ipw_radio_kill_sw(priv, buf[0] == '1');
1832 
1833 	return count;
1834 }
1835 
1836 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
1837 
show_speed_scan(struct device * d,struct device_attribute * attr,char * buf)1838 static ssize_t show_speed_scan(struct device *d, struct device_attribute *attr,
1839 			       char *buf)
1840 {
1841 	struct ipw_priv *priv = dev_get_drvdata(d);
1842 	int pos = 0, len = 0;
1843 	if (priv->config & CFG_SPEED_SCAN) {
1844 		while (priv->speed_scan[pos] != 0)
1845 			len += sprintf(&buf[len], "%d ",
1846 				       priv->speed_scan[pos++]);
1847 		return len + sprintf(&buf[len], "\n");
1848 	}
1849 
1850 	return sprintf(buf, "0\n");
1851 }
1852 
store_speed_scan(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1853 static ssize_t store_speed_scan(struct device *d, struct device_attribute *attr,
1854 				const char *buf, size_t count)
1855 {
1856 	struct ipw_priv *priv = dev_get_drvdata(d);
1857 	int channel, pos = 0;
1858 	const char *p = buf;
1859 
1860 	/* list of space separated channels to scan, optionally ending with 0 */
1861 	while ((channel = simple_strtol(p, NULL, 0))) {
1862 		if (pos == MAX_SPEED_SCAN - 1) {
1863 			priv->speed_scan[pos] = 0;
1864 			break;
1865 		}
1866 
1867 		if (libipw_is_valid_channel(priv->ieee, channel))
1868 			priv->speed_scan[pos++] = channel;
1869 		else
1870 			IPW_WARNING("Skipping invalid channel request: %d\n",
1871 				    channel);
1872 		p = strchr(p, ' ');
1873 		if (!p)
1874 			break;
1875 		while (*p == ' ' || *p == '\t')
1876 			p++;
1877 	}
1878 
1879 	if (pos == 0)
1880 		priv->config &= ~CFG_SPEED_SCAN;
1881 	else {
1882 		priv->speed_scan_pos = 0;
1883 		priv->config |= CFG_SPEED_SCAN;
1884 	}
1885 
1886 	return count;
1887 }
1888 
1889 static DEVICE_ATTR(speed_scan, S_IWUSR | S_IRUGO, show_speed_scan,
1890 		   store_speed_scan);
1891 
show_net_stats(struct device * d,struct device_attribute * attr,char * buf)1892 static ssize_t show_net_stats(struct device *d, struct device_attribute *attr,
1893 			      char *buf)
1894 {
1895 	struct ipw_priv *priv = dev_get_drvdata(d);
1896 	return sprintf(buf, "%c\n", (priv->config & CFG_NET_STATS) ? '1' : '0');
1897 }
1898 
store_net_stats(struct device * d,struct device_attribute * attr,const char * buf,size_t count)1899 static ssize_t store_net_stats(struct device *d, struct device_attribute *attr,
1900 			       const char *buf, size_t count)
1901 {
1902 	struct ipw_priv *priv = dev_get_drvdata(d);
1903 	if (buf[0] == '1')
1904 		priv->config |= CFG_NET_STATS;
1905 	else
1906 		priv->config &= ~CFG_NET_STATS;
1907 
1908 	return count;
1909 }
1910 
1911 static DEVICE_ATTR(net_stats, S_IWUSR | S_IRUGO,
1912 		   show_net_stats, store_net_stats);
1913 
show_channels(struct device * d,struct device_attribute * attr,char * buf)1914 static ssize_t show_channels(struct device *d,
1915 			     struct device_attribute *attr,
1916 			     char *buf)
1917 {
1918 	struct ipw_priv *priv = dev_get_drvdata(d);
1919 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
1920 	int len = 0, i;
1921 
1922 	len = sprintf(&buf[len],
1923 		      "Displaying %d channels in 2.4Ghz band "
1924 		      "(802.11bg):\n", geo->bg_channels);
1925 
1926 	for (i = 0; i < geo->bg_channels; i++) {
1927 		len += sprintf(&buf[len], "%d: BSS%s%s, %s, Band %s.\n",
1928 			       geo->bg[i].channel,
1929 			       geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT ?
1930 			       " (radar spectrum)" : "",
1931 			       ((geo->bg[i].flags & LIBIPW_CH_NO_IBSS) ||
1932 				(geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT))
1933 			       ? "" : ", IBSS",
1934 			       geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1935 			       "passive only" : "active/passive",
1936 			       geo->bg[i].flags & LIBIPW_CH_B_ONLY ?
1937 			       "B" : "B/G");
1938 	}
1939 
1940 	len += sprintf(&buf[len],
1941 		       "Displaying %d channels in 5.2Ghz band "
1942 		       "(802.11a):\n", geo->a_channels);
1943 	for (i = 0; i < geo->a_channels; i++) {
1944 		len += sprintf(&buf[len], "%d: BSS%s%s, %s.\n",
1945 			       geo->a[i].channel,
1946 			       geo->a[i].flags & LIBIPW_CH_RADAR_DETECT ?
1947 			       " (radar spectrum)" : "",
1948 			       ((geo->a[i].flags & LIBIPW_CH_NO_IBSS) ||
1949 				(geo->a[i].flags & LIBIPW_CH_RADAR_DETECT))
1950 			       ? "" : ", IBSS",
1951 			       geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY ?
1952 			       "passive only" : "active/passive");
1953 	}
1954 
1955 	return len;
1956 }
1957 
1958 static DEVICE_ATTR(channels, S_IRUSR, show_channels, NULL);
1959 
notify_wx_assoc_event(struct ipw_priv * priv)1960 static void notify_wx_assoc_event(struct ipw_priv *priv)
1961 {
1962 	union iwreq_data wrqu;
1963 	wrqu.ap_addr.sa_family = ARPHRD_ETHER;
1964 	if (priv->status & STATUS_ASSOCIATED)
1965 		memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
1966 	else
1967 		memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
1968 	wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1969 }
1970 
ipw_irq_tasklet(struct ipw_priv * priv)1971 static void ipw_irq_tasklet(struct ipw_priv *priv)
1972 {
1973 	u32 inta, inta_mask, handled = 0;
1974 	unsigned long flags;
1975 	int rc = 0;
1976 
1977 	spin_lock_irqsave(&priv->irq_lock, flags);
1978 
1979 	inta = ipw_read32(priv, IPW_INTA_RW);
1980 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
1981 
1982 	if (inta == 0xFFFFFFFF) {
1983 		/* Hardware disappeared */
1984 		IPW_WARNING("TASKLET INTA == 0xFFFFFFFF\n");
1985 		/* Only handle the cached INTA values */
1986 		inta = 0;
1987 	}
1988 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
1989 
1990 	/* Add any cached INTA values that need to be handled */
1991 	inta |= priv->isr_inta;
1992 
1993 	spin_unlock_irqrestore(&priv->irq_lock, flags);
1994 
1995 	spin_lock_irqsave(&priv->lock, flags);
1996 
1997 	/* handle all the justifications for the interrupt */
1998 	if (inta & IPW_INTA_BIT_RX_TRANSFER) {
1999 		ipw_rx(priv);
2000 		handled |= IPW_INTA_BIT_RX_TRANSFER;
2001 	}
2002 
2003 	if (inta & IPW_INTA_BIT_TX_CMD_QUEUE) {
2004 		IPW_DEBUG_HC("Command completed.\n");
2005 		rc = ipw_queue_tx_reclaim(priv, &priv->txq_cmd, -1);
2006 		priv->status &= ~STATUS_HCMD_ACTIVE;
2007 		wake_up_interruptible(&priv->wait_command_queue);
2008 		handled |= IPW_INTA_BIT_TX_CMD_QUEUE;
2009 	}
2010 
2011 	if (inta & IPW_INTA_BIT_TX_QUEUE_1) {
2012 		IPW_DEBUG_TX("TX_QUEUE_1\n");
2013 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[0], 0);
2014 		handled |= IPW_INTA_BIT_TX_QUEUE_1;
2015 	}
2016 
2017 	if (inta & IPW_INTA_BIT_TX_QUEUE_2) {
2018 		IPW_DEBUG_TX("TX_QUEUE_2\n");
2019 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[1], 1);
2020 		handled |= IPW_INTA_BIT_TX_QUEUE_2;
2021 	}
2022 
2023 	if (inta & IPW_INTA_BIT_TX_QUEUE_3) {
2024 		IPW_DEBUG_TX("TX_QUEUE_3\n");
2025 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[2], 2);
2026 		handled |= IPW_INTA_BIT_TX_QUEUE_3;
2027 	}
2028 
2029 	if (inta & IPW_INTA_BIT_TX_QUEUE_4) {
2030 		IPW_DEBUG_TX("TX_QUEUE_4\n");
2031 		rc = ipw_queue_tx_reclaim(priv, &priv->txq[3], 3);
2032 		handled |= IPW_INTA_BIT_TX_QUEUE_4;
2033 	}
2034 
2035 	if (inta & IPW_INTA_BIT_STATUS_CHANGE) {
2036 		IPW_WARNING("STATUS_CHANGE\n");
2037 		handled |= IPW_INTA_BIT_STATUS_CHANGE;
2038 	}
2039 
2040 	if (inta & IPW_INTA_BIT_BEACON_PERIOD_EXPIRED) {
2041 		IPW_WARNING("TX_PERIOD_EXPIRED\n");
2042 		handled |= IPW_INTA_BIT_BEACON_PERIOD_EXPIRED;
2043 	}
2044 
2045 	if (inta & IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE) {
2046 		IPW_WARNING("HOST_CMD_DONE\n");
2047 		handled |= IPW_INTA_BIT_SLAVE_MODE_HOST_CMD_DONE;
2048 	}
2049 
2050 	if (inta & IPW_INTA_BIT_FW_INITIALIZATION_DONE) {
2051 		IPW_WARNING("FW_INITIALIZATION_DONE\n");
2052 		handled |= IPW_INTA_BIT_FW_INITIALIZATION_DONE;
2053 	}
2054 
2055 	if (inta & IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE) {
2056 		IPW_WARNING("PHY_OFF_DONE\n");
2057 		handled |= IPW_INTA_BIT_FW_CARD_DISABLE_PHY_OFF_DONE;
2058 	}
2059 
2060 	if (inta & IPW_INTA_BIT_RF_KILL_DONE) {
2061 		IPW_DEBUG_RF_KILL("RF_KILL_DONE\n");
2062 		priv->status |= STATUS_RF_KILL_HW;
2063 		wiphy_rfkill_set_hw_state(priv->ieee->wdev.wiphy, true);
2064 		wake_up_interruptible(&priv->wait_command_queue);
2065 		priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2066 		cancel_delayed_work(&priv->request_scan);
2067 		cancel_delayed_work(&priv->request_direct_scan);
2068 		cancel_delayed_work(&priv->request_passive_scan);
2069 		cancel_delayed_work(&priv->scan_event);
2070 		schedule_work(&priv->link_down);
2071 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
2072 		handled |= IPW_INTA_BIT_RF_KILL_DONE;
2073 	}
2074 
2075 	if (inta & IPW_INTA_BIT_FATAL_ERROR) {
2076 		IPW_WARNING("Firmware error detected.  Restarting.\n");
2077 		if (priv->error) {
2078 			IPW_DEBUG_FW("Sysfs 'error' log already exists.\n");
2079 			if (ipw_debug_level & IPW_DL_FW_ERRORS) {
2080 				struct ipw_fw_error *error =
2081 				    ipw_alloc_error_log(priv);
2082 				ipw_dump_error_log(priv, error);
2083 				kfree(error);
2084 			}
2085 		} else {
2086 			priv->error = ipw_alloc_error_log(priv);
2087 			if (priv->error)
2088 				IPW_DEBUG_FW("Sysfs 'error' log captured.\n");
2089 			else
2090 				IPW_DEBUG_FW("Error allocating sysfs 'error' "
2091 					     "log.\n");
2092 			if (ipw_debug_level & IPW_DL_FW_ERRORS)
2093 				ipw_dump_error_log(priv, priv->error);
2094 		}
2095 
2096 		/* XXX: If hardware encryption is for WPA/WPA2,
2097 		 * we have to notify the supplicant. */
2098 		if (priv->ieee->sec.encrypt) {
2099 			priv->status &= ~STATUS_ASSOCIATED;
2100 			notify_wx_assoc_event(priv);
2101 		}
2102 
2103 		/* Keep the restart process from trying to send host
2104 		 * commands by clearing the INIT status bit */
2105 		priv->status &= ~STATUS_INIT;
2106 
2107 		/* Cancel currently queued command. */
2108 		priv->status &= ~STATUS_HCMD_ACTIVE;
2109 		wake_up_interruptible(&priv->wait_command_queue);
2110 
2111 		schedule_work(&priv->adapter_restart);
2112 		handled |= IPW_INTA_BIT_FATAL_ERROR;
2113 	}
2114 
2115 	if (inta & IPW_INTA_BIT_PARITY_ERROR) {
2116 		IPW_ERROR("Parity error\n");
2117 		handled |= IPW_INTA_BIT_PARITY_ERROR;
2118 	}
2119 
2120 	if (handled != inta) {
2121 		IPW_ERROR("Unhandled INTA bits 0x%08x\n", inta & ~handled);
2122 	}
2123 
2124 	spin_unlock_irqrestore(&priv->lock, flags);
2125 
2126 	/* enable all interrupts */
2127 	ipw_enable_interrupts(priv);
2128 }
2129 
2130 #define IPW_CMD(x) case IPW_CMD_ ## x : return #x
get_cmd_string(u8 cmd)2131 static char *get_cmd_string(u8 cmd)
2132 {
2133 	switch (cmd) {
2134 		IPW_CMD(HOST_COMPLETE);
2135 		IPW_CMD(POWER_DOWN);
2136 		IPW_CMD(SYSTEM_CONFIG);
2137 		IPW_CMD(MULTICAST_ADDRESS);
2138 		IPW_CMD(SSID);
2139 		IPW_CMD(ADAPTER_ADDRESS);
2140 		IPW_CMD(PORT_TYPE);
2141 		IPW_CMD(RTS_THRESHOLD);
2142 		IPW_CMD(FRAG_THRESHOLD);
2143 		IPW_CMD(POWER_MODE);
2144 		IPW_CMD(WEP_KEY);
2145 		IPW_CMD(TGI_TX_KEY);
2146 		IPW_CMD(SCAN_REQUEST);
2147 		IPW_CMD(SCAN_REQUEST_EXT);
2148 		IPW_CMD(ASSOCIATE);
2149 		IPW_CMD(SUPPORTED_RATES);
2150 		IPW_CMD(SCAN_ABORT);
2151 		IPW_CMD(TX_FLUSH);
2152 		IPW_CMD(QOS_PARAMETERS);
2153 		IPW_CMD(DINO_CONFIG);
2154 		IPW_CMD(RSN_CAPABILITIES);
2155 		IPW_CMD(RX_KEY);
2156 		IPW_CMD(CARD_DISABLE);
2157 		IPW_CMD(SEED_NUMBER);
2158 		IPW_CMD(TX_POWER);
2159 		IPW_CMD(COUNTRY_INFO);
2160 		IPW_CMD(AIRONET_INFO);
2161 		IPW_CMD(AP_TX_POWER);
2162 		IPW_CMD(CCKM_INFO);
2163 		IPW_CMD(CCX_VER_INFO);
2164 		IPW_CMD(SET_CALIBRATION);
2165 		IPW_CMD(SENSITIVITY_CALIB);
2166 		IPW_CMD(RETRY_LIMIT);
2167 		IPW_CMD(IPW_PRE_POWER_DOWN);
2168 		IPW_CMD(VAP_BEACON_TEMPLATE);
2169 		IPW_CMD(VAP_DTIM_PERIOD);
2170 		IPW_CMD(EXT_SUPPORTED_RATES);
2171 		IPW_CMD(VAP_LOCAL_TX_PWR_CONSTRAINT);
2172 		IPW_CMD(VAP_QUIET_INTERVALS);
2173 		IPW_CMD(VAP_CHANNEL_SWITCH);
2174 		IPW_CMD(VAP_MANDATORY_CHANNELS);
2175 		IPW_CMD(VAP_CELL_PWR_LIMIT);
2176 		IPW_CMD(VAP_CF_PARAM_SET);
2177 		IPW_CMD(VAP_SET_BEACONING_STATE);
2178 		IPW_CMD(MEASUREMENT);
2179 		IPW_CMD(POWER_CAPABILITY);
2180 		IPW_CMD(SUPPORTED_CHANNELS);
2181 		IPW_CMD(TPC_REPORT);
2182 		IPW_CMD(WME_INFO);
2183 		IPW_CMD(PRODUCTION_COMMAND);
2184 	default:
2185 		return "UNKNOWN";
2186 	}
2187 }
2188 
2189 #define HOST_COMPLETE_TIMEOUT HZ
2190 
__ipw_send_cmd(struct ipw_priv * priv,struct host_cmd * cmd)2191 static int __ipw_send_cmd(struct ipw_priv *priv, struct host_cmd *cmd)
2192 {
2193 	int rc = 0;
2194 	unsigned long flags;
2195 	unsigned long now, end;
2196 
2197 	spin_lock_irqsave(&priv->lock, flags);
2198 	if (priv->status & STATUS_HCMD_ACTIVE) {
2199 		IPW_ERROR("Failed to send %s: Already sending a command.\n",
2200 			  get_cmd_string(cmd->cmd));
2201 		spin_unlock_irqrestore(&priv->lock, flags);
2202 		return -EAGAIN;
2203 	}
2204 
2205 	priv->status |= STATUS_HCMD_ACTIVE;
2206 
2207 	if (priv->cmdlog) {
2208 		priv->cmdlog[priv->cmdlog_pos].jiffies = jiffies;
2209 		priv->cmdlog[priv->cmdlog_pos].cmd.cmd = cmd->cmd;
2210 		priv->cmdlog[priv->cmdlog_pos].cmd.len = cmd->len;
2211 		memcpy(priv->cmdlog[priv->cmdlog_pos].cmd.param, cmd->param,
2212 		       cmd->len);
2213 		priv->cmdlog[priv->cmdlog_pos].retcode = -1;
2214 	}
2215 
2216 	IPW_DEBUG_HC("%s command (#%d) %d bytes: 0x%08X\n",
2217 		     get_cmd_string(cmd->cmd), cmd->cmd, cmd->len,
2218 		     priv->status);
2219 
2220 #ifndef DEBUG_CMD_WEP_KEY
2221 	if (cmd->cmd == IPW_CMD_WEP_KEY)
2222 		IPW_DEBUG_HC("WEP_KEY command masked out for secure.\n");
2223 	else
2224 #endif
2225 		printk_buf(IPW_DL_HOST_COMMAND, (u8 *) cmd->param, cmd->len);
2226 
2227 	rc = ipw_queue_tx_hcmd(priv, cmd->cmd, cmd->param, cmd->len, 0);
2228 	if (rc) {
2229 		priv->status &= ~STATUS_HCMD_ACTIVE;
2230 		IPW_ERROR("Failed to send %s: Reason %d\n",
2231 			  get_cmd_string(cmd->cmd), rc);
2232 		spin_unlock_irqrestore(&priv->lock, flags);
2233 		goto exit;
2234 	}
2235 	spin_unlock_irqrestore(&priv->lock, flags);
2236 
2237 	now = jiffies;
2238 	end = now + HOST_COMPLETE_TIMEOUT;
2239 again:
2240 	rc = wait_event_interruptible_timeout(priv->wait_command_queue,
2241 					      !(priv->
2242 						status & STATUS_HCMD_ACTIVE),
2243 					      end - now);
2244 	if (rc < 0) {
2245 		now = jiffies;
2246 		if (time_before(now, end))
2247 			goto again;
2248 		rc = 0;
2249 	}
2250 
2251 	if (rc == 0) {
2252 		spin_lock_irqsave(&priv->lock, flags);
2253 		if (priv->status & STATUS_HCMD_ACTIVE) {
2254 			IPW_ERROR("Failed to send %s: Command timed out.\n",
2255 				  get_cmd_string(cmd->cmd));
2256 			priv->status &= ~STATUS_HCMD_ACTIVE;
2257 			spin_unlock_irqrestore(&priv->lock, flags);
2258 			rc = -EIO;
2259 			goto exit;
2260 		}
2261 		spin_unlock_irqrestore(&priv->lock, flags);
2262 	} else
2263 		rc = 0;
2264 
2265 	if (priv->status & STATUS_RF_KILL_HW) {
2266 		IPW_ERROR("Failed to send %s: Aborted due to RF kill switch.\n",
2267 			  get_cmd_string(cmd->cmd));
2268 		rc = -EIO;
2269 		goto exit;
2270 	}
2271 
2272       exit:
2273 	if (priv->cmdlog) {
2274 		priv->cmdlog[priv->cmdlog_pos++].retcode = rc;
2275 		priv->cmdlog_pos %= priv->cmdlog_len;
2276 	}
2277 	return rc;
2278 }
2279 
ipw_send_cmd_simple(struct ipw_priv * priv,u8 command)2280 static int ipw_send_cmd_simple(struct ipw_priv *priv, u8 command)
2281 {
2282 	struct host_cmd cmd = {
2283 		.cmd = command,
2284 	};
2285 
2286 	return __ipw_send_cmd(priv, &cmd);
2287 }
2288 
ipw_send_cmd_pdu(struct ipw_priv * priv,u8 command,u8 len,void * data)2289 static int ipw_send_cmd_pdu(struct ipw_priv *priv, u8 command, u8 len,
2290 			    void *data)
2291 {
2292 	struct host_cmd cmd = {
2293 		.cmd = command,
2294 		.len = len,
2295 		.param = data,
2296 	};
2297 
2298 	return __ipw_send_cmd(priv, &cmd);
2299 }
2300 
ipw_send_host_complete(struct ipw_priv * priv)2301 static int ipw_send_host_complete(struct ipw_priv *priv)
2302 {
2303 	if (!priv) {
2304 		IPW_ERROR("Invalid args\n");
2305 		return -1;
2306 	}
2307 
2308 	return ipw_send_cmd_simple(priv, IPW_CMD_HOST_COMPLETE);
2309 }
2310 
ipw_send_system_config(struct ipw_priv * priv)2311 static int ipw_send_system_config(struct ipw_priv *priv)
2312 {
2313 	return ipw_send_cmd_pdu(priv, IPW_CMD_SYSTEM_CONFIG,
2314 				sizeof(priv->sys_config),
2315 				&priv->sys_config);
2316 }
2317 
ipw_send_ssid(struct ipw_priv * priv,u8 * ssid,int len)2318 static int ipw_send_ssid(struct ipw_priv *priv, u8 * ssid, int len)
2319 {
2320 	if (!priv || !ssid) {
2321 		IPW_ERROR("Invalid args\n");
2322 		return -1;
2323 	}
2324 
2325 	return ipw_send_cmd_pdu(priv, IPW_CMD_SSID, min(len, IW_ESSID_MAX_SIZE),
2326 				ssid);
2327 }
2328 
ipw_send_adapter_address(struct ipw_priv * priv,u8 * mac)2329 static int ipw_send_adapter_address(struct ipw_priv *priv, u8 * mac)
2330 {
2331 	if (!priv || !mac) {
2332 		IPW_ERROR("Invalid args\n");
2333 		return -1;
2334 	}
2335 
2336 	IPW_DEBUG_INFO("%s: Setting MAC to %pM\n",
2337 		       priv->net_dev->name, mac);
2338 
2339 	return ipw_send_cmd_pdu(priv, IPW_CMD_ADAPTER_ADDRESS, ETH_ALEN, mac);
2340 }
2341 
ipw_adapter_restart(void * adapter)2342 static void ipw_adapter_restart(void *adapter)
2343 {
2344 	struct ipw_priv *priv = adapter;
2345 
2346 	if (priv->status & STATUS_RF_KILL_MASK)
2347 		return;
2348 
2349 	ipw_down(priv);
2350 
2351 	if (priv->assoc_network &&
2352 	    (priv->assoc_network->capability & WLAN_CAPABILITY_IBSS))
2353 		ipw_remove_current_network(priv);
2354 
2355 	if (ipw_up(priv)) {
2356 		IPW_ERROR("Failed to up device\n");
2357 		return;
2358 	}
2359 }
2360 
ipw_bg_adapter_restart(struct work_struct * work)2361 static void ipw_bg_adapter_restart(struct work_struct *work)
2362 {
2363 	struct ipw_priv *priv =
2364 		container_of(work, struct ipw_priv, adapter_restart);
2365 	mutex_lock(&priv->mutex);
2366 	ipw_adapter_restart(priv);
2367 	mutex_unlock(&priv->mutex);
2368 }
2369 
2370 static void ipw_abort_scan(struct ipw_priv *priv);
2371 
2372 #define IPW_SCAN_CHECK_WATCHDOG	(5 * HZ)
2373 
ipw_scan_check(void * data)2374 static void ipw_scan_check(void *data)
2375 {
2376 	struct ipw_priv *priv = data;
2377 
2378 	if (priv->status & STATUS_SCAN_ABORTING) {
2379 		IPW_DEBUG_SCAN("Scan completion watchdog resetting "
2380 			       "adapter after (%dms).\n",
2381 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2382 		schedule_work(&priv->adapter_restart);
2383 	} else if (priv->status & STATUS_SCANNING) {
2384 		IPW_DEBUG_SCAN("Scan completion watchdog aborting scan "
2385 			       "after (%dms).\n",
2386 			       jiffies_to_msecs(IPW_SCAN_CHECK_WATCHDOG));
2387 		ipw_abort_scan(priv);
2388 		schedule_delayed_work(&priv->scan_check, HZ);
2389 	}
2390 }
2391 
ipw_bg_scan_check(struct work_struct * work)2392 static void ipw_bg_scan_check(struct work_struct *work)
2393 {
2394 	struct ipw_priv *priv =
2395 		container_of(work, struct ipw_priv, scan_check.work);
2396 	mutex_lock(&priv->mutex);
2397 	ipw_scan_check(priv);
2398 	mutex_unlock(&priv->mutex);
2399 }
2400 
ipw_send_scan_request_ext(struct ipw_priv * priv,struct ipw_scan_request_ext * request)2401 static int ipw_send_scan_request_ext(struct ipw_priv *priv,
2402 				     struct ipw_scan_request_ext *request)
2403 {
2404 	return ipw_send_cmd_pdu(priv, IPW_CMD_SCAN_REQUEST_EXT,
2405 				sizeof(*request), request);
2406 }
2407 
ipw_send_scan_abort(struct ipw_priv * priv)2408 static int ipw_send_scan_abort(struct ipw_priv *priv)
2409 {
2410 	if (!priv) {
2411 		IPW_ERROR("Invalid args\n");
2412 		return -1;
2413 	}
2414 
2415 	return ipw_send_cmd_simple(priv, IPW_CMD_SCAN_ABORT);
2416 }
2417 
ipw_set_sensitivity(struct ipw_priv * priv,u16 sens)2418 static int ipw_set_sensitivity(struct ipw_priv *priv, u16 sens)
2419 {
2420 	struct ipw_sensitivity_calib calib = {
2421 		.beacon_rssi_raw = cpu_to_le16(sens),
2422 	};
2423 
2424 	return ipw_send_cmd_pdu(priv, IPW_CMD_SENSITIVITY_CALIB, sizeof(calib),
2425 				&calib);
2426 }
2427 
ipw_send_associate(struct ipw_priv * priv,struct ipw_associate * associate)2428 static int ipw_send_associate(struct ipw_priv *priv,
2429 			      struct ipw_associate *associate)
2430 {
2431 	if (!priv || !associate) {
2432 		IPW_ERROR("Invalid args\n");
2433 		return -1;
2434 	}
2435 
2436 	return ipw_send_cmd_pdu(priv, IPW_CMD_ASSOCIATE, sizeof(*associate),
2437 				associate);
2438 }
2439 
ipw_send_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)2440 static int ipw_send_supported_rates(struct ipw_priv *priv,
2441 				    struct ipw_supported_rates *rates)
2442 {
2443 	if (!priv || !rates) {
2444 		IPW_ERROR("Invalid args\n");
2445 		return -1;
2446 	}
2447 
2448 	return ipw_send_cmd_pdu(priv, IPW_CMD_SUPPORTED_RATES, sizeof(*rates),
2449 				rates);
2450 }
2451 
ipw_set_random_seed(struct ipw_priv * priv)2452 static int ipw_set_random_seed(struct ipw_priv *priv)
2453 {
2454 	u32 val;
2455 
2456 	if (!priv) {
2457 		IPW_ERROR("Invalid args\n");
2458 		return -1;
2459 	}
2460 
2461 	get_random_bytes(&val, sizeof(val));
2462 
2463 	return ipw_send_cmd_pdu(priv, IPW_CMD_SEED_NUMBER, sizeof(val), &val);
2464 }
2465 
ipw_send_card_disable(struct ipw_priv * priv,u32 phy_off)2466 static int ipw_send_card_disable(struct ipw_priv *priv, u32 phy_off)
2467 {
2468 	__le32 v = cpu_to_le32(phy_off);
2469 	if (!priv) {
2470 		IPW_ERROR("Invalid args\n");
2471 		return -1;
2472 	}
2473 
2474 	return ipw_send_cmd_pdu(priv, IPW_CMD_CARD_DISABLE, sizeof(v), &v);
2475 }
2476 
ipw_send_tx_power(struct ipw_priv * priv,struct ipw_tx_power * power)2477 static int ipw_send_tx_power(struct ipw_priv *priv, struct ipw_tx_power *power)
2478 {
2479 	if (!priv || !power) {
2480 		IPW_ERROR("Invalid args\n");
2481 		return -1;
2482 	}
2483 
2484 	return ipw_send_cmd_pdu(priv, IPW_CMD_TX_POWER, sizeof(*power), power);
2485 }
2486 
ipw_set_tx_power(struct ipw_priv * priv)2487 static int ipw_set_tx_power(struct ipw_priv *priv)
2488 {
2489 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
2490 	struct ipw_tx_power tx_power;
2491 	s8 max_power;
2492 	int i;
2493 
2494 	memset(&tx_power, 0, sizeof(tx_power));
2495 
2496 	/* configure device for 'G' band */
2497 	tx_power.ieee_mode = IPW_G_MODE;
2498 	tx_power.num_channels = geo->bg_channels;
2499 	for (i = 0; i < geo->bg_channels; i++) {
2500 		max_power = geo->bg[i].max_power;
2501 		tx_power.channels_tx_power[i].channel_number =
2502 		    geo->bg[i].channel;
2503 		tx_power.channels_tx_power[i].tx_power = max_power ?
2504 		    min(max_power, priv->tx_power) : priv->tx_power;
2505 	}
2506 	if (ipw_send_tx_power(priv, &tx_power))
2507 		return -EIO;
2508 
2509 	/* configure device to also handle 'B' band */
2510 	tx_power.ieee_mode = IPW_B_MODE;
2511 	if (ipw_send_tx_power(priv, &tx_power))
2512 		return -EIO;
2513 
2514 	/* configure device to also handle 'A' band */
2515 	if (priv->ieee->abg_true) {
2516 		tx_power.ieee_mode = IPW_A_MODE;
2517 		tx_power.num_channels = geo->a_channels;
2518 		for (i = 0; i < tx_power.num_channels; i++) {
2519 			max_power = geo->a[i].max_power;
2520 			tx_power.channels_tx_power[i].channel_number =
2521 			    geo->a[i].channel;
2522 			tx_power.channels_tx_power[i].tx_power = max_power ?
2523 			    min(max_power, priv->tx_power) : priv->tx_power;
2524 		}
2525 		if (ipw_send_tx_power(priv, &tx_power))
2526 			return -EIO;
2527 	}
2528 	return 0;
2529 }
2530 
ipw_send_rts_threshold(struct ipw_priv * priv,u16 rts)2531 static int ipw_send_rts_threshold(struct ipw_priv *priv, u16 rts)
2532 {
2533 	struct ipw_rts_threshold rts_threshold = {
2534 		.rts_threshold = cpu_to_le16(rts),
2535 	};
2536 
2537 	if (!priv) {
2538 		IPW_ERROR("Invalid args\n");
2539 		return -1;
2540 	}
2541 
2542 	return ipw_send_cmd_pdu(priv, IPW_CMD_RTS_THRESHOLD,
2543 				sizeof(rts_threshold), &rts_threshold);
2544 }
2545 
ipw_send_frag_threshold(struct ipw_priv * priv,u16 frag)2546 static int ipw_send_frag_threshold(struct ipw_priv *priv, u16 frag)
2547 {
2548 	struct ipw_frag_threshold frag_threshold = {
2549 		.frag_threshold = cpu_to_le16(frag),
2550 	};
2551 
2552 	if (!priv) {
2553 		IPW_ERROR("Invalid args\n");
2554 		return -1;
2555 	}
2556 
2557 	return ipw_send_cmd_pdu(priv, IPW_CMD_FRAG_THRESHOLD,
2558 				sizeof(frag_threshold), &frag_threshold);
2559 }
2560 
ipw_send_power_mode(struct ipw_priv * priv,u32 mode)2561 static int ipw_send_power_mode(struct ipw_priv *priv, u32 mode)
2562 {
2563 	__le32 param;
2564 
2565 	if (!priv) {
2566 		IPW_ERROR("Invalid args\n");
2567 		return -1;
2568 	}
2569 
2570 	/* If on battery, set to 3, if AC set to CAM, else user
2571 	 * level */
2572 	switch (mode) {
2573 	case IPW_POWER_BATTERY:
2574 		param = cpu_to_le32(IPW_POWER_INDEX_3);
2575 		break;
2576 	case IPW_POWER_AC:
2577 		param = cpu_to_le32(IPW_POWER_MODE_CAM);
2578 		break;
2579 	default:
2580 		param = cpu_to_le32(mode);
2581 		break;
2582 	}
2583 
2584 	return ipw_send_cmd_pdu(priv, IPW_CMD_POWER_MODE, sizeof(param),
2585 				&param);
2586 }
2587 
ipw_send_retry_limit(struct ipw_priv * priv,u8 slimit,u8 llimit)2588 static int ipw_send_retry_limit(struct ipw_priv *priv, u8 slimit, u8 llimit)
2589 {
2590 	struct ipw_retry_limit retry_limit = {
2591 		.short_retry_limit = slimit,
2592 		.long_retry_limit = llimit
2593 	};
2594 
2595 	if (!priv) {
2596 		IPW_ERROR("Invalid args\n");
2597 		return -1;
2598 	}
2599 
2600 	return ipw_send_cmd_pdu(priv, IPW_CMD_RETRY_LIMIT, sizeof(retry_limit),
2601 				&retry_limit);
2602 }
2603 
2604 /*
2605  * The IPW device contains a Microwire compatible EEPROM that stores
2606  * various data like the MAC address.  Usually the firmware has exclusive
2607  * access to the eeprom, but during device initialization (before the
2608  * device driver has sent the HostComplete command to the firmware) the
2609  * device driver has read access to the EEPROM by way of indirect addressing
2610  * through a couple of memory mapped registers.
2611  *
2612  * The following is a simplified implementation for pulling data out of the
2613  * the eeprom, along with some helper functions to find information in
2614  * the per device private data's copy of the eeprom.
2615  *
2616  * NOTE: To better understand how these functions work (i.e what is a chip
2617  *       select and why do have to keep driving the eeprom clock?), read
2618  *       just about any data sheet for a Microwire compatible EEPROM.
2619  */
2620 
2621 /* write a 32 bit value into the indirect accessor register */
eeprom_write_reg(struct ipw_priv * p,u32 data)2622 static inline void eeprom_write_reg(struct ipw_priv *p, u32 data)
2623 {
2624 	ipw_write_reg32(p, FW_MEM_REG_EEPROM_ACCESS, data);
2625 
2626 	/* the eeprom requires some time to complete the operation */
2627 	udelay(p->eeprom_delay);
2628 }
2629 
2630 /* perform a chip select operation */
eeprom_cs(struct ipw_priv * priv)2631 static void eeprom_cs(struct ipw_priv *priv)
2632 {
2633 	eeprom_write_reg(priv, 0);
2634 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2635 	eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2636 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2637 }
2638 
2639 /* perform a chip select operation */
eeprom_disable_cs(struct ipw_priv * priv)2640 static void eeprom_disable_cs(struct ipw_priv *priv)
2641 {
2642 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2643 	eeprom_write_reg(priv, 0);
2644 	eeprom_write_reg(priv, EEPROM_BIT_SK);
2645 }
2646 
2647 /* push a single bit down to the eeprom */
eeprom_write_bit(struct ipw_priv * p,u8 bit)2648 static inline void eeprom_write_bit(struct ipw_priv *p, u8 bit)
2649 {
2650 	int d = (bit ? EEPROM_BIT_DI : 0);
2651 	eeprom_write_reg(p, EEPROM_BIT_CS | d);
2652 	eeprom_write_reg(p, EEPROM_BIT_CS | d | EEPROM_BIT_SK);
2653 }
2654 
2655 /* push an opcode followed by an address down to the eeprom */
eeprom_op(struct ipw_priv * priv,u8 op,u8 addr)2656 static void eeprom_op(struct ipw_priv *priv, u8 op, u8 addr)
2657 {
2658 	int i;
2659 
2660 	eeprom_cs(priv);
2661 	eeprom_write_bit(priv, 1);
2662 	eeprom_write_bit(priv, op & 2);
2663 	eeprom_write_bit(priv, op & 1);
2664 	for (i = 7; i >= 0; i--) {
2665 		eeprom_write_bit(priv, addr & (1 << i));
2666 	}
2667 }
2668 
2669 /* pull 16 bits off the eeprom, one bit at a time */
eeprom_read_u16(struct ipw_priv * priv,u8 addr)2670 static u16 eeprom_read_u16(struct ipw_priv *priv, u8 addr)
2671 {
2672 	int i;
2673 	u16 r = 0;
2674 
2675 	/* Send READ Opcode */
2676 	eeprom_op(priv, EEPROM_CMD_READ, addr);
2677 
2678 	/* Send dummy bit */
2679 	eeprom_write_reg(priv, EEPROM_BIT_CS);
2680 
2681 	/* Read the byte off the eeprom one bit at a time */
2682 	for (i = 0; i < 16; i++) {
2683 		u32 data = 0;
2684 		eeprom_write_reg(priv, EEPROM_BIT_CS | EEPROM_BIT_SK);
2685 		eeprom_write_reg(priv, EEPROM_BIT_CS);
2686 		data = ipw_read_reg32(priv, FW_MEM_REG_EEPROM_ACCESS);
2687 		r = (r << 1) | ((data & EEPROM_BIT_DO) ? 1 : 0);
2688 	}
2689 
2690 	/* Send another dummy bit */
2691 	eeprom_write_reg(priv, 0);
2692 	eeprom_disable_cs(priv);
2693 
2694 	return r;
2695 }
2696 
2697 /* helper function for pulling the mac address out of the private */
2698 /* data's copy of the eeprom data                                 */
eeprom_parse_mac(struct ipw_priv * priv,u8 * mac)2699 static void eeprom_parse_mac(struct ipw_priv *priv, u8 * mac)
2700 {
2701 	memcpy(mac, &priv->eeprom[EEPROM_MAC_ADDRESS], 6);
2702 }
2703 
2704 /*
2705  * Either the device driver (i.e. the host) or the firmware can
2706  * load eeprom data into the designated region in SRAM.  If neither
2707  * happens then the FW will shutdown with a fatal error.
2708  *
2709  * In order to signal the FW to load the EEPROM, the EEPROM_LOAD_DISABLE
2710  * bit needs region of shared SRAM needs to be non-zero.
2711  */
ipw_eeprom_init_sram(struct ipw_priv * priv)2712 static void ipw_eeprom_init_sram(struct ipw_priv *priv)
2713 {
2714 	int i;
2715 	__le16 *eeprom = (__le16 *) priv->eeprom;
2716 
2717 	IPW_DEBUG_TRACE(">>\n");
2718 
2719 	/* read entire contents of eeprom into private buffer */
2720 	for (i = 0; i < 128; i++)
2721 		eeprom[i] = cpu_to_le16(eeprom_read_u16(priv, (u8) i));
2722 
2723 	/*
2724 	   If the data looks correct, then copy it to our private
2725 	   copy.  Otherwise let the firmware know to perform the operation
2726 	   on its own.
2727 	 */
2728 	if (priv->eeprom[EEPROM_VERSION] != 0) {
2729 		IPW_DEBUG_INFO("Writing EEPROM data into SRAM\n");
2730 
2731 		/* write the eeprom data to sram */
2732 		for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
2733 			ipw_write8(priv, IPW_EEPROM_DATA + i, priv->eeprom[i]);
2734 
2735 		/* Do not load eeprom data on fatal error or suspend */
2736 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
2737 	} else {
2738 		IPW_DEBUG_INFO("Enabling FW initializationg of SRAM\n");
2739 
2740 		/* Load eeprom data on fatal error or suspend */
2741 		ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 1);
2742 	}
2743 
2744 	IPW_DEBUG_TRACE("<<\n");
2745 }
2746 
ipw_zero_memory(struct ipw_priv * priv,u32 start,u32 count)2747 static void ipw_zero_memory(struct ipw_priv *priv, u32 start, u32 count)
2748 {
2749 	count >>= 2;
2750 	if (!count)
2751 		return;
2752 	_ipw_write32(priv, IPW_AUTOINC_ADDR, start);
2753 	while (count--)
2754 		_ipw_write32(priv, IPW_AUTOINC_DATA, 0);
2755 }
2756 
ipw_fw_dma_reset_command_blocks(struct ipw_priv * priv)2757 static inline void ipw_fw_dma_reset_command_blocks(struct ipw_priv *priv)
2758 {
2759 	ipw_zero_memory(priv, IPW_SHARED_SRAM_DMA_CONTROL,
2760 			CB_NUMBER_OF_ELEMENTS_SMALL *
2761 			sizeof(struct command_block));
2762 }
2763 
ipw_fw_dma_enable(struct ipw_priv * priv)2764 static int ipw_fw_dma_enable(struct ipw_priv *priv)
2765 {				/* start dma engine but no transfers yet */
2766 
2767 	IPW_DEBUG_FW(">> :\n");
2768 
2769 	/* Start the dma */
2770 	ipw_fw_dma_reset_command_blocks(priv);
2771 
2772 	/* Write CB base address */
2773 	ipw_write_reg32(priv, IPW_DMA_I_CB_BASE, IPW_SHARED_SRAM_DMA_CONTROL);
2774 
2775 	IPW_DEBUG_FW("<< :\n");
2776 	return 0;
2777 }
2778 
ipw_fw_dma_abort(struct ipw_priv * priv)2779 static void ipw_fw_dma_abort(struct ipw_priv *priv)
2780 {
2781 	u32 control = 0;
2782 
2783 	IPW_DEBUG_FW(">> :\n");
2784 
2785 	/* set the Stop and Abort bit */
2786 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_STOP_AND_ABORT;
2787 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2788 	priv->sram_desc.last_cb_index = 0;
2789 
2790 	IPW_DEBUG_FW("<<\n");
2791 }
2792 
ipw_fw_dma_write_command_block(struct ipw_priv * priv,int index,struct command_block * cb)2793 static int ipw_fw_dma_write_command_block(struct ipw_priv *priv, int index,
2794 					  struct command_block *cb)
2795 {
2796 	u32 address =
2797 	    IPW_SHARED_SRAM_DMA_CONTROL +
2798 	    (sizeof(struct command_block) * index);
2799 	IPW_DEBUG_FW(">> :\n");
2800 
2801 	ipw_write_indirect(priv, address, (u8 *) cb,
2802 			   (int)sizeof(struct command_block));
2803 
2804 	IPW_DEBUG_FW("<< :\n");
2805 	return 0;
2806 
2807 }
2808 
ipw_fw_dma_kick(struct ipw_priv * priv)2809 static int ipw_fw_dma_kick(struct ipw_priv *priv)
2810 {
2811 	u32 control = 0;
2812 	u32 index = 0;
2813 
2814 	IPW_DEBUG_FW(">> :\n");
2815 
2816 	for (index = 0; index < priv->sram_desc.last_cb_index; index++)
2817 		ipw_fw_dma_write_command_block(priv, index,
2818 					       &priv->sram_desc.cb_list[index]);
2819 
2820 	/* Enable the DMA in the CSR register */
2821 	ipw_clear_bit(priv, IPW_RESET_REG,
2822 		      IPW_RESET_REG_MASTER_DISABLED |
2823 		      IPW_RESET_REG_STOP_MASTER);
2824 
2825 	/* Set the Start bit. */
2826 	control = DMA_CONTROL_SMALL_CB_CONST_VALUE | DMA_CB_START;
2827 	ipw_write_reg32(priv, IPW_DMA_I_DMA_CONTROL, control);
2828 
2829 	IPW_DEBUG_FW("<< :\n");
2830 	return 0;
2831 }
2832 
ipw_fw_dma_dump_command_block(struct ipw_priv * priv)2833 static void ipw_fw_dma_dump_command_block(struct ipw_priv *priv)
2834 {
2835 	u32 address;
2836 	u32 register_value = 0;
2837 	u32 cb_fields_address = 0;
2838 
2839 	IPW_DEBUG_FW(">> :\n");
2840 	address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2841 	IPW_DEBUG_FW_INFO("Current CB is 0x%x\n", address);
2842 
2843 	/* Read the DMA Controlor register */
2844 	register_value = ipw_read_reg32(priv, IPW_DMA_I_DMA_CONTROL);
2845 	IPW_DEBUG_FW_INFO("IPW_DMA_I_DMA_CONTROL is 0x%x\n", register_value);
2846 
2847 	/* Print the CB values */
2848 	cb_fields_address = address;
2849 	register_value = ipw_read_reg32(priv, cb_fields_address);
2850 	IPW_DEBUG_FW_INFO("Current CB Control Field is 0x%x\n", register_value);
2851 
2852 	cb_fields_address += sizeof(u32);
2853 	register_value = ipw_read_reg32(priv, cb_fields_address);
2854 	IPW_DEBUG_FW_INFO("Current CB Source Field is 0x%x\n", register_value);
2855 
2856 	cb_fields_address += sizeof(u32);
2857 	register_value = ipw_read_reg32(priv, cb_fields_address);
2858 	IPW_DEBUG_FW_INFO("Current CB Destination Field is 0x%x\n",
2859 			  register_value);
2860 
2861 	cb_fields_address += sizeof(u32);
2862 	register_value = ipw_read_reg32(priv, cb_fields_address);
2863 	IPW_DEBUG_FW_INFO("Current CB Status Field is 0x%x\n", register_value);
2864 
2865 	IPW_DEBUG_FW(">> :\n");
2866 }
2867 
ipw_fw_dma_command_block_index(struct ipw_priv * priv)2868 static int ipw_fw_dma_command_block_index(struct ipw_priv *priv)
2869 {
2870 	u32 current_cb_address = 0;
2871 	u32 current_cb_index = 0;
2872 
2873 	IPW_DEBUG_FW("<< :\n");
2874 	current_cb_address = ipw_read_reg32(priv, IPW_DMA_I_CURRENT_CB);
2875 
2876 	current_cb_index = (current_cb_address - IPW_SHARED_SRAM_DMA_CONTROL) /
2877 	    sizeof(struct command_block);
2878 
2879 	IPW_DEBUG_FW_INFO("Current CB index 0x%x address = 0x%X\n",
2880 			  current_cb_index, current_cb_address);
2881 
2882 	IPW_DEBUG_FW(">> :\n");
2883 	return current_cb_index;
2884 
2885 }
2886 
ipw_fw_dma_add_command_block(struct ipw_priv * priv,u32 src_address,u32 dest_address,u32 length,int interrupt_enabled,int is_last)2887 static int ipw_fw_dma_add_command_block(struct ipw_priv *priv,
2888 					u32 src_address,
2889 					u32 dest_address,
2890 					u32 length,
2891 					int interrupt_enabled, int is_last)
2892 {
2893 
2894 	u32 control = CB_VALID | CB_SRC_LE | CB_DEST_LE | CB_SRC_AUTOINC |
2895 	    CB_SRC_IO_GATED | CB_DEST_AUTOINC | CB_SRC_SIZE_LONG |
2896 	    CB_DEST_SIZE_LONG;
2897 	struct command_block *cb;
2898 	u32 last_cb_element = 0;
2899 
2900 	IPW_DEBUG_FW_INFO("src_address=0x%x dest_address=0x%x length=0x%x\n",
2901 			  src_address, dest_address, length);
2902 
2903 	if (priv->sram_desc.last_cb_index >= CB_NUMBER_OF_ELEMENTS_SMALL)
2904 		return -1;
2905 
2906 	last_cb_element = priv->sram_desc.last_cb_index;
2907 	cb = &priv->sram_desc.cb_list[last_cb_element];
2908 	priv->sram_desc.last_cb_index++;
2909 
2910 	/* Calculate the new CB control word */
2911 	if (interrupt_enabled)
2912 		control |= CB_INT_ENABLED;
2913 
2914 	if (is_last)
2915 		control |= CB_LAST_VALID;
2916 
2917 	control |= length;
2918 
2919 	/* Calculate the CB Element's checksum value */
2920 	cb->status = control ^ src_address ^ dest_address;
2921 
2922 	/* Copy the Source and Destination addresses */
2923 	cb->dest_addr = dest_address;
2924 	cb->source_addr = src_address;
2925 
2926 	/* Copy the Control Word last */
2927 	cb->control = control;
2928 
2929 	return 0;
2930 }
2931 
ipw_fw_dma_add_buffer(struct ipw_priv * priv,dma_addr_t * src_address,int nr,u32 dest_address,u32 len)2932 static int ipw_fw_dma_add_buffer(struct ipw_priv *priv, dma_addr_t *src_address,
2933 				 int nr, u32 dest_address, u32 len)
2934 {
2935 	int ret, i;
2936 	u32 size;
2937 
2938 	IPW_DEBUG_FW(">>\n");
2939 	IPW_DEBUG_FW_INFO("nr=%d dest_address=0x%x len=0x%x\n",
2940 			  nr, dest_address, len);
2941 
2942 	for (i = 0; i < nr; i++) {
2943 		size = min_t(u32, len - i * CB_MAX_LENGTH, CB_MAX_LENGTH);
2944 		ret = ipw_fw_dma_add_command_block(priv, src_address[i],
2945 						   dest_address +
2946 						   i * CB_MAX_LENGTH, size,
2947 						   0, 0);
2948 		if (ret) {
2949 			IPW_DEBUG_FW_INFO(": Failed\n");
2950 			return -1;
2951 		} else
2952 			IPW_DEBUG_FW_INFO(": Added new cb\n");
2953 	}
2954 
2955 	IPW_DEBUG_FW("<<\n");
2956 	return 0;
2957 }
2958 
ipw_fw_dma_wait(struct ipw_priv * priv)2959 static int ipw_fw_dma_wait(struct ipw_priv *priv)
2960 {
2961 	u32 current_index = 0, previous_index;
2962 	u32 watchdog = 0;
2963 
2964 	IPW_DEBUG_FW(">> :\n");
2965 
2966 	current_index = ipw_fw_dma_command_block_index(priv);
2967 	IPW_DEBUG_FW_INFO("sram_desc.last_cb_index:0x%08X\n",
2968 			  (int)priv->sram_desc.last_cb_index);
2969 
2970 	while (current_index < priv->sram_desc.last_cb_index) {
2971 		udelay(50);
2972 		previous_index = current_index;
2973 		current_index = ipw_fw_dma_command_block_index(priv);
2974 
2975 		if (previous_index < current_index) {
2976 			watchdog = 0;
2977 			continue;
2978 		}
2979 		if (++watchdog > 400) {
2980 			IPW_DEBUG_FW_INFO("Timeout\n");
2981 			ipw_fw_dma_dump_command_block(priv);
2982 			ipw_fw_dma_abort(priv);
2983 			return -1;
2984 		}
2985 	}
2986 
2987 	ipw_fw_dma_abort(priv);
2988 
2989 	/*Disable the DMA in the CSR register */
2990 	ipw_set_bit(priv, IPW_RESET_REG,
2991 		    IPW_RESET_REG_MASTER_DISABLED | IPW_RESET_REG_STOP_MASTER);
2992 
2993 	IPW_DEBUG_FW("<< dmaWaitSync\n");
2994 	return 0;
2995 }
2996 
ipw_remove_current_network(struct ipw_priv * priv)2997 static void ipw_remove_current_network(struct ipw_priv *priv)
2998 {
2999 	struct list_head *element, *safe;
3000 	struct libipw_network *network = NULL;
3001 	unsigned long flags;
3002 
3003 	spin_lock_irqsave(&priv->ieee->lock, flags);
3004 	list_for_each_safe(element, safe, &priv->ieee->network_list) {
3005 		network = list_entry(element, struct libipw_network, list);
3006 		if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
3007 			list_del(element);
3008 			list_add_tail(&network->list,
3009 				      &priv->ieee->network_free_list);
3010 		}
3011 	}
3012 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
3013 }
3014 
3015 /**
3016  * Check that card is still alive.
3017  * Reads debug register from domain0.
3018  * If card is present, pre-defined value should
3019  * be found there.
3020  *
3021  * @param priv
3022  * @return 1 if card is present, 0 otherwise
3023  */
ipw_alive(struct ipw_priv * priv)3024 static inline int ipw_alive(struct ipw_priv *priv)
3025 {
3026 	return ipw_read32(priv, 0x90) == 0xd55555d5;
3027 }
3028 
3029 /* timeout in msec, attempted in 10-msec quanta */
ipw_poll_bit(struct ipw_priv * priv,u32 addr,u32 mask,int timeout)3030 static int ipw_poll_bit(struct ipw_priv *priv, u32 addr, u32 mask,
3031 			       int timeout)
3032 {
3033 	int i = 0;
3034 
3035 	do {
3036 		if ((ipw_read32(priv, addr) & mask) == mask)
3037 			return i;
3038 		mdelay(10);
3039 		i += 10;
3040 	} while (i < timeout);
3041 
3042 	return -ETIME;
3043 }
3044 
3045 /* These functions load the firmware and micro code for the operation of
3046  * the ipw hardware.  It assumes the buffer has all the bits for the
3047  * image and the caller is handling the memory allocation and clean up.
3048  */
3049 
ipw_stop_master(struct ipw_priv * priv)3050 static int ipw_stop_master(struct ipw_priv *priv)
3051 {
3052 	int rc;
3053 
3054 	IPW_DEBUG_TRACE(">>\n");
3055 	/* stop master. typical delay - 0 */
3056 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3057 
3058 	/* timeout is in msec, polled in 10-msec quanta */
3059 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3060 			  IPW_RESET_REG_MASTER_DISABLED, 100);
3061 	if (rc < 0) {
3062 		IPW_ERROR("wait for stop master failed after 100ms\n");
3063 		return -1;
3064 	}
3065 
3066 	IPW_DEBUG_INFO("stop master %dms\n", rc);
3067 
3068 	return rc;
3069 }
3070 
ipw_arc_release(struct ipw_priv * priv)3071 static void ipw_arc_release(struct ipw_priv *priv)
3072 {
3073 	IPW_DEBUG_TRACE(">>\n");
3074 	mdelay(5);
3075 
3076 	ipw_clear_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3077 
3078 	/* no one knows timing, for safety add some delay */
3079 	mdelay(5);
3080 }
3081 
3082 struct fw_chunk {
3083 	__le32 address;
3084 	__le32 length;
3085 };
3086 
ipw_load_ucode(struct ipw_priv * priv,u8 * data,size_t len)3087 static int ipw_load_ucode(struct ipw_priv *priv, u8 * data, size_t len)
3088 {
3089 	int rc = 0, i, addr;
3090 	u8 cr = 0;
3091 	__le16 *image;
3092 
3093 	image = (__le16 *) data;
3094 
3095 	IPW_DEBUG_TRACE(">>\n");
3096 
3097 	rc = ipw_stop_master(priv);
3098 
3099 	if (rc < 0)
3100 		return rc;
3101 
3102 	for (addr = IPW_SHARED_LOWER_BOUND;
3103 	     addr < IPW_REGISTER_DOMAIN1_END; addr += 4) {
3104 		ipw_write32(priv, addr, 0);
3105 	}
3106 
3107 	/* no ucode (yet) */
3108 	memset(&priv->dino_alive, 0, sizeof(priv->dino_alive));
3109 	/* destroy DMA queues */
3110 	/* reset sequence */
3111 
3112 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_ON);
3113 	ipw_arc_release(priv);
3114 	ipw_write_reg32(priv, IPW_MEM_HALT_AND_RESET, IPW_BIT_HALT_RESET_OFF);
3115 	mdelay(1);
3116 
3117 	/* reset PHY */
3118 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, IPW_BASEBAND_POWER_DOWN);
3119 	mdelay(1);
3120 
3121 	ipw_write_reg32(priv, IPW_INTERNAL_CMD_EVENT, 0);
3122 	mdelay(1);
3123 
3124 	/* enable ucode store */
3125 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0x0);
3126 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_CS);
3127 	mdelay(1);
3128 
3129 	/* write ucode */
3130 	/**
3131 	 * @bug
3132 	 * Do NOT set indirect address register once and then
3133 	 * store data to indirect data register in the loop.
3134 	 * It seems very reasonable, but in this case DINO do not
3135 	 * accept ucode. It is essential to set address each time.
3136 	 */
3137 	/* load new ipw uCode */
3138 	for (i = 0; i < len / 2; i++)
3139 		ipw_write_reg16(priv, IPW_BASEBAND_CONTROL_STORE,
3140 				le16_to_cpu(image[i]));
3141 
3142 	/* enable DINO */
3143 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3144 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, DINO_ENABLE_SYSTEM);
3145 
3146 	/* this is where the igx / win driver deveates from the VAP driver. */
3147 
3148 	/* wait for alive response */
3149 	for (i = 0; i < 100; i++) {
3150 		/* poll for incoming data */
3151 		cr = ipw_read_reg8(priv, IPW_BASEBAND_CONTROL_STATUS);
3152 		if (cr & DINO_RXFIFO_DATA)
3153 			break;
3154 		mdelay(1);
3155 	}
3156 
3157 	if (cr & DINO_RXFIFO_DATA) {
3158 		/* alive_command_responce size is NOT multiple of 4 */
3159 		__le32 response_buffer[(sizeof(priv->dino_alive) + 3) / 4];
3160 
3161 		for (i = 0; i < ARRAY_SIZE(response_buffer); i++)
3162 			response_buffer[i] =
3163 			    cpu_to_le32(ipw_read_reg32(priv,
3164 						       IPW_BASEBAND_RX_FIFO_READ));
3165 		memcpy(&priv->dino_alive, response_buffer,
3166 		       sizeof(priv->dino_alive));
3167 		if (priv->dino_alive.alive_command == 1
3168 		    && priv->dino_alive.ucode_valid == 1) {
3169 			rc = 0;
3170 			IPW_DEBUG_INFO
3171 			    ("Microcode OK, rev. %d (0x%x) dev. %d (0x%x) "
3172 			     "of %02d/%02d/%02d %02d:%02d\n",
3173 			     priv->dino_alive.software_revision,
3174 			     priv->dino_alive.software_revision,
3175 			     priv->dino_alive.device_identifier,
3176 			     priv->dino_alive.device_identifier,
3177 			     priv->dino_alive.time_stamp[0],
3178 			     priv->dino_alive.time_stamp[1],
3179 			     priv->dino_alive.time_stamp[2],
3180 			     priv->dino_alive.time_stamp[3],
3181 			     priv->dino_alive.time_stamp[4]);
3182 		} else {
3183 			IPW_DEBUG_INFO("Microcode is not alive\n");
3184 			rc = -EINVAL;
3185 		}
3186 	} else {
3187 		IPW_DEBUG_INFO("No alive response from DINO\n");
3188 		rc = -ETIME;
3189 	}
3190 
3191 	/* disable DINO, otherwise for some reason
3192 	   firmware have problem getting alive resp. */
3193 	ipw_write_reg8(priv, IPW_BASEBAND_CONTROL_STATUS, 0);
3194 
3195 	return rc;
3196 }
3197 
ipw_load_firmware(struct ipw_priv * priv,u8 * data,size_t len)3198 static int ipw_load_firmware(struct ipw_priv *priv, u8 * data, size_t len)
3199 {
3200 	int ret = -1;
3201 	int offset = 0;
3202 	struct fw_chunk *chunk;
3203 	int total_nr = 0;
3204 	int i;
3205 	struct pci_pool *pool;
3206 	void **virts;
3207 	dma_addr_t *phys;
3208 
3209 	IPW_DEBUG_TRACE("<< :\n");
3210 
3211 	virts = kmalloc(sizeof(void *) * CB_NUMBER_OF_ELEMENTS_SMALL,
3212 			GFP_KERNEL);
3213 	if (!virts)
3214 		return -ENOMEM;
3215 
3216 	phys = kmalloc(sizeof(dma_addr_t) * CB_NUMBER_OF_ELEMENTS_SMALL,
3217 			GFP_KERNEL);
3218 	if (!phys) {
3219 		kfree(virts);
3220 		return -ENOMEM;
3221 	}
3222 	pool = pci_pool_create("ipw2200", priv->pci_dev, CB_MAX_LENGTH, 0, 0);
3223 	if (!pool) {
3224 		IPW_ERROR("pci_pool_create failed\n");
3225 		kfree(phys);
3226 		kfree(virts);
3227 		return -ENOMEM;
3228 	}
3229 
3230 	/* Start the Dma */
3231 	ret = ipw_fw_dma_enable(priv);
3232 
3233 	/* the DMA is already ready this would be a bug. */
3234 	BUG_ON(priv->sram_desc.last_cb_index > 0);
3235 
3236 	do {
3237 		u32 chunk_len;
3238 		u8 *start;
3239 		int size;
3240 		int nr = 0;
3241 
3242 		chunk = (struct fw_chunk *)(data + offset);
3243 		offset += sizeof(struct fw_chunk);
3244 		chunk_len = le32_to_cpu(chunk->length);
3245 		start = data + offset;
3246 
3247 		nr = (chunk_len + CB_MAX_LENGTH - 1) / CB_MAX_LENGTH;
3248 		for (i = 0; i < nr; i++) {
3249 			virts[total_nr] = pci_pool_alloc(pool, GFP_KERNEL,
3250 							 &phys[total_nr]);
3251 			if (!virts[total_nr]) {
3252 				ret = -ENOMEM;
3253 				goto out;
3254 			}
3255 			size = min_t(u32, chunk_len - i * CB_MAX_LENGTH,
3256 				     CB_MAX_LENGTH);
3257 			memcpy(virts[total_nr], start, size);
3258 			start += size;
3259 			total_nr++;
3260 			/* We don't support fw chunk larger than 64*8K */
3261 			BUG_ON(total_nr > CB_NUMBER_OF_ELEMENTS_SMALL);
3262 		}
3263 
3264 		/* build DMA packet and queue up for sending */
3265 		/* dma to chunk->address, the chunk->length bytes from data +
3266 		 * offeset*/
3267 		/* Dma loading */
3268 		ret = ipw_fw_dma_add_buffer(priv, &phys[total_nr - nr],
3269 					    nr, le32_to_cpu(chunk->address),
3270 					    chunk_len);
3271 		if (ret) {
3272 			IPW_DEBUG_INFO("dmaAddBuffer Failed\n");
3273 			goto out;
3274 		}
3275 
3276 		offset += chunk_len;
3277 	} while (offset < len);
3278 
3279 	/* Run the DMA and wait for the answer */
3280 	ret = ipw_fw_dma_kick(priv);
3281 	if (ret) {
3282 		IPW_ERROR("dmaKick Failed\n");
3283 		goto out;
3284 	}
3285 
3286 	ret = ipw_fw_dma_wait(priv);
3287 	if (ret) {
3288 		IPW_ERROR("dmaWaitSync Failed\n");
3289 		goto out;
3290 	}
3291  out:
3292 	for (i = 0; i < total_nr; i++)
3293 		pci_pool_free(pool, virts[i], phys[i]);
3294 
3295 	pci_pool_destroy(pool);
3296 	kfree(phys);
3297 	kfree(virts);
3298 
3299 	return ret;
3300 }
3301 
3302 /* stop nic */
ipw_stop_nic(struct ipw_priv * priv)3303 static int ipw_stop_nic(struct ipw_priv *priv)
3304 {
3305 	int rc = 0;
3306 
3307 	/* stop */
3308 	ipw_write32(priv, IPW_RESET_REG, IPW_RESET_REG_STOP_MASTER);
3309 
3310 	rc = ipw_poll_bit(priv, IPW_RESET_REG,
3311 			  IPW_RESET_REG_MASTER_DISABLED, 500);
3312 	if (rc < 0) {
3313 		IPW_ERROR("wait for reg master disabled failed after 500ms\n");
3314 		return rc;
3315 	}
3316 
3317 	ipw_set_bit(priv, IPW_RESET_REG, CBD_RESET_REG_PRINCETON_RESET);
3318 
3319 	return rc;
3320 }
3321 
ipw_start_nic(struct ipw_priv * priv)3322 static void ipw_start_nic(struct ipw_priv *priv)
3323 {
3324 	IPW_DEBUG_TRACE(">>\n");
3325 
3326 	/* prvHwStartNic  release ARC */
3327 	ipw_clear_bit(priv, IPW_RESET_REG,
3328 		      IPW_RESET_REG_MASTER_DISABLED |
3329 		      IPW_RESET_REG_STOP_MASTER |
3330 		      CBD_RESET_REG_PRINCETON_RESET);
3331 
3332 	/* enable power management */
3333 	ipw_set_bit(priv, IPW_GP_CNTRL_RW,
3334 		    IPW_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
3335 
3336 	IPW_DEBUG_TRACE("<<\n");
3337 }
3338 
ipw_init_nic(struct ipw_priv * priv)3339 static int ipw_init_nic(struct ipw_priv *priv)
3340 {
3341 	int rc;
3342 
3343 	IPW_DEBUG_TRACE(">>\n");
3344 	/* reset */
3345 	/*prvHwInitNic */
3346 	/* set "initialization complete" bit to move adapter to D0 state */
3347 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3348 
3349 	/* low-level PLL activation */
3350 	ipw_write32(priv, IPW_READ_INT_REGISTER,
3351 		    IPW_BIT_INT_HOST_SRAM_READ_INT_REGISTER);
3352 
3353 	/* wait for clock stabilization */
3354 	rc = ipw_poll_bit(priv, IPW_GP_CNTRL_RW,
3355 			  IPW_GP_CNTRL_BIT_CLOCK_READY, 250);
3356 	if (rc < 0)
3357 		IPW_DEBUG_INFO("FAILED wait for clock stablization\n");
3358 
3359 	/* assert SW reset */
3360 	ipw_set_bit(priv, IPW_RESET_REG, IPW_RESET_REG_SW_RESET);
3361 
3362 	udelay(10);
3363 
3364 	/* set "initialization complete" bit to move adapter to D0 state */
3365 	ipw_set_bit(priv, IPW_GP_CNTRL_RW, IPW_GP_CNTRL_BIT_INIT_DONE);
3366 
3367 	IPW_DEBUG_TRACE(">>\n");
3368 	return 0;
3369 }
3370 
3371 /* Call this function from process context, it will sleep in request_firmware.
3372  * Probe is an ok place to call this from.
3373  */
ipw_reset_nic(struct ipw_priv * priv)3374 static int ipw_reset_nic(struct ipw_priv *priv)
3375 {
3376 	int rc = 0;
3377 	unsigned long flags;
3378 
3379 	IPW_DEBUG_TRACE(">>\n");
3380 
3381 	rc = ipw_init_nic(priv);
3382 
3383 	spin_lock_irqsave(&priv->lock, flags);
3384 	/* Clear the 'host command active' bit... */
3385 	priv->status &= ~STATUS_HCMD_ACTIVE;
3386 	wake_up_interruptible(&priv->wait_command_queue);
3387 	priv->status &= ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
3388 	wake_up_interruptible(&priv->wait_state);
3389 	spin_unlock_irqrestore(&priv->lock, flags);
3390 
3391 	IPW_DEBUG_TRACE("<<\n");
3392 	return rc;
3393 }
3394 
3395 
3396 struct ipw_fw {
3397 	__le32 ver;
3398 	__le32 boot_size;
3399 	__le32 ucode_size;
3400 	__le32 fw_size;
3401 	u8 data[0];
3402 };
3403 
ipw_get_fw(struct ipw_priv * priv,const struct firmware ** raw,const char * name)3404 static int ipw_get_fw(struct ipw_priv *priv,
3405 		      const struct firmware **raw, const char *name)
3406 {
3407 	struct ipw_fw *fw;
3408 	int rc;
3409 
3410 	/* ask firmware_class module to get the boot firmware off disk */
3411 	rc = request_firmware(raw, name, &priv->pci_dev->dev);
3412 	if (rc < 0) {
3413 		IPW_ERROR("%s request_firmware failed: Reason %d\n", name, rc);
3414 		return rc;
3415 	}
3416 
3417 	if ((*raw)->size < sizeof(*fw)) {
3418 		IPW_ERROR("%s is too small (%zd)\n", name, (*raw)->size);
3419 		return -EINVAL;
3420 	}
3421 
3422 	fw = (void *)(*raw)->data;
3423 
3424 	if ((*raw)->size < sizeof(*fw) + le32_to_cpu(fw->boot_size) +
3425 	    le32_to_cpu(fw->ucode_size) + le32_to_cpu(fw->fw_size)) {
3426 		IPW_ERROR("%s is too small or corrupt (%zd)\n",
3427 			  name, (*raw)->size);
3428 		return -EINVAL;
3429 	}
3430 
3431 	IPW_DEBUG_INFO("Read firmware '%s' image v%d.%d (%zd bytes)\n",
3432 		       name,
3433 		       le32_to_cpu(fw->ver) >> 16,
3434 		       le32_to_cpu(fw->ver) & 0xff,
3435 		       (*raw)->size - sizeof(*fw));
3436 	return 0;
3437 }
3438 
3439 #define IPW_RX_BUF_SIZE (3000)
3440 
ipw_rx_queue_reset(struct ipw_priv * priv,struct ipw_rx_queue * rxq)3441 static void ipw_rx_queue_reset(struct ipw_priv *priv,
3442 				      struct ipw_rx_queue *rxq)
3443 {
3444 	unsigned long flags;
3445 	int i;
3446 
3447 	spin_lock_irqsave(&rxq->lock, flags);
3448 
3449 	INIT_LIST_HEAD(&rxq->rx_free);
3450 	INIT_LIST_HEAD(&rxq->rx_used);
3451 
3452 	/* Fill the rx_used queue with _all_ of the Rx buffers */
3453 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++) {
3454 		/* In the reset function, these buffers may have been allocated
3455 		 * to an SKB, so we need to unmap and free potential storage */
3456 		if (rxq->pool[i].skb != NULL) {
3457 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
3458 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
3459 			dev_kfree_skb(rxq->pool[i].skb);
3460 			rxq->pool[i].skb = NULL;
3461 		}
3462 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
3463 	}
3464 
3465 	/* Set us so that we have processed and used all buffers, but have
3466 	 * not restocked the Rx queue with fresh buffers */
3467 	rxq->read = rxq->write = 0;
3468 	rxq->free_count = 0;
3469 	spin_unlock_irqrestore(&rxq->lock, flags);
3470 }
3471 
3472 #ifdef CONFIG_PM
3473 static int fw_loaded = 0;
3474 static const struct firmware *raw = NULL;
3475 
free_firmware(void)3476 static void free_firmware(void)
3477 {
3478 	if (fw_loaded) {
3479 		release_firmware(raw);
3480 		raw = NULL;
3481 		fw_loaded = 0;
3482 	}
3483 }
3484 #else
3485 #define free_firmware() do {} while (0)
3486 #endif
3487 
ipw_load(struct ipw_priv * priv)3488 static int ipw_load(struct ipw_priv *priv)
3489 {
3490 #ifndef CONFIG_PM
3491 	const struct firmware *raw = NULL;
3492 #endif
3493 	struct ipw_fw *fw;
3494 	u8 *boot_img, *ucode_img, *fw_img;
3495 	u8 *name = NULL;
3496 	int rc = 0, retries = 3;
3497 
3498 	switch (priv->ieee->iw_mode) {
3499 	case IW_MODE_ADHOC:
3500 		name = "ipw2200-ibss.fw";
3501 		break;
3502 #ifdef CONFIG_IPW2200_MONITOR
3503 	case IW_MODE_MONITOR:
3504 		name = "ipw2200-sniffer.fw";
3505 		break;
3506 #endif
3507 	case IW_MODE_INFRA:
3508 		name = "ipw2200-bss.fw";
3509 		break;
3510 	}
3511 
3512 	if (!name) {
3513 		rc = -EINVAL;
3514 		goto error;
3515 	}
3516 
3517 #ifdef CONFIG_PM
3518 	if (!fw_loaded) {
3519 #endif
3520 		rc = ipw_get_fw(priv, &raw, name);
3521 		if (rc < 0)
3522 			goto error;
3523 #ifdef CONFIG_PM
3524 	}
3525 #endif
3526 
3527 	fw = (void *)raw->data;
3528 	boot_img = &fw->data[0];
3529 	ucode_img = &fw->data[le32_to_cpu(fw->boot_size)];
3530 	fw_img = &fw->data[le32_to_cpu(fw->boot_size) +
3531 			   le32_to_cpu(fw->ucode_size)];
3532 
3533 	if (rc < 0)
3534 		goto error;
3535 
3536 	if (!priv->rxq)
3537 		priv->rxq = ipw_rx_queue_alloc(priv);
3538 	else
3539 		ipw_rx_queue_reset(priv, priv->rxq);
3540 	if (!priv->rxq) {
3541 		IPW_ERROR("Unable to initialize Rx queue\n");
3542 		goto error;
3543 	}
3544 
3545       retry:
3546 	/* Ensure interrupts are disabled */
3547 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3548 	priv->status &= ~STATUS_INT_ENABLED;
3549 
3550 	/* ack pending interrupts */
3551 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3552 
3553 	ipw_stop_nic(priv);
3554 
3555 	rc = ipw_reset_nic(priv);
3556 	if (rc < 0) {
3557 		IPW_ERROR("Unable to reset NIC\n");
3558 		goto error;
3559 	}
3560 
3561 	ipw_zero_memory(priv, IPW_NIC_SRAM_LOWER_BOUND,
3562 			IPW_NIC_SRAM_UPPER_BOUND - IPW_NIC_SRAM_LOWER_BOUND);
3563 
3564 	/* DMA the initial boot firmware into the device */
3565 	rc = ipw_load_firmware(priv, boot_img, le32_to_cpu(fw->boot_size));
3566 	if (rc < 0) {
3567 		IPW_ERROR("Unable to load boot firmware: %d\n", rc);
3568 		goto error;
3569 	}
3570 
3571 	/* kick start the device */
3572 	ipw_start_nic(priv);
3573 
3574 	/* wait for the device to finish its initial startup sequence */
3575 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3576 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3577 	if (rc < 0) {
3578 		IPW_ERROR("device failed to boot initial fw image\n");
3579 		goto error;
3580 	}
3581 	IPW_DEBUG_INFO("initial device response after %dms\n", rc);
3582 
3583 	/* ack fw init done interrupt */
3584 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3585 
3586 	/* DMA the ucode into the device */
3587 	rc = ipw_load_ucode(priv, ucode_img, le32_to_cpu(fw->ucode_size));
3588 	if (rc < 0) {
3589 		IPW_ERROR("Unable to load ucode: %d\n", rc);
3590 		goto error;
3591 	}
3592 
3593 	/* stop nic */
3594 	ipw_stop_nic(priv);
3595 
3596 	/* DMA bss firmware into the device */
3597 	rc = ipw_load_firmware(priv, fw_img, le32_to_cpu(fw->fw_size));
3598 	if (rc < 0) {
3599 		IPW_ERROR("Unable to load firmware: %d\n", rc);
3600 		goto error;
3601 	}
3602 #ifdef CONFIG_PM
3603 	fw_loaded = 1;
3604 #endif
3605 
3606 	ipw_write32(priv, IPW_EEPROM_LOAD_DISABLE, 0);
3607 
3608 	rc = ipw_queue_reset(priv);
3609 	if (rc < 0) {
3610 		IPW_ERROR("Unable to initialize queues\n");
3611 		goto error;
3612 	}
3613 
3614 	/* Ensure interrupts are disabled */
3615 	ipw_write32(priv, IPW_INTA_MASK_R, ~IPW_INTA_MASK_ALL);
3616 	/* ack pending interrupts */
3617 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3618 
3619 	/* kick start the device */
3620 	ipw_start_nic(priv);
3621 
3622 	if (ipw_read32(priv, IPW_INTA_RW) & IPW_INTA_BIT_PARITY_ERROR) {
3623 		if (retries > 0) {
3624 			IPW_WARNING("Parity error.  Retrying init.\n");
3625 			retries--;
3626 			goto retry;
3627 		}
3628 
3629 		IPW_ERROR("TODO: Handle parity error -- schedule restart?\n");
3630 		rc = -EIO;
3631 		goto error;
3632 	}
3633 
3634 	/* wait for the device */
3635 	rc = ipw_poll_bit(priv, IPW_INTA_RW,
3636 			  IPW_INTA_BIT_FW_INITIALIZATION_DONE, 500);
3637 	if (rc < 0) {
3638 		IPW_ERROR("device failed to start within 500ms\n");
3639 		goto error;
3640 	}
3641 	IPW_DEBUG_INFO("device response after %dms\n", rc);
3642 
3643 	/* ack fw init done interrupt */
3644 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_BIT_FW_INITIALIZATION_DONE);
3645 
3646 	/* read eeprom data and initialize the eeprom region of sram */
3647 	priv->eeprom_delay = 1;
3648 	ipw_eeprom_init_sram(priv);
3649 
3650 	/* enable interrupts */
3651 	ipw_enable_interrupts(priv);
3652 
3653 	/* Ensure our queue has valid packets */
3654 	ipw_rx_queue_replenish(priv);
3655 
3656 	ipw_write32(priv, IPW_RX_READ_INDEX, priv->rxq->read);
3657 
3658 	/* ack pending interrupts */
3659 	ipw_write32(priv, IPW_INTA_RW, IPW_INTA_MASK_ALL);
3660 
3661 #ifndef CONFIG_PM
3662 	release_firmware(raw);
3663 #endif
3664 	return 0;
3665 
3666       error:
3667 	if (priv->rxq) {
3668 		ipw_rx_queue_free(priv, priv->rxq);
3669 		priv->rxq = NULL;
3670 	}
3671 	ipw_tx_queue_free(priv);
3672 	if (raw)
3673 		release_firmware(raw);
3674 #ifdef CONFIG_PM
3675 	fw_loaded = 0;
3676 	raw = NULL;
3677 #endif
3678 
3679 	return rc;
3680 }
3681 
3682 /**
3683  * DMA services
3684  *
3685  * Theory of operation
3686  *
3687  * A queue is a circular buffers with 'Read' and 'Write' pointers.
3688  * 2 empty entries always kept in the buffer to protect from overflow.
3689  *
3690  * For Tx queue, there are low mark and high mark limits. If, after queuing
3691  * the packet for Tx, free space become < low mark, Tx queue stopped. When
3692  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
3693  * Tx queue resumed.
3694  *
3695  * The IPW operates with six queues, one receive queue in the device's
3696  * sram, one transmit queue for sending commands to the device firmware,
3697  * and four transmit queues for data.
3698  *
3699  * The four transmit queues allow for performing quality of service (qos)
3700  * transmissions as per the 802.11 protocol.  Currently Linux does not
3701  * provide a mechanism to the user for utilizing prioritized queues, so
3702  * we only utilize the first data transmit queue (queue1).
3703  */
3704 
3705 /**
3706  * Driver allocates buffers of this size for Rx
3707  */
3708 
3709 /**
3710  * ipw_rx_queue_space - Return number of free slots available in queue.
3711  */
ipw_rx_queue_space(const struct ipw_rx_queue * q)3712 static int ipw_rx_queue_space(const struct ipw_rx_queue *q)
3713 {
3714 	int s = q->read - q->write;
3715 	if (s <= 0)
3716 		s += RX_QUEUE_SIZE;
3717 	/* keep some buffer to not confuse full and empty queue */
3718 	s -= 2;
3719 	if (s < 0)
3720 		s = 0;
3721 	return s;
3722 }
3723 
ipw_tx_queue_space(const struct clx2_queue * q)3724 static inline int ipw_tx_queue_space(const struct clx2_queue *q)
3725 {
3726 	int s = q->last_used - q->first_empty;
3727 	if (s <= 0)
3728 		s += q->n_bd;
3729 	s -= 2;			/* keep some reserve to not confuse empty and full situations */
3730 	if (s < 0)
3731 		s = 0;
3732 	return s;
3733 }
3734 
ipw_queue_inc_wrap(int index,int n_bd)3735 static inline int ipw_queue_inc_wrap(int index, int n_bd)
3736 {
3737 	return (++index == n_bd) ? 0 : index;
3738 }
3739 
3740 /**
3741  * Initialize common DMA queue structure
3742  *
3743  * @param q                queue to init
3744  * @param count            Number of BD's to allocate. Should be power of 2
3745  * @param read_register    Address for 'read' register
3746  *                         (not offset within BAR, full address)
3747  * @param write_register   Address for 'write' register
3748  *                         (not offset within BAR, full address)
3749  * @param base_register    Address for 'base' register
3750  *                         (not offset within BAR, full address)
3751  * @param size             Address for 'size' register
3752  *                         (not offset within BAR, full address)
3753  */
ipw_queue_init(struct ipw_priv * priv,struct clx2_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3754 static void ipw_queue_init(struct ipw_priv *priv, struct clx2_queue *q,
3755 			   int count, u32 read, u32 write, u32 base, u32 size)
3756 {
3757 	q->n_bd = count;
3758 
3759 	q->low_mark = q->n_bd / 4;
3760 	if (q->low_mark < 4)
3761 		q->low_mark = 4;
3762 
3763 	q->high_mark = q->n_bd / 8;
3764 	if (q->high_mark < 2)
3765 		q->high_mark = 2;
3766 
3767 	q->first_empty = q->last_used = 0;
3768 	q->reg_r = read;
3769 	q->reg_w = write;
3770 
3771 	ipw_write32(priv, base, q->dma_addr);
3772 	ipw_write32(priv, size, count);
3773 	ipw_write32(priv, read, 0);
3774 	ipw_write32(priv, write, 0);
3775 
3776 	_ipw_read32(priv, 0x90);
3777 }
3778 
ipw_queue_tx_init(struct ipw_priv * priv,struct clx2_tx_queue * q,int count,u32 read,u32 write,u32 base,u32 size)3779 static int ipw_queue_tx_init(struct ipw_priv *priv,
3780 			     struct clx2_tx_queue *q,
3781 			     int count, u32 read, u32 write, u32 base, u32 size)
3782 {
3783 	struct pci_dev *dev = priv->pci_dev;
3784 
3785 	q->txb = kmalloc(sizeof(q->txb[0]) * count, GFP_KERNEL);
3786 	if (!q->txb) {
3787 		IPW_ERROR("vmalloc for auxiliary BD structures failed\n");
3788 		return -ENOMEM;
3789 	}
3790 
3791 	q->bd =
3792 	    pci_alloc_consistent(dev, sizeof(q->bd[0]) * count, &q->q.dma_addr);
3793 	if (!q->bd) {
3794 		IPW_ERROR("pci_alloc_consistent(%zd) failed\n",
3795 			  sizeof(q->bd[0]) * count);
3796 		kfree(q->txb);
3797 		q->txb = NULL;
3798 		return -ENOMEM;
3799 	}
3800 
3801 	ipw_queue_init(priv, &q->q, count, read, write, base, size);
3802 	return 0;
3803 }
3804 
3805 /**
3806  * Free one TFD, those at index [txq->q.last_used].
3807  * Do NOT advance any indexes
3808  *
3809  * @param dev
3810  * @param txq
3811  */
ipw_queue_tx_free_tfd(struct ipw_priv * priv,struct clx2_tx_queue * txq)3812 static void ipw_queue_tx_free_tfd(struct ipw_priv *priv,
3813 				  struct clx2_tx_queue *txq)
3814 {
3815 	struct tfd_frame *bd = &txq->bd[txq->q.last_used];
3816 	struct pci_dev *dev = priv->pci_dev;
3817 	int i;
3818 
3819 	/* classify bd */
3820 	if (bd->control_flags.message_type == TX_HOST_COMMAND_TYPE)
3821 		/* nothing to cleanup after for host commands */
3822 		return;
3823 
3824 	/* sanity check */
3825 	if (le32_to_cpu(bd->u.data.num_chunks) > NUM_TFD_CHUNKS) {
3826 		IPW_ERROR("Too many chunks: %i\n",
3827 			  le32_to_cpu(bd->u.data.num_chunks));
3828 		/** @todo issue fatal error, it is quite serious situation */
3829 		return;
3830 	}
3831 
3832 	/* unmap chunks if any */
3833 	for (i = 0; i < le32_to_cpu(bd->u.data.num_chunks); i++) {
3834 		pci_unmap_single(dev, le32_to_cpu(bd->u.data.chunk_ptr[i]),
3835 				 le16_to_cpu(bd->u.data.chunk_len[i]),
3836 				 PCI_DMA_TODEVICE);
3837 		if (txq->txb[txq->q.last_used]) {
3838 			libipw_txb_free(txq->txb[txq->q.last_used]);
3839 			txq->txb[txq->q.last_used] = NULL;
3840 		}
3841 	}
3842 }
3843 
3844 /**
3845  * Deallocate DMA queue.
3846  *
3847  * Empty queue by removing and destroying all BD's.
3848  * Free all buffers.
3849  *
3850  * @param dev
3851  * @param q
3852  */
ipw_queue_tx_free(struct ipw_priv * priv,struct clx2_tx_queue * txq)3853 static void ipw_queue_tx_free(struct ipw_priv *priv, struct clx2_tx_queue *txq)
3854 {
3855 	struct clx2_queue *q = &txq->q;
3856 	struct pci_dev *dev = priv->pci_dev;
3857 
3858 	if (q->n_bd == 0)
3859 		return;
3860 
3861 	/* first, empty all BD's */
3862 	for (; q->first_empty != q->last_used;
3863 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
3864 		ipw_queue_tx_free_tfd(priv, txq);
3865 	}
3866 
3867 	/* free buffers belonging to queue itself */
3868 	pci_free_consistent(dev, sizeof(txq->bd[0]) * q->n_bd, txq->bd,
3869 			    q->dma_addr);
3870 	kfree(txq->txb);
3871 
3872 	/* 0 fill whole structure */
3873 	memset(txq, 0, sizeof(*txq));
3874 }
3875 
3876 /**
3877  * Destroy all DMA queues and structures
3878  *
3879  * @param priv
3880  */
ipw_tx_queue_free(struct ipw_priv * priv)3881 static void ipw_tx_queue_free(struct ipw_priv *priv)
3882 {
3883 	/* Tx CMD queue */
3884 	ipw_queue_tx_free(priv, &priv->txq_cmd);
3885 
3886 	/* Tx queues */
3887 	ipw_queue_tx_free(priv, &priv->txq[0]);
3888 	ipw_queue_tx_free(priv, &priv->txq[1]);
3889 	ipw_queue_tx_free(priv, &priv->txq[2]);
3890 	ipw_queue_tx_free(priv, &priv->txq[3]);
3891 }
3892 
ipw_create_bssid(struct ipw_priv * priv,u8 * bssid)3893 static void ipw_create_bssid(struct ipw_priv *priv, u8 * bssid)
3894 {
3895 	/* First 3 bytes are manufacturer */
3896 	bssid[0] = priv->mac_addr[0];
3897 	bssid[1] = priv->mac_addr[1];
3898 	bssid[2] = priv->mac_addr[2];
3899 
3900 	/* Last bytes are random */
3901 	get_random_bytes(&bssid[3], ETH_ALEN - 3);
3902 
3903 	bssid[0] &= 0xfe;	/* clear multicast bit */
3904 	bssid[0] |= 0x02;	/* set local assignment bit (IEEE802) */
3905 }
3906 
ipw_add_station(struct ipw_priv * priv,u8 * bssid)3907 static u8 ipw_add_station(struct ipw_priv *priv, u8 * bssid)
3908 {
3909 	struct ipw_station_entry entry;
3910 	int i;
3911 
3912 	for (i = 0; i < priv->num_stations; i++) {
3913 		if (!memcmp(priv->stations[i], bssid, ETH_ALEN)) {
3914 			/* Another node is active in network */
3915 			priv->missed_adhoc_beacons = 0;
3916 			if (!(priv->config & CFG_STATIC_CHANNEL))
3917 				/* when other nodes drop out, we drop out */
3918 				priv->config &= ~CFG_ADHOC_PERSIST;
3919 
3920 			return i;
3921 		}
3922 	}
3923 
3924 	if (i == MAX_STATIONS)
3925 		return IPW_INVALID_STATION;
3926 
3927 	IPW_DEBUG_SCAN("Adding AdHoc station: %pM\n", bssid);
3928 
3929 	entry.reserved = 0;
3930 	entry.support_mode = 0;
3931 	memcpy(entry.mac_addr, bssid, ETH_ALEN);
3932 	memcpy(priv->stations[i], bssid, ETH_ALEN);
3933 	ipw_write_direct(priv, IPW_STATION_TABLE_LOWER + i * sizeof(entry),
3934 			 &entry, sizeof(entry));
3935 	priv->num_stations++;
3936 
3937 	return i;
3938 }
3939 
ipw_find_station(struct ipw_priv * priv,u8 * bssid)3940 static u8 ipw_find_station(struct ipw_priv *priv, u8 * bssid)
3941 {
3942 	int i;
3943 
3944 	for (i = 0; i < priv->num_stations; i++)
3945 		if (!memcmp(priv->stations[i], bssid, ETH_ALEN))
3946 			return i;
3947 
3948 	return IPW_INVALID_STATION;
3949 }
3950 
ipw_send_disassociate(struct ipw_priv * priv,int quiet)3951 static void ipw_send_disassociate(struct ipw_priv *priv, int quiet)
3952 {
3953 	int err;
3954 
3955 	if (priv->status & STATUS_ASSOCIATING) {
3956 		IPW_DEBUG_ASSOC("Disassociating while associating.\n");
3957 		schedule_work(&priv->disassociate);
3958 		return;
3959 	}
3960 
3961 	if (!(priv->status & STATUS_ASSOCIATED)) {
3962 		IPW_DEBUG_ASSOC("Disassociating while not associated.\n");
3963 		return;
3964 	}
3965 
3966 	IPW_DEBUG_ASSOC("Disassocation attempt from %pM "
3967 			"on channel %d.\n",
3968 			priv->assoc_request.bssid,
3969 			priv->assoc_request.channel);
3970 
3971 	priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
3972 	priv->status |= STATUS_DISASSOCIATING;
3973 
3974 	if (quiet)
3975 		priv->assoc_request.assoc_type = HC_DISASSOC_QUIET;
3976 	else
3977 		priv->assoc_request.assoc_type = HC_DISASSOCIATE;
3978 
3979 	err = ipw_send_associate(priv, &priv->assoc_request);
3980 	if (err) {
3981 		IPW_DEBUG_HC("Attempt to send [dis]associate command "
3982 			     "failed.\n");
3983 		return;
3984 	}
3985 
3986 }
3987 
ipw_disassociate(void * data)3988 static int ipw_disassociate(void *data)
3989 {
3990 	struct ipw_priv *priv = data;
3991 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
3992 		return 0;
3993 	ipw_send_disassociate(data, 0);
3994 	netif_carrier_off(priv->net_dev);
3995 	return 1;
3996 }
3997 
ipw_bg_disassociate(struct work_struct * work)3998 static void ipw_bg_disassociate(struct work_struct *work)
3999 {
4000 	struct ipw_priv *priv =
4001 		container_of(work, struct ipw_priv, disassociate);
4002 	mutex_lock(&priv->mutex);
4003 	ipw_disassociate(priv);
4004 	mutex_unlock(&priv->mutex);
4005 }
4006 
ipw_system_config(struct work_struct * work)4007 static void ipw_system_config(struct work_struct *work)
4008 {
4009 	struct ipw_priv *priv =
4010 		container_of(work, struct ipw_priv, system_config);
4011 
4012 #ifdef CONFIG_IPW2200_PROMISCUOUS
4013 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
4014 		priv->sys_config.accept_all_data_frames = 1;
4015 		priv->sys_config.accept_non_directed_frames = 1;
4016 		priv->sys_config.accept_all_mgmt_bcpr = 1;
4017 		priv->sys_config.accept_all_mgmt_frames = 1;
4018 	}
4019 #endif
4020 
4021 	ipw_send_system_config(priv);
4022 }
4023 
4024 struct ipw_status_code {
4025 	u16 status;
4026 	const char *reason;
4027 };
4028 
4029 static const struct ipw_status_code ipw_status_codes[] = {
4030 	{0x00, "Successful"},
4031 	{0x01, "Unspecified failure"},
4032 	{0x0A, "Cannot support all requested capabilities in the "
4033 	 "Capability information field"},
4034 	{0x0B, "Reassociation denied due to inability to confirm that "
4035 	 "association exists"},
4036 	{0x0C, "Association denied due to reason outside the scope of this "
4037 	 "standard"},
4038 	{0x0D,
4039 	 "Responding station does not support the specified authentication "
4040 	 "algorithm"},
4041 	{0x0E,
4042 	 "Received an Authentication frame with authentication sequence "
4043 	 "transaction sequence number out of expected sequence"},
4044 	{0x0F, "Authentication rejected because of challenge failure"},
4045 	{0x10, "Authentication rejected due to timeout waiting for next "
4046 	 "frame in sequence"},
4047 	{0x11, "Association denied because AP is unable to handle additional "
4048 	 "associated stations"},
4049 	{0x12,
4050 	 "Association denied due to requesting station not supporting all "
4051 	 "of the datarates in the BSSBasicServiceSet Parameter"},
4052 	{0x13,
4053 	 "Association denied due to requesting station not supporting "
4054 	 "short preamble operation"},
4055 	{0x14,
4056 	 "Association denied due to requesting station not supporting "
4057 	 "PBCC encoding"},
4058 	{0x15,
4059 	 "Association denied due to requesting station not supporting "
4060 	 "channel agility"},
4061 	{0x19,
4062 	 "Association denied due to requesting station not supporting "
4063 	 "short slot operation"},
4064 	{0x1A,
4065 	 "Association denied due to requesting station not supporting "
4066 	 "DSSS-OFDM operation"},
4067 	{0x28, "Invalid Information Element"},
4068 	{0x29, "Group Cipher is not valid"},
4069 	{0x2A, "Pairwise Cipher is not valid"},
4070 	{0x2B, "AKMP is not valid"},
4071 	{0x2C, "Unsupported RSN IE version"},
4072 	{0x2D, "Invalid RSN IE Capabilities"},
4073 	{0x2E, "Cipher suite is rejected per security policy"},
4074 };
4075 
ipw_get_status_code(u16 status)4076 static const char *ipw_get_status_code(u16 status)
4077 {
4078 	int i;
4079 	for (i = 0; i < ARRAY_SIZE(ipw_status_codes); i++)
4080 		if (ipw_status_codes[i].status == (status & 0xff))
4081 			return ipw_status_codes[i].reason;
4082 	return "Unknown status value.";
4083 }
4084 
average_init(struct average * avg)4085 static void inline average_init(struct average *avg)
4086 {
4087 	memset(avg, 0, sizeof(*avg));
4088 }
4089 
4090 #define DEPTH_RSSI 8
4091 #define DEPTH_NOISE 16
exponential_average(s16 prev_avg,s16 val,u8 depth)4092 static s16 exponential_average(s16 prev_avg, s16 val, u8 depth)
4093 {
4094 	return ((depth-1)*prev_avg +  val)/depth;
4095 }
4096 
average_add(struct average * avg,s16 val)4097 static void average_add(struct average *avg, s16 val)
4098 {
4099 	avg->sum -= avg->entries[avg->pos];
4100 	avg->sum += val;
4101 	avg->entries[avg->pos++] = val;
4102 	if (unlikely(avg->pos == AVG_ENTRIES)) {
4103 		avg->init = 1;
4104 		avg->pos = 0;
4105 	}
4106 }
4107 
average_value(struct average * avg)4108 static s16 average_value(struct average *avg)
4109 {
4110 	if (!unlikely(avg->init)) {
4111 		if (avg->pos)
4112 			return avg->sum / avg->pos;
4113 		return 0;
4114 	}
4115 
4116 	return avg->sum / AVG_ENTRIES;
4117 }
4118 
ipw_reset_stats(struct ipw_priv * priv)4119 static void ipw_reset_stats(struct ipw_priv *priv)
4120 {
4121 	u32 len = sizeof(u32);
4122 
4123 	priv->quality = 0;
4124 
4125 	average_init(&priv->average_missed_beacons);
4126 	priv->exp_avg_rssi = -60;
4127 	priv->exp_avg_noise = -85 + 0x100;
4128 
4129 	priv->last_rate = 0;
4130 	priv->last_missed_beacons = 0;
4131 	priv->last_rx_packets = 0;
4132 	priv->last_tx_packets = 0;
4133 	priv->last_tx_failures = 0;
4134 
4135 	/* Firmware managed, reset only when NIC is restarted, so we have to
4136 	 * normalize on the current value */
4137 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC,
4138 			&priv->last_rx_err, &len);
4139 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE,
4140 			&priv->last_tx_failures, &len);
4141 
4142 	/* Driver managed, reset with each association */
4143 	priv->missed_adhoc_beacons = 0;
4144 	priv->missed_beacons = 0;
4145 	priv->tx_packets = 0;
4146 	priv->rx_packets = 0;
4147 
4148 }
4149 
ipw_get_max_rate(struct ipw_priv * priv)4150 static u32 ipw_get_max_rate(struct ipw_priv *priv)
4151 {
4152 	u32 i = 0x80000000;
4153 	u32 mask = priv->rates_mask;
4154 	/* If currently associated in B mode, restrict the maximum
4155 	 * rate match to B rates */
4156 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
4157 		mask &= LIBIPW_CCK_RATES_MASK;
4158 
4159 	/* TODO: Verify that the rate is supported by the current rates
4160 	 * list. */
4161 
4162 	while (i && !(mask & i))
4163 		i >>= 1;
4164 	switch (i) {
4165 	case LIBIPW_CCK_RATE_1MB_MASK:
4166 		return 1000000;
4167 	case LIBIPW_CCK_RATE_2MB_MASK:
4168 		return 2000000;
4169 	case LIBIPW_CCK_RATE_5MB_MASK:
4170 		return 5500000;
4171 	case LIBIPW_OFDM_RATE_6MB_MASK:
4172 		return 6000000;
4173 	case LIBIPW_OFDM_RATE_9MB_MASK:
4174 		return 9000000;
4175 	case LIBIPW_CCK_RATE_11MB_MASK:
4176 		return 11000000;
4177 	case LIBIPW_OFDM_RATE_12MB_MASK:
4178 		return 12000000;
4179 	case LIBIPW_OFDM_RATE_18MB_MASK:
4180 		return 18000000;
4181 	case LIBIPW_OFDM_RATE_24MB_MASK:
4182 		return 24000000;
4183 	case LIBIPW_OFDM_RATE_36MB_MASK:
4184 		return 36000000;
4185 	case LIBIPW_OFDM_RATE_48MB_MASK:
4186 		return 48000000;
4187 	case LIBIPW_OFDM_RATE_54MB_MASK:
4188 		return 54000000;
4189 	}
4190 
4191 	if (priv->ieee->mode == IEEE_B)
4192 		return 11000000;
4193 	else
4194 		return 54000000;
4195 }
4196 
ipw_get_current_rate(struct ipw_priv * priv)4197 static u32 ipw_get_current_rate(struct ipw_priv *priv)
4198 {
4199 	u32 rate, len = sizeof(rate);
4200 	int err;
4201 
4202 	if (!(priv->status & STATUS_ASSOCIATED))
4203 		return 0;
4204 
4205 	if (priv->tx_packets > IPW_REAL_RATE_RX_PACKET_THRESHOLD) {
4206 		err = ipw_get_ordinal(priv, IPW_ORD_STAT_TX_CURR_RATE, &rate,
4207 				      &len);
4208 		if (err) {
4209 			IPW_DEBUG_INFO("failed querying ordinals.\n");
4210 			return 0;
4211 		}
4212 	} else
4213 		return ipw_get_max_rate(priv);
4214 
4215 	switch (rate) {
4216 	case IPW_TX_RATE_1MB:
4217 		return 1000000;
4218 	case IPW_TX_RATE_2MB:
4219 		return 2000000;
4220 	case IPW_TX_RATE_5MB:
4221 		return 5500000;
4222 	case IPW_TX_RATE_6MB:
4223 		return 6000000;
4224 	case IPW_TX_RATE_9MB:
4225 		return 9000000;
4226 	case IPW_TX_RATE_11MB:
4227 		return 11000000;
4228 	case IPW_TX_RATE_12MB:
4229 		return 12000000;
4230 	case IPW_TX_RATE_18MB:
4231 		return 18000000;
4232 	case IPW_TX_RATE_24MB:
4233 		return 24000000;
4234 	case IPW_TX_RATE_36MB:
4235 		return 36000000;
4236 	case IPW_TX_RATE_48MB:
4237 		return 48000000;
4238 	case IPW_TX_RATE_54MB:
4239 		return 54000000;
4240 	}
4241 
4242 	return 0;
4243 }
4244 
4245 #define IPW_STATS_INTERVAL (2 * HZ)
ipw_gather_stats(struct ipw_priv * priv)4246 static void ipw_gather_stats(struct ipw_priv *priv)
4247 {
4248 	u32 rx_err, rx_err_delta, rx_packets_delta;
4249 	u32 tx_failures, tx_failures_delta, tx_packets_delta;
4250 	u32 missed_beacons_percent, missed_beacons_delta;
4251 	u32 quality = 0;
4252 	u32 len = sizeof(u32);
4253 	s16 rssi;
4254 	u32 beacon_quality, signal_quality, tx_quality, rx_quality,
4255 	    rate_quality;
4256 	u32 max_rate;
4257 
4258 	if (!(priv->status & STATUS_ASSOCIATED)) {
4259 		priv->quality = 0;
4260 		return;
4261 	}
4262 
4263 	/* Update the statistics */
4264 	ipw_get_ordinal(priv, IPW_ORD_STAT_MISSED_BEACONS,
4265 			&priv->missed_beacons, &len);
4266 	missed_beacons_delta = priv->missed_beacons - priv->last_missed_beacons;
4267 	priv->last_missed_beacons = priv->missed_beacons;
4268 	if (priv->assoc_request.beacon_interval) {
4269 		missed_beacons_percent = missed_beacons_delta *
4270 		    (HZ * le16_to_cpu(priv->assoc_request.beacon_interval)) /
4271 		    (IPW_STATS_INTERVAL * 10);
4272 	} else {
4273 		missed_beacons_percent = 0;
4274 	}
4275 	average_add(&priv->average_missed_beacons, missed_beacons_percent);
4276 
4277 	ipw_get_ordinal(priv, IPW_ORD_STAT_RX_ERR_CRC, &rx_err, &len);
4278 	rx_err_delta = rx_err - priv->last_rx_err;
4279 	priv->last_rx_err = rx_err;
4280 
4281 	ipw_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURE, &tx_failures, &len);
4282 	tx_failures_delta = tx_failures - priv->last_tx_failures;
4283 	priv->last_tx_failures = tx_failures;
4284 
4285 	rx_packets_delta = priv->rx_packets - priv->last_rx_packets;
4286 	priv->last_rx_packets = priv->rx_packets;
4287 
4288 	tx_packets_delta = priv->tx_packets - priv->last_tx_packets;
4289 	priv->last_tx_packets = priv->tx_packets;
4290 
4291 	/* Calculate quality based on the following:
4292 	 *
4293 	 * Missed beacon: 100% = 0, 0% = 70% missed
4294 	 * Rate: 60% = 1Mbs, 100% = Max
4295 	 * Rx and Tx errors represent a straight % of total Rx/Tx
4296 	 * RSSI: 100% = > -50,  0% = < -80
4297 	 * Rx errors: 100% = 0, 0% = 50% missed
4298 	 *
4299 	 * The lowest computed quality is used.
4300 	 *
4301 	 */
4302 #define BEACON_THRESHOLD 5
4303 	beacon_quality = 100 - missed_beacons_percent;
4304 	if (beacon_quality < BEACON_THRESHOLD)
4305 		beacon_quality = 0;
4306 	else
4307 		beacon_quality = (beacon_quality - BEACON_THRESHOLD) * 100 /
4308 		    (100 - BEACON_THRESHOLD);
4309 	IPW_DEBUG_STATS("Missed beacon: %3d%% (%d%%)\n",
4310 			beacon_quality, missed_beacons_percent);
4311 
4312 	priv->last_rate = ipw_get_current_rate(priv);
4313 	max_rate = ipw_get_max_rate(priv);
4314 	rate_quality = priv->last_rate * 40 / max_rate + 60;
4315 	IPW_DEBUG_STATS("Rate quality : %3d%% (%dMbs)\n",
4316 			rate_quality, priv->last_rate / 1000000);
4317 
4318 	if (rx_packets_delta > 100 && rx_packets_delta + rx_err_delta)
4319 		rx_quality = 100 - (rx_err_delta * 100) /
4320 		    (rx_packets_delta + rx_err_delta);
4321 	else
4322 		rx_quality = 100;
4323 	IPW_DEBUG_STATS("Rx quality   : %3d%% (%u errors, %u packets)\n",
4324 			rx_quality, rx_err_delta, rx_packets_delta);
4325 
4326 	if (tx_packets_delta > 100 && tx_packets_delta + tx_failures_delta)
4327 		tx_quality = 100 - (tx_failures_delta * 100) /
4328 		    (tx_packets_delta + tx_failures_delta);
4329 	else
4330 		tx_quality = 100;
4331 	IPW_DEBUG_STATS("Tx quality   : %3d%% (%u errors, %u packets)\n",
4332 			tx_quality, tx_failures_delta, tx_packets_delta);
4333 
4334 	rssi = priv->exp_avg_rssi;
4335 	signal_quality =
4336 	    (100 *
4337 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4338 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) -
4339 	     (priv->ieee->perfect_rssi - rssi) *
4340 	     (15 * (priv->ieee->perfect_rssi - priv->ieee->worst_rssi) +
4341 	      62 * (priv->ieee->perfect_rssi - rssi))) /
4342 	    ((priv->ieee->perfect_rssi - priv->ieee->worst_rssi) *
4343 	     (priv->ieee->perfect_rssi - priv->ieee->worst_rssi));
4344 	if (signal_quality > 100)
4345 		signal_quality = 100;
4346 	else if (signal_quality < 1)
4347 		signal_quality = 0;
4348 
4349 	IPW_DEBUG_STATS("Signal level : %3d%% (%d dBm)\n",
4350 			signal_quality, rssi);
4351 
4352 	quality = min(rx_quality, signal_quality);
4353 	quality = min(tx_quality, quality);
4354 	quality = min(rate_quality, quality);
4355 	quality = min(beacon_quality, quality);
4356 	if (quality == beacon_quality)
4357 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to missed beacons.\n",
4358 				quality);
4359 	if (quality == rate_quality)
4360 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to rate quality.\n",
4361 				quality);
4362 	if (quality == tx_quality)
4363 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Tx quality.\n",
4364 				quality);
4365 	if (quality == rx_quality)
4366 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to Rx quality.\n",
4367 				quality);
4368 	if (quality == signal_quality)
4369 		IPW_DEBUG_STATS("Quality (%d%%): Clamped to signal quality.\n",
4370 				quality);
4371 
4372 	priv->quality = quality;
4373 
4374 	schedule_delayed_work(&priv->gather_stats, IPW_STATS_INTERVAL);
4375 }
4376 
ipw_bg_gather_stats(struct work_struct * work)4377 static void ipw_bg_gather_stats(struct work_struct *work)
4378 {
4379 	struct ipw_priv *priv =
4380 		container_of(work, struct ipw_priv, gather_stats.work);
4381 	mutex_lock(&priv->mutex);
4382 	ipw_gather_stats(priv);
4383 	mutex_unlock(&priv->mutex);
4384 }
4385 
4386 /* Missed beacon behavior:
4387  * 1st missed -> roaming_threshold, just wait, don't do any scan/roam.
4388  * roaming_threshold -> disassociate_threshold, scan and roam for better signal.
4389  * Above disassociate threshold, give up and stop scanning.
4390  * Roaming is disabled if disassociate_threshold <= roaming_threshold  */
ipw_handle_missed_beacon(struct ipw_priv * priv,int missed_count)4391 static void ipw_handle_missed_beacon(struct ipw_priv *priv,
4392 					    int missed_count)
4393 {
4394 	priv->notif_missed_beacons = missed_count;
4395 
4396 	if (missed_count > priv->disassociate_threshold &&
4397 	    priv->status & STATUS_ASSOCIATED) {
4398 		/* If associated and we've hit the missed
4399 		 * beacon threshold, disassociate, turn
4400 		 * off roaming, and abort any active scans */
4401 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4402 			  IPW_DL_STATE | IPW_DL_ASSOC,
4403 			  "Missed beacon: %d - disassociate\n", missed_count);
4404 		priv->status &= ~STATUS_ROAMING;
4405 		if (priv->status & STATUS_SCANNING) {
4406 			IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
4407 				  IPW_DL_STATE,
4408 				  "Aborting scan with missed beacon.\n");
4409 			schedule_work(&priv->abort_scan);
4410 		}
4411 
4412 		schedule_work(&priv->disassociate);
4413 		return;
4414 	}
4415 
4416 	if (priv->status & STATUS_ROAMING) {
4417 		/* If we are currently roaming, then just
4418 		 * print a debug statement... */
4419 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4420 			  "Missed beacon: %d - roam in progress\n",
4421 			  missed_count);
4422 		return;
4423 	}
4424 
4425 	if (roaming &&
4426 	    (missed_count > priv->roaming_threshold &&
4427 	     missed_count <= priv->disassociate_threshold)) {
4428 		/* If we are not already roaming, set the ROAM
4429 		 * bit in the status and kick off a scan.
4430 		 * This can happen several times before we reach
4431 		 * disassociate_threshold. */
4432 		IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4433 			  "Missed beacon: %d - initiate "
4434 			  "roaming\n", missed_count);
4435 		if (!(priv->status & STATUS_ROAMING)) {
4436 			priv->status |= STATUS_ROAMING;
4437 			if (!(priv->status & STATUS_SCANNING))
4438 				schedule_delayed_work(&priv->request_scan, 0);
4439 		}
4440 		return;
4441 	}
4442 
4443 	if (priv->status & STATUS_SCANNING &&
4444 	    missed_count > IPW_MB_SCAN_CANCEL_THRESHOLD) {
4445 		/* Stop scan to keep fw from getting
4446 		 * stuck (only if we aren't roaming --
4447 		 * otherwise we'll never scan more than 2 or 3
4448 		 * channels..) */
4449 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF | IPW_DL_STATE,
4450 			  "Aborting scan with missed beacon.\n");
4451 		schedule_work(&priv->abort_scan);
4452 	}
4453 
4454 	IPW_DEBUG_NOTIF("Missed beacon: %d\n", missed_count);
4455 }
4456 
ipw_scan_event(struct work_struct * work)4457 static void ipw_scan_event(struct work_struct *work)
4458 {
4459 	union iwreq_data wrqu;
4460 
4461 	struct ipw_priv *priv =
4462 		container_of(work, struct ipw_priv, scan_event.work);
4463 
4464 	wrqu.data.length = 0;
4465 	wrqu.data.flags = 0;
4466 	wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4467 }
4468 
handle_scan_event(struct ipw_priv * priv)4469 static void handle_scan_event(struct ipw_priv *priv)
4470 {
4471 	/* Only userspace-requested scan completion events go out immediately */
4472 	if (!priv->user_requested_scan) {
4473 		if (!delayed_work_pending(&priv->scan_event))
4474 			schedule_delayed_work(&priv->scan_event,
4475 					      round_jiffies_relative(msecs_to_jiffies(4000)));
4476 	} else {
4477 		union iwreq_data wrqu;
4478 
4479 		priv->user_requested_scan = 0;
4480 		cancel_delayed_work(&priv->scan_event);
4481 
4482 		wrqu.data.length = 0;
4483 		wrqu.data.flags = 0;
4484 		wireless_send_event(priv->net_dev, SIOCGIWSCAN, &wrqu, NULL);
4485 	}
4486 }
4487 
4488 /**
4489  * Handle host notification packet.
4490  * Called from interrupt routine
4491  */
ipw_rx_notification(struct ipw_priv * priv,struct ipw_rx_notification * notif)4492 static void ipw_rx_notification(struct ipw_priv *priv,
4493 				       struct ipw_rx_notification *notif)
4494 {
4495 	DECLARE_SSID_BUF(ssid);
4496 	u16 size = le16_to_cpu(notif->size);
4497 
4498 	IPW_DEBUG_NOTIF("type = %i (%d bytes)\n", notif->subtype, size);
4499 
4500 	switch (notif->subtype) {
4501 	case HOST_NOTIFICATION_STATUS_ASSOCIATED:{
4502 			struct notif_association *assoc = &notif->u.assoc;
4503 
4504 			switch (assoc->state) {
4505 			case CMAS_ASSOCIATED:{
4506 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4507 						  IPW_DL_ASSOC,
4508 						  "associated: '%s' %pM\n",
4509 						  print_ssid(ssid, priv->essid,
4510 							     priv->essid_len),
4511 						  priv->bssid);
4512 
4513 					switch (priv->ieee->iw_mode) {
4514 					case IW_MODE_INFRA:
4515 						memcpy(priv->ieee->bssid,
4516 						       priv->bssid, ETH_ALEN);
4517 						break;
4518 
4519 					case IW_MODE_ADHOC:
4520 						memcpy(priv->ieee->bssid,
4521 						       priv->bssid, ETH_ALEN);
4522 
4523 						/* clear out the station table */
4524 						priv->num_stations = 0;
4525 
4526 						IPW_DEBUG_ASSOC
4527 						    ("queueing adhoc check\n");
4528 						schedule_delayed_work(
4529 							&priv->adhoc_check,
4530 							le16_to_cpu(priv->
4531 							assoc_request.
4532 							beacon_interval));
4533 						break;
4534 					}
4535 
4536 					priv->status &= ~STATUS_ASSOCIATING;
4537 					priv->status |= STATUS_ASSOCIATED;
4538 					schedule_work(&priv->system_config);
4539 
4540 #ifdef CONFIG_IPW2200_QOS
4541 #define IPW_GET_PACKET_STYPE(x) WLAN_FC_GET_STYPE( \
4542 			 le16_to_cpu(((struct ieee80211_hdr *)(x))->frame_control))
4543 					if ((priv->status & STATUS_AUTH) &&
4544 					    (IPW_GET_PACKET_STYPE(&notif->u.raw)
4545 					     == IEEE80211_STYPE_ASSOC_RESP)) {
4546 						if ((sizeof
4547 						     (struct
4548 						      libipw_assoc_response)
4549 						     <= size)
4550 						    && (size <= 2314)) {
4551 							struct
4552 							libipw_rx_stats
4553 							    stats = {
4554 								.len = size - 1,
4555 							};
4556 
4557 							IPW_DEBUG_QOS
4558 							    ("QoS Associate "
4559 							     "size %d\n", size);
4560 							libipw_rx_mgt(priv->
4561 									 ieee,
4562 									 (struct
4563 									  libipw_hdr_4addr
4564 									  *)
4565 									 &notif->u.raw, &stats);
4566 						}
4567 					}
4568 #endif
4569 
4570 					schedule_work(&priv->link_up);
4571 
4572 					break;
4573 				}
4574 
4575 			case CMAS_AUTHENTICATED:{
4576 					if (priv->
4577 					    status & (STATUS_ASSOCIATED |
4578 						      STATUS_AUTH)) {
4579 						struct notif_authenticate *auth
4580 						    = &notif->u.auth;
4581 						IPW_DEBUG(IPW_DL_NOTIF |
4582 							  IPW_DL_STATE |
4583 							  IPW_DL_ASSOC,
4584 							  "deauthenticated: '%s' "
4585 							  "%pM"
4586 							  ": (0x%04X) - %s\n",
4587 							  print_ssid(ssid,
4588 								     priv->
4589 								     essid,
4590 								     priv->
4591 								     essid_len),
4592 							  priv->bssid,
4593 							  le16_to_cpu(auth->status),
4594 							  ipw_get_status_code
4595 							  (le16_to_cpu
4596 							   (auth->status)));
4597 
4598 						priv->status &=
4599 						    ~(STATUS_ASSOCIATING |
4600 						      STATUS_AUTH |
4601 						      STATUS_ASSOCIATED);
4602 
4603 						schedule_work(&priv->link_down);
4604 						break;
4605 					}
4606 
4607 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4608 						  IPW_DL_ASSOC,
4609 						  "authenticated: '%s' %pM\n",
4610 						  print_ssid(ssid, priv->essid,
4611 							     priv->essid_len),
4612 						  priv->bssid);
4613 					break;
4614 				}
4615 
4616 			case CMAS_INIT:{
4617 					if (priv->status & STATUS_AUTH) {
4618 						struct
4619 						    libipw_assoc_response
4620 						*resp;
4621 						resp =
4622 						    (struct
4623 						     libipw_assoc_response
4624 						     *)&notif->u.raw;
4625 						IPW_DEBUG(IPW_DL_NOTIF |
4626 							  IPW_DL_STATE |
4627 							  IPW_DL_ASSOC,
4628 							  "association failed (0x%04X): %s\n",
4629 							  le16_to_cpu(resp->status),
4630 							  ipw_get_status_code
4631 							  (le16_to_cpu
4632 							   (resp->status)));
4633 					}
4634 
4635 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4636 						  IPW_DL_ASSOC,
4637 						  "disassociated: '%s' %pM\n",
4638 						  print_ssid(ssid, priv->essid,
4639 							     priv->essid_len),
4640 						  priv->bssid);
4641 
4642 					priv->status &=
4643 					    ~(STATUS_DISASSOCIATING |
4644 					      STATUS_ASSOCIATING |
4645 					      STATUS_ASSOCIATED | STATUS_AUTH);
4646 					if (priv->assoc_network
4647 					    && (priv->assoc_network->
4648 						capability &
4649 						WLAN_CAPABILITY_IBSS))
4650 						ipw_remove_current_network
4651 						    (priv);
4652 
4653 					schedule_work(&priv->link_down);
4654 
4655 					break;
4656 				}
4657 
4658 			case CMAS_RX_ASSOC_RESP:
4659 				break;
4660 
4661 			default:
4662 				IPW_ERROR("assoc: unknown (%d)\n",
4663 					  assoc->state);
4664 				break;
4665 			}
4666 
4667 			break;
4668 		}
4669 
4670 	case HOST_NOTIFICATION_STATUS_AUTHENTICATE:{
4671 			struct notif_authenticate *auth = &notif->u.auth;
4672 			switch (auth->state) {
4673 			case CMAS_AUTHENTICATED:
4674 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4675 					  "authenticated: '%s' %pM\n",
4676 					  print_ssid(ssid, priv->essid,
4677 						     priv->essid_len),
4678 					  priv->bssid);
4679 				priv->status |= STATUS_AUTH;
4680 				break;
4681 
4682 			case CMAS_INIT:
4683 				if (priv->status & STATUS_AUTH) {
4684 					IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4685 						  IPW_DL_ASSOC,
4686 						  "authentication failed (0x%04X): %s\n",
4687 						  le16_to_cpu(auth->status),
4688 						  ipw_get_status_code(le16_to_cpu
4689 								      (auth->
4690 								       status)));
4691 				}
4692 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4693 					  IPW_DL_ASSOC,
4694 					  "deauthenticated: '%s' %pM\n",
4695 					  print_ssid(ssid, priv->essid,
4696 						     priv->essid_len),
4697 					  priv->bssid);
4698 
4699 				priv->status &= ~(STATUS_ASSOCIATING |
4700 						  STATUS_AUTH |
4701 						  STATUS_ASSOCIATED);
4702 
4703 				schedule_work(&priv->link_down);
4704 				break;
4705 
4706 			case CMAS_TX_AUTH_SEQ_1:
4707 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4708 					  IPW_DL_ASSOC, "AUTH_SEQ_1\n");
4709 				break;
4710 			case CMAS_RX_AUTH_SEQ_2:
4711 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4712 					  IPW_DL_ASSOC, "AUTH_SEQ_2\n");
4713 				break;
4714 			case CMAS_AUTH_SEQ_1_PASS:
4715 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4716 					  IPW_DL_ASSOC, "AUTH_SEQ_1_PASS\n");
4717 				break;
4718 			case CMAS_AUTH_SEQ_1_FAIL:
4719 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4720 					  IPW_DL_ASSOC, "AUTH_SEQ_1_FAIL\n");
4721 				break;
4722 			case CMAS_TX_AUTH_SEQ_3:
4723 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4724 					  IPW_DL_ASSOC, "AUTH_SEQ_3\n");
4725 				break;
4726 			case CMAS_RX_AUTH_SEQ_4:
4727 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4728 					  IPW_DL_ASSOC, "RX_AUTH_SEQ_4\n");
4729 				break;
4730 			case CMAS_AUTH_SEQ_2_PASS:
4731 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4732 					  IPW_DL_ASSOC, "AUTH_SEQ_2_PASS\n");
4733 				break;
4734 			case CMAS_AUTH_SEQ_2_FAIL:
4735 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4736 					  IPW_DL_ASSOC, "AUT_SEQ_2_FAIL\n");
4737 				break;
4738 			case CMAS_TX_ASSOC:
4739 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4740 					  IPW_DL_ASSOC, "TX_ASSOC\n");
4741 				break;
4742 			case CMAS_RX_ASSOC_RESP:
4743 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4744 					  IPW_DL_ASSOC, "RX_ASSOC_RESP\n");
4745 
4746 				break;
4747 			case CMAS_ASSOCIATED:
4748 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE |
4749 					  IPW_DL_ASSOC, "ASSOCIATED\n");
4750 				break;
4751 			default:
4752 				IPW_DEBUG_NOTIF("auth: failure - %d\n",
4753 						auth->state);
4754 				break;
4755 			}
4756 			break;
4757 		}
4758 
4759 	case HOST_NOTIFICATION_STATUS_SCAN_CHANNEL_RESULT:{
4760 			struct notif_channel_result *x =
4761 			    &notif->u.channel_result;
4762 
4763 			if (size == sizeof(*x)) {
4764 				IPW_DEBUG_SCAN("Scan result for channel %d\n",
4765 					       x->channel_num);
4766 			} else {
4767 				IPW_DEBUG_SCAN("Scan result of wrong size %d "
4768 					       "(should be %zd)\n",
4769 					       size, sizeof(*x));
4770 			}
4771 			break;
4772 		}
4773 
4774 	case HOST_NOTIFICATION_STATUS_SCAN_COMPLETED:{
4775 			struct notif_scan_complete *x = &notif->u.scan_complete;
4776 			if (size == sizeof(*x)) {
4777 				IPW_DEBUG_SCAN
4778 				    ("Scan completed: type %d, %d channels, "
4779 				     "%d status\n", x->scan_type,
4780 				     x->num_channels, x->status);
4781 			} else {
4782 				IPW_ERROR("Scan completed of wrong size %d "
4783 					  "(should be %zd)\n",
4784 					  size, sizeof(*x));
4785 			}
4786 
4787 			priv->status &=
4788 			    ~(STATUS_SCANNING | STATUS_SCAN_ABORTING);
4789 
4790 			wake_up_interruptible(&priv->wait_state);
4791 			cancel_delayed_work(&priv->scan_check);
4792 
4793 			if (priv->status & STATUS_EXIT_PENDING)
4794 				break;
4795 
4796 			priv->ieee->scans++;
4797 
4798 #ifdef CONFIG_IPW2200_MONITOR
4799 			if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
4800 				priv->status |= STATUS_SCAN_FORCED;
4801 				schedule_delayed_work(&priv->request_scan, 0);
4802 				break;
4803 			}
4804 			priv->status &= ~STATUS_SCAN_FORCED;
4805 #endif				/* CONFIG_IPW2200_MONITOR */
4806 
4807 			/* Do queued direct scans first */
4808 			if (priv->status & STATUS_DIRECT_SCAN_PENDING)
4809 				schedule_delayed_work(&priv->request_direct_scan, 0);
4810 
4811 			if (!(priv->status & (STATUS_ASSOCIATED |
4812 					      STATUS_ASSOCIATING |
4813 					      STATUS_ROAMING |
4814 					      STATUS_DISASSOCIATING)))
4815 				schedule_work(&priv->associate);
4816 			else if (priv->status & STATUS_ROAMING) {
4817 				if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4818 					/* If a scan completed and we are in roam mode, then
4819 					 * the scan that completed was the one requested as a
4820 					 * result of entering roam... so, schedule the
4821 					 * roam work */
4822 					schedule_work(&priv->roam);
4823 				else
4824 					/* Don't schedule if we aborted the scan */
4825 					priv->status &= ~STATUS_ROAMING;
4826 			} else if (priv->status & STATUS_SCAN_PENDING)
4827 				schedule_delayed_work(&priv->request_scan, 0);
4828 			else if (priv->config & CFG_BACKGROUND_SCAN
4829 				 && priv->status & STATUS_ASSOCIATED)
4830 				schedule_delayed_work(&priv->request_scan,
4831 						      round_jiffies_relative(HZ));
4832 
4833 			/* Send an empty event to user space.
4834 			 * We don't send the received data on the event because
4835 			 * it would require us to do complex transcoding, and
4836 			 * we want to minimise the work done in the irq handler
4837 			 * Use a request to extract the data.
4838 			 * Also, we generate this even for any scan, regardless
4839 			 * on how the scan was initiated. User space can just
4840 			 * sync on periodic scan to get fresh data...
4841 			 * Jean II */
4842 			if (x->status == SCAN_COMPLETED_STATUS_COMPLETE)
4843 				handle_scan_event(priv);
4844 			break;
4845 		}
4846 
4847 	case HOST_NOTIFICATION_STATUS_FRAG_LENGTH:{
4848 			struct notif_frag_length *x = &notif->u.frag_len;
4849 
4850 			if (size == sizeof(*x))
4851 				IPW_ERROR("Frag length: %d\n",
4852 					  le16_to_cpu(x->frag_length));
4853 			else
4854 				IPW_ERROR("Frag length of wrong size %d "
4855 					  "(should be %zd)\n",
4856 					  size, sizeof(*x));
4857 			break;
4858 		}
4859 
4860 	case HOST_NOTIFICATION_STATUS_LINK_DETERIORATION:{
4861 			struct notif_link_deterioration *x =
4862 			    &notif->u.link_deterioration;
4863 
4864 			if (size == sizeof(*x)) {
4865 				IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE,
4866 					"link deterioration: type %d, cnt %d\n",
4867 					x->silence_notification_type,
4868 					x->silence_count);
4869 				memcpy(&priv->last_link_deterioration, x,
4870 				       sizeof(*x));
4871 			} else {
4872 				IPW_ERROR("Link Deterioration of wrong size %d "
4873 					  "(should be %zd)\n",
4874 					  size, sizeof(*x));
4875 			}
4876 			break;
4877 		}
4878 
4879 	case HOST_NOTIFICATION_DINO_CONFIG_RESPONSE:{
4880 			IPW_ERROR("Dino config\n");
4881 			if (priv->hcmd
4882 			    && priv->hcmd->cmd != HOST_CMD_DINO_CONFIG)
4883 				IPW_ERROR("Unexpected DINO_CONFIG_RESPONSE\n");
4884 
4885 			break;
4886 		}
4887 
4888 	case HOST_NOTIFICATION_STATUS_BEACON_STATE:{
4889 			struct notif_beacon_state *x = &notif->u.beacon_state;
4890 			if (size != sizeof(*x)) {
4891 				IPW_ERROR
4892 				    ("Beacon state of wrong size %d (should "
4893 				     "be %zd)\n", size, sizeof(*x));
4894 				break;
4895 			}
4896 
4897 			if (le32_to_cpu(x->state) ==
4898 			    HOST_NOTIFICATION_STATUS_BEACON_MISSING)
4899 				ipw_handle_missed_beacon(priv,
4900 							 le32_to_cpu(x->
4901 								     number));
4902 
4903 			break;
4904 		}
4905 
4906 	case HOST_NOTIFICATION_STATUS_TGI_TX_KEY:{
4907 			struct notif_tgi_tx_key *x = &notif->u.tgi_tx_key;
4908 			if (size == sizeof(*x)) {
4909 				IPW_ERROR("TGi Tx Key: state 0x%02x sec type "
4910 					  "0x%02x station %d\n",
4911 					  x->key_state, x->security_type,
4912 					  x->station_index);
4913 				break;
4914 			}
4915 
4916 			IPW_ERROR
4917 			    ("TGi Tx Key of wrong size %d (should be %zd)\n",
4918 			     size, sizeof(*x));
4919 			break;
4920 		}
4921 
4922 	case HOST_NOTIFICATION_CALIB_KEEP_RESULTS:{
4923 			struct notif_calibration *x = &notif->u.calibration;
4924 
4925 			if (size == sizeof(*x)) {
4926 				memcpy(&priv->calib, x, sizeof(*x));
4927 				IPW_DEBUG_INFO("TODO: Calibration\n");
4928 				break;
4929 			}
4930 
4931 			IPW_ERROR
4932 			    ("Calibration of wrong size %d (should be %zd)\n",
4933 			     size, sizeof(*x));
4934 			break;
4935 		}
4936 
4937 	case HOST_NOTIFICATION_NOISE_STATS:{
4938 			if (size == sizeof(u32)) {
4939 				priv->exp_avg_noise =
4940 				    exponential_average(priv->exp_avg_noise,
4941 				    (u8) (le32_to_cpu(notif->u.noise.value) & 0xff),
4942 				    DEPTH_NOISE);
4943 				break;
4944 			}
4945 
4946 			IPW_ERROR
4947 			    ("Noise stat is wrong size %d (should be %zd)\n",
4948 			     size, sizeof(u32));
4949 			break;
4950 		}
4951 
4952 	default:
4953 		IPW_DEBUG_NOTIF("Unknown notification: "
4954 				"subtype=%d,flags=0x%2x,size=%d\n",
4955 				notif->subtype, notif->flags, size);
4956 	}
4957 }
4958 
4959 /**
4960  * Destroys all DMA structures and initialise them again
4961  *
4962  * @param priv
4963  * @return error code
4964  */
ipw_queue_reset(struct ipw_priv * priv)4965 static int ipw_queue_reset(struct ipw_priv *priv)
4966 {
4967 	int rc = 0;
4968 	/** @todo customize queue sizes */
4969 	int nTx = 64, nTxCmd = 8;
4970 	ipw_tx_queue_free(priv);
4971 	/* Tx CMD queue */
4972 	rc = ipw_queue_tx_init(priv, &priv->txq_cmd, nTxCmd,
4973 			       IPW_TX_CMD_QUEUE_READ_INDEX,
4974 			       IPW_TX_CMD_QUEUE_WRITE_INDEX,
4975 			       IPW_TX_CMD_QUEUE_BD_BASE,
4976 			       IPW_TX_CMD_QUEUE_BD_SIZE);
4977 	if (rc) {
4978 		IPW_ERROR("Tx Cmd queue init failed\n");
4979 		goto error;
4980 	}
4981 	/* Tx queue(s) */
4982 	rc = ipw_queue_tx_init(priv, &priv->txq[0], nTx,
4983 			       IPW_TX_QUEUE_0_READ_INDEX,
4984 			       IPW_TX_QUEUE_0_WRITE_INDEX,
4985 			       IPW_TX_QUEUE_0_BD_BASE, IPW_TX_QUEUE_0_BD_SIZE);
4986 	if (rc) {
4987 		IPW_ERROR("Tx 0 queue init failed\n");
4988 		goto error;
4989 	}
4990 	rc = ipw_queue_tx_init(priv, &priv->txq[1], nTx,
4991 			       IPW_TX_QUEUE_1_READ_INDEX,
4992 			       IPW_TX_QUEUE_1_WRITE_INDEX,
4993 			       IPW_TX_QUEUE_1_BD_BASE, IPW_TX_QUEUE_1_BD_SIZE);
4994 	if (rc) {
4995 		IPW_ERROR("Tx 1 queue init failed\n");
4996 		goto error;
4997 	}
4998 	rc = ipw_queue_tx_init(priv, &priv->txq[2], nTx,
4999 			       IPW_TX_QUEUE_2_READ_INDEX,
5000 			       IPW_TX_QUEUE_2_WRITE_INDEX,
5001 			       IPW_TX_QUEUE_2_BD_BASE, IPW_TX_QUEUE_2_BD_SIZE);
5002 	if (rc) {
5003 		IPW_ERROR("Tx 2 queue init failed\n");
5004 		goto error;
5005 	}
5006 	rc = ipw_queue_tx_init(priv, &priv->txq[3], nTx,
5007 			       IPW_TX_QUEUE_3_READ_INDEX,
5008 			       IPW_TX_QUEUE_3_WRITE_INDEX,
5009 			       IPW_TX_QUEUE_3_BD_BASE, IPW_TX_QUEUE_3_BD_SIZE);
5010 	if (rc) {
5011 		IPW_ERROR("Tx 3 queue init failed\n");
5012 		goto error;
5013 	}
5014 	/* statistics */
5015 	priv->rx_bufs_min = 0;
5016 	priv->rx_pend_max = 0;
5017 	return rc;
5018 
5019       error:
5020 	ipw_tx_queue_free(priv);
5021 	return rc;
5022 }
5023 
5024 /**
5025  * Reclaim Tx queue entries no more used by NIC.
5026  *
5027  * When FW advances 'R' index, all entries between old and
5028  * new 'R' index need to be reclaimed. As result, some free space
5029  * forms. If there is enough free space (> low mark), wake Tx queue.
5030  *
5031  * @note Need to protect against garbage in 'R' index
5032  * @param priv
5033  * @param txq
5034  * @param qindex
5035  * @return Number of used entries remains in the queue
5036  */
ipw_queue_tx_reclaim(struct ipw_priv * priv,struct clx2_tx_queue * txq,int qindex)5037 static int ipw_queue_tx_reclaim(struct ipw_priv *priv,
5038 				struct clx2_tx_queue *txq, int qindex)
5039 {
5040 	u32 hw_tail;
5041 	int used;
5042 	struct clx2_queue *q = &txq->q;
5043 
5044 	hw_tail = ipw_read32(priv, q->reg_r);
5045 	if (hw_tail >= q->n_bd) {
5046 		IPW_ERROR
5047 		    ("Read index for DMA queue (%d) is out of range [0-%d)\n",
5048 		     hw_tail, q->n_bd);
5049 		goto done;
5050 	}
5051 	for (; q->last_used != hw_tail;
5052 	     q->last_used = ipw_queue_inc_wrap(q->last_used, q->n_bd)) {
5053 		ipw_queue_tx_free_tfd(priv, txq);
5054 		priv->tx_packets++;
5055 	}
5056       done:
5057 	if ((ipw_tx_queue_space(q) > q->low_mark) &&
5058 	    (qindex >= 0))
5059 		netif_wake_queue(priv->net_dev);
5060 	used = q->first_empty - q->last_used;
5061 	if (used < 0)
5062 		used += q->n_bd;
5063 
5064 	return used;
5065 }
5066 
ipw_queue_tx_hcmd(struct ipw_priv * priv,int hcmd,void * buf,int len,int sync)5067 static int ipw_queue_tx_hcmd(struct ipw_priv *priv, int hcmd, void *buf,
5068 			     int len, int sync)
5069 {
5070 	struct clx2_tx_queue *txq = &priv->txq_cmd;
5071 	struct clx2_queue *q = &txq->q;
5072 	struct tfd_frame *tfd;
5073 
5074 	if (ipw_tx_queue_space(q) < (sync ? 1 : 2)) {
5075 		IPW_ERROR("No space for Tx\n");
5076 		return -EBUSY;
5077 	}
5078 
5079 	tfd = &txq->bd[q->first_empty];
5080 	txq->txb[q->first_empty] = NULL;
5081 
5082 	memset(tfd, 0, sizeof(*tfd));
5083 	tfd->control_flags.message_type = TX_HOST_COMMAND_TYPE;
5084 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
5085 	priv->hcmd_seq++;
5086 	tfd->u.cmd.index = hcmd;
5087 	tfd->u.cmd.length = len;
5088 	memcpy(tfd->u.cmd.payload, buf, len);
5089 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
5090 	ipw_write32(priv, q->reg_w, q->first_empty);
5091 	_ipw_read32(priv, 0x90);
5092 
5093 	return 0;
5094 }
5095 
5096 /*
5097  * Rx theory of operation
5098  *
5099  * The host allocates 32 DMA target addresses and passes the host address
5100  * to the firmware at register IPW_RFDS_TABLE_LOWER + N * RFD_SIZE where N is
5101  * 0 to 31
5102  *
5103  * Rx Queue Indexes
5104  * The host/firmware share two index registers for managing the Rx buffers.
5105  *
5106  * The READ index maps to the first position that the firmware may be writing
5107  * to -- the driver can read up to (but not including) this position and get
5108  * good data.
5109  * The READ index is managed by the firmware once the card is enabled.
5110  *
5111  * The WRITE index maps to the last position the driver has read from -- the
5112  * position preceding WRITE is the last slot the firmware can place a packet.
5113  *
5114  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
5115  * WRITE = READ.
5116  *
5117  * During initialization the host sets up the READ queue position to the first
5118  * INDEX position, and WRITE to the last (READ - 1 wrapped)
5119  *
5120  * When the firmware places a packet in a buffer it will advance the READ index
5121  * and fire the RX interrupt.  The driver can then query the READ index and
5122  * process as many packets as possible, moving the WRITE index forward as it
5123  * resets the Rx queue buffers with new memory.
5124  *
5125  * The management in the driver is as follows:
5126  * + A list of pre-allocated SKBs is stored in ipw->rxq->rx_free.  When
5127  *   ipw->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
5128  *   to replensish the ipw->rxq->rx_free.
5129  * + In ipw_rx_queue_replenish (scheduled) if 'processed' != 'read' then the
5130  *   ipw->rxq is replenished and the READ INDEX is updated (updating the
5131  *   'processed' and 'read' driver indexes as well)
5132  * + A received packet is processed and handed to the kernel network stack,
5133  *   detached from the ipw->rxq.  The driver 'processed' index is updated.
5134  * + The Host/Firmware ipw->rxq is replenished at tasklet time from the rx_free
5135  *   list. If there are no allocated buffers in ipw->rxq->rx_free, the READ
5136  *   INDEX is not incremented and ipw->status(RX_STALLED) is set.  If there
5137  *   were enough free buffers and RX_STALLED is set it is cleared.
5138  *
5139  *
5140  * Driver sequence:
5141  *
5142  * ipw_rx_queue_alloc()       Allocates rx_free
5143  * ipw_rx_queue_replenish()   Replenishes rx_free list from rx_used, and calls
5144  *                            ipw_rx_queue_restock
5145  * ipw_rx_queue_restock()     Moves available buffers from rx_free into Rx
5146  *                            queue, updates firmware pointers, and updates
5147  *                            the WRITE index.  If insufficient rx_free buffers
5148  *                            are available, schedules ipw_rx_queue_replenish
5149  *
5150  * -- enable interrupts --
5151  * ISR - ipw_rx()             Detach ipw_rx_mem_buffers from pool up to the
5152  *                            READ INDEX, detaching the SKB from the pool.
5153  *                            Moves the packet buffer from queue to rx_used.
5154  *                            Calls ipw_rx_queue_restock to refill any empty
5155  *                            slots.
5156  * ...
5157  *
5158  */
5159 
5160 /*
5161  * If there are slots in the RX queue that  need to be restocked,
5162  * and we have free pre-allocated buffers, fill the ranks as much
5163  * as we can pulling from rx_free.
5164  *
5165  * This moves the 'write' index forward to catch up with 'processed', and
5166  * also updates the memory address in the firmware to reference the new
5167  * target buffer.
5168  */
ipw_rx_queue_restock(struct ipw_priv * priv)5169 static void ipw_rx_queue_restock(struct ipw_priv *priv)
5170 {
5171 	struct ipw_rx_queue *rxq = priv->rxq;
5172 	struct list_head *element;
5173 	struct ipw_rx_mem_buffer *rxb;
5174 	unsigned long flags;
5175 	int write;
5176 
5177 	spin_lock_irqsave(&rxq->lock, flags);
5178 	write = rxq->write;
5179 	while ((ipw_rx_queue_space(rxq) > 0) && (rxq->free_count)) {
5180 		element = rxq->rx_free.next;
5181 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5182 		list_del(element);
5183 
5184 		ipw_write32(priv, IPW_RFDS_TABLE_LOWER + rxq->write * RFD_SIZE,
5185 			    rxb->dma_addr);
5186 		rxq->queue[rxq->write] = rxb;
5187 		rxq->write = (rxq->write + 1) % RX_QUEUE_SIZE;
5188 		rxq->free_count--;
5189 	}
5190 	spin_unlock_irqrestore(&rxq->lock, flags);
5191 
5192 	/* If the pre-allocated buffer pool is dropping low, schedule to
5193 	 * refill it */
5194 	if (rxq->free_count <= RX_LOW_WATERMARK)
5195 		schedule_work(&priv->rx_replenish);
5196 
5197 	/* If we've added more space for the firmware to place data, tell it */
5198 	if (write != rxq->write)
5199 		ipw_write32(priv, IPW_RX_WRITE_INDEX, rxq->write);
5200 }
5201 
5202 /*
5203  * Move all used packet from rx_used to rx_free, allocating a new SKB for each.
5204  * Also restock the Rx queue via ipw_rx_queue_restock.
5205  *
5206  * This is called as a scheduled work item (except for during intialization)
5207  */
ipw_rx_queue_replenish(void * data)5208 static void ipw_rx_queue_replenish(void *data)
5209 {
5210 	struct ipw_priv *priv = data;
5211 	struct ipw_rx_queue *rxq = priv->rxq;
5212 	struct list_head *element;
5213 	struct ipw_rx_mem_buffer *rxb;
5214 	unsigned long flags;
5215 
5216 	spin_lock_irqsave(&rxq->lock, flags);
5217 	while (!list_empty(&rxq->rx_used)) {
5218 		element = rxq->rx_used.next;
5219 		rxb = list_entry(element, struct ipw_rx_mem_buffer, list);
5220 		rxb->skb = alloc_skb(IPW_RX_BUF_SIZE, GFP_ATOMIC);
5221 		if (!rxb->skb) {
5222 			printk(KERN_CRIT "%s: Can not allocate SKB buffers.\n",
5223 			       priv->net_dev->name);
5224 			/* We don't reschedule replenish work here -- we will
5225 			 * call the restock method and if it still needs
5226 			 * more buffers it will schedule replenish */
5227 			break;
5228 		}
5229 		list_del(element);
5230 
5231 		rxb->dma_addr =
5232 		    pci_map_single(priv->pci_dev, rxb->skb->data,
5233 				   IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5234 
5235 		list_add_tail(&rxb->list, &rxq->rx_free);
5236 		rxq->free_count++;
5237 	}
5238 	spin_unlock_irqrestore(&rxq->lock, flags);
5239 
5240 	ipw_rx_queue_restock(priv);
5241 }
5242 
ipw_bg_rx_queue_replenish(struct work_struct * work)5243 static void ipw_bg_rx_queue_replenish(struct work_struct *work)
5244 {
5245 	struct ipw_priv *priv =
5246 		container_of(work, struct ipw_priv, rx_replenish);
5247 	mutex_lock(&priv->mutex);
5248 	ipw_rx_queue_replenish(priv);
5249 	mutex_unlock(&priv->mutex);
5250 }
5251 
5252 /* Assumes that the skb field of the buffers in 'pool' is kept accurate.
5253  * If an SKB has been detached, the POOL needs to have its SKB set to NULL
5254  * This free routine walks the list of POOL entries and if SKB is set to
5255  * non NULL it is unmapped and freed
5256  */
ipw_rx_queue_free(struct ipw_priv * priv,struct ipw_rx_queue * rxq)5257 static void ipw_rx_queue_free(struct ipw_priv *priv, struct ipw_rx_queue *rxq)
5258 {
5259 	int i;
5260 
5261 	if (!rxq)
5262 		return;
5263 
5264 	for (i = 0; i < RX_QUEUE_SIZE + RX_FREE_BUFFERS; i++) {
5265 		if (rxq->pool[i].skb != NULL) {
5266 			pci_unmap_single(priv->pci_dev, rxq->pool[i].dma_addr,
5267 					 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
5268 			dev_kfree_skb(rxq->pool[i].skb);
5269 		}
5270 	}
5271 
5272 	kfree(rxq);
5273 }
5274 
ipw_rx_queue_alloc(struct ipw_priv * priv)5275 static struct ipw_rx_queue *ipw_rx_queue_alloc(struct ipw_priv *priv)
5276 {
5277 	struct ipw_rx_queue *rxq;
5278 	int i;
5279 
5280 	rxq = kzalloc(sizeof(*rxq), GFP_KERNEL);
5281 	if (unlikely(!rxq)) {
5282 		IPW_ERROR("memory allocation failed\n");
5283 		return NULL;
5284 	}
5285 	spin_lock_init(&rxq->lock);
5286 	INIT_LIST_HEAD(&rxq->rx_free);
5287 	INIT_LIST_HEAD(&rxq->rx_used);
5288 
5289 	/* Fill the rx_used queue with _all_ of the Rx buffers */
5290 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
5291 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
5292 
5293 	/* Set us so that we have processed and used all buffers, but have
5294 	 * not restocked the Rx queue with fresh buffers */
5295 	rxq->read = rxq->write = 0;
5296 	rxq->free_count = 0;
5297 
5298 	return rxq;
5299 }
5300 
ipw_is_rate_in_mask(struct ipw_priv * priv,int ieee_mode,u8 rate)5301 static int ipw_is_rate_in_mask(struct ipw_priv *priv, int ieee_mode, u8 rate)
5302 {
5303 	rate &= ~LIBIPW_BASIC_RATE_MASK;
5304 	if (ieee_mode == IEEE_A) {
5305 		switch (rate) {
5306 		case LIBIPW_OFDM_RATE_6MB:
5307 			return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ?
5308 			    1 : 0;
5309 		case LIBIPW_OFDM_RATE_9MB:
5310 			return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ?
5311 			    1 : 0;
5312 		case LIBIPW_OFDM_RATE_12MB:
5313 			return priv->
5314 			    rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5315 		case LIBIPW_OFDM_RATE_18MB:
5316 			return priv->
5317 			    rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5318 		case LIBIPW_OFDM_RATE_24MB:
5319 			return priv->
5320 			    rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5321 		case LIBIPW_OFDM_RATE_36MB:
5322 			return priv->
5323 			    rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5324 		case LIBIPW_OFDM_RATE_48MB:
5325 			return priv->
5326 			    rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5327 		case LIBIPW_OFDM_RATE_54MB:
5328 			return priv->
5329 			    rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5330 		default:
5331 			return 0;
5332 		}
5333 	}
5334 
5335 	/* B and G mixed */
5336 	switch (rate) {
5337 	case LIBIPW_CCK_RATE_1MB:
5338 		return priv->rates_mask & LIBIPW_CCK_RATE_1MB_MASK ? 1 : 0;
5339 	case LIBIPW_CCK_RATE_2MB:
5340 		return priv->rates_mask & LIBIPW_CCK_RATE_2MB_MASK ? 1 : 0;
5341 	case LIBIPW_CCK_RATE_5MB:
5342 		return priv->rates_mask & LIBIPW_CCK_RATE_5MB_MASK ? 1 : 0;
5343 	case LIBIPW_CCK_RATE_11MB:
5344 		return priv->rates_mask & LIBIPW_CCK_RATE_11MB_MASK ? 1 : 0;
5345 	}
5346 
5347 	/* If we are limited to B modulations, bail at this point */
5348 	if (ieee_mode == IEEE_B)
5349 		return 0;
5350 
5351 	/* G */
5352 	switch (rate) {
5353 	case LIBIPW_OFDM_RATE_6MB:
5354 		return priv->rates_mask & LIBIPW_OFDM_RATE_6MB_MASK ? 1 : 0;
5355 	case LIBIPW_OFDM_RATE_9MB:
5356 		return priv->rates_mask & LIBIPW_OFDM_RATE_9MB_MASK ? 1 : 0;
5357 	case LIBIPW_OFDM_RATE_12MB:
5358 		return priv->rates_mask & LIBIPW_OFDM_RATE_12MB_MASK ? 1 : 0;
5359 	case LIBIPW_OFDM_RATE_18MB:
5360 		return priv->rates_mask & LIBIPW_OFDM_RATE_18MB_MASK ? 1 : 0;
5361 	case LIBIPW_OFDM_RATE_24MB:
5362 		return priv->rates_mask & LIBIPW_OFDM_RATE_24MB_MASK ? 1 : 0;
5363 	case LIBIPW_OFDM_RATE_36MB:
5364 		return priv->rates_mask & LIBIPW_OFDM_RATE_36MB_MASK ? 1 : 0;
5365 	case LIBIPW_OFDM_RATE_48MB:
5366 		return priv->rates_mask & LIBIPW_OFDM_RATE_48MB_MASK ? 1 : 0;
5367 	case LIBIPW_OFDM_RATE_54MB:
5368 		return priv->rates_mask & LIBIPW_OFDM_RATE_54MB_MASK ? 1 : 0;
5369 	}
5370 
5371 	return 0;
5372 }
5373 
ipw_compatible_rates(struct ipw_priv * priv,const struct libipw_network * network,struct ipw_supported_rates * rates)5374 static int ipw_compatible_rates(struct ipw_priv *priv,
5375 				const struct libipw_network *network,
5376 				struct ipw_supported_rates *rates)
5377 {
5378 	int num_rates, i;
5379 
5380 	memset(rates, 0, sizeof(*rates));
5381 	num_rates = min(network->rates_len, (u8) IPW_MAX_RATES);
5382 	rates->num_rates = 0;
5383 	for (i = 0; i < num_rates; i++) {
5384 		if (!ipw_is_rate_in_mask(priv, network->mode,
5385 					 network->rates[i])) {
5386 
5387 			if (network->rates[i] & LIBIPW_BASIC_RATE_MASK) {
5388 				IPW_DEBUG_SCAN("Adding masked mandatory "
5389 					       "rate %02X\n",
5390 					       network->rates[i]);
5391 				rates->supported_rates[rates->num_rates++] =
5392 				    network->rates[i];
5393 				continue;
5394 			}
5395 
5396 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5397 				       network->rates[i], priv->rates_mask);
5398 			continue;
5399 		}
5400 
5401 		rates->supported_rates[rates->num_rates++] = network->rates[i];
5402 	}
5403 
5404 	num_rates = min(network->rates_ex_len,
5405 			(u8) (IPW_MAX_RATES - num_rates));
5406 	for (i = 0; i < num_rates; i++) {
5407 		if (!ipw_is_rate_in_mask(priv, network->mode,
5408 					 network->rates_ex[i])) {
5409 			if (network->rates_ex[i] & LIBIPW_BASIC_RATE_MASK) {
5410 				IPW_DEBUG_SCAN("Adding masked mandatory "
5411 					       "rate %02X\n",
5412 					       network->rates_ex[i]);
5413 				rates->supported_rates[rates->num_rates++] =
5414 				    network->rates[i];
5415 				continue;
5416 			}
5417 
5418 			IPW_DEBUG_SCAN("Rate %02X masked : 0x%08X\n",
5419 				       network->rates_ex[i], priv->rates_mask);
5420 			continue;
5421 		}
5422 
5423 		rates->supported_rates[rates->num_rates++] =
5424 		    network->rates_ex[i];
5425 	}
5426 
5427 	return 1;
5428 }
5429 
ipw_copy_rates(struct ipw_supported_rates * dest,const struct ipw_supported_rates * src)5430 static void ipw_copy_rates(struct ipw_supported_rates *dest,
5431 				  const struct ipw_supported_rates *src)
5432 {
5433 	u8 i;
5434 	for (i = 0; i < src->num_rates; i++)
5435 		dest->supported_rates[i] = src->supported_rates[i];
5436 	dest->num_rates = src->num_rates;
5437 }
5438 
5439 /* TODO: Look at sniffed packets in the air to determine if the basic rate
5440  * mask should ever be used -- right now all callers to add the scan rates are
5441  * set with the modulation = CCK, so BASIC_RATE_MASK is never set... */
ipw_add_cck_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5442 static void ipw_add_cck_scan_rates(struct ipw_supported_rates *rates,
5443 				   u8 modulation, u32 rate_mask)
5444 {
5445 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5446 	    LIBIPW_BASIC_RATE_MASK : 0;
5447 
5448 	if (rate_mask & LIBIPW_CCK_RATE_1MB_MASK)
5449 		rates->supported_rates[rates->num_rates++] =
5450 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_1MB;
5451 
5452 	if (rate_mask & LIBIPW_CCK_RATE_2MB_MASK)
5453 		rates->supported_rates[rates->num_rates++] =
5454 		    LIBIPW_BASIC_RATE_MASK | LIBIPW_CCK_RATE_2MB;
5455 
5456 	if (rate_mask & LIBIPW_CCK_RATE_5MB_MASK)
5457 		rates->supported_rates[rates->num_rates++] = basic_mask |
5458 		    LIBIPW_CCK_RATE_5MB;
5459 
5460 	if (rate_mask & LIBIPW_CCK_RATE_11MB_MASK)
5461 		rates->supported_rates[rates->num_rates++] = basic_mask |
5462 		    LIBIPW_CCK_RATE_11MB;
5463 }
5464 
ipw_add_ofdm_scan_rates(struct ipw_supported_rates * rates,u8 modulation,u32 rate_mask)5465 static void ipw_add_ofdm_scan_rates(struct ipw_supported_rates *rates,
5466 				    u8 modulation, u32 rate_mask)
5467 {
5468 	u8 basic_mask = (LIBIPW_OFDM_MODULATION == modulation) ?
5469 	    LIBIPW_BASIC_RATE_MASK : 0;
5470 
5471 	if (rate_mask & LIBIPW_OFDM_RATE_6MB_MASK)
5472 		rates->supported_rates[rates->num_rates++] = basic_mask |
5473 		    LIBIPW_OFDM_RATE_6MB;
5474 
5475 	if (rate_mask & LIBIPW_OFDM_RATE_9MB_MASK)
5476 		rates->supported_rates[rates->num_rates++] =
5477 		    LIBIPW_OFDM_RATE_9MB;
5478 
5479 	if (rate_mask & LIBIPW_OFDM_RATE_12MB_MASK)
5480 		rates->supported_rates[rates->num_rates++] = basic_mask |
5481 		    LIBIPW_OFDM_RATE_12MB;
5482 
5483 	if (rate_mask & LIBIPW_OFDM_RATE_18MB_MASK)
5484 		rates->supported_rates[rates->num_rates++] =
5485 		    LIBIPW_OFDM_RATE_18MB;
5486 
5487 	if (rate_mask & LIBIPW_OFDM_RATE_24MB_MASK)
5488 		rates->supported_rates[rates->num_rates++] = basic_mask |
5489 		    LIBIPW_OFDM_RATE_24MB;
5490 
5491 	if (rate_mask & LIBIPW_OFDM_RATE_36MB_MASK)
5492 		rates->supported_rates[rates->num_rates++] =
5493 		    LIBIPW_OFDM_RATE_36MB;
5494 
5495 	if (rate_mask & LIBIPW_OFDM_RATE_48MB_MASK)
5496 		rates->supported_rates[rates->num_rates++] =
5497 		    LIBIPW_OFDM_RATE_48MB;
5498 
5499 	if (rate_mask & LIBIPW_OFDM_RATE_54MB_MASK)
5500 		rates->supported_rates[rates->num_rates++] =
5501 		    LIBIPW_OFDM_RATE_54MB;
5502 }
5503 
5504 struct ipw_network_match {
5505 	struct libipw_network *network;
5506 	struct ipw_supported_rates rates;
5507 };
5508 
ipw_find_adhoc_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5509 static int ipw_find_adhoc_network(struct ipw_priv *priv,
5510 				  struct ipw_network_match *match,
5511 				  struct libipw_network *network,
5512 				  int roaming)
5513 {
5514 	struct ipw_supported_rates rates;
5515 	DECLARE_SSID_BUF(ssid);
5516 
5517 	/* Verify that this network's capability is compatible with the
5518 	 * current mode (AdHoc or Infrastructure) */
5519 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC &&
5520 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5521 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded due to "
5522 				"capability mismatch.\n",
5523 				print_ssid(ssid, network->ssid,
5524 					   network->ssid_len),
5525 				network->bssid);
5526 		return 0;
5527 	}
5528 
5529 	if (unlikely(roaming)) {
5530 		/* If we are roaming, then ensure check if this is a valid
5531 		 * network to try and roam to */
5532 		if ((network->ssid_len != match->network->ssid_len) ||
5533 		    memcmp(network->ssid, match->network->ssid,
5534 			   network->ssid_len)) {
5535 			IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5536 					"because of non-network ESSID.\n",
5537 					print_ssid(ssid, network->ssid,
5538 						   network->ssid_len),
5539 					network->bssid);
5540 			return 0;
5541 		}
5542 	} else {
5543 		/* If an ESSID has been configured then compare the broadcast
5544 		 * ESSID to ours */
5545 		if ((priv->config & CFG_STATIC_ESSID) &&
5546 		    ((network->ssid_len != priv->essid_len) ||
5547 		     memcmp(network->ssid, priv->essid,
5548 			    min(network->ssid_len, priv->essid_len)))) {
5549 			char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5550 
5551 			strncpy(escaped,
5552 				print_ssid(ssid, network->ssid,
5553 					   network->ssid_len),
5554 				sizeof(escaped));
5555 			IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5556 					"because of ESSID mismatch: '%s'.\n",
5557 					escaped, network->bssid,
5558 					print_ssid(ssid, priv->essid,
5559 						   priv->essid_len));
5560 			return 0;
5561 		}
5562 	}
5563 
5564 	/* If the old network rate is better than this one, don't bother
5565 	 * testing everything else. */
5566 
5567 	if (network->time_stamp[0] < match->network->time_stamp[0]) {
5568 		IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5569 				"current network.\n",
5570 				print_ssid(ssid, match->network->ssid,
5571 					   match->network->ssid_len));
5572 		return 0;
5573 	} else if (network->time_stamp[1] < match->network->time_stamp[1]) {
5574 		IPW_DEBUG_MERGE("Network '%s excluded because newer than "
5575 				"current network.\n",
5576 				print_ssid(ssid, match->network->ssid,
5577 					   match->network->ssid_len));
5578 		return 0;
5579 	}
5580 
5581 	/* Now go through and see if the requested network is valid... */
5582 	if (priv->ieee->scan_age != 0 &&
5583 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5584 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5585 				"because of age: %ums.\n",
5586 				print_ssid(ssid, network->ssid,
5587 					   network->ssid_len),
5588 				network->bssid,
5589 				jiffies_to_msecs(jiffies -
5590 						 network->last_scanned));
5591 		return 0;
5592 	}
5593 
5594 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5595 	    (network->channel != priv->channel)) {
5596 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5597 				"because of channel mismatch: %d != %d.\n",
5598 				print_ssid(ssid, network->ssid,
5599 					   network->ssid_len),
5600 				network->bssid,
5601 				network->channel, priv->channel);
5602 		return 0;
5603 	}
5604 
5605 	/* Verify privacy compatibility */
5606 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5607 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5608 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5609 				"because of privacy mismatch: %s != %s.\n",
5610 				print_ssid(ssid, network->ssid,
5611 					   network->ssid_len),
5612 				network->bssid,
5613 				priv->
5614 				capability & CAP_PRIVACY_ON ? "on" : "off",
5615 				network->
5616 				capability & WLAN_CAPABILITY_PRIVACY ? "on" :
5617 				"off");
5618 		return 0;
5619 	}
5620 
5621 	if (!memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5622 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5623 				"because of the same BSSID match: %pM"
5624 				".\n", print_ssid(ssid, network->ssid,
5625 						  network->ssid_len),
5626 				network->bssid,
5627 				priv->bssid);
5628 		return 0;
5629 	}
5630 
5631 	/* Filter out any incompatible freq / mode combinations */
5632 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5633 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5634 				"because of invalid frequency/mode "
5635 				"combination.\n",
5636 				print_ssid(ssid, network->ssid,
5637 					   network->ssid_len),
5638 				network->bssid);
5639 		return 0;
5640 	}
5641 
5642 	/* Ensure that the rates supported by the driver are compatible with
5643 	 * this AP, including verification of basic rates (mandatory) */
5644 	if (!ipw_compatible_rates(priv, network, &rates)) {
5645 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5646 				"because configured rate mask excludes "
5647 				"AP mandatory rate.\n",
5648 				print_ssid(ssid, network->ssid,
5649 					   network->ssid_len),
5650 				network->bssid);
5651 		return 0;
5652 	}
5653 
5654 	if (rates.num_rates == 0) {
5655 		IPW_DEBUG_MERGE("Network '%s (%pM)' excluded "
5656 				"because of no compatible rates.\n",
5657 				print_ssid(ssid, network->ssid,
5658 					   network->ssid_len),
5659 				network->bssid);
5660 		return 0;
5661 	}
5662 
5663 	/* TODO: Perform any further minimal comparititive tests.  We do not
5664 	 * want to put too much policy logic here; intelligent scan selection
5665 	 * should occur within a generic IEEE 802.11 user space tool.  */
5666 
5667 	/* Set up 'new' AP to this network */
5668 	ipw_copy_rates(&match->rates, &rates);
5669 	match->network = network;
5670 	IPW_DEBUG_MERGE("Network '%s (%pM)' is a viable match.\n",
5671 			print_ssid(ssid, network->ssid, network->ssid_len),
5672 			network->bssid);
5673 
5674 	return 1;
5675 }
5676 
ipw_merge_adhoc_network(struct work_struct * work)5677 static void ipw_merge_adhoc_network(struct work_struct *work)
5678 {
5679 	DECLARE_SSID_BUF(ssid);
5680 	struct ipw_priv *priv =
5681 		container_of(work, struct ipw_priv, merge_networks);
5682 	struct libipw_network *network = NULL;
5683 	struct ipw_network_match match = {
5684 		.network = priv->assoc_network
5685 	};
5686 
5687 	if ((priv->status & STATUS_ASSOCIATED) &&
5688 	    (priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5689 		/* First pass through ROAM process -- look for a better
5690 		 * network */
5691 		unsigned long flags;
5692 
5693 		spin_lock_irqsave(&priv->ieee->lock, flags);
5694 		list_for_each_entry(network, &priv->ieee->network_list, list) {
5695 			if (network != priv->assoc_network)
5696 				ipw_find_adhoc_network(priv, &match, network,
5697 						       1);
5698 		}
5699 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
5700 
5701 		if (match.network == priv->assoc_network) {
5702 			IPW_DEBUG_MERGE("No better ADHOC in this network to "
5703 					"merge to.\n");
5704 			return;
5705 		}
5706 
5707 		mutex_lock(&priv->mutex);
5708 		if ((priv->ieee->iw_mode == IW_MODE_ADHOC)) {
5709 			IPW_DEBUG_MERGE("remove network %s\n",
5710 					print_ssid(ssid, priv->essid,
5711 						   priv->essid_len));
5712 			ipw_remove_current_network(priv);
5713 		}
5714 
5715 		ipw_disassociate(priv);
5716 		priv->assoc_network = match.network;
5717 		mutex_unlock(&priv->mutex);
5718 		return;
5719 	}
5720 }
5721 
ipw_best_network(struct ipw_priv * priv,struct ipw_network_match * match,struct libipw_network * network,int roaming)5722 static int ipw_best_network(struct ipw_priv *priv,
5723 			    struct ipw_network_match *match,
5724 			    struct libipw_network *network, int roaming)
5725 {
5726 	struct ipw_supported_rates rates;
5727 	DECLARE_SSID_BUF(ssid);
5728 
5729 	/* Verify that this network's capability is compatible with the
5730 	 * current mode (AdHoc or Infrastructure) */
5731 	if ((priv->ieee->iw_mode == IW_MODE_INFRA &&
5732 	     !(network->capability & WLAN_CAPABILITY_ESS)) ||
5733 	    (priv->ieee->iw_mode == IW_MODE_ADHOC &&
5734 	     !(network->capability & WLAN_CAPABILITY_IBSS))) {
5735 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded due to "
5736 				"capability mismatch.\n",
5737 				print_ssid(ssid, network->ssid,
5738 					   network->ssid_len),
5739 				network->bssid);
5740 		return 0;
5741 	}
5742 
5743 	if (unlikely(roaming)) {
5744 		/* If we are roaming, then ensure check if this is a valid
5745 		 * network to try and roam to */
5746 		if ((network->ssid_len != match->network->ssid_len) ||
5747 		    memcmp(network->ssid, match->network->ssid,
5748 			   network->ssid_len)) {
5749 			IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5750 					"because of non-network ESSID.\n",
5751 					print_ssid(ssid, network->ssid,
5752 						   network->ssid_len),
5753 					network->bssid);
5754 			return 0;
5755 		}
5756 	} else {
5757 		/* If an ESSID has been configured then compare the broadcast
5758 		 * ESSID to ours */
5759 		if ((priv->config & CFG_STATIC_ESSID) &&
5760 		    ((network->ssid_len != priv->essid_len) ||
5761 		     memcmp(network->ssid, priv->essid,
5762 			    min(network->ssid_len, priv->essid_len)))) {
5763 			char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5764 			strncpy(escaped,
5765 				print_ssid(ssid, network->ssid,
5766 					   network->ssid_len),
5767 				sizeof(escaped));
5768 			IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5769 					"because of ESSID mismatch: '%s'.\n",
5770 					escaped, network->bssid,
5771 					print_ssid(ssid, priv->essid,
5772 						   priv->essid_len));
5773 			return 0;
5774 		}
5775 	}
5776 
5777 	/* If the old network rate is better than this one, don't bother
5778 	 * testing everything else. */
5779 	if (match->network && match->network->stats.rssi > network->stats.rssi) {
5780 		char escaped[IW_ESSID_MAX_SIZE * 2 + 1];
5781 		strncpy(escaped,
5782 			print_ssid(ssid, network->ssid, network->ssid_len),
5783 			sizeof(escaped));
5784 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded because "
5785 				"'%s (%pM)' has a stronger signal.\n",
5786 				escaped, network->bssid,
5787 				print_ssid(ssid, match->network->ssid,
5788 					   match->network->ssid_len),
5789 				match->network->bssid);
5790 		return 0;
5791 	}
5792 
5793 	/* If this network has already had an association attempt within the
5794 	 * last 3 seconds, do not try and associate again... */
5795 	if (network->last_associate &&
5796 	    time_after(network->last_associate + (HZ * 3UL), jiffies)) {
5797 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5798 				"because of storming (%ums since last "
5799 				"assoc attempt).\n",
5800 				print_ssid(ssid, network->ssid,
5801 					   network->ssid_len),
5802 				network->bssid,
5803 				jiffies_to_msecs(jiffies -
5804 						 network->last_associate));
5805 		return 0;
5806 	}
5807 
5808 	/* Now go through and see if the requested network is valid... */
5809 	if (priv->ieee->scan_age != 0 &&
5810 	    time_after(jiffies, network->last_scanned + priv->ieee->scan_age)) {
5811 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5812 				"because of age: %ums.\n",
5813 				print_ssid(ssid, network->ssid,
5814 					   network->ssid_len),
5815 				network->bssid,
5816 				jiffies_to_msecs(jiffies -
5817 						 network->last_scanned));
5818 		return 0;
5819 	}
5820 
5821 	if ((priv->config & CFG_STATIC_CHANNEL) &&
5822 	    (network->channel != priv->channel)) {
5823 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5824 				"because of channel mismatch: %d != %d.\n",
5825 				print_ssid(ssid, network->ssid,
5826 					   network->ssid_len),
5827 				network->bssid,
5828 				network->channel, priv->channel);
5829 		return 0;
5830 	}
5831 
5832 	/* Verify privacy compatibility */
5833 	if (((priv->capability & CAP_PRIVACY_ON) ? 1 : 0) !=
5834 	    ((network->capability & WLAN_CAPABILITY_PRIVACY) ? 1 : 0)) {
5835 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5836 				"because of privacy mismatch: %s != %s.\n",
5837 				print_ssid(ssid, network->ssid,
5838 					   network->ssid_len),
5839 				network->bssid,
5840 				priv->capability & CAP_PRIVACY_ON ? "on" :
5841 				"off",
5842 				network->capability &
5843 				WLAN_CAPABILITY_PRIVACY ? "on" : "off");
5844 		return 0;
5845 	}
5846 
5847 	if ((priv->config & CFG_STATIC_BSSID) &&
5848 	    memcmp(network->bssid, priv->bssid, ETH_ALEN)) {
5849 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5850 				"because of BSSID mismatch: %pM.\n",
5851 				print_ssid(ssid, network->ssid,
5852 					   network->ssid_len),
5853 				network->bssid, priv->bssid);
5854 		return 0;
5855 	}
5856 
5857 	/* Filter out any incompatible freq / mode combinations */
5858 	if (!libipw_is_valid_mode(priv->ieee, network->mode)) {
5859 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5860 				"because of invalid frequency/mode "
5861 				"combination.\n",
5862 				print_ssid(ssid, network->ssid,
5863 					   network->ssid_len),
5864 				network->bssid);
5865 		return 0;
5866 	}
5867 
5868 	/* Filter out invalid channel in current GEO */
5869 	if (!libipw_is_valid_channel(priv->ieee, network->channel)) {
5870 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5871 				"because of invalid channel in current GEO\n",
5872 				print_ssid(ssid, network->ssid,
5873 					   network->ssid_len),
5874 				network->bssid);
5875 		return 0;
5876 	}
5877 
5878 	/* Ensure that the rates supported by the driver are compatible with
5879 	 * this AP, including verification of basic rates (mandatory) */
5880 	if (!ipw_compatible_rates(priv, network, &rates)) {
5881 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5882 				"because configured rate mask excludes "
5883 				"AP mandatory rate.\n",
5884 				print_ssid(ssid, network->ssid,
5885 					   network->ssid_len),
5886 				network->bssid);
5887 		return 0;
5888 	}
5889 
5890 	if (rates.num_rates == 0) {
5891 		IPW_DEBUG_ASSOC("Network '%s (%pM)' excluded "
5892 				"because of no compatible rates.\n",
5893 				print_ssid(ssid, network->ssid,
5894 					   network->ssid_len),
5895 				network->bssid);
5896 		return 0;
5897 	}
5898 
5899 	/* TODO: Perform any further minimal comparititive tests.  We do not
5900 	 * want to put too much policy logic here; intelligent scan selection
5901 	 * should occur within a generic IEEE 802.11 user space tool.  */
5902 
5903 	/* Set up 'new' AP to this network */
5904 	ipw_copy_rates(&match->rates, &rates);
5905 	match->network = network;
5906 
5907 	IPW_DEBUG_ASSOC("Network '%s (%pM)' is a viable match.\n",
5908 			print_ssid(ssid, network->ssid, network->ssid_len),
5909 			network->bssid);
5910 
5911 	return 1;
5912 }
5913 
ipw_adhoc_create(struct ipw_priv * priv,struct libipw_network * network)5914 static void ipw_adhoc_create(struct ipw_priv *priv,
5915 			     struct libipw_network *network)
5916 {
5917 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
5918 	int i;
5919 
5920 	/*
5921 	 * For the purposes of scanning, we can set our wireless mode
5922 	 * to trigger scans across combinations of bands, but when it
5923 	 * comes to creating a new ad-hoc network, we have tell the FW
5924 	 * exactly which band to use.
5925 	 *
5926 	 * We also have the possibility of an invalid channel for the
5927 	 * chossen band.  Attempting to create a new ad-hoc network
5928 	 * with an invalid channel for wireless mode will trigger a
5929 	 * FW fatal error.
5930 	 *
5931 	 */
5932 	switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
5933 	case LIBIPW_52GHZ_BAND:
5934 		network->mode = IEEE_A;
5935 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5936 		BUG_ON(i == -1);
5937 		if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5938 			IPW_WARNING("Overriding invalid channel\n");
5939 			priv->channel = geo->a[0].channel;
5940 		}
5941 		break;
5942 
5943 	case LIBIPW_24GHZ_BAND:
5944 		if (priv->ieee->mode & IEEE_G)
5945 			network->mode = IEEE_G;
5946 		else
5947 			network->mode = IEEE_B;
5948 		i = libipw_channel_to_index(priv->ieee, priv->channel);
5949 		BUG_ON(i == -1);
5950 		if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY) {
5951 			IPW_WARNING("Overriding invalid channel\n");
5952 			priv->channel = geo->bg[0].channel;
5953 		}
5954 		break;
5955 
5956 	default:
5957 		IPW_WARNING("Overriding invalid channel\n");
5958 		if (priv->ieee->mode & IEEE_A) {
5959 			network->mode = IEEE_A;
5960 			priv->channel = geo->a[0].channel;
5961 		} else if (priv->ieee->mode & IEEE_G) {
5962 			network->mode = IEEE_G;
5963 			priv->channel = geo->bg[0].channel;
5964 		} else {
5965 			network->mode = IEEE_B;
5966 			priv->channel = geo->bg[0].channel;
5967 		}
5968 		break;
5969 	}
5970 
5971 	network->channel = priv->channel;
5972 	priv->config |= CFG_ADHOC_PERSIST;
5973 	ipw_create_bssid(priv, network->bssid);
5974 	network->ssid_len = priv->essid_len;
5975 	memcpy(network->ssid, priv->essid, priv->essid_len);
5976 	memset(&network->stats, 0, sizeof(network->stats));
5977 	network->capability = WLAN_CAPABILITY_IBSS;
5978 	if (!(priv->config & CFG_PREAMBLE_LONG))
5979 		network->capability |= WLAN_CAPABILITY_SHORT_PREAMBLE;
5980 	if (priv->capability & CAP_PRIVACY_ON)
5981 		network->capability |= WLAN_CAPABILITY_PRIVACY;
5982 	network->rates_len = min(priv->rates.num_rates, MAX_RATES_LENGTH);
5983 	memcpy(network->rates, priv->rates.supported_rates, network->rates_len);
5984 	network->rates_ex_len = priv->rates.num_rates - network->rates_len;
5985 	memcpy(network->rates_ex,
5986 	       &priv->rates.supported_rates[network->rates_len],
5987 	       network->rates_ex_len);
5988 	network->last_scanned = 0;
5989 	network->flags = 0;
5990 	network->last_associate = 0;
5991 	network->time_stamp[0] = 0;
5992 	network->time_stamp[1] = 0;
5993 	network->beacon_interval = 100;	/* Default */
5994 	network->listen_interval = 10;	/* Default */
5995 	network->atim_window = 0;	/* Default */
5996 	network->wpa_ie_len = 0;
5997 	network->rsn_ie_len = 0;
5998 }
5999 
ipw_send_tgi_tx_key(struct ipw_priv * priv,int type,int index)6000 static void ipw_send_tgi_tx_key(struct ipw_priv *priv, int type, int index)
6001 {
6002 	struct ipw_tgi_tx_key key;
6003 
6004 	if (!(priv->ieee->sec.flags & (1 << index)))
6005 		return;
6006 
6007 	key.key_id = index;
6008 	memcpy(key.key, priv->ieee->sec.keys[index], SCM_TEMPORAL_KEY_LENGTH);
6009 	key.security_type = type;
6010 	key.station_index = 0;	/* always 0 for BSS */
6011 	key.flags = 0;
6012 	/* 0 for new key; previous value of counter (after fatal error) */
6013 	key.tx_counter[0] = cpu_to_le32(0);
6014 	key.tx_counter[1] = cpu_to_le32(0);
6015 
6016 	ipw_send_cmd_pdu(priv, IPW_CMD_TGI_TX_KEY, sizeof(key), &key);
6017 }
6018 
ipw_send_wep_keys(struct ipw_priv * priv,int type)6019 static void ipw_send_wep_keys(struct ipw_priv *priv, int type)
6020 {
6021 	struct ipw_wep_key key;
6022 	int i;
6023 
6024 	key.cmd_id = DINO_CMD_WEP_KEY;
6025 	key.seq_num = 0;
6026 
6027 	/* Note: AES keys cannot be set for multiple times.
6028 	 * Only set it at the first time. */
6029 	for (i = 0; i < 4; i++) {
6030 		key.key_index = i | type;
6031 		if (!(priv->ieee->sec.flags & (1 << i))) {
6032 			key.key_size = 0;
6033 			continue;
6034 		}
6035 
6036 		key.key_size = priv->ieee->sec.key_sizes[i];
6037 		memcpy(key.key, priv->ieee->sec.keys[i], key.key_size);
6038 
6039 		ipw_send_cmd_pdu(priv, IPW_CMD_WEP_KEY, sizeof(key), &key);
6040 	}
6041 }
6042 
ipw_set_hw_decrypt_unicast(struct ipw_priv * priv,int level)6043 static void ipw_set_hw_decrypt_unicast(struct ipw_priv *priv, int level)
6044 {
6045 	if (priv->ieee->host_encrypt)
6046 		return;
6047 
6048 	switch (level) {
6049 	case SEC_LEVEL_3:
6050 		priv->sys_config.disable_unicast_decryption = 0;
6051 		priv->ieee->host_decrypt = 0;
6052 		break;
6053 	case SEC_LEVEL_2:
6054 		priv->sys_config.disable_unicast_decryption = 1;
6055 		priv->ieee->host_decrypt = 1;
6056 		break;
6057 	case SEC_LEVEL_1:
6058 		priv->sys_config.disable_unicast_decryption = 0;
6059 		priv->ieee->host_decrypt = 0;
6060 		break;
6061 	case SEC_LEVEL_0:
6062 		priv->sys_config.disable_unicast_decryption = 1;
6063 		break;
6064 	default:
6065 		break;
6066 	}
6067 }
6068 
ipw_set_hw_decrypt_multicast(struct ipw_priv * priv,int level)6069 static void ipw_set_hw_decrypt_multicast(struct ipw_priv *priv, int level)
6070 {
6071 	if (priv->ieee->host_encrypt)
6072 		return;
6073 
6074 	switch (level) {
6075 	case SEC_LEVEL_3:
6076 		priv->sys_config.disable_multicast_decryption = 0;
6077 		break;
6078 	case SEC_LEVEL_2:
6079 		priv->sys_config.disable_multicast_decryption = 1;
6080 		break;
6081 	case SEC_LEVEL_1:
6082 		priv->sys_config.disable_multicast_decryption = 0;
6083 		break;
6084 	case SEC_LEVEL_0:
6085 		priv->sys_config.disable_multicast_decryption = 1;
6086 		break;
6087 	default:
6088 		break;
6089 	}
6090 }
6091 
ipw_set_hwcrypto_keys(struct ipw_priv * priv)6092 static void ipw_set_hwcrypto_keys(struct ipw_priv *priv)
6093 {
6094 	switch (priv->ieee->sec.level) {
6095 	case SEC_LEVEL_3:
6096 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6097 			ipw_send_tgi_tx_key(priv,
6098 					    DCT_FLAG_EXT_SECURITY_CCM,
6099 					    priv->ieee->sec.active_key);
6100 
6101 		if (!priv->ieee->host_mc_decrypt)
6102 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_CCM);
6103 		break;
6104 	case SEC_LEVEL_2:
6105 		if (priv->ieee->sec.flags & SEC_ACTIVE_KEY)
6106 			ipw_send_tgi_tx_key(priv,
6107 					    DCT_FLAG_EXT_SECURITY_TKIP,
6108 					    priv->ieee->sec.active_key);
6109 		break;
6110 	case SEC_LEVEL_1:
6111 		ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
6112 		ipw_set_hw_decrypt_unicast(priv, priv->ieee->sec.level);
6113 		ipw_set_hw_decrypt_multicast(priv, priv->ieee->sec.level);
6114 		break;
6115 	case SEC_LEVEL_0:
6116 	default:
6117 		break;
6118 	}
6119 }
6120 
ipw_adhoc_check(void * data)6121 static void ipw_adhoc_check(void *data)
6122 {
6123 	struct ipw_priv *priv = data;
6124 
6125 	if (priv->missed_adhoc_beacons++ > priv->disassociate_threshold &&
6126 	    !(priv->config & CFG_ADHOC_PERSIST)) {
6127 		IPW_DEBUG(IPW_DL_INFO | IPW_DL_NOTIF |
6128 			  IPW_DL_STATE | IPW_DL_ASSOC,
6129 			  "Missed beacon: %d - disassociate\n",
6130 			  priv->missed_adhoc_beacons);
6131 		ipw_remove_current_network(priv);
6132 		ipw_disassociate(priv);
6133 		return;
6134 	}
6135 
6136 	schedule_delayed_work(&priv->adhoc_check,
6137 			      le16_to_cpu(priv->assoc_request.beacon_interval));
6138 }
6139 
ipw_bg_adhoc_check(struct work_struct * work)6140 static void ipw_bg_adhoc_check(struct work_struct *work)
6141 {
6142 	struct ipw_priv *priv =
6143 		container_of(work, struct ipw_priv, adhoc_check.work);
6144 	mutex_lock(&priv->mutex);
6145 	ipw_adhoc_check(priv);
6146 	mutex_unlock(&priv->mutex);
6147 }
6148 
ipw_debug_config(struct ipw_priv * priv)6149 static void ipw_debug_config(struct ipw_priv *priv)
6150 {
6151 	DECLARE_SSID_BUF(ssid);
6152 	IPW_DEBUG_INFO("Scan completed, no valid APs matched "
6153 		       "[CFG 0x%08X]\n", priv->config);
6154 	if (priv->config & CFG_STATIC_CHANNEL)
6155 		IPW_DEBUG_INFO("Channel locked to %d\n", priv->channel);
6156 	else
6157 		IPW_DEBUG_INFO("Channel unlocked.\n");
6158 	if (priv->config & CFG_STATIC_ESSID)
6159 		IPW_DEBUG_INFO("ESSID locked to '%s'\n",
6160 			       print_ssid(ssid, priv->essid, priv->essid_len));
6161 	else
6162 		IPW_DEBUG_INFO("ESSID unlocked.\n");
6163 	if (priv->config & CFG_STATIC_BSSID)
6164 		IPW_DEBUG_INFO("BSSID locked to %pM\n", priv->bssid);
6165 	else
6166 		IPW_DEBUG_INFO("BSSID unlocked.\n");
6167 	if (priv->capability & CAP_PRIVACY_ON)
6168 		IPW_DEBUG_INFO("PRIVACY on\n");
6169 	else
6170 		IPW_DEBUG_INFO("PRIVACY off\n");
6171 	IPW_DEBUG_INFO("RATE MASK: 0x%08X\n", priv->rates_mask);
6172 }
6173 
ipw_set_fixed_rate(struct ipw_priv * priv,int mode)6174 static void ipw_set_fixed_rate(struct ipw_priv *priv, int mode)
6175 {
6176 	/* TODO: Verify that this works... */
6177 	struct ipw_fixed_rate fr;
6178 	u32 reg;
6179 	u16 mask = 0;
6180 	u16 new_tx_rates = priv->rates_mask;
6181 
6182 	/* Identify 'current FW band' and match it with the fixed
6183 	 * Tx rates */
6184 
6185 	switch (priv->ieee->freq_band) {
6186 	case LIBIPW_52GHZ_BAND:	/* A only */
6187 		/* IEEE_A */
6188 		if (priv->rates_mask & ~LIBIPW_OFDM_RATES_MASK) {
6189 			/* Invalid fixed rate mask */
6190 			IPW_DEBUG_WX
6191 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6192 			new_tx_rates = 0;
6193 			break;
6194 		}
6195 
6196 		new_tx_rates >>= LIBIPW_OFDM_SHIFT_MASK_A;
6197 		break;
6198 
6199 	default:		/* 2.4Ghz or Mixed */
6200 		/* IEEE_B */
6201 		if (mode == IEEE_B) {
6202 			if (new_tx_rates & ~LIBIPW_CCK_RATES_MASK) {
6203 				/* Invalid fixed rate mask */
6204 				IPW_DEBUG_WX
6205 				    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6206 				new_tx_rates = 0;
6207 			}
6208 			break;
6209 		}
6210 
6211 		/* IEEE_G */
6212 		if (new_tx_rates & ~(LIBIPW_CCK_RATES_MASK |
6213 				    LIBIPW_OFDM_RATES_MASK)) {
6214 			/* Invalid fixed rate mask */
6215 			IPW_DEBUG_WX
6216 			    ("invalid fixed rate mask in ipw_set_fixed_rate\n");
6217 			new_tx_rates = 0;
6218 			break;
6219 		}
6220 
6221 		if (LIBIPW_OFDM_RATE_6MB_MASK & new_tx_rates) {
6222 			mask |= (LIBIPW_OFDM_RATE_6MB_MASK >> 1);
6223 			new_tx_rates &= ~LIBIPW_OFDM_RATE_6MB_MASK;
6224 		}
6225 
6226 		if (LIBIPW_OFDM_RATE_9MB_MASK & new_tx_rates) {
6227 			mask |= (LIBIPW_OFDM_RATE_9MB_MASK >> 1);
6228 			new_tx_rates &= ~LIBIPW_OFDM_RATE_9MB_MASK;
6229 		}
6230 
6231 		if (LIBIPW_OFDM_RATE_12MB_MASK & new_tx_rates) {
6232 			mask |= (LIBIPW_OFDM_RATE_12MB_MASK >> 1);
6233 			new_tx_rates &= ~LIBIPW_OFDM_RATE_12MB_MASK;
6234 		}
6235 
6236 		new_tx_rates |= mask;
6237 		break;
6238 	}
6239 
6240 	fr.tx_rates = cpu_to_le16(new_tx_rates);
6241 
6242 	reg = ipw_read32(priv, IPW_MEM_FIXED_OVERRIDE);
6243 	ipw_write_reg32(priv, reg, *(u32 *) & fr);
6244 }
6245 
ipw_abort_scan(struct ipw_priv * priv)6246 static void ipw_abort_scan(struct ipw_priv *priv)
6247 {
6248 	int err;
6249 
6250 	if (priv->status & STATUS_SCAN_ABORTING) {
6251 		IPW_DEBUG_HC("Ignoring concurrent scan abort request.\n");
6252 		return;
6253 	}
6254 	priv->status |= STATUS_SCAN_ABORTING;
6255 
6256 	err = ipw_send_scan_abort(priv);
6257 	if (err)
6258 		IPW_DEBUG_HC("Request to abort scan failed.\n");
6259 }
6260 
ipw_add_scan_channels(struct ipw_priv * priv,struct ipw_scan_request_ext * scan,int scan_type)6261 static void ipw_add_scan_channels(struct ipw_priv *priv,
6262 				  struct ipw_scan_request_ext *scan,
6263 				  int scan_type)
6264 {
6265 	int channel_index = 0;
6266 	const struct libipw_geo *geo;
6267 	int i;
6268 
6269 	geo = libipw_get_geo(priv->ieee);
6270 
6271 	if (priv->ieee->freq_band & LIBIPW_52GHZ_BAND) {
6272 		int start = channel_index;
6273 		for (i = 0; i < geo->a_channels; i++) {
6274 			if ((priv->status & STATUS_ASSOCIATED) &&
6275 			    geo->a[i].channel == priv->channel)
6276 				continue;
6277 			channel_index++;
6278 			scan->channels_list[channel_index] = geo->a[i].channel;
6279 			ipw_set_scan_type(scan, channel_index,
6280 					  geo->a[i].
6281 					  flags & LIBIPW_CH_PASSIVE_ONLY ?
6282 					  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN :
6283 					  scan_type);
6284 		}
6285 
6286 		if (start != channel_index) {
6287 			scan->channels_list[start] = (u8) (IPW_A_MODE << 6) |
6288 			    (channel_index - start);
6289 			channel_index++;
6290 		}
6291 	}
6292 
6293 	if (priv->ieee->freq_band & LIBIPW_24GHZ_BAND) {
6294 		int start = channel_index;
6295 		if (priv->config & CFG_SPEED_SCAN) {
6296 			int index;
6297 			u8 channels[LIBIPW_24GHZ_CHANNELS] = {
6298 				/* nop out the list */
6299 				[0] = 0
6300 			};
6301 
6302 			u8 channel;
6303 			while (channel_index < IPW_SCAN_CHANNELS - 1) {
6304 				channel =
6305 				    priv->speed_scan[priv->speed_scan_pos];
6306 				if (channel == 0) {
6307 					priv->speed_scan_pos = 0;
6308 					channel = priv->speed_scan[0];
6309 				}
6310 				if ((priv->status & STATUS_ASSOCIATED) &&
6311 				    channel == priv->channel) {
6312 					priv->speed_scan_pos++;
6313 					continue;
6314 				}
6315 
6316 				/* If this channel has already been
6317 				 * added in scan, break from loop
6318 				 * and this will be the first channel
6319 				 * in the next scan.
6320 				 */
6321 				if (channels[channel - 1] != 0)
6322 					break;
6323 
6324 				channels[channel - 1] = 1;
6325 				priv->speed_scan_pos++;
6326 				channel_index++;
6327 				scan->channels_list[channel_index] = channel;
6328 				index =
6329 				    libipw_channel_to_index(priv->ieee, channel);
6330 				ipw_set_scan_type(scan, channel_index,
6331 						  geo->bg[index].
6332 						  flags &
6333 						  LIBIPW_CH_PASSIVE_ONLY ?
6334 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6335 						  : scan_type);
6336 			}
6337 		} else {
6338 			for (i = 0; i < geo->bg_channels; i++) {
6339 				if ((priv->status & STATUS_ASSOCIATED) &&
6340 				    geo->bg[i].channel == priv->channel)
6341 					continue;
6342 				channel_index++;
6343 				scan->channels_list[channel_index] =
6344 				    geo->bg[i].channel;
6345 				ipw_set_scan_type(scan, channel_index,
6346 						  geo->bg[i].
6347 						  flags &
6348 						  LIBIPW_CH_PASSIVE_ONLY ?
6349 						  IPW_SCAN_PASSIVE_FULL_DWELL_SCAN
6350 						  : scan_type);
6351 			}
6352 		}
6353 
6354 		if (start != channel_index) {
6355 			scan->channels_list[start] = (u8) (IPW_B_MODE << 6) |
6356 			    (channel_index - start);
6357 		}
6358 	}
6359 }
6360 
ipw_passive_dwell_time(struct ipw_priv * priv)6361 static int ipw_passive_dwell_time(struct ipw_priv *priv)
6362 {
6363 	/* staying on passive channels longer than the DTIM interval during a
6364 	 * scan, while associated, causes the firmware to cancel the scan
6365 	 * without notification. Hence, don't stay on passive channels longer
6366 	 * than the beacon interval.
6367 	 */
6368 	if (priv->status & STATUS_ASSOCIATED
6369 	    && priv->assoc_network->beacon_interval > 10)
6370 		return priv->assoc_network->beacon_interval - 10;
6371 	else
6372 		return 120;
6373 }
6374 
ipw_request_scan_helper(struct ipw_priv * priv,int type,int direct)6375 static int ipw_request_scan_helper(struct ipw_priv *priv, int type, int direct)
6376 {
6377 	struct ipw_scan_request_ext scan;
6378 	int err = 0, scan_type;
6379 
6380 	if (!(priv->status & STATUS_INIT) ||
6381 	    (priv->status & STATUS_EXIT_PENDING))
6382 		return 0;
6383 
6384 	mutex_lock(&priv->mutex);
6385 
6386 	if (direct && (priv->direct_scan_ssid_len == 0)) {
6387 		IPW_DEBUG_HC("Direct scan requested but no SSID to scan for\n");
6388 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6389 		goto done;
6390 	}
6391 
6392 	if (priv->status & STATUS_SCANNING) {
6393 		IPW_DEBUG_HC("Concurrent scan requested.  Queuing.\n");
6394 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6395 					STATUS_SCAN_PENDING;
6396 		goto done;
6397 	}
6398 
6399 	if (!(priv->status & STATUS_SCAN_FORCED) &&
6400 	    priv->status & STATUS_SCAN_ABORTING) {
6401 		IPW_DEBUG_HC("Scan request while abort pending.  Queuing.\n");
6402 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6403 					STATUS_SCAN_PENDING;
6404 		goto done;
6405 	}
6406 
6407 	if (priv->status & STATUS_RF_KILL_MASK) {
6408 		IPW_DEBUG_HC("Queuing scan due to RF Kill activation\n");
6409 		priv->status |= direct ? STATUS_DIRECT_SCAN_PENDING :
6410 					STATUS_SCAN_PENDING;
6411 		goto done;
6412 	}
6413 
6414 	memset(&scan, 0, sizeof(scan));
6415 	scan.full_scan_index = cpu_to_le32(libipw_get_scans(priv->ieee));
6416 
6417 	if (type == IW_SCAN_TYPE_PASSIVE) {
6418 		IPW_DEBUG_WX("use passive scanning\n");
6419 		scan_type = IPW_SCAN_PASSIVE_FULL_DWELL_SCAN;
6420 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6421 			cpu_to_le16(ipw_passive_dwell_time(priv));
6422 		ipw_add_scan_channels(priv, &scan, scan_type);
6423 		goto send_request;
6424 	}
6425 
6426 	/* Use active scan by default. */
6427 	if (priv->config & CFG_SPEED_SCAN)
6428 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6429 			cpu_to_le16(30);
6430 	else
6431 		scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_SCAN] =
6432 			cpu_to_le16(20);
6433 
6434 	scan.dwell_time[IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN] =
6435 		cpu_to_le16(20);
6436 
6437 	scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6438 		cpu_to_le16(ipw_passive_dwell_time(priv));
6439 	scan.dwell_time[IPW_SCAN_ACTIVE_DIRECT_SCAN] = cpu_to_le16(20);
6440 
6441 #ifdef CONFIG_IPW2200_MONITOR
6442 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
6443 		u8 channel;
6444 		u8 band = 0;
6445 
6446 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
6447 		case LIBIPW_52GHZ_BAND:
6448 			band = (u8) (IPW_A_MODE << 6) | 1;
6449 			channel = priv->channel;
6450 			break;
6451 
6452 		case LIBIPW_24GHZ_BAND:
6453 			band = (u8) (IPW_B_MODE << 6) | 1;
6454 			channel = priv->channel;
6455 			break;
6456 
6457 		default:
6458 			band = (u8) (IPW_B_MODE << 6) | 1;
6459 			channel = 9;
6460 			break;
6461 		}
6462 
6463 		scan.channels_list[0] = band;
6464 		scan.channels_list[1] = channel;
6465 		ipw_set_scan_type(&scan, 1, IPW_SCAN_PASSIVE_FULL_DWELL_SCAN);
6466 
6467 		/* NOTE:  The card will sit on this channel for this time
6468 		 * period.  Scan aborts are timing sensitive and frequently
6469 		 * result in firmware restarts.  As such, it is best to
6470 		 * set a small dwell_time here and just keep re-issuing
6471 		 * scans.  Otherwise fast channel hopping will not actually
6472 		 * hop channels.
6473 		 *
6474 		 * TODO: Move SPEED SCAN support to all modes and bands */
6475 		scan.dwell_time[IPW_SCAN_PASSIVE_FULL_DWELL_SCAN] =
6476 			cpu_to_le16(2000);
6477 	} else {
6478 #endif				/* CONFIG_IPW2200_MONITOR */
6479 		/* Honor direct scans first, otherwise if we are roaming make
6480 		 * this a direct scan for the current network.  Finally,
6481 		 * ensure that every other scan is a fast channel hop scan */
6482 		if (direct) {
6483 			err = ipw_send_ssid(priv, priv->direct_scan_ssid,
6484 			                    priv->direct_scan_ssid_len);
6485 			if (err) {
6486 				IPW_DEBUG_HC("Attempt to send SSID command  "
6487 					     "failed\n");
6488 				goto done;
6489 			}
6490 
6491 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6492 		} else if ((priv->status & STATUS_ROAMING)
6493 			   || (!(priv->status & STATUS_ASSOCIATED)
6494 			       && (priv->config & CFG_STATIC_ESSID)
6495 			       && (le32_to_cpu(scan.full_scan_index) % 2))) {
6496 			err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
6497 			if (err) {
6498 				IPW_DEBUG_HC("Attempt to send SSID command "
6499 					     "failed.\n");
6500 				goto done;
6501 			}
6502 
6503 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_AND_DIRECT_SCAN;
6504 		} else
6505 			scan_type = IPW_SCAN_ACTIVE_BROADCAST_SCAN;
6506 
6507 		ipw_add_scan_channels(priv, &scan, scan_type);
6508 #ifdef CONFIG_IPW2200_MONITOR
6509 	}
6510 #endif
6511 
6512 send_request:
6513 	err = ipw_send_scan_request_ext(priv, &scan);
6514 	if (err) {
6515 		IPW_DEBUG_HC("Sending scan command failed: %08X\n", err);
6516 		goto done;
6517 	}
6518 
6519 	priv->status |= STATUS_SCANNING;
6520 	if (direct) {
6521 		priv->status &= ~STATUS_DIRECT_SCAN_PENDING;
6522 		priv->direct_scan_ssid_len = 0;
6523 	} else
6524 		priv->status &= ~STATUS_SCAN_PENDING;
6525 
6526 	schedule_delayed_work(&priv->scan_check, IPW_SCAN_CHECK_WATCHDOG);
6527 done:
6528 	mutex_unlock(&priv->mutex);
6529 	return err;
6530 }
6531 
ipw_request_passive_scan(struct work_struct * work)6532 static void ipw_request_passive_scan(struct work_struct *work)
6533 {
6534 	struct ipw_priv *priv =
6535 		container_of(work, struct ipw_priv, request_passive_scan.work);
6536 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_PASSIVE, 0);
6537 }
6538 
ipw_request_scan(struct work_struct * work)6539 static void ipw_request_scan(struct work_struct *work)
6540 {
6541 	struct ipw_priv *priv =
6542 		container_of(work, struct ipw_priv, request_scan.work);
6543 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 0);
6544 }
6545 
ipw_request_direct_scan(struct work_struct * work)6546 static void ipw_request_direct_scan(struct work_struct *work)
6547 {
6548 	struct ipw_priv *priv =
6549 		container_of(work, struct ipw_priv, request_direct_scan.work);
6550 	ipw_request_scan_helper(priv, IW_SCAN_TYPE_ACTIVE, 1);
6551 }
6552 
ipw_bg_abort_scan(struct work_struct * work)6553 static void ipw_bg_abort_scan(struct work_struct *work)
6554 {
6555 	struct ipw_priv *priv =
6556 		container_of(work, struct ipw_priv, abort_scan);
6557 	mutex_lock(&priv->mutex);
6558 	ipw_abort_scan(priv);
6559 	mutex_unlock(&priv->mutex);
6560 }
6561 
ipw_wpa_enable(struct ipw_priv * priv,int value)6562 static int ipw_wpa_enable(struct ipw_priv *priv, int value)
6563 {
6564 	/* This is called when wpa_supplicant loads and closes the driver
6565 	 * interface. */
6566 	priv->ieee->wpa_enabled = value;
6567 	return 0;
6568 }
6569 
ipw_wpa_set_auth_algs(struct ipw_priv * priv,int value)6570 static int ipw_wpa_set_auth_algs(struct ipw_priv *priv, int value)
6571 {
6572 	struct libipw_device *ieee = priv->ieee;
6573 	struct libipw_security sec = {
6574 		.flags = SEC_AUTH_MODE,
6575 	};
6576 	int ret = 0;
6577 
6578 	if (value & IW_AUTH_ALG_SHARED_KEY) {
6579 		sec.auth_mode = WLAN_AUTH_SHARED_KEY;
6580 		ieee->open_wep = 0;
6581 	} else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
6582 		sec.auth_mode = WLAN_AUTH_OPEN;
6583 		ieee->open_wep = 1;
6584 	} else if (value & IW_AUTH_ALG_LEAP) {
6585 		sec.auth_mode = WLAN_AUTH_LEAP;
6586 		ieee->open_wep = 1;
6587 	} else
6588 		return -EINVAL;
6589 
6590 	if (ieee->set_security)
6591 		ieee->set_security(ieee->dev, &sec);
6592 	else
6593 		ret = -EOPNOTSUPP;
6594 
6595 	return ret;
6596 }
6597 
ipw_wpa_assoc_frame(struct ipw_priv * priv,char * wpa_ie,int wpa_ie_len)6598 static void ipw_wpa_assoc_frame(struct ipw_priv *priv, char *wpa_ie,
6599 				int wpa_ie_len)
6600 {
6601 	/* make sure WPA is enabled */
6602 	ipw_wpa_enable(priv, 1);
6603 }
6604 
ipw_set_rsn_capa(struct ipw_priv * priv,char * capabilities,int length)6605 static int ipw_set_rsn_capa(struct ipw_priv *priv,
6606 			    char *capabilities, int length)
6607 {
6608 	IPW_DEBUG_HC("HOST_CMD_RSN_CAPABILITIES\n");
6609 
6610 	return ipw_send_cmd_pdu(priv, IPW_CMD_RSN_CAPABILITIES, length,
6611 				capabilities);
6612 }
6613 
6614 /*
6615  * WE-18 support
6616  */
6617 
6618 /* SIOCSIWGENIE */
ipw_wx_set_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6619 static int ipw_wx_set_genie(struct net_device *dev,
6620 			    struct iw_request_info *info,
6621 			    union iwreq_data *wrqu, char *extra)
6622 {
6623 	struct ipw_priv *priv = libipw_priv(dev);
6624 	struct libipw_device *ieee = priv->ieee;
6625 	u8 *buf;
6626 	int err = 0;
6627 
6628 	if (wrqu->data.length > MAX_WPA_IE_LEN ||
6629 	    (wrqu->data.length && extra == NULL))
6630 		return -EINVAL;
6631 
6632 	if (wrqu->data.length) {
6633 		buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
6634 		if (buf == NULL) {
6635 			err = -ENOMEM;
6636 			goto out;
6637 		}
6638 
6639 		kfree(ieee->wpa_ie);
6640 		ieee->wpa_ie = buf;
6641 		ieee->wpa_ie_len = wrqu->data.length;
6642 	} else {
6643 		kfree(ieee->wpa_ie);
6644 		ieee->wpa_ie = NULL;
6645 		ieee->wpa_ie_len = 0;
6646 	}
6647 
6648 	ipw_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
6649       out:
6650 	return err;
6651 }
6652 
6653 /* SIOCGIWGENIE */
ipw_wx_get_genie(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6654 static int ipw_wx_get_genie(struct net_device *dev,
6655 			    struct iw_request_info *info,
6656 			    union iwreq_data *wrqu, char *extra)
6657 {
6658 	struct ipw_priv *priv = libipw_priv(dev);
6659 	struct libipw_device *ieee = priv->ieee;
6660 	int err = 0;
6661 
6662 	if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
6663 		wrqu->data.length = 0;
6664 		goto out;
6665 	}
6666 
6667 	if (wrqu->data.length < ieee->wpa_ie_len) {
6668 		err = -E2BIG;
6669 		goto out;
6670 	}
6671 
6672 	wrqu->data.length = ieee->wpa_ie_len;
6673 	memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
6674 
6675       out:
6676 	return err;
6677 }
6678 
wext_cipher2level(int cipher)6679 static int wext_cipher2level(int cipher)
6680 {
6681 	switch (cipher) {
6682 	case IW_AUTH_CIPHER_NONE:
6683 		return SEC_LEVEL_0;
6684 	case IW_AUTH_CIPHER_WEP40:
6685 	case IW_AUTH_CIPHER_WEP104:
6686 		return SEC_LEVEL_1;
6687 	case IW_AUTH_CIPHER_TKIP:
6688 		return SEC_LEVEL_2;
6689 	case IW_AUTH_CIPHER_CCMP:
6690 		return SEC_LEVEL_3;
6691 	default:
6692 		return -1;
6693 	}
6694 }
6695 
6696 /* SIOCSIWAUTH */
ipw_wx_set_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6697 static int ipw_wx_set_auth(struct net_device *dev,
6698 			   struct iw_request_info *info,
6699 			   union iwreq_data *wrqu, char *extra)
6700 {
6701 	struct ipw_priv *priv = libipw_priv(dev);
6702 	struct libipw_device *ieee = priv->ieee;
6703 	struct iw_param *param = &wrqu->param;
6704 	struct lib80211_crypt_data *crypt;
6705 	unsigned long flags;
6706 	int ret = 0;
6707 
6708 	switch (param->flags & IW_AUTH_INDEX) {
6709 	case IW_AUTH_WPA_VERSION:
6710 		break;
6711 	case IW_AUTH_CIPHER_PAIRWISE:
6712 		ipw_set_hw_decrypt_unicast(priv,
6713 					   wext_cipher2level(param->value));
6714 		break;
6715 	case IW_AUTH_CIPHER_GROUP:
6716 		ipw_set_hw_decrypt_multicast(priv,
6717 					     wext_cipher2level(param->value));
6718 		break;
6719 	case IW_AUTH_KEY_MGMT:
6720 		/*
6721 		 * ipw2200 does not use these parameters
6722 		 */
6723 		break;
6724 
6725 	case IW_AUTH_TKIP_COUNTERMEASURES:
6726 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6727 		if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
6728 			break;
6729 
6730 		flags = crypt->ops->get_flags(crypt->priv);
6731 
6732 		if (param->value)
6733 			flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6734 		else
6735 			flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
6736 
6737 		crypt->ops->set_flags(flags, crypt->priv);
6738 
6739 		break;
6740 
6741 	case IW_AUTH_DROP_UNENCRYPTED:{
6742 			/* HACK:
6743 			 *
6744 			 * wpa_supplicant calls set_wpa_enabled when the driver
6745 			 * is loaded and unloaded, regardless of if WPA is being
6746 			 * used.  No other calls are made which can be used to
6747 			 * determine if encryption will be used or not prior to
6748 			 * association being expected.  If encryption is not being
6749 			 * used, drop_unencrypted is set to false, else true -- we
6750 			 * can use this to determine if the CAP_PRIVACY_ON bit should
6751 			 * be set.
6752 			 */
6753 			struct libipw_security sec = {
6754 				.flags = SEC_ENABLED,
6755 				.enabled = param->value,
6756 			};
6757 			priv->ieee->drop_unencrypted = param->value;
6758 			/* We only change SEC_LEVEL for open mode. Others
6759 			 * are set by ipw_wpa_set_encryption.
6760 			 */
6761 			if (!param->value) {
6762 				sec.flags |= SEC_LEVEL;
6763 				sec.level = SEC_LEVEL_0;
6764 			} else {
6765 				sec.flags |= SEC_LEVEL;
6766 				sec.level = SEC_LEVEL_1;
6767 			}
6768 			if (priv->ieee->set_security)
6769 				priv->ieee->set_security(priv->ieee->dev, &sec);
6770 			break;
6771 		}
6772 
6773 	case IW_AUTH_80211_AUTH_ALG:
6774 		ret = ipw_wpa_set_auth_algs(priv, param->value);
6775 		break;
6776 
6777 	case IW_AUTH_WPA_ENABLED:
6778 		ret = ipw_wpa_enable(priv, param->value);
6779 		ipw_disassociate(priv);
6780 		break;
6781 
6782 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6783 		ieee->ieee802_1x = param->value;
6784 		break;
6785 
6786 	case IW_AUTH_PRIVACY_INVOKED:
6787 		ieee->privacy_invoked = param->value;
6788 		break;
6789 
6790 	default:
6791 		return -EOPNOTSUPP;
6792 	}
6793 	return ret;
6794 }
6795 
6796 /* SIOCGIWAUTH */
ipw_wx_get_auth(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6797 static int ipw_wx_get_auth(struct net_device *dev,
6798 			   struct iw_request_info *info,
6799 			   union iwreq_data *wrqu, char *extra)
6800 {
6801 	struct ipw_priv *priv = libipw_priv(dev);
6802 	struct libipw_device *ieee = priv->ieee;
6803 	struct lib80211_crypt_data *crypt;
6804 	struct iw_param *param = &wrqu->param;
6805 	int ret = 0;
6806 
6807 	switch (param->flags & IW_AUTH_INDEX) {
6808 	case IW_AUTH_WPA_VERSION:
6809 	case IW_AUTH_CIPHER_PAIRWISE:
6810 	case IW_AUTH_CIPHER_GROUP:
6811 	case IW_AUTH_KEY_MGMT:
6812 		/*
6813 		 * wpa_supplicant will control these internally
6814 		 */
6815 		ret = -EOPNOTSUPP;
6816 		break;
6817 
6818 	case IW_AUTH_TKIP_COUNTERMEASURES:
6819 		crypt = priv->ieee->crypt_info.crypt[priv->ieee->crypt_info.tx_keyidx];
6820 		if (!crypt || !crypt->ops->get_flags)
6821 			break;
6822 
6823 		param->value = (crypt->ops->get_flags(crypt->priv) &
6824 				IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
6825 
6826 		break;
6827 
6828 	case IW_AUTH_DROP_UNENCRYPTED:
6829 		param->value = ieee->drop_unencrypted;
6830 		break;
6831 
6832 	case IW_AUTH_80211_AUTH_ALG:
6833 		param->value = ieee->sec.auth_mode;
6834 		break;
6835 
6836 	case IW_AUTH_WPA_ENABLED:
6837 		param->value = ieee->wpa_enabled;
6838 		break;
6839 
6840 	case IW_AUTH_RX_UNENCRYPTED_EAPOL:
6841 		param->value = ieee->ieee802_1x;
6842 		break;
6843 
6844 	case IW_AUTH_ROAMING_CONTROL:
6845 	case IW_AUTH_PRIVACY_INVOKED:
6846 		param->value = ieee->privacy_invoked;
6847 		break;
6848 
6849 	default:
6850 		return -EOPNOTSUPP;
6851 	}
6852 	return 0;
6853 }
6854 
6855 /* SIOCSIWENCODEEXT */
ipw_wx_set_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6856 static int ipw_wx_set_encodeext(struct net_device *dev,
6857 				struct iw_request_info *info,
6858 				union iwreq_data *wrqu, char *extra)
6859 {
6860 	struct ipw_priv *priv = libipw_priv(dev);
6861 	struct iw_encode_ext *ext = (struct iw_encode_ext *)extra;
6862 
6863 	if (hwcrypto) {
6864 		if (ext->alg == IW_ENCODE_ALG_TKIP) {
6865 			/* IPW HW can't build TKIP MIC,
6866 			   host decryption still needed */
6867 			if (ext->ext_flags & IW_ENCODE_EXT_GROUP_KEY)
6868 				priv->ieee->host_mc_decrypt = 1;
6869 			else {
6870 				priv->ieee->host_encrypt = 0;
6871 				priv->ieee->host_encrypt_msdu = 1;
6872 				priv->ieee->host_decrypt = 1;
6873 			}
6874 		} else {
6875 			priv->ieee->host_encrypt = 0;
6876 			priv->ieee->host_encrypt_msdu = 0;
6877 			priv->ieee->host_decrypt = 0;
6878 			priv->ieee->host_mc_decrypt = 0;
6879 		}
6880 	}
6881 
6882 	return libipw_wx_set_encodeext(priv->ieee, info, wrqu, extra);
6883 }
6884 
6885 /* SIOCGIWENCODEEXT */
ipw_wx_get_encodeext(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6886 static int ipw_wx_get_encodeext(struct net_device *dev,
6887 				struct iw_request_info *info,
6888 				union iwreq_data *wrqu, char *extra)
6889 {
6890 	struct ipw_priv *priv = libipw_priv(dev);
6891 	return libipw_wx_get_encodeext(priv->ieee, info, wrqu, extra);
6892 }
6893 
6894 /* SIOCSIWMLME */
ipw_wx_set_mlme(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)6895 static int ipw_wx_set_mlme(struct net_device *dev,
6896 			   struct iw_request_info *info,
6897 			   union iwreq_data *wrqu, char *extra)
6898 {
6899 	struct ipw_priv *priv = libipw_priv(dev);
6900 	struct iw_mlme *mlme = (struct iw_mlme *)extra;
6901 	__le16 reason;
6902 
6903 	reason = cpu_to_le16(mlme->reason_code);
6904 
6905 	switch (mlme->cmd) {
6906 	case IW_MLME_DEAUTH:
6907 		/* silently ignore */
6908 		break;
6909 
6910 	case IW_MLME_DISASSOC:
6911 		ipw_disassociate(priv);
6912 		break;
6913 
6914 	default:
6915 		return -EOPNOTSUPP;
6916 	}
6917 	return 0;
6918 }
6919 
6920 #ifdef CONFIG_IPW2200_QOS
6921 
6922 /* QoS */
6923 /*
6924 * get the modulation type of the current network or
6925 * the card current mode
6926 */
ipw_qos_current_mode(struct ipw_priv * priv)6927 static u8 ipw_qos_current_mode(struct ipw_priv * priv)
6928 {
6929 	u8 mode = 0;
6930 
6931 	if (priv->status & STATUS_ASSOCIATED) {
6932 		unsigned long flags;
6933 
6934 		spin_lock_irqsave(&priv->ieee->lock, flags);
6935 		mode = priv->assoc_network->mode;
6936 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
6937 	} else {
6938 		mode = priv->ieee->mode;
6939 	}
6940 	IPW_DEBUG_QOS("QoS network/card mode %d\n", mode);
6941 	return mode;
6942 }
6943 
6944 /*
6945 * Handle management frame beacon and probe response
6946 */
ipw_qos_handle_probe_response(struct ipw_priv * priv,int active_network,struct libipw_network * network)6947 static int ipw_qos_handle_probe_response(struct ipw_priv *priv,
6948 					 int active_network,
6949 					 struct libipw_network *network)
6950 {
6951 	u32 size = sizeof(struct libipw_qos_parameters);
6952 
6953 	if (network->capability & WLAN_CAPABILITY_IBSS)
6954 		network->qos_data.active = network->qos_data.supported;
6955 
6956 	if (network->flags & NETWORK_HAS_QOS_MASK) {
6957 		if (active_network &&
6958 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS))
6959 			network->qos_data.active = network->qos_data.supported;
6960 
6961 		if ((network->qos_data.active == 1) && (active_network == 1) &&
6962 		    (network->flags & NETWORK_HAS_QOS_PARAMETERS) &&
6963 		    (network->qos_data.old_param_count !=
6964 		     network->qos_data.param_count)) {
6965 			network->qos_data.old_param_count =
6966 			    network->qos_data.param_count;
6967 			schedule_work(&priv->qos_activate);
6968 			IPW_DEBUG_QOS("QoS parameters change call "
6969 				      "qos_activate\n");
6970 		}
6971 	} else {
6972 		if ((priv->ieee->mode == IEEE_B) || (network->mode == IEEE_B))
6973 			memcpy(&network->qos_data.parameters,
6974 			       &def_parameters_CCK, size);
6975 		else
6976 			memcpy(&network->qos_data.parameters,
6977 			       &def_parameters_OFDM, size);
6978 
6979 		if ((network->qos_data.active == 1) && (active_network == 1)) {
6980 			IPW_DEBUG_QOS("QoS was disabled call qos_activate\n");
6981 			schedule_work(&priv->qos_activate);
6982 		}
6983 
6984 		network->qos_data.active = 0;
6985 		network->qos_data.supported = 0;
6986 	}
6987 	if ((priv->status & STATUS_ASSOCIATED) &&
6988 	    (priv->ieee->iw_mode == IW_MODE_ADHOC) && (active_network == 0)) {
6989 		if (memcmp(network->bssid, priv->bssid, ETH_ALEN))
6990 			if (network->capability & WLAN_CAPABILITY_IBSS)
6991 				if ((network->ssid_len ==
6992 				     priv->assoc_network->ssid_len) &&
6993 				    !memcmp(network->ssid,
6994 					    priv->assoc_network->ssid,
6995 					    network->ssid_len)) {
6996 					schedule_work(&priv->merge_networks);
6997 				}
6998 	}
6999 
7000 	return 0;
7001 }
7002 
7003 /*
7004 * This function set up the firmware to support QoS. It sends
7005 * IPW_CMD_QOS_PARAMETERS and IPW_CMD_WME_INFO
7006 */
ipw_qos_activate(struct ipw_priv * priv,struct libipw_qos_data * qos_network_data)7007 static int ipw_qos_activate(struct ipw_priv *priv,
7008 			    struct libipw_qos_data *qos_network_data)
7009 {
7010 	int err;
7011 	struct libipw_qos_parameters qos_parameters[QOS_QOS_SETS];
7012 	struct libipw_qos_parameters *active_one = NULL;
7013 	u32 size = sizeof(struct libipw_qos_parameters);
7014 	u32 burst_duration;
7015 	int i;
7016 	u8 type;
7017 
7018 	type = ipw_qos_current_mode(priv);
7019 
7020 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_CCK]);
7021 	memcpy(active_one, priv->qos_data.def_qos_parm_CCK, size);
7022 	active_one = &(qos_parameters[QOS_PARAM_SET_DEF_OFDM]);
7023 	memcpy(active_one, priv->qos_data.def_qos_parm_OFDM, size);
7024 
7025 	if (qos_network_data == NULL) {
7026 		if (type == IEEE_B) {
7027 			IPW_DEBUG_QOS("QoS activate network mode %d\n", type);
7028 			active_one = &def_parameters_CCK;
7029 		} else
7030 			active_one = &def_parameters_OFDM;
7031 
7032 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7033 		burst_duration = ipw_qos_get_burst_duration(priv);
7034 		for (i = 0; i < QOS_QUEUE_NUM; i++)
7035 			qos_parameters[QOS_PARAM_SET_ACTIVE].tx_op_limit[i] =
7036 			    cpu_to_le16(burst_duration);
7037 	} else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7038 		if (type == IEEE_B) {
7039 			IPW_DEBUG_QOS("QoS activate IBSS nework mode %d\n",
7040 				      type);
7041 			if (priv->qos_data.qos_enable == 0)
7042 				active_one = &def_parameters_CCK;
7043 			else
7044 				active_one = priv->qos_data.def_qos_parm_CCK;
7045 		} else {
7046 			if (priv->qos_data.qos_enable == 0)
7047 				active_one = &def_parameters_OFDM;
7048 			else
7049 				active_one = priv->qos_data.def_qos_parm_OFDM;
7050 		}
7051 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7052 	} else {
7053 		unsigned long flags;
7054 		int active;
7055 
7056 		spin_lock_irqsave(&priv->ieee->lock, flags);
7057 		active_one = &(qos_network_data->parameters);
7058 		qos_network_data->old_param_count =
7059 		    qos_network_data->param_count;
7060 		memcpy(&qos_parameters[QOS_PARAM_SET_ACTIVE], active_one, size);
7061 		active = qos_network_data->supported;
7062 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7063 
7064 		if (active == 0) {
7065 			burst_duration = ipw_qos_get_burst_duration(priv);
7066 			for (i = 0; i < QOS_QUEUE_NUM; i++)
7067 				qos_parameters[QOS_PARAM_SET_ACTIVE].
7068 				    tx_op_limit[i] = cpu_to_le16(burst_duration);
7069 		}
7070 	}
7071 
7072 	IPW_DEBUG_QOS("QoS sending IPW_CMD_QOS_PARAMETERS\n");
7073 	err = ipw_send_qos_params_command(priv,
7074 					  (struct libipw_qos_parameters *)
7075 					  &(qos_parameters[0]));
7076 	if (err)
7077 		IPW_DEBUG_QOS("QoS IPW_CMD_QOS_PARAMETERS failed\n");
7078 
7079 	return err;
7080 }
7081 
7082 /*
7083 * send IPW_CMD_WME_INFO to the firmware
7084 */
ipw_qos_set_info_element(struct ipw_priv * priv)7085 static int ipw_qos_set_info_element(struct ipw_priv *priv)
7086 {
7087 	int ret = 0;
7088 	struct libipw_qos_information_element qos_info;
7089 
7090 	if (priv == NULL)
7091 		return -1;
7092 
7093 	qos_info.elementID = QOS_ELEMENT_ID;
7094 	qos_info.length = sizeof(struct libipw_qos_information_element) - 2;
7095 
7096 	qos_info.version = QOS_VERSION_1;
7097 	qos_info.ac_info = 0;
7098 
7099 	memcpy(qos_info.qui, qos_oui, QOS_OUI_LEN);
7100 	qos_info.qui_type = QOS_OUI_TYPE;
7101 	qos_info.qui_subtype = QOS_OUI_INFO_SUB_TYPE;
7102 
7103 	ret = ipw_send_qos_info_command(priv, &qos_info);
7104 	if (ret != 0) {
7105 		IPW_DEBUG_QOS("QoS error calling ipw_send_qos_info_command\n");
7106 	}
7107 	return ret;
7108 }
7109 
7110 /*
7111 * Set the QoS parameter with the association request structure
7112 */
ipw_qos_association(struct ipw_priv * priv,struct libipw_network * network)7113 static int ipw_qos_association(struct ipw_priv *priv,
7114 			       struct libipw_network *network)
7115 {
7116 	int err = 0;
7117 	struct libipw_qos_data *qos_data = NULL;
7118 	struct libipw_qos_data ibss_data = {
7119 		.supported = 1,
7120 		.active = 1,
7121 	};
7122 
7123 	switch (priv->ieee->iw_mode) {
7124 	case IW_MODE_ADHOC:
7125 		BUG_ON(!(network->capability & WLAN_CAPABILITY_IBSS));
7126 
7127 		qos_data = &ibss_data;
7128 		break;
7129 
7130 	case IW_MODE_INFRA:
7131 		qos_data = &network->qos_data;
7132 		break;
7133 
7134 	default:
7135 		BUG();
7136 		break;
7137 	}
7138 
7139 	err = ipw_qos_activate(priv, qos_data);
7140 	if (err) {
7141 		priv->assoc_request.policy_support &= ~HC_QOS_SUPPORT_ASSOC;
7142 		return err;
7143 	}
7144 
7145 	if (priv->qos_data.qos_enable && qos_data->supported) {
7146 		IPW_DEBUG_QOS("QoS will be enabled for this association\n");
7147 		priv->assoc_request.policy_support |= HC_QOS_SUPPORT_ASSOC;
7148 		return ipw_qos_set_info_element(priv);
7149 	}
7150 
7151 	return 0;
7152 }
7153 
7154 /*
7155 * handling the beaconing responses. if we get different QoS setting
7156 * off the network from the associated setting, adjust the QoS
7157 * setting
7158 */
ipw_qos_association_resp(struct ipw_priv * priv,struct libipw_network * network)7159 static int ipw_qos_association_resp(struct ipw_priv *priv,
7160 				    struct libipw_network *network)
7161 {
7162 	int ret = 0;
7163 	unsigned long flags;
7164 	u32 size = sizeof(struct libipw_qos_parameters);
7165 	int set_qos_param = 0;
7166 
7167 	if ((priv == NULL) || (network == NULL) ||
7168 	    (priv->assoc_network == NULL))
7169 		return ret;
7170 
7171 	if (!(priv->status & STATUS_ASSOCIATED))
7172 		return ret;
7173 
7174 	if ((priv->ieee->iw_mode != IW_MODE_INFRA))
7175 		return ret;
7176 
7177 	spin_lock_irqsave(&priv->ieee->lock, flags);
7178 	if (network->flags & NETWORK_HAS_QOS_PARAMETERS) {
7179 		memcpy(&priv->assoc_network->qos_data, &network->qos_data,
7180 		       sizeof(struct libipw_qos_data));
7181 		priv->assoc_network->qos_data.active = 1;
7182 		if ((network->qos_data.old_param_count !=
7183 		     network->qos_data.param_count)) {
7184 			set_qos_param = 1;
7185 			network->qos_data.old_param_count =
7186 			    network->qos_data.param_count;
7187 		}
7188 
7189 	} else {
7190 		if ((network->mode == IEEE_B) || (priv->ieee->mode == IEEE_B))
7191 			memcpy(&priv->assoc_network->qos_data.parameters,
7192 			       &def_parameters_CCK, size);
7193 		else
7194 			memcpy(&priv->assoc_network->qos_data.parameters,
7195 			       &def_parameters_OFDM, size);
7196 		priv->assoc_network->qos_data.active = 0;
7197 		priv->assoc_network->qos_data.supported = 0;
7198 		set_qos_param = 1;
7199 	}
7200 
7201 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7202 
7203 	if (set_qos_param == 1)
7204 		schedule_work(&priv->qos_activate);
7205 
7206 	return ret;
7207 }
7208 
ipw_qos_get_burst_duration(struct ipw_priv * priv)7209 static u32 ipw_qos_get_burst_duration(struct ipw_priv *priv)
7210 {
7211 	u32 ret = 0;
7212 
7213 	if ((priv == NULL))
7214 		return 0;
7215 
7216 	if (!(priv->ieee->modulation & LIBIPW_OFDM_MODULATION))
7217 		ret = priv->qos_data.burst_duration_CCK;
7218 	else
7219 		ret = priv->qos_data.burst_duration_OFDM;
7220 
7221 	return ret;
7222 }
7223 
7224 /*
7225 * Initialize the setting of QoS global
7226 */
ipw_qos_init(struct ipw_priv * priv,int enable,int burst_enable,u32 burst_duration_CCK,u32 burst_duration_OFDM)7227 static void ipw_qos_init(struct ipw_priv *priv, int enable,
7228 			 int burst_enable, u32 burst_duration_CCK,
7229 			 u32 burst_duration_OFDM)
7230 {
7231 	priv->qos_data.qos_enable = enable;
7232 
7233 	if (priv->qos_data.qos_enable) {
7234 		priv->qos_data.def_qos_parm_CCK = &def_qos_parameters_CCK;
7235 		priv->qos_data.def_qos_parm_OFDM = &def_qos_parameters_OFDM;
7236 		IPW_DEBUG_QOS("QoS is enabled\n");
7237 	} else {
7238 		priv->qos_data.def_qos_parm_CCK = &def_parameters_CCK;
7239 		priv->qos_data.def_qos_parm_OFDM = &def_parameters_OFDM;
7240 		IPW_DEBUG_QOS("QoS is not enabled\n");
7241 	}
7242 
7243 	priv->qos_data.burst_enable = burst_enable;
7244 
7245 	if (burst_enable) {
7246 		priv->qos_data.burst_duration_CCK = burst_duration_CCK;
7247 		priv->qos_data.burst_duration_OFDM = burst_duration_OFDM;
7248 	} else {
7249 		priv->qos_data.burst_duration_CCK = 0;
7250 		priv->qos_data.burst_duration_OFDM = 0;
7251 	}
7252 }
7253 
7254 /*
7255 * map the packet priority to the right TX Queue
7256 */
ipw_get_tx_queue_number(struct ipw_priv * priv,u16 priority)7257 static int ipw_get_tx_queue_number(struct ipw_priv *priv, u16 priority)
7258 {
7259 	if (priority > 7 || !priv->qos_data.qos_enable)
7260 		priority = 0;
7261 
7262 	return from_priority_to_tx_queue[priority] - 1;
7263 }
7264 
ipw_is_qos_active(struct net_device * dev,struct sk_buff * skb)7265 static int ipw_is_qos_active(struct net_device *dev,
7266 			     struct sk_buff *skb)
7267 {
7268 	struct ipw_priv *priv = libipw_priv(dev);
7269 	struct libipw_qos_data *qos_data = NULL;
7270 	int active, supported;
7271 	u8 *daddr = skb->data + ETH_ALEN;
7272 	int unicast = !is_multicast_ether_addr(daddr);
7273 
7274 	if (!(priv->status & STATUS_ASSOCIATED))
7275 		return 0;
7276 
7277 	qos_data = &priv->assoc_network->qos_data;
7278 
7279 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7280 		if (unicast == 0)
7281 			qos_data->active = 0;
7282 		else
7283 			qos_data->active = qos_data->supported;
7284 	}
7285 	active = qos_data->active;
7286 	supported = qos_data->supported;
7287 	IPW_DEBUG_QOS("QoS  %d network is QoS active %d  supported %d  "
7288 		      "unicast %d\n",
7289 		      priv->qos_data.qos_enable, active, supported, unicast);
7290 	if (active && priv->qos_data.qos_enable)
7291 		return 1;
7292 
7293 	return 0;
7294 
7295 }
7296 /*
7297 * add QoS parameter to the TX command
7298 */
ipw_qos_set_tx_queue_command(struct ipw_priv * priv,u16 priority,struct tfd_data * tfd)7299 static int ipw_qos_set_tx_queue_command(struct ipw_priv *priv,
7300 					u16 priority,
7301 					struct tfd_data *tfd)
7302 {
7303 	int tx_queue_id = 0;
7304 
7305 
7306 	tx_queue_id = from_priority_to_tx_queue[priority] - 1;
7307 	tfd->tx_flags_ext |= DCT_FLAG_EXT_QOS_ENABLED;
7308 
7309 	if (priv->qos_data.qos_no_ack_mask & (1UL << tx_queue_id)) {
7310 		tfd->tx_flags &= ~DCT_FLAG_ACK_REQD;
7311 		tfd->tfd.tfd_26.mchdr.qos_ctrl |= cpu_to_le16(CTRL_QOS_NO_ACK);
7312 	}
7313 	return 0;
7314 }
7315 
7316 /*
7317 * background support to run QoS activate functionality
7318 */
ipw_bg_qos_activate(struct work_struct * work)7319 static void ipw_bg_qos_activate(struct work_struct *work)
7320 {
7321 	struct ipw_priv *priv =
7322 		container_of(work, struct ipw_priv, qos_activate);
7323 
7324 	mutex_lock(&priv->mutex);
7325 
7326 	if (priv->status & STATUS_ASSOCIATED)
7327 		ipw_qos_activate(priv, &(priv->assoc_network->qos_data));
7328 
7329 	mutex_unlock(&priv->mutex);
7330 }
7331 
ipw_handle_probe_response(struct net_device * dev,struct libipw_probe_response * resp,struct libipw_network * network)7332 static int ipw_handle_probe_response(struct net_device *dev,
7333 				     struct libipw_probe_response *resp,
7334 				     struct libipw_network *network)
7335 {
7336 	struct ipw_priv *priv = libipw_priv(dev);
7337 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7338 			      (network == priv->assoc_network));
7339 
7340 	ipw_qos_handle_probe_response(priv, active_network, network);
7341 
7342 	return 0;
7343 }
7344 
ipw_handle_beacon(struct net_device * dev,struct libipw_beacon * resp,struct libipw_network * network)7345 static int ipw_handle_beacon(struct net_device *dev,
7346 			     struct libipw_beacon *resp,
7347 			     struct libipw_network *network)
7348 {
7349 	struct ipw_priv *priv = libipw_priv(dev);
7350 	int active_network = ((priv->status & STATUS_ASSOCIATED) &&
7351 			      (network == priv->assoc_network));
7352 
7353 	ipw_qos_handle_probe_response(priv, active_network, network);
7354 
7355 	return 0;
7356 }
7357 
ipw_handle_assoc_response(struct net_device * dev,struct libipw_assoc_response * resp,struct libipw_network * network)7358 static int ipw_handle_assoc_response(struct net_device *dev,
7359 				     struct libipw_assoc_response *resp,
7360 				     struct libipw_network *network)
7361 {
7362 	struct ipw_priv *priv = libipw_priv(dev);
7363 	ipw_qos_association_resp(priv, network);
7364 	return 0;
7365 }
7366 
ipw_send_qos_params_command(struct ipw_priv * priv,struct libipw_qos_parameters * qos_param)7367 static int ipw_send_qos_params_command(struct ipw_priv *priv, struct libipw_qos_parameters
7368 				       *qos_param)
7369 {
7370 	return ipw_send_cmd_pdu(priv, IPW_CMD_QOS_PARAMETERS,
7371 				sizeof(*qos_param) * 3, qos_param);
7372 }
7373 
ipw_send_qos_info_command(struct ipw_priv * priv,struct libipw_qos_information_element * qos_param)7374 static int ipw_send_qos_info_command(struct ipw_priv *priv, struct libipw_qos_information_element
7375 				     *qos_param)
7376 {
7377 	return ipw_send_cmd_pdu(priv, IPW_CMD_WME_INFO, sizeof(*qos_param),
7378 				qos_param);
7379 }
7380 
7381 #endif				/* CONFIG_IPW2200_QOS */
7382 
ipw_associate_network(struct ipw_priv * priv,struct libipw_network * network,struct ipw_supported_rates * rates,int roaming)7383 static int ipw_associate_network(struct ipw_priv *priv,
7384 				 struct libipw_network *network,
7385 				 struct ipw_supported_rates *rates, int roaming)
7386 {
7387 	int err;
7388 	DECLARE_SSID_BUF(ssid);
7389 
7390 	if (priv->config & CFG_FIXED_RATE)
7391 		ipw_set_fixed_rate(priv, network->mode);
7392 
7393 	if (!(priv->config & CFG_STATIC_ESSID)) {
7394 		priv->essid_len = min(network->ssid_len,
7395 				      (u8) IW_ESSID_MAX_SIZE);
7396 		memcpy(priv->essid, network->ssid, priv->essid_len);
7397 	}
7398 
7399 	network->last_associate = jiffies;
7400 
7401 	memset(&priv->assoc_request, 0, sizeof(priv->assoc_request));
7402 	priv->assoc_request.channel = network->channel;
7403 	priv->assoc_request.auth_key = 0;
7404 
7405 	if ((priv->capability & CAP_PRIVACY_ON) &&
7406 	    (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)) {
7407 		priv->assoc_request.auth_type = AUTH_SHARED_KEY;
7408 		priv->assoc_request.auth_key = priv->ieee->sec.active_key;
7409 
7410 		if (priv->ieee->sec.level == SEC_LEVEL_1)
7411 			ipw_send_wep_keys(priv, DCW_WEP_KEY_SEC_TYPE_WEP);
7412 
7413 	} else if ((priv->capability & CAP_PRIVACY_ON) &&
7414 		   (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP))
7415 		priv->assoc_request.auth_type = AUTH_LEAP;
7416 	else
7417 		priv->assoc_request.auth_type = AUTH_OPEN;
7418 
7419 	if (priv->ieee->wpa_ie_len) {
7420 		priv->assoc_request.policy_support = cpu_to_le16(0x02);	/* RSN active */
7421 		ipw_set_rsn_capa(priv, priv->ieee->wpa_ie,
7422 				 priv->ieee->wpa_ie_len);
7423 	}
7424 
7425 	/*
7426 	 * It is valid for our ieee device to support multiple modes, but
7427 	 * when it comes to associating to a given network we have to choose
7428 	 * just one mode.
7429 	 */
7430 	if (network->mode & priv->ieee->mode & IEEE_A)
7431 		priv->assoc_request.ieee_mode = IPW_A_MODE;
7432 	else if (network->mode & priv->ieee->mode & IEEE_G)
7433 		priv->assoc_request.ieee_mode = IPW_G_MODE;
7434 	else if (network->mode & priv->ieee->mode & IEEE_B)
7435 		priv->assoc_request.ieee_mode = IPW_B_MODE;
7436 
7437 	priv->assoc_request.capability = cpu_to_le16(network->capability);
7438 	if ((network->capability & WLAN_CAPABILITY_SHORT_PREAMBLE)
7439 	    && !(priv->config & CFG_PREAMBLE_LONG)) {
7440 		priv->assoc_request.preamble_length = DCT_FLAG_SHORT_PREAMBLE;
7441 	} else {
7442 		priv->assoc_request.preamble_length = DCT_FLAG_LONG_PREAMBLE;
7443 
7444 		/* Clear the short preamble if we won't be supporting it */
7445 		priv->assoc_request.capability &=
7446 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_PREAMBLE);
7447 	}
7448 
7449 	/* Clear capability bits that aren't used in Ad Hoc */
7450 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7451 		priv->assoc_request.capability &=
7452 		    ~cpu_to_le16(WLAN_CAPABILITY_SHORT_SLOT_TIME);
7453 
7454 	IPW_DEBUG_ASSOC("%ssociation attempt: '%s', channel %d, "
7455 			"802.11%c [%d], %s[:%s], enc=%s%s%s%c%c\n",
7456 			roaming ? "Rea" : "A",
7457 			print_ssid(ssid, priv->essid, priv->essid_len),
7458 			network->channel,
7459 			ipw_modes[priv->assoc_request.ieee_mode],
7460 			rates->num_rates,
7461 			(priv->assoc_request.preamble_length ==
7462 			 DCT_FLAG_LONG_PREAMBLE) ? "long" : "short",
7463 			network->capability &
7464 			WLAN_CAPABILITY_SHORT_PREAMBLE ? "short" : "long",
7465 			priv->capability & CAP_PRIVACY_ON ? "on " : "off",
7466 			priv->capability & CAP_PRIVACY_ON ?
7467 			(priv->capability & CAP_SHARED_KEY ? "(shared)" :
7468 			 "(open)") : "",
7469 			priv->capability & CAP_PRIVACY_ON ? " key=" : "",
7470 			priv->capability & CAP_PRIVACY_ON ?
7471 			'1' + priv->ieee->sec.active_key : '.',
7472 			priv->capability & CAP_PRIVACY_ON ? '.' : ' ');
7473 
7474 	priv->assoc_request.beacon_interval = cpu_to_le16(network->beacon_interval);
7475 	if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
7476 	    (network->time_stamp[0] == 0) && (network->time_stamp[1] == 0)) {
7477 		priv->assoc_request.assoc_type = HC_IBSS_START;
7478 		priv->assoc_request.assoc_tsf_msw = 0;
7479 		priv->assoc_request.assoc_tsf_lsw = 0;
7480 	} else {
7481 		if (unlikely(roaming))
7482 			priv->assoc_request.assoc_type = HC_REASSOCIATE;
7483 		else
7484 			priv->assoc_request.assoc_type = HC_ASSOCIATE;
7485 		priv->assoc_request.assoc_tsf_msw = cpu_to_le32(network->time_stamp[1]);
7486 		priv->assoc_request.assoc_tsf_lsw = cpu_to_le32(network->time_stamp[0]);
7487 	}
7488 
7489 	memcpy(priv->assoc_request.bssid, network->bssid, ETH_ALEN);
7490 
7491 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
7492 		memset(&priv->assoc_request.dest, 0xFF, ETH_ALEN);
7493 		priv->assoc_request.atim_window = cpu_to_le16(network->atim_window);
7494 	} else {
7495 		memcpy(priv->assoc_request.dest, network->bssid, ETH_ALEN);
7496 		priv->assoc_request.atim_window = 0;
7497 	}
7498 
7499 	priv->assoc_request.listen_interval = cpu_to_le16(network->listen_interval);
7500 
7501 	err = ipw_send_ssid(priv, priv->essid, priv->essid_len);
7502 	if (err) {
7503 		IPW_DEBUG_HC("Attempt to send SSID command failed.\n");
7504 		return err;
7505 	}
7506 
7507 	rates->ieee_mode = priv->assoc_request.ieee_mode;
7508 	rates->purpose = IPW_RATE_CONNECT;
7509 	ipw_send_supported_rates(priv, rates);
7510 
7511 	if (priv->assoc_request.ieee_mode == IPW_G_MODE)
7512 		priv->sys_config.dot11g_auto_detection = 1;
7513 	else
7514 		priv->sys_config.dot11g_auto_detection = 0;
7515 
7516 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
7517 		priv->sys_config.answer_broadcast_ssid_probe = 1;
7518 	else
7519 		priv->sys_config.answer_broadcast_ssid_probe = 0;
7520 
7521 	err = ipw_send_system_config(priv);
7522 	if (err) {
7523 		IPW_DEBUG_HC("Attempt to send sys config command failed.\n");
7524 		return err;
7525 	}
7526 
7527 	IPW_DEBUG_ASSOC("Association sensitivity: %d\n", network->stats.rssi);
7528 	err = ipw_set_sensitivity(priv, network->stats.rssi + IPW_RSSI_TO_DBM);
7529 	if (err) {
7530 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7531 		return err;
7532 	}
7533 
7534 	/*
7535 	 * If preemption is enabled, it is possible for the association
7536 	 * to complete before we return from ipw_send_associate.  Therefore
7537 	 * we have to be sure and update our priviate data first.
7538 	 */
7539 	priv->channel = network->channel;
7540 	memcpy(priv->bssid, network->bssid, ETH_ALEN);
7541 	priv->status |= STATUS_ASSOCIATING;
7542 	priv->status &= ~STATUS_SECURITY_UPDATED;
7543 
7544 	priv->assoc_network = network;
7545 
7546 #ifdef CONFIG_IPW2200_QOS
7547 	ipw_qos_association(priv, network);
7548 #endif
7549 
7550 	err = ipw_send_associate(priv, &priv->assoc_request);
7551 	if (err) {
7552 		IPW_DEBUG_HC("Attempt to send associate command failed.\n");
7553 		return err;
7554 	}
7555 
7556 	IPW_DEBUG(IPW_DL_STATE, "associating: '%s' %pM\n",
7557 		  print_ssid(ssid, priv->essid, priv->essid_len),
7558 		  priv->bssid);
7559 
7560 	return 0;
7561 }
7562 
ipw_roam(void * data)7563 static void ipw_roam(void *data)
7564 {
7565 	struct ipw_priv *priv = data;
7566 	struct libipw_network *network = NULL;
7567 	struct ipw_network_match match = {
7568 		.network = priv->assoc_network
7569 	};
7570 
7571 	/* The roaming process is as follows:
7572 	 *
7573 	 * 1.  Missed beacon threshold triggers the roaming process by
7574 	 *     setting the status ROAM bit and requesting a scan.
7575 	 * 2.  When the scan completes, it schedules the ROAM work
7576 	 * 3.  The ROAM work looks at all of the known networks for one that
7577 	 *     is a better network than the currently associated.  If none
7578 	 *     found, the ROAM process is over (ROAM bit cleared)
7579 	 * 4.  If a better network is found, a disassociation request is
7580 	 *     sent.
7581 	 * 5.  When the disassociation completes, the roam work is again
7582 	 *     scheduled.  The second time through, the driver is no longer
7583 	 *     associated, and the newly selected network is sent an
7584 	 *     association request.
7585 	 * 6.  At this point ,the roaming process is complete and the ROAM
7586 	 *     status bit is cleared.
7587 	 */
7588 
7589 	/* If we are no longer associated, and the roaming bit is no longer
7590 	 * set, then we are not actively roaming, so just return */
7591 	if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ROAMING)))
7592 		return;
7593 
7594 	if (priv->status & STATUS_ASSOCIATED) {
7595 		/* First pass through ROAM process -- look for a better
7596 		 * network */
7597 		unsigned long flags;
7598 		u8 rssi = priv->assoc_network->stats.rssi;
7599 		priv->assoc_network->stats.rssi = -128;
7600 		spin_lock_irqsave(&priv->ieee->lock, flags);
7601 		list_for_each_entry(network, &priv->ieee->network_list, list) {
7602 			if (network != priv->assoc_network)
7603 				ipw_best_network(priv, &match, network, 1);
7604 		}
7605 		spin_unlock_irqrestore(&priv->ieee->lock, flags);
7606 		priv->assoc_network->stats.rssi = rssi;
7607 
7608 		if (match.network == priv->assoc_network) {
7609 			IPW_DEBUG_ASSOC("No better APs in this network to "
7610 					"roam to.\n");
7611 			priv->status &= ~STATUS_ROAMING;
7612 			ipw_debug_config(priv);
7613 			return;
7614 		}
7615 
7616 		ipw_send_disassociate(priv, 1);
7617 		priv->assoc_network = match.network;
7618 
7619 		return;
7620 	}
7621 
7622 	/* Second pass through ROAM process -- request association */
7623 	ipw_compatible_rates(priv, priv->assoc_network, &match.rates);
7624 	ipw_associate_network(priv, priv->assoc_network, &match.rates, 1);
7625 	priv->status &= ~STATUS_ROAMING;
7626 }
7627 
ipw_bg_roam(struct work_struct * work)7628 static void ipw_bg_roam(struct work_struct *work)
7629 {
7630 	struct ipw_priv *priv =
7631 		container_of(work, struct ipw_priv, roam);
7632 	mutex_lock(&priv->mutex);
7633 	ipw_roam(priv);
7634 	mutex_unlock(&priv->mutex);
7635 }
7636 
ipw_associate(void * data)7637 static int ipw_associate(void *data)
7638 {
7639 	struct ipw_priv *priv = data;
7640 
7641 	struct libipw_network *network = NULL;
7642 	struct ipw_network_match match = {
7643 		.network = NULL
7644 	};
7645 	struct ipw_supported_rates *rates;
7646 	struct list_head *element;
7647 	unsigned long flags;
7648 	DECLARE_SSID_BUF(ssid);
7649 
7650 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7651 		IPW_DEBUG_ASSOC("Not attempting association (monitor mode)\n");
7652 		return 0;
7653 	}
7654 
7655 	if (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
7656 		IPW_DEBUG_ASSOC("Not attempting association (already in "
7657 				"progress)\n");
7658 		return 0;
7659 	}
7660 
7661 	if (priv->status & STATUS_DISASSOCIATING) {
7662 		IPW_DEBUG_ASSOC("Not attempting association (in "
7663 				"disassociating)\n ");
7664 		schedule_work(&priv->associate);
7665 		return 0;
7666 	}
7667 
7668 	if (!ipw_is_init(priv) || (priv->status & STATUS_SCANNING)) {
7669 		IPW_DEBUG_ASSOC("Not attempting association (scanning or not "
7670 				"initialized)\n");
7671 		return 0;
7672 	}
7673 
7674 	if (!(priv->config & CFG_ASSOCIATE) &&
7675 	    !(priv->config & (CFG_STATIC_ESSID | CFG_STATIC_BSSID))) {
7676 		IPW_DEBUG_ASSOC("Not attempting association (associate=0)\n");
7677 		return 0;
7678 	}
7679 
7680 	/* Protect our use of the network_list */
7681 	spin_lock_irqsave(&priv->ieee->lock, flags);
7682 	list_for_each_entry(network, &priv->ieee->network_list, list)
7683 	    ipw_best_network(priv, &match, network, 0);
7684 
7685 	network = match.network;
7686 	rates = &match.rates;
7687 
7688 	if (network == NULL &&
7689 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
7690 	    priv->config & CFG_ADHOC_CREATE &&
7691 	    priv->config & CFG_STATIC_ESSID &&
7692 	    priv->config & CFG_STATIC_CHANNEL) {
7693 		/* Use oldest network if the free list is empty */
7694 		if (list_empty(&priv->ieee->network_free_list)) {
7695 			struct libipw_network *oldest = NULL;
7696 			struct libipw_network *target;
7697 
7698 			list_for_each_entry(target, &priv->ieee->network_list, list) {
7699 				if ((oldest == NULL) ||
7700 				    (target->last_scanned < oldest->last_scanned))
7701 					oldest = target;
7702 			}
7703 
7704 			/* If there are no more slots, expire the oldest */
7705 			list_del(&oldest->list);
7706 			target = oldest;
7707 			IPW_DEBUG_ASSOC("Expired '%s' (%pM) from "
7708 					"network list.\n",
7709 					print_ssid(ssid, target->ssid,
7710 						   target->ssid_len),
7711 					target->bssid);
7712 			list_add_tail(&target->list,
7713 				      &priv->ieee->network_free_list);
7714 		}
7715 
7716 		element = priv->ieee->network_free_list.next;
7717 		network = list_entry(element, struct libipw_network, list);
7718 		ipw_adhoc_create(priv, network);
7719 		rates = &priv->rates;
7720 		list_del(element);
7721 		list_add_tail(&network->list, &priv->ieee->network_list);
7722 	}
7723 	spin_unlock_irqrestore(&priv->ieee->lock, flags);
7724 
7725 	/* If we reached the end of the list, then we don't have any valid
7726 	 * matching APs */
7727 	if (!network) {
7728 		ipw_debug_config(priv);
7729 
7730 		if (!(priv->status & STATUS_SCANNING)) {
7731 			if (!(priv->config & CFG_SPEED_SCAN))
7732 				schedule_delayed_work(&priv->request_scan,
7733 						      SCAN_INTERVAL);
7734 			else
7735 				schedule_delayed_work(&priv->request_scan, 0);
7736 		}
7737 
7738 		return 0;
7739 	}
7740 
7741 	ipw_associate_network(priv, network, rates, 0);
7742 
7743 	return 1;
7744 }
7745 
ipw_bg_associate(struct work_struct * work)7746 static void ipw_bg_associate(struct work_struct *work)
7747 {
7748 	struct ipw_priv *priv =
7749 		container_of(work, struct ipw_priv, associate);
7750 	mutex_lock(&priv->mutex);
7751 	ipw_associate(priv);
7752 	mutex_unlock(&priv->mutex);
7753 }
7754 
ipw_rebuild_decrypted_skb(struct ipw_priv * priv,struct sk_buff * skb)7755 static void ipw_rebuild_decrypted_skb(struct ipw_priv *priv,
7756 				      struct sk_buff *skb)
7757 {
7758 	struct ieee80211_hdr *hdr;
7759 	u16 fc;
7760 
7761 	hdr = (struct ieee80211_hdr *)skb->data;
7762 	fc = le16_to_cpu(hdr->frame_control);
7763 	if (!(fc & IEEE80211_FCTL_PROTECTED))
7764 		return;
7765 
7766 	fc &= ~IEEE80211_FCTL_PROTECTED;
7767 	hdr->frame_control = cpu_to_le16(fc);
7768 	switch (priv->ieee->sec.level) {
7769 	case SEC_LEVEL_3:
7770 		/* Remove CCMP HDR */
7771 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7772 			skb->data + LIBIPW_3ADDR_LEN + 8,
7773 			skb->len - LIBIPW_3ADDR_LEN - 8);
7774 		skb_trim(skb, skb->len - 16);	/* CCMP_HDR_LEN + CCMP_MIC_LEN */
7775 		break;
7776 	case SEC_LEVEL_2:
7777 		break;
7778 	case SEC_LEVEL_1:
7779 		/* Remove IV */
7780 		memmove(skb->data + LIBIPW_3ADDR_LEN,
7781 			skb->data + LIBIPW_3ADDR_LEN + 4,
7782 			skb->len - LIBIPW_3ADDR_LEN - 4);
7783 		skb_trim(skb, skb->len - 8);	/* IV + ICV */
7784 		break;
7785 	case SEC_LEVEL_0:
7786 		break;
7787 	default:
7788 		printk(KERN_ERR "Unknown security level %d\n",
7789 		       priv->ieee->sec.level);
7790 		break;
7791 	}
7792 }
7793 
ipw_handle_data_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7794 static void ipw_handle_data_packet(struct ipw_priv *priv,
7795 				   struct ipw_rx_mem_buffer *rxb,
7796 				   struct libipw_rx_stats *stats)
7797 {
7798 	struct net_device *dev = priv->net_dev;
7799 	struct libipw_hdr_4addr *hdr;
7800 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7801 
7802 	/* We received data from the HW, so stop the watchdog */
7803 	dev->trans_start = jiffies;
7804 
7805 	/* We only process data packets if the
7806 	 * interface is open */
7807 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7808 		     skb_tailroom(rxb->skb))) {
7809 		dev->stats.rx_errors++;
7810 		priv->wstats.discard.misc++;
7811 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7812 		return;
7813 	} else if (unlikely(!netif_running(priv->net_dev))) {
7814 		dev->stats.rx_dropped++;
7815 		priv->wstats.discard.misc++;
7816 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7817 		return;
7818 	}
7819 
7820 	/* Advance skb->data to the start of the actual payload */
7821 	skb_reserve(rxb->skb, offsetof(struct ipw_rx_packet, u.frame.data));
7822 
7823 	/* Set the size of the skb to the size of the frame */
7824 	skb_put(rxb->skb, le16_to_cpu(pkt->u.frame.length));
7825 
7826 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7827 
7828 	/* HW decrypt will not clear the WEP bit, MIC, PN, etc. */
7829 	hdr = (struct libipw_hdr_4addr *)rxb->skb->data;
7830 	if (priv->ieee->iw_mode != IW_MODE_MONITOR &&
7831 	    (is_multicast_ether_addr(hdr->addr1) ?
7832 	     !priv->ieee->host_mc_decrypt : !priv->ieee->host_decrypt))
7833 		ipw_rebuild_decrypted_skb(priv, rxb->skb);
7834 
7835 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7836 		dev->stats.rx_errors++;
7837 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7838 		rxb->skb = NULL;
7839 		__ipw_led_activity_on(priv);
7840 	}
7841 }
7842 
7843 #ifdef CONFIG_IPW2200_RADIOTAP
ipw_handle_data_packet_monitor(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)7844 static void ipw_handle_data_packet_monitor(struct ipw_priv *priv,
7845 					   struct ipw_rx_mem_buffer *rxb,
7846 					   struct libipw_rx_stats *stats)
7847 {
7848 	struct net_device *dev = priv->net_dev;
7849 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
7850 	struct ipw_rx_frame *frame = &pkt->u.frame;
7851 
7852 	/* initial pull of some data */
7853 	u16 received_channel = frame->received_channel;
7854 	u8 antennaAndPhy = frame->antennaAndPhy;
7855 	s8 antsignal = frame->rssi_dbm - IPW_RSSI_TO_DBM;	/* call it signed anyhow */
7856 	u16 pktrate = frame->rate;
7857 
7858 	/* Magic struct that slots into the radiotap header -- no reason
7859 	 * to build this manually element by element, we can write it much
7860 	 * more efficiently than we can parse it. ORDER MATTERS HERE */
7861 	struct ipw_rt_hdr *ipw_rt;
7862 
7863 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
7864 
7865 	/* We received data from the HW, so stop the watchdog */
7866 	dev->trans_start = jiffies;
7867 
7868 	/* We only process data packets if the
7869 	 * interface is open */
7870 	if (unlikely((le16_to_cpu(pkt->u.frame.length) + IPW_RX_FRAME_SIZE) >
7871 		     skb_tailroom(rxb->skb))) {
7872 		dev->stats.rx_errors++;
7873 		priv->wstats.discard.misc++;
7874 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
7875 		return;
7876 	} else if (unlikely(!netif_running(priv->net_dev))) {
7877 		dev->stats.rx_dropped++;
7878 		priv->wstats.discard.misc++;
7879 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
7880 		return;
7881 	}
7882 
7883 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
7884 	 * that now */
7885 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
7886 		/* FIXME: Should alloc bigger skb instead */
7887 		dev->stats.rx_dropped++;
7888 		priv->wstats.discard.misc++;
7889 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
7890 		return;
7891 	}
7892 
7893 	/* copy the frame itself */
7894 	memmove(rxb->skb->data + sizeof(struct ipw_rt_hdr),
7895 		rxb->skb->data + IPW_RX_FRAME_SIZE, len);
7896 
7897 	ipw_rt = (struct ipw_rt_hdr *)rxb->skb->data;
7898 
7899 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
7900 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
7901 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(struct ipw_rt_hdr));	/* total header+data */
7902 
7903 	/* Big bitfield of all the fields we provide in radiotap */
7904 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
7905 	     (1 << IEEE80211_RADIOTAP_TSFT) |
7906 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
7907 	     (1 << IEEE80211_RADIOTAP_RATE) |
7908 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
7909 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
7910 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
7911 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
7912 
7913 	/* Zero the flags, we'll add to them as we go */
7914 	ipw_rt->rt_flags = 0;
7915 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
7916 			       frame->parent_tsf[2] << 16 |
7917 			       frame->parent_tsf[1] << 8  |
7918 			       frame->parent_tsf[0]);
7919 
7920 	/* Convert signal to DBM */
7921 	ipw_rt->rt_dbmsignal = antsignal;
7922 	ipw_rt->rt_dbmnoise = (s8) le16_to_cpu(frame->noise);
7923 
7924 	/* Convert the channel data and set the flags */
7925 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(received_channel));
7926 	if (received_channel > 14) {	/* 802.11a */
7927 		ipw_rt->rt_chbitmask =
7928 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
7929 	} else if (antennaAndPhy & 32) {	/* 802.11b */
7930 		ipw_rt->rt_chbitmask =
7931 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
7932 	} else {		/* 802.11g */
7933 		ipw_rt->rt_chbitmask =
7934 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
7935 	}
7936 
7937 	/* set the rate in multiples of 500k/s */
7938 	switch (pktrate) {
7939 	case IPW_TX_RATE_1MB:
7940 		ipw_rt->rt_rate = 2;
7941 		break;
7942 	case IPW_TX_RATE_2MB:
7943 		ipw_rt->rt_rate = 4;
7944 		break;
7945 	case IPW_TX_RATE_5MB:
7946 		ipw_rt->rt_rate = 10;
7947 		break;
7948 	case IPW_TX_RATE_6MB:
7949 		ipw_rt->rt_rate = 12;
7950 		break;
7951 	case IPW_TX_RATE_9MB:
7952 		ipw_rt->rt_rate = 18;
7953 		break;
7954 	case IPW_TX_RATE_11MB:
7955 		ipw_rt->rt_rate = 22;
7956 		break;
7957 	case IPW_TX_RATE_12MB:
7958 		ipw_rt->rt_rate = 24;
7959 		break;
7960 	case IPW_TX_RATE_18MB:
7961 		ipw_rt->rt_rate = 36;
7962 		break;
7963 	case IPW_TX_RATE_24MB:
7964 		ipw_rt->rt_rate = 48;
7965 		break;
7966 	case IPW_TX_RATE_36MB:
7967 		ipw_rt->rt_rate = 72;
7968 		break;
7969 	case IPW_TX_RATE_48MB:
7970 		ipw_rt->rt_rate = 96;
7971 		break;
7972 	case IPW_TX_RATE_54MB:
7973 		ipw_rt->rt_rate = 108;
7974 		break;
7975 	default:
7976 		ipw_rt->rt_rate = 0;
7977 		break;
7978 	}
7979 
7980 	/* antenna number */
7981 	ipw_rt->rt_antenna = (antennaAndPhy & 3);	/* Is this right? */
7982 
7983 	/* set the preamble flag if we have it */
7984 	if ((antennaAndPhy & 64))
7985 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
7986 
7987 	/* Set the size of the skb to the size of the frame */
7988 	skb_put(rxb->skb, len + sizeof(struct ipw_rt_hdr));
7989 
7990 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", rxb->skb->len);
7991 
7992 	if (!libipw_rx(priv->ieee, rxb->skb, stats))
7993 		dev->stats.rx_errors++;
7994 	else {			/* libipw_rx succeeded, so it now owns the SKB */
7995 		rxb->skb = NULL;
7996 		/* no LED during capture */
7997 	}
7998 }
7999 #endif
8000 
8001 #ifdef CONFIG_IPW2200_PROMISCUOUS
8002 #define libipw_is_probe_response(fc) \
8003    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT && \
8004     (fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP )
8005 
8006 #define libipw_is_management(fc) \
8007    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT)
8008 
8009 #define libipw_is_control(fc) \
8010    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
8011 
8012 #define libipw_is_data(fc) \
8013    ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_DATA)
8014 
8015 #define libipw_is_assoc_request(fc) \
8016    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_ASSOC_REQ)
8017 
8018 #define libipw_is_reassoc_request(fc) \
8019    ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_REASSOC_REQ)
8020 
ipw_handle_promiscuous_rx(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)8021 static void ipw_handle_promiscuous_rx(struct ipw_priv *priv,
8022 				      struct ipw_rx_mem_buffer *rxb,
8023 				      struct libipw_rx_stats *stats)
8024 {
8025 	struct net_device *dev = priv->prom_net_dev;
8026 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)rxb->skb->data;
8027 	struct ipw_rx_frame *frame = &pkt->u.frame;
8028 	struct ipw_rt_hdr *ipw_rt;
8029 
8030 	/* First cache any information we need before we overwrite
8031 	 * the information provided in the skb from the hardware */
8032 	struct ieee80211_hdr *hdr;
8033 	u16 channel = frame->received_channel;
8034 	u8 phy_flags = frame->antennaAndPhy;
8035 	s8 signal = frame->rssi_dbm - IPW_RSSI_TO_DBM;
8036 	s8 noise = (s8) le16_to_cpu(frame->noise);
8037 	u8 rate = frame->rate;
8038 	unsigned short len = le16_to_cpu(pkt->u.frame.length);
8039 	struct sk_buff *skb;
8040 	int hdr_only = 0;
8041 	u16 filter = priv->prom_priv->filter;
8042 
8043 	/* If the filter is set to not include Rx frames then return */
8044 	if (filter & IPW_PROM_NO_RX)
8045 		return;
8046 
8047 	/* We received data from the HW, so stop the watchdog */
8048 	dev->trans_start = jiffies;
8049 
8050 	if (unlikely((len + IPW_RX_FRAME_SIZE) > skb_tailroom(rxb->skb))) {
8051 		dev->stats.rx_errors++;
8052 		IPW_DEBUG_DROP("Corruption detected! Oh no!\n");
8053 		return;
8054 	}
8055 
8056 	/* We only process data packets if the interface is open */
8057 	if (unlikely(!netif_running(dev))) {
8058 		dev->stats.rx_dropped++;
8059 		IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
8060 		return;
8061 	}
8062 
8063 	/* Libpcap 0.9.3+ can handle variable length radiotap, so we'll use
8064 	 * that now */
8065 	if (len > IPW_RX_BUF_SIZE - sizeof(struct ipw_rt_hdr)) {
8066 		/* FIXME: Should alloc bigger skb instead */
8067 		dev->stats.rx_dropped++;
8068 		IPW_DEBUG_DROP("Dropping too large packet in monitor\n");
8069 		return;
8070 	}
8071 
8072 	hdr = (void *)rxb->skb->data + IPW_RX_FRAME_SIZE;
8073 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
8074 		if (filter & IPW_PROM_NO_MGMT)
8075 			return;
8076 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
8077 			hdr_only = 1;
8078 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
8079 		if (filter & IPW_PROM_NO_CTL)
8080 			return;
8081 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
8082 			hdr_only = 1;
8083 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
8084 		if (filter & IPW_PROM_NO_DATA)
8085 			return;
8086 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
8087 			hdr_only = 1;
8088 	}
8089 
8090 	/* Copy the SKB since this is for the promiscuous side */
8091 	skb = skb_copy(rxb->skb, GFP_ATOMIC);
8092 	if (skb == NULL) {
8093 		IPW_ERROR("skb_clone failed for promiscuous copy.\n");
8094 		return;
8095 	}
8096 
8097 	/* copy the frame data to write after where the radiotap header goes */
8098 	ipw_rt = (void *)skb->data;
8099 
8100 	if (hdr_only)
8101 		len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
8102 
8103 	memcpy(ipw_rt->payload, hdr, len);
8104 
8105 	ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
8106 	ipw_rt->rt_hdr.it_pad = 0;	/* always good to zero */
8107 	ipw_rt->rt_hdr.it_len = cpu_to_le16(sizeof(*ipw_rt));	/* total header+data */
8108 
8109 	/* Set the size of the skb to the size of the frame */
8110 	skb_put(skb, sizeof(*ipw_rt) + len);
8111 
8112 	/* Big bitfield of all the fields we provide in radiotap */
8113 	ipw_rt->rt_hdr.it_present = cpu_to_le32(
8114 	     (1 << IEEE80211_RADIOTAP_TSFT) |
8115 	     (1 << IEEE80211_RADIOTAP_FLAGS) |
8116 	     (1 << IEEE80211_RADIOTAP_RATE) |
8117 	     (1 << IEEE80211_RADIOTAP_CHANNEL) |
8118 	     (1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL) |
8119 	     (1 << IEEE80211_RADIOTAP_DBM_ANTNOISE) |
8120 	     (1 << IEEE80211_RADIOTAP_ANTENNA));
8121 
8122 	/* Zero the flags, we'll add to them as we go */
8123 	ipw_rt->rt_flags = 0;
8124 	ipw_rt->rt_tsf = (u64)(frame->parent_tsf[3] << 24 |
8125 			       frame->parent_tsf[2] << 16 |
8126 			       frame->parent_tsf[1] << 8  |
8127 			       frame->parent_tsf[0]);
8128 
8129 	/* Convert to DBM */
8130 	ipw_rt->rt_dbmsignal = signal;
8131 	ipw_rt->rt_dbmnoise = noise;
8132 
8133 	/* Convert the channel data and set the flags */
8134 	ipw_rt->rt_channel = cpu_to_le16(ieee80211chan2mhz(channel));
8135 	if (channel > 14) {	/* 802.11a */
8136 		ipw_rt->rt_chbitmask =
8137 		    cpu_to_le16((IEEE80211_CHAN_OFDM | IEEE80211_CHAN_5GHZ));
8138 	} else if (phy_flags & (1 << 5)) {	/* 802.11b */
8139 		ipw_rt->rt_chbitmask =
8140 		    cpu_to_le16((IEEE80211_CHAN_CCK | IEEE80211_CHAN_2GHZ));
8141 	} else {		/* 802.11g */
8142 		ipw_rt->rt_chbitmask =
8143 		    cpu_to_le16(IEEE80211_CHAN_OFDM | IEEE80211_CHAN_2GHZ);
8144 	}
8145 
8146 	/* set the rate in multiples of 500k/s */
8147 	switch (rate) {
8148 	case IPW_TX_RATE_1MB:
8149 		ipw_rt->rt_rate = 2;
8150 		break;
8151 	case IPW_TX_RATE_2MB:
8152 		ipw_rt->rt_rate = 4;
8153 		break;
8154 	case IPW_TX_RATE_5MB:
8155 		ipw_rt->rt_rate = 10;
8156 		break;
8157 	case IPW_TX_RATE_6MB:
8158 		ipw_rt->rt_rate = 12;
8159 		break;
8160 	case IPW_TX_RATE_9MB:
8161 		ipw_rt->rt_rate = 18;
8162 		break;
8163 	case IPW_TX_RATE_11MB:
8164 		ipw_rt->rt_rate = 22;
8165 		break;
8166 	case IPW_TX_RATE_12MB:
8167 		ipw_rt->rt_rate = 24;
8168 		break;
8169 	case IPW_TX_RATE_18MB:
8170 		ipw_rt->rt_rate = 36;
8171 		break;
8172 	case IPW_TX_RATE_24MB:
8173 		ipw_rt->rt_rate = 48;
8174 		break;
8175 	case IPW_TX_RATE_36MB:
8176 		ipw_rt->rt_rate = 72;
8177 		break;
8178 	case IPW_TX_RATE_48MB:
8179 		ipw_rt->rt_rate = 96;
8180 		break;
8181 	case IPW_TX_RATE_54MB:
8182 		ipw_rt->rt_rate = 108;
8183 		break;
8184 	default:
8185 		ipw_rt->rt_rate = 0;
8186 		break;
8187 	}
8188 
8189 	/* antenna number */
8190 	ipw_rt->rt_antenna = (phy_flags & 3);
8191 
8192 	/* set the preamble flag if we have it */
8193 	if (phy_flags & (1 << 6))
8194 		ipw_rt->rt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
8195 
8196 	IPW_DEBUG_RX("Rx packet of %d bytes.\n", skb->len);
8197 
8198 	if (!libipw_rx(priv->prom_priv->ieee, skb, stats)) {
8199 		dev->stats.rx_errors++;
8200 		dev_kfree_skb_any(skb);
8201 	}
8202 }
8203 #endif
8204 
is_network_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8205 static int is_network_packet(struct ipw_priv *priv,
8206 				    struct libipw_hdr_4addr *header)
8207 {
8208 	/* Filter incoming packets to determine if they are targeted toward
8209 	 * this network, discarding packets coming from ourselves */
8210 	switch (priv->ieee->iw_mode) {
8211 	case IW_MODE_ADHOC:	/* Header: Dest. | Source    | BSSID */
8212 		/* packets from our adapter are dropped (echo) */
8213 		if (!memcmp(header->addr2, priv->net_dev->dev_addr, ETH_ALEN))
8214 			return 0;
8215 
8216 		/* {broad,multi}cast packets to our BSSID go through */
8217 		if (is_multicast_ether_addr(header->addr1))
8218 			return !memcmp(header->addr3, priv->bssid, ETH_ALEN);
8219 
8220 		/* packets to our adapter go through */
8221 		return !memcmp(header->addr1, priv->net_dev->dev_addr,
8222 			       ETH_ALEN);
8223 
8224 	case IW_MODE_INFRA:	/* Header: Dest. | BSSID | Source */
8225 		/* packets from our adapter are dropped (echo) */
8226 		if (!memcmp(header->addr3, priv->net_dev->dev_addr, ETH_ALEN))
8227 			return 0;
8228 
8229 		/* {broad,multi}cast packets to our BSS go through */
8230 		if (is_multicast_ether_addr(header->addr1))
8231 			return !memcmp(header->addr2, priv->bssid, ETH_ALEN);
8232 
8233 		/* packets to our adapter go through */
8234 		return !memcmp(header->addr1, priv->net_dev->dev_addr,
8235 			       ETH_ALEN);
8236 	}
8237 
8238 	return 1;
8239 }
8240 
8241 #define IPW_PACKET_RETRY_TIME HZ
8242 
is_duplicate_packet(struct ipw_priv * priv,struct libipw_hdr_4addr * header)8243 static  int is_duplicate_packet(struct ipw_priv *priv,
8244 				      struct libipw_hdr_4addr *header)
8245 {
8246 	u16 sc = le16_to_cpu(header->seq_ctl);
8247 	u16 seq = WLAN_GET_SEQ_SEQ(sc);
8248 	u16 frag = WLAN_GET_SEQ_FRAG(sc);
8249 	u16 *last_seq, *last_frag;
8250 	unsigned long *last_time;
8251 
8252 	switch (priv->ieee->iw_mode) {
8253 	case IW_MODE_ADHOC:
8254 		{
8255 			struct list_head *p;
8256 			struct ipw_ibss_seq *entry = NULL;
8257 			u8 *mac = header->addr2;
8258 			int index = mac[5] % IPW_IBSS_MAC_HASH_SIZE;
8259 
8260 			__list_for_each(p, &priv->ibss_mac_hash[index]) {
8261 				entry =
8262 				    list_entry(p, struct ipw_ibss_seq, list);
8263 				if (!memcmp(entry->mac, mac, ETH_ALEN))
8264 					break;
8265 			}
8266 			if (p == &priv->ibss_mac_hash[index]) {
8267 				entry = kmalloc(sizeof(*entry), GFP_ATOMIC);
8268 				if (!entry) {
8269 					IPW_ERROR
8270 					    ("Cannot malloc new mac entry\n");
8271 					return 0;
8272 				}
8273 				memcpy(entry->mac, mac, ETH_ALEN);
8274 				entry->seq_num = seq;
8275 				entry->frag_num = frag;
8276 				entry->packet_time = jiffies;
8277 				list_add(&entry->list,
8278 					 &priv->ibss_mac_hash[index]);
8279 				return 0;
8280 			}
8281 			last_seq = &entry->seq_num;
8282 			last_frag = &entry->frag_num;
8283 			last_time = &entry->packet_time;
8284 			break;
8285 		}
8286 	case IW_MODE_INFRA:
8287 		last_seq = &priv->last_seq_num;
8288 		last_frag = &priv->last_frag_num;
8289 		last_time = &priv->last_packet_time;
8290 		break;
8291 	default:
8292 		return 0;
8293 	}
8294 	if ((*last_seq == seq) &&
8295 	    time_after(*last_time + IPW_PACKET_RETRY_TIME, jiffies)) {
8296 		if (*last_frag == frag)
8297 			goto drop;
8298 		if (*last_frag + 1 != frag)
8299 			/* out-of-order fragment */
8300 			goto drop;
8301 	} else
8302 		*last_seq = seq;
8303 
8304 	*last_frag = frag;
8305 	*last_time = jiffies;
8306 	return 0;
8307 
8308       drop:
8309 	/* Comment this line now since we observed the card receives
8310 	 * duplicate packets but the FCTL_RETRY bit is not set in the
8311 	 * IBSS mode with fragmentation enabled.
8312 	 BUG_ON(!(le16_to_cpu(header->frame_control) & IEEE80211_FCTL_RETRY)); */
8313 	return 1;
8314 }
8315 
ipw_handle_mgmt_packet(struct ipw_priv * priv,struct ipw_rx_mem_buffer * rxb,struct libipw_rx_stats * stats)8316 static void ipw_handle_mgmt_packet(struct ipw_priv *priv,
8317 				   struct ipw_rx_mem_buffer *rxb,
8318 				   struct libipw_rx_stats *stats)
8319 {
8320 	struct sk_buff *skb = rxb->skb;
8321 	struct ipw_rx_packet *pkt = (struct ipw_rx_packet *)skb->data;
8322 	struct libipw_hdr_4addr *header = (struct libipw_hdr_4addr *)
8323 	    (skb->data + IPW_RX_FRAME_SIZE);
8324 
8325 	libipw_rx_mgt(priv->ieee, header, stats);
8326 
8327 	if (priv->ieee->iw_mode == IW_MODE_ADHOC &&
8328 	    ((WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8329 	      IEEE80211_STYPE_PROBE_RESP) ||
8330 	     (WLAN_FC_GET_STYPE(le16_to_cpu(header->frame_ctl)) ==
8331 	      IEEE80211_STYPE_BEACON))) {
8332 		if (!memcmp(header->addr3, priv->bssid, ETH_ALEN))
8333 			ipw_add_station(priv, header->addr2);
8334 	}
8335 
8336 	if (priv->config & CFG_NET_STATS) {
8337 		IPW_DEBUG_HC("sending stat packet\n");
8338 
8339 		/* Set the size of the skb to the size of the full
8340 		 * ipw header and 802.11 frame */
8341 		skb_put(skb, le16_to_cpu(pkt->u.frame.length) +
8342 			IPW_RX_FRAME_SIZE);
8343 
8344 		/* Advance past the ipw packet header to the 802.11 frame */
8345 		skb_pull(skb, IPW_RX_FRAME_SIZE);
8346 
8347 		/* Push the libipw_rx_stats before the 802.11 frame */
8348 		memcpy(skb_push(skb, sizeof(*stats)), stats, sizeof(*stats));
8349 
8350 		skb->dev = priv->ieee->dev;
8351 
8352 		/* Point raw at the libipw_stats */
8353 		skb_reset_mac_header(skb);
8354 
8355 		skb->pkt_type = PACKET_OTHERHOST;
8356 		skb->protocol = cpu_to_be16(ETH_P_80211_STATS);
8357 		memset(skb->cb, 0, sizeof(rxb->skb->cb));
8358 		netif_rx(skb);
8359 		rxb->skb = NULL;
8360 	}
8361 }
8362 
8363 /*
8364  * Main entry function for receiving a packet with 80211 headers.  This
8365  * should be called when ever the FW has notified us that there is a new
8366  * skb in the receive queue.
8367  */
ipw_rx(struct ipw_priv * priv)8368 static void ipw_rx(struct ipw_priv *priv)
8369 {
8370 	struct ipw_rx_mem_buffer *rxb;
8371 	struct ipw_rx_packet *pkt;
8372 	struct libipw_hdr_4addr *header;
8373 	u32 r, w, i;
8374 	u8 network_packet;
8375 	u8 fill_rx = 0;
8376 
8377 	r = ipw_read32(priv, IPW_RX_READ_INDEX);
8378 	w = ipw_read32(priv, IPW_RX_WRITE_INDEX);
8379 	i = priv->rxq->read;
8380 
8381 	if (ipw_rx_queue_space (priv->rxq) > (RX_QUEUE_SIZE / 2))
8382 		fill_rx = 1;
8383 
8384 	while (i != r) {
8385 		rxb = priv->rxq->queue[i];
8386 		if (unlikely(rxb == NULL)) {
8387 			printk(KERN_CRIT "Queue not allocated!\n");
8388 			break;
8389 		}
8390 		priv->rxq->queue[i] = NULL;
8391 
8392 		pci_dma_sync_single_for_cpu(priv->pci_dev, rxb->dma_addr,
8393 					    IPW_RX_BUF_SIZE,
8394 					    PCI_DMA_FROMDEVICE);
8395 
8396 		pkt = (struct ipw_rx_packet *)rxb->skb->data;
8397 		IPW_DEBUG_RX("Packet: type=%02X seq=%02X bits=%02X\n",
8398 			     pkt->header.message_type,
8399 			     pkt->header.rx_seq_num, pkt->header.control_bits);
8400 
8401 		switch (pkt->header.message_type) {
8402 		case RX_FRAME_TYPE:	/* 802.11 frame */  {
8403 				struct libipw_rx_stats stats = {
8404 					.rssi = pkt->u.frame.rssi_dbm -
8405 					    IPW_RSSI_TO_DBM,
8406 					.signal =
8407 					    pkt->u.frame.rssi_dbm -
8408 					    IPW_RSSI_TO_DBM + 0x100,
8409 					.noise =
8410 					    le16_to_cpu(pkt->u.frame.noise),
8411 					.rate = pkt->u.frame.rate,
8412 					.mac_time = jiffies,
8413 					.received_channel =
8414 					    pkt->u.frame.received_channel,
8415 					.freq =
8416 					    (pkt->u.frame.
8417 					     control & (1 << 0)) ?
8418 					    LIBIPW_24GHZ_BAND :
8419 					    LIBIPW_52GHZ_BAND,
8420 					.len = le16_to_cpu(pkt->u.frame.length),
8421 				};
8422 
8423 				if (stats.rssi != 0)
8424 					stats.mask |= LIBIPW_STATMASK_RSSI;
8425 				if (stats.signal != 0)
8426 					stats.mask |= LIBIPW_STATMASK_SIGNAL;
8427 				if (stats.noise != 0)
8428 					stats.mask |= LIBIPW_STATMASK_NOISE;
8429 				if (stats.rate != 0)
8430 					stats.mask |= LIBIPW_STATMASK_RATE;
8431 
8432 				priv->rx_packets++;
8433 
8434 #ifdef CONFIG_IPW2200_PROMISCUOUS
8435 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev))
8436 		ipw_handle_promiscuous_rx(priv, rxb, &stats);
8437 #endif
8438 
8439 #ifdef CONFIG_IPW2200_MONITOR
8440 				if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8441 #ifdef CONFIG_IPW2200_RADIOTAP
8442 
8443                 ipw_handle_data_packet_monitor(priv,
8444 					       rxb,
8445 					       &stats);
8446 #else
8447 		ipw_handle_data_packet(priv, rxb,
8448 				       &stats);
8449 #endif
8450 					break;
8451 				}
8452 #endif
8453 
8454 				header =
8455 				    (struct libipw_hdr_4addr *)(rxb->skb->
8456 								   data +
8457 								   IPW_RX_FRAME_SIZE);
8458 				/* TODO: Check Ad-Hoc dest/source and make sure
8459 				 * that we are actually parsing these packets
8460 				 * correctly -- we should probably use the
8461 				 * frame control of the packet and disregard
8462 				 * the current iw_mode */
8463 
8464 				network_packet =
8465 				    is_network_packet(priv, header);
8466 				if (network_packet && priv->assoc_network) {
8467 					priv->assoc_network->stats.rssi =
8468 					    stats.rssi;
8469 					priv->exp_avg_rssi =
8470 					    exponential_average(priv->exp_avg_rssi,
8471 					    stats.rssi, DEPTH_RSSI);
8472 				}
8473 
8474 				IPW_DEBUG_RX("Frame: len=%u\n",
8475 					     le16_to_cpu(pkt->u.frame.length));
8476 
8477 				if (le16_to_cpu(pkt->u.frame.length) <
8478 				    libipw_get_hdrlen(le16_to_cpu(
8479 						    header->frame_ctl))) {
8480 					IPW_DEBUG_DROP
8481 					    ("Received packet is too small. "
8482 					     "Dropping.\n");
8483 					priv->net_dev->stats.rx_errors++;
8484 					priv->wstats.discard.misc++;
8485 					break;
8486 				}
8487 
8488 				switch (WLAN_FC_GET_TYPE
8489 					(le16_to_cpu(header->frame_ctl))) {
8490 
8491 				case IEEE80211_FTYPE_MGMT:
8492 					ipw_handle_mgmt_packet(priv, rxb,
8493 							       &stats);
8494 					break;
8495 
8496 				case IEEE80211_FTYPE_CTL:
8497 					break;
8498 
8499 				case IEEE80211_FTYPE_DATA:
8500 					if (unlikely(!network_packet ||
8501 						     is_duplicate_packet(priv,
8502 									 header)))
8503 					{
8504 						IPW_DEBUG_DROP("Dropping: "
8505 							       "%pM, "
8506 							       "%pM, "
8507 							       "%pM\n",
8508 							       header->addr1,
8509 							       header->addr2,
8510 							       header->addr3);
8511 						break;
8512 					}
8513 
8514 					ipw_handle_data_packet(priv, rxb,
8515 							       &stats);
8516 
8517 					break;
8518 				}
8519 				break;
8520 			}
8521 
8522 		case RX_HOST_NOTIFICATION_TYPE:{
8523 				IPW_DEBUG_RX
8524 				    ("Notification: subtype=%02X flags=%02X size=%d\n",
8525 				     pkt->u.notification.subtype,
8526 				     pkt->u.notification.flags,
8527 				     le16_to_cpu(pkt->u.notification.size));
8528 				ipw_rx_notification(priv, &pkt->u.notification);
8529 				break;
8530 			}
8531 
8532 		default:
8533 			IPW_DEBUG_RX("Bad Rx packet of type %d\n",
8534 				     pkt->header.message_type);
8535 			break;
8536 		}
8537 
8538 		/* For now we just don't re-use anything.  We can tweak this
8539 		 * later to try and re-use notification packets and SKBs that
8540 		 * fail to Rx correctly */
8541 		if (rxb->skb != NULL) {
8542 			dev_kfree_skb_any(rxb->skb);
8543 			rxb->skb = NULL;
8544 		}
8545 
8546 		pci_unmap_single(priv->pci_dev, rxb->dma_addr,
8547 				 IPW_RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
8548 		list_add_tail(&rxb->list, &priv->rxq->rx_used);
8549 
8550 		i = (i + 1) % RX_QUEUE_SIZE;
8551 
8552 		/* If there are a lot of unsued frames, restock the Rx queue
8553 		 * so the ucode won't assert */
8554 		if (fill_rx) {
8555 			priv->rxq->read = i;
8556 			ipw_rx_queue_replenish(priv);
8557 		}
8558 	}
8559 
8560 	/* Backtrack one entry */
8561 	priv->rxq->read = i;
8562 	ipw_rx_queue_restock(priv);
8563 }
8564 
8565 #define DEFAULT_RTS_THRESHOLD     2304U
8566 #define MIN_RTS_THRESHOLD         1U
8567 #define MAX_RTS_THRESHOLD         2304U
8568 #define DEFAULT_BEACON_INTERVAL   100U
8569 #define	DEFAULT_SHORT_RETRY_LIMIT 7U
8570 #define	DEFAULT_LONG_RETRY_LIMIT  4U
8571 
8572 /**
8573  * ipw_sw_reset
8574  * @option: options to control different reset behaviour
8575  * 	    0 = reset everything except the 'disable' module_param
8576  * 	    1 = reset everything and print out driver info (for probe only)
8577  * 	    2 = reset everything
8578  */
ipw_sw_reset(struct ipw_priv * priv,int option)8579 static int ipw_sw_reset(struct ipw_priv *priv, int option)
8580 {
8581 	int band, modulation;
8582 	int old_mode = priv->ieee->iw_mode;
8583 
8584 	/* Initialize module parameter values here */
8585 	priv->config = 0;
8586 
8587 	/* We default to disabling the LED code as right now it causes
8588 	 * too many systems to lock up... */
8589 	if (!led_support)
8590 		priv->config |= CFG_NO_LED;
8591 
8592 	if (associate)
8593 		priv->config |= CFG_ASSOCIATE;
8594 	else
8595 		IPW_DEBUG_INFO("Auto associate disabled.\n");
8596 
8597 	if (auto_create)
8598 		priv->config |= CFG_ADHOC_CREATE;
8599 	else
8600 		IPW_DEBUG_INFO("Auto adhoc creation disabled.\n");
8601 
8602 	priv->config &= ~CFG_STATIC_ESSID;
8603 	priv->essid_len = 0;
8604 	memset(priv->essid, 0, IW_ESSID_MAX_SIZE);
8605 
8606 	if (disable && option) {
8607 		priv->status |= STATUS_RF_KILL_SW;
8608 		IPW_DEBUG_INFO("Radio disabled.\n");
8609 	}
8610 
8611 	if (default_channel != 0) {
8612 		priv->config |= CFG_STATIC_CHANNEL;
8613 		priv->channel = default_channel;
8614 		IPW_DEBUG_INFO("Bind to static channel %d\n", default_channel);
8615 		/* TODO: Validate that provided channel is in range */
8616 	}
8617 #ifdef CONFIG_IPW2200_QOS
8618 	ipw_qos_init(priv, qos_enable, qos_burst_enable,
8619 		     burst_duration_CCK, burst_duration_OFDM);
8620 #endif				/* CONFIG_IPW2200_QOS */
8621 
8622 	switch (network_mode) {
8623 	case 1:
8624 		priv->ieee->iw_mode = IW_MODE_ADHOC;
8625 		priv->net_dev->type = ARPHRD_ETHER;
8626 
8627 		break;
8628 #ifdef CONFIG_IPW2200_MONITOR
8629 	case 2:
8630 		priv->ieee->iw_mode = IW_MODE_MONITOR;
8631 #ifdef CONFIG_IPW2200_RADIOTAP
8632 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8633 #else
8634 		priv->net_dev->type = ARPHRD_IEEE80211;
8635 #endif
8636 		break;
8637 #endif
8638 	default:
8639 	case 0:
8640 		priv->net_dev->type = ARPHRD_ETHER;
8641 		priv->ieee->iw_mode = IW_MODE_INFRA;
8642 		break;
8643 	}
8644 
8645 	if (hwcrypto) {
8646 		priv->ieee->host_encrypt = 0;
8647 		priv->ieee->host_encrypt_msdu = 0;
8648 		priv->ieee->host_decrypt = 0;
8649 		priv->ieee->host_mc_decrypt = 0;
8650 	}
8651 	IPW_DEBUG_INFO("Hardware crypto [%s]\n", hwcrypto ? "on" : "off");
8652 
8653 	/* IPW2200/2915 is abled to do hardware fragmentation. */
8654 	priv->ieee->host_open_frag = 0;
8655 
8656 	if ((priv->pci_dev->device == 0x4223) ||
8657 	    (priv->pci_dev->device == 0x4224)) {
8658 		if (option == 1)
8659 			printk(KERN_INFO DRV_NAME
8660 			       ": Detected Intel PRO/Wireless 2915ABG Network "
8661 			       "Connection\n");
8662 		priv->ieee->abg_true = 1;
8663 		band = LIBIPW_52GHZ_BAND | LIBIPW_24GHZ_BAND;
8664 		modulation = LIBIPW_OFDM_MODULATION |
8665 		    LIBIPW_CCK_MODULATION;
8666 		priv->adapter = IPW_2915ABG;
8667 		priv->ieee->mode = IEEE_A | IEEE_G | IEEE_B;
8668 	} else {
8669 		if (option == 1)
8670 			printk(KERN_INFO DRV_NAME
8671 			       ": Detected Intel PRO/Wireless 2200BG Network "
8672 			       "Connection\n");
8673 
8674 		priv->ieee->abg_true = 0;
8675 		band = LIBIPW_24GHZ_BAND;
8676 		modulation = LIBIPW_OFDM_MODULATION |
8677 		    LIBIPW_CCK_MODULATION;
8678 		priv->adapter = IPW_2200BG;
8679 		priv->ieee->mode = IEEE_G | IEEE_B;
8680 	}
8681 
8682 	priv->ieee->freq_band = band;
8683 	priv->ieee->modulation = modulation;
8684 
8685 	priv->rates_mask = LIBIPW_DEFAULT_RATES_MASK;
8686 
8687 	priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
8688 	priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
8689 
8690 	priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
8691 	priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
8692 	priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
8693 
8694 	/* If power management is turned on, default to AC mode */
8695 	priv->power_mode = IPW_POWER_AC;
8696 	priv->tx_power = IPW_TX_POWER_DEFAULT;
8697 
8698 	return old_mode == priv->ieee->iw_mode;
8699 }
8700 
8701 /*
8702  * This file defines the Wireless Extension handlers.  It does not
8703  * define any methods of hardware manipulation and relies on the
8704  * functions defined in ipw_main to provide the HW interaction.
8705  *
8706  * The exception to this is the use of the ipw_get_ordinal()
8707  * function used to poll the hardware vs. making unnecessary calls.
8708  *
8709  */
8710 
ipw_set_channel(struct ipw_priv * priv,u8 channel)8711 static int ipw_set_channel(struct ipw_priv *priv, u8 channel)
8712 {
8713 	if (channel == 0) {
8714 		IPW_DEBUG_INFO("Setting channel to ANY (0)\n");
8715 		priv->config &= ~CFG_STATIC_CHANNEL;
8716 		IPW_DEBUG_ASSOC("Attempting to associate with new "
8717 				"parameters.\n");
8718 		ipw_associate(priv);
8719 		return 0;
8720 	}
8721 
8722 	priv->config |= CFG_STATIC_CHANNEL;
8723 
8724 	if (priv->channel == channel) {
8725 		IPW_DEBUG_INFO("Request to set channel to current value (%d)\n",
8726 			       channel);
8727 		return 0;
8728 	}
8729 
8730 	IPW_DEBUG_INFO("Setting channel to %i\n", (int)channel);
8731 	priv->channel = channel;
8732 
8733 #ifdef CONFIG_IPW2200_MONITOR
8734 	if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
8735 		int i;
8736 		if (priv->status & STATUS_SCANNING) {
8737 			IPW_DEBUG_SCAN("Scan abort triggered due to "
8738 				       "channel change.\n");
8739 			ipw_abort_scan(priv);
8740 		}
8741 
8742 		for (i = 1000; i && (priv->status & STATUS_SCANNING); i--)
8743 			udelay(10);
8744 
8745 		if (priv->status & STATUS_SCANNING)
8746 			IPW_DEBUG_SCAN("Still scanning...\n");
8747 		else
8748 			IPW_DEBUG_SCAN("Took %dms to abort current scan\n",
8749 				       1000 - i);
8750 
8751 		return 0;
8752 	}
8753 #endif				/* CONFIG_IPW2200_MONITOR */
8754 
8755 	/* Network configuration changed -- force [re]association */
8756 	IPW_DEBUG_ASSOC("[re]association triggered due to channel change.\n");
8757 	if (!ipw_disassociate(priv))
8758 		ipw_associate(priv);
8759 
8760 	return 0;
8761 }
8762 
ipw_wx_set_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8763 static int ipw_wx_set_freq(struct net_device *dev,
8764 			   struct iw_request_info *info,
8765 			   union iwreq_data *wrqu, char *extra)
8766 {
8767 	struct ipw_priv *priv = libipw_priv(dev);
8768 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8769 	struct iw_freq *fwrq = &wrqu->freq;
8770 	int ret = 0, i;
8771 	u8 channel, flags;
8772 	int band;
8773 
8774 	if (fwrq->m == 0) {
8775 		IPW_DEBUG_WX("SET Freq/Channel -> any\n");
8776 		mutex_lock(&priv->mutex);
8777 		ret = ipw_set_channel(priv, 0);
8778 		mutex_unlock(&priv->mutex);
8779 		return ret;
8780 	}
8781 	/* if setting by freq convert to channel */
8782 	if (fwrq->e == 1) {
8783 		channel = libipw_freq_to_channel(priv->ieee, fwrq->m);
8784 		if (channel == 0)
8785 			return -EINVAL;
8786 	} else
8787 		channel = fwrq->m;
8788 
8789 	if (!(band = libipw_is_valid_channel(priv->ieee, channel)))
8790 		return -EINVAL;
8791 
8792 	if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
8793 		i = libipw_channel_to_index(priv->ieee, channel);
8794 		if (i == -1)
8795 			return -EINVAL;
8796 
8797 		flags = (band == LIBIPW_24GHZ_BAND) ?
8798 		    geo->bg[i].flags : geo->a[i].flags;
8799 		if (flags & LIBIPW_CH_PASSIVE_ONLY) {
8800 			IPW_DEBUG_WX("Invalid Ad-Hoc channel for 802.11a\n");
8801 			return -EINVAL;
8802 		}
8803 	}
8804 
8805 	IPW_DEBUG_WX("SET Freq/Channel -> %d\n", fwrq->m);
8806 	mutex_lock(&priv->mutex);
8807 	ret = ipw_set_channel(priv, channel);
8808 	mutex_unlock(&priv->mutex);
8809 	return ret;
8810 }
8811 
ipw_wx_get_freq(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8812 static int ipw_wx_get_freq(struct net_device *dev,
8813 			   struct iw_request_info *info,
8814 			   union iwreq_data *wrqu, char *extra)
8815 {
8816 	struct ipw_priv *priv = libipw_priv(dev);
8817 
8818 	wrqu->freq.e = 0;
8819 
8820 	/* If we are associated, trying to associate, or have a statically
8821 	 * configured CHANNEL then return that; otherwise return ANY */
8822 	mutex_lock(&priv->mutex);
8823 	if (priv->config & CFG_STATIC_CHANNEL ||
8824 	    priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) {
8825 		int i;
8826 
8827 		i = libipw_channel_to_index(priv->ieee, priv->channel);
8828 		BUG_ON(i == -1);
8829 		wrqu->freq.e = 1;
8830 
8831 		switch (libipw_is_valid_channel(priv->ieee, priv->channel)) {
8832 		case LIBIPW_52GHZ_BAND:
8833 			wrqu->freq.m = priv->ieee->geo.a[i].freq * 100000;
8834 			break;
8835 
8836 		case LIBIPW_24GHZ_BAND:
8837 			wrqu->freq.m = priv->ieee->geo.bg[i].freq * 100000;
8838 			break;
8839 
8840 		default:
8841 			BUG();
8842 		}
8843 	} else
8844 		wrqu->freq.m = 0;
8845 
8846 	mutex_unlock(&priv->mutex);
8847 	IPW_DEBUG_WX("GET Freq/Channel -> %d\n", priv->channel);
8848 	return 0;
8849 }
8850 
ipw_wx_set_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8851 static int ipw_wx_set_mode(struct net_device *dev,
8852 			   struct iw_request_info *info,
8853 			   union iwreq_data *wrqu, char *extra)
8854 {
8855 	struct ipw_priv *priv = libipw_priv(dev);
8856 	int err = 0;
8857 
8858 	IPW_DEBUG_WX("Set MODE: %d\n", wrqu->mode);
8859 
8860 	switch (wrqu->mode) {
8861 #ifdef CONFIG_IPW2200_MONITOR
8862 	case IW_MODE_MONITOR:
8863 #endif
8864 	case IW_MODE_ADHOC:
8865 	case IW_MODE_INFRA:
8866 		break;
8867 	case IW_MODE_AUTO:
8868 		wrqu->mode = IW_MODE_INFRA;
8869 		break;
8870 	default:
8871 		return -EINVAL;
8872 	}
8873 	if (wrqu->mode == priv->ieee->iw_mode)
8874 		return 0;
8875 
8876 	mutex_lock(&priv->mutex);
8877 
8878 	ipw_sw_reset(priv, 0);
8879 
8880 #ifdef CONFIG_IPW2200_MONITOR
8881 	if (priv->ieee->iw_mode == IW_MODE_MONITOR)
8882 		priv->net_dev->type = ARPHRD_ETHER;
8883 
8884 	if (wrqu->mode == IW_MODE_MONITOR)
8885 #ifdef CONFIG_IPW2200_RADIOTAP
8886 		priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
8887 #else
8888 		priv->net_dev->type = ARPHRD_IEEE80211;
8889 #endif
8890 #endif				/* CONFIG_IPW2200_MONITOR */
8891 
8892 	/* Free the existing firmware and reset the fw_loaded
8893 	 * flag so ipw_load() will bring in the new firmware */
8894 	free_firmware();
8895 
8896 	priv->ieee->iw_mode = wrqu->mode;
8897 
8898 	schedule_work(&priv->adapter_restart);
8899 	mutex_unlock(&priv->mutex);
8900 	return err;
8901 }
8902 
ipw_wx_get_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8903 static int ipw_wx_get_mode(struct net_device *dev,
8904 			   struct iw_request_info *info,
8905 			   union iwreq_data *wrqu, char *extra)
8906 {
8907 	struct ipw_priv *priv = libipw_priv(dev);
8908 	mutex_lock(&priv->mutex);
8909 	wrqu->mode = priv->ieee->iw_mode;
8910 	IPW_DEBUG_WX("Get MODE -> %d\n", wrqu->mode);
8911 	mutex_unlock(&priv->mutex);
8912 	return 0;
8913 }
8914 
8915 /* Values are in microsecond */
8916 static const s32 timeout_duration[] = {
8917 	350000,
8918 	250000,
8919 	75000,
8920 	37000,
8921 	25000,
8922 };
8923 
8924 static const s32 period_duration[] = {
8925 	400000,
8926 	700000,
8927 	1000000,
8928 	1000000,
8929 	1000000
8930 };
8931 
ipw_wx_get_range(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)8932 static int ipw_wx_get_range(struct net_device *dev,
8933 			    struct iw_request_info *info,
8934 			    union iwreq_data *wrqu, char *extra)
8935 {
8936 	struct ipw_priv *priv = libipw_priv(dev);
8937 	struct iw_range *range = (struct iw_range *)extra;
8938 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
8939 	int i = 0, j;
8940 
8941 	wrqu->data.length = sizeof(*range);
8942 	memset(range, 0, sizeof(*range));
8943 
8944 	/* 54Mbs == ~27 Mb/s real (802.11g) */
8945 	range->throughput = 27 * 1000 * 1000;
8946 
8947 	range->max_qual.qual = 100;
8948 	/* TODO: Find real max RSSI and stick here */
8949 	range->max_qual.level = 0;
8950 	range->max_qual.noise = 0;
8951 	range->max_qual.updated = 7;	/* Updated all three */
8952 
8953 	range->avg_qual.qual = 70;
8954 	/* TODO: Find real 'good' to 'bad' threshold value for RSSI */
8955 	range->avg_qual.level = 0;	/* FIXME to real average level */
8956 	range->avg_qual.noise = 0;
8957 	range->avg_qual.updated = 7;	/* Updated all three */
8958 	mutex_lock(&priv->mutex);
8959 	range->num_bitrates = min(priv->rates.num_rates, (u8) IW_MAX_BITRATES);
8960 
8961 	for (i = 0; i < range->num_bitrates; i++)
8962 		range->bitrate[i] = (priv->rates.supported_rates[i] & 0x7F) *
8963 		    500000;
8964 
8965 	range->max_rts = DEFAULT_RTS_THRESHOLD;
8966 	range->min_frag = MIN_FRAG_THRESHOLD;
8967 	range->max_frag = MAX_FRAG_THRESHOLD;
8968 
8969 	range->encoding_size[0] = 5;
8970 	range->encoding_size[1] = 13;
8971 	range->num_encoding_sizes = 2;
8972 	range->max_encoding_tokens = WEP_KEYS;
8973 
8974 	/* Set the Wireless Extension versions */
8975 	range->we_version_compiled = WIRELESS_EXT;
8976 	range->we_version_source = 18;
8977 
8978 	i = 0;
8979 	if (priv->ieee->mode & (IEEE_B | IEEE_G)) {
8980 		for (j = 0; j < geo->bg_channels && i < IW_MAX_FREQUENCIES; j++) {
8981 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8982 			    (geo->bg[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8983 				continue;
8984 
8985 			range->freq[i].i = geo->bg[j].channel;
8986 			range->freq[i].m = geo->bg[j].freq * 100000;
8987 			range->freq[i].e = 1;
8988 			i++;
8989 		}
8990 	}
8991 
8992 	if (priv->ieee->mode & IEEE_A) {
8993 		for (j = 0; j < geo->a_channels && i < IW_MAX_FREQUENCIES; j++) {
8994 			if ((priv->ieee->iw_mode == IW_MODE_ADHOC) &&
8995 			    (geo->a[j].flags & LIBIPW_CH_PASSIVE_ONLY))
8996 				continue;
8997 
8998 			range->freq[i].i = geo->a[j].channel;
8999 			range->freq[i].m = geo->a[j].freq * 100000;
9000 			range->freq[i].e = 1;
9001 			i++;
9002 		}
9003 	}
9004 
9005 	range->num_channels = i;
9006 	range->num_frequency = i;
9007 
9008 	mutex_unlock(&priv->mutex);
9009 
9010 	/* Event capability (kernel + driver) */
9011 	range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
9012 				IW_EVENT_CAPA_MASK(SIOCGIWTHRSPY) |
9013 				IW_EVENT_CAPA_MASK(SIOCGIWAP) |
9014 				IW_EVENT_CAPA_MASK(SIOCGIWSCAN));
9015 	range->event_capa[1] = IW_EVENT_CAPA_K_1;
9016 
9017 	range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
9018 		IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
9019 
9020 	range->scan_capa = IW_SCAN_CAPA_ESSID | IW_SCAN_CAPA_TYPE;
9021 
9022 	IPW_DEBUG_WX("GET Range\n");
9023 	return 0;
9024 }
9025 
ipw_wx_set_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9026 static int ipw_wx_set_wap(struct net_device *dev,
9027 			  struct iw_request_info *info,
9028 			  union iwreq_data *wrqu, char *extra)
9029 {
9030 	struct ipw_priv *priv = libipw_priv(dev);
9031 
9032 	static const unsigned char any[] = {
9033 		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
9034 	};
9035 	static const unsigned char off[] = {
9036 		0x00, 0x00, 0x00, 0x00, 0x00, 0x00
9037 	};
9038 
9039 	if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
9040 		return -EINVAL;
9041 	mutex_lock(&priv->mutex);
9042 	if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
9043 	    !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9044 		/* we disable mandatory BSSID association */
9045 		IPW_DEBUG_WX("Setting AP BSSID to ANY\n");
9046 		priv->config &= ~CFG_STATIC_BSSID;
9047 		IPW_DEBUG_ASSOC("Attempting to associate with new "
9048 				"parameters.\n");
9049 		ipw_associate(priv);
9050 		mutex_unlock(&priv->mutex);
9051 		return 0;
9052 	}
9053 
9054 	priv->config |= CFG_STATIC_BSSID;
9055 	if (!memcmp(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN)) {
9056 		IPW_DEBUG_WX("BSSID set to current BSSID.\n");
9057 		mutex_unlock(&priv->mutex);
9058 		return 0;
9059 	}
9060 
9061 	IPW_DEBUG_WX("Setting mandatory BSSID to %pM\n",
9062 		     wrqu->ap_addr.sa_data);
9063 
9064 	memcpy(priv->bssid, wrqu->ap_addr.sa_data, ETH_ALEN);
9065 
9066 	/* Network configuration changed -- force [re]association */
9067 	IPW_DEBUG_ASSOC("[re]association triggered due to BSSID change.\n");
9068 	if (!ipw_disassociate(priv))
9069 		ipw_associate(priv);
9070 
9071 	mutex_unlock(&priv->mutex);
9072 	return 0;
9073 }
9074 
ipw_wx_get_wap(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9075 static int ipw_wx_get_wap(struct net_device *dev,
9076 			  struct iw_request_info *info,
9077 			  union iwreq_data *wrqu, char *extra)
9078 {
9079 	struct ipw_priv *priv = libipw_priv(dev);
9080 
9081 	/* If we are associated, trying to associate, or have a statically
9082 	 * configured BSSID then return that; otherwise return ANY */
9083 	mutex_lock(&priv->mutex);
9084 	if (priv->config & CFG_STATIC_BSSID ||
9085 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9086 		wrqu->ap_addr.sa_family = ARPHRD_ETHER;
9087 		memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
9088 	} else
9089 		memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
9090 
9091 	IPW_DEBUG_WX("Getting WAP BSSID: %pM\n",
9092 		     wrqu->ap_addr.sa_data);
9093 	mutex_unlock(&priv->mutex);
9094 	return 0;
9095 }
9096 
ipw_wx_set_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9097 static int ipw_wx_set_essid(struct net_device *dev,
9098 			    struct iw_request_info *info,
9099 			    union iwreq_data *wrqu, char *extra)
9100 {
9101 	struct ipw_priv *priv = libipw_priv(dev);
9102         int length;
9103 	DECLARE_SSID_BUF(ssid);
9104 
9105         mutex_lock(&priv->mutex);
9106 
9107         if (!wrqu->essid.flags)
9108         {
9109                 IPW_DEBUG_WX("Setting ESSID to ANY\n");
9110                 ipw_disassociate(priv);
9111                 priv->config &= ~CFG_STATIC_ESSID;
9112                 ipw_associate(priv);
9113                 mutex_unlock(&priv->mutex);
9114                 return 0;
9115         }
9116 
9117 	length = min((int)wrqu->essid.length, IW_ESSID_MAX_SIZE);
9118 
9119 	priv->config |= CFG_STATIC_ESSID;
9120 
9121 	if (priv->essid_len == length && !memcmp(priv->essid, extra, length)
9122 	    && (priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING))) {
9123 		IPW_DEBUG_WX("ESSID set to current ESSID.\n");
9124 		mutex_unlock(&priv->mutex);
9125 		return 0;
9126 	}
9127 
9128 	IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n",
9129 		     print_ssid(ssid, extra, length), length);
9130 
9131 	priv->essid_len = length;
9132 	memcpy(priv->essid, extra, priv->essid_len);
9133 
9134 	/* Network configuration changed -- force [re]association */
9135 	IPW_DEBUG_ASSOC("[re]association triggered due to ESSID change.\n");
9136 	if (!ipw_disassociate(priv))
9137 		ipw_associate(priv);
9138 
9139 	mutex_unlock(&priv->mutex);
9140 	return 0;
9141 }
9142 
ipw_wx_get_essid(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9143 static int ipw_wx_get_essid(struct net_device *dev,
9144 			    struct iw_request_info *info,
9145 			    union iwreq_data *wrqu, char *extra)
9146 {
9147 	struct ipw_priv *priv = libipw_priv(dev);
9148 	DECLARE_SSID_BUF(ssid);
9149 
9150 	/* If we are associated, trying to associate, or have a statically
9151 	 * configured ESSID then return that; otherwise return ANY */
9152 	mutex_lock(&priv->mutex);
9153 	if (priv->config & CFG_STATIC_ESSID ||
9154 	    priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) {
9155 		IPW_DEBUG_WX("Getting essid: '%s'\n",
9156 			     print_ssid(ssid, priv->essid, priv->essid_len));
9157 		memcpy(extra, priv->essid, priv->essid_len);
9158 		wrqu->essid.length = priv->essid_len;
9159 		wrqu->essid.flags = 1;	/* active */
9160 	} else {
9161 		IPW_DEBUG_WX("Getting essid: ANY\n");
9162 		wrqu->essid.length = 0;
9163 		wrqu->essid.flags = 0;	/* active */
9164 	}
9165 	mutex_unlock(&priv->mutex);
9166 	return 0;
9167 }
9168 
ipw_wx_set_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9169 static int ipw_wx_set_nick(struct net_device *dev,
9170 			   struct iw_request_info *info,
9171 			   union iwreq_data *wrqu, char *extra)
9172 {
9173 	struct ipw_priv *priv = libipw_priv(dev);
9174 
9175 	IPW_DEBUG_WX("Setting nick to '%s'\n", extra);
9176 	if (wrqu->data.length > IW_ESSID_MAX_SIZE)
9177 		return -E2BIG;
9178 	mutex_lock(&priv->mutex);
9179 	wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
9180 	memset(priv->nick, 0, sizeof(priv->nick));
9181 	memcpy(priv->nick, extra, wrqu->data.length);
9182 	IPW_DEBUG_TRACE("<<\n");
9183 	mutex_unlock(&priv->mutex);
9184 	return 0;
9185 
9186 }
9187 
ipw_wx_get_nick(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9188 static int ipw_wx_get_nick(struct net_device *dev,
9189 			   struct iw_request_info *info,
9190 			   union iwreq_data *wrqu, char *extra)
9191 {
9192 	struct ipw_priv *priv = libipw_priv(dev);
9193 	IPW_DEBUG_WX("Getting nick\n");
9194 	mutex_lock(&priv->mutex);
9195 	wrqu->data.length = strlen(priv->nick);
9196 	memcpy(extra, priv->nick, wrqu->data.length);
9197 	wrqu->data.flags = 1;	/* active */
9198 	mutex_unlock(&priv->mutex);
9199 	return 0;
9200 }
9201 
ipw_wx_set_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9202 static int ipw_wx_set_sens(struct net_device *dev,
9203 			    struct iw_request_info *info,
9204 			    union iwreq_data *wrqu, char *extra)
9205 {
9206 	struct ipw_priv *priv = libipw_priv(dev);
9207 	int err = 0;
9208 
9209 	IPW_DEBUG_WX("Setting roaming threshold to %d\n", wrqu->sens.value);
9210 	IPW_DEBUG_WX("Setting disassociate threshold to %d\n", 3*wrqu->sens.value);
9211 	mutex_lock(&priv->mutex);
9212 
9213 	if (wrqu->sens.fixed == 0)
9214 	{
9215 		priv->roaming_threshold = IPW_MB_ROAMING_THRESHOLD_DEFAULT;
9216 		priv->disassociate_threshold = IPW_MB_DISASSOCIATE_THRESHOLD_DEFAULT;
9217 		goto out;
9218 	}
9219 	if ((wrqu->sens.value > IPW_MB_ROAMING_THRESHOLD_MAX) ||
9220 	    (wrqu->sens.value < IPW_MB_ROAMING_THRESHOLD_MIN)) {
9221 		err = -EINVAL;
9222 		goto out;
9223 	}
9224 
9225 	priv->roaming_threshold = wrqu->sens.value;
9226 	priv->disassociate_threshold = 3*wrqu->sens.value;
9227       out:
9228 	mutex_unlock(&priv->mutex);
9229 	return err;
9230 }
9231 
ipw_wx_get_sens(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9232 static int ipw_wx_get_sens(struct net_device *dev,
9233 			    struct iw_request_info *info,
9234 			    union iwreq_data *wrqu, char *extra)
9235 {
9236 	struct ipw_priv *priv = libipw_priv(dev);
9237 	mutex_lock(&priv->mutex);
9238 	wrqu->sens.fixed = 1;
9239 	wrqu->sens.value = priv->roaming_threshold;
9240 	mutex_unlock(&priv->mutex);
9241 
9242 	IPW_DEBUG_WX("GET roaming threshold -> %s %d\n",
9243 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9244 
9245 	return 0;
9246 }
9247 
ipw_wx_set_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9248 static int ipw_wx_set_rate(struct net_device *dev,
9249 			   struct iw_request_info *info,
9250 			   union iwreq_data *wrqu, char *extra)
9251 {
9252 	/* TODO: We should use semaphores or locks for access to priv */
9253 	struct ipw_priv *priv = libipw_priv(dev);
9254 	u32 target_rate = wrqu->bitrate.value;
9255 	u32 fixed, mask;
9256 
9257 	/* value = -1, fixed = 0 means auto only, so we should use all rates offered by AP */
9258 	/* value = X, fixed = 1 means only rate X */
9259 	/* value = X, fixed = 0 means all rates lower equal X */
9260 
9261 	if (target_rate == -1) {
9262 		fixed = 0;
9263 		mask = LIBIPW_DEFAULT_RATES_MASK;
9264 		/* Now we should reassociate */
9265 		goto apply;
9266 	}
9267 
9268 	mask = 0;
9269 	fixed = wrqu->bitrate.fixed;
9270 
9271 	if (target_rate == 1000000 || !fixed)
9272 		mask |= LIBIPW_CCK_RATE_1MB_MASK;
9273 	if (target_rate == 1000000)
9274 		goto apply;
9275 
9276 	if (target_rate == 2000000 || !fixed)
9277 		mask |= LIBIPW_CCK_RATE_2MB_MASK;
9278 	if (target_rate == 2000000)
9279 		goto apply;
9280 
9281 	if (target_rate == 5500000 || !fixed)
9282 		mask |= LIBIPW_CCK_RATE_5MB_MASK;
9283 	if (target_rate == 5500000)
9284 		goto apply;
9285 
9286 	if (target_rate == 6000000 || !fixed)
9287 		mask |= LIBIPW_OFDM_RATE_6MB_MASK;
9288 	if (target_rate == 6000000)
9289 		goto apply;
9290 
9291 	if (target_rate == 9000000 || !fixed)
9292 		mask |= LIBIPW_OFDM_RATE_9MB_MASK;
9293 	if (target_rate == 9000000)
9294 		goto apply;
9295 
9296 	if (target_rate == 11000000 || !fixed)
9297 		mask |= LIBIPW_CCK_RATE_11MB_MASK;
9298 	if (target_rate == 11000000)
9299 		goto apply;
9300 
9301 	if (target_rate == 12000000 || !fixed)
9302 		mask |= LIBIPW_OFDM_RATE_12MB_MASK;
9303 	if (target_rate == 12000000)
9304 		goto apply;
9305 
9306 	if (target_rate == 18000000 || !fixed)
9307 		mask |= LIBIPW_OFDM_RATE_18MB_MASK;
9308 	if (target_rate == 18000000)
9309 		goto apply;
9310 
9311 	if (target_rate == 24000000 || !fixed)
9312 		mask |= LIBIPW_OFDM_RATE_24MB_MASK;
9313 	if (target_rate == 24000000)
9314 		goto apply;
9315 
9316 	if (target_rate == 36000000 || !fixed)
9317 		mask |= LIBIPW_OFDM_RATE_36MB_MASK;
9318 	if (target_rate == 36000000)
9319 		goto apply;
9320 
9321 	if (target_rate == 48000000 || !fixed)
9322 		mask |= LIBIPW_OFDM_RATE_48MB_MASK;
9323 	if (target_rate == 48000000)
9324 		goto apply;
9325 
9326 	if (target_rate == 54000000 || !fixed)
9327 		mask |= LIBIPW_OFDM_RATE_54MB_MASK;
9328 	if (target_rate == 54000000)
9329 		goto apply;
9330 
9331 	IPW_DEBUG_WX("invalid rate specified, returning error\n");
9332 	return -EINVAL;
9333 
9334       apply:
9335 	IPW_DEBUG_WX("Setting rate mask to 0x%08X [%s]\n",
9336 		     mask, fixed ? "fixed" : "sub-rates");
9337 	mutex_lock(&priv->mutex);
9338 	if (mask == LIBIPW_DEFAULT_RATES_MASK) {
9339 		priv->config &= ~CFG_FIXED_RATE;
9340 		ipw_set_fixed_rate(priv, priv->ieee->mode);
9341 	} else
9342 		priv->config |= CFG_FIXED_RATE;
9343 
9344 	if (priv->rates_mask == mask) {
9345 		IPW_DEBUG_WX("Mask set to current mask.\n");
9346 		mutex_unlock(&priv->mutex);
9347 		return 0;
9348 	}
9349 
9350 	priv->rates_mask = mask;
9351 
9352 	/* Network configuration changed -- force [re]association */
9353 	IPW_DEBUG_ASSOC("[re]association triggered due to rates change.\n");
9354 	if (!ipw_disassociate(priv))
9355 		ipw_associate(priv);
9356 
9357 	mutex_unlock(&priv->mutex);
9358 	return 0;
9359 }
9360 
ipw_wx_get_rate(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9361 static int ipw_wx_get_rate(struct net_device *dev,
9362 			   struct iw_request_info *info,
9363 			   union iwreq_data *wrqu, char *extra)
9364 {
9365 	struct ipw_priv *priv = libipw_priv(dev);
9366 	mutex_lock(&priv->mutex);
9367 	wrqu->bitrate.value = priv->last_rate;
9368 	wrqu->bitrate.fixed = (priv->config & CFG_FIXED_RATE) ? 1 : 0;
9369 	mutex_unlock(&priv->mutex);
9370 	IPW_DEBUG_WX("GET Rate -> %d\n", wrqu->bitrate.value);
9371 	return 0;
9372 }
9373 
ipw_wx_set_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9374 static int ipw_wx_set_rts(struct net_device *dev,
9375 			  struct iw_request_info *info,
9376 			  union iwreq_data *wrqu, char *extra)
9377 {
9378 	struct ipw_priv *priv = libipw_priv(dev);
9379 	mutex_lock(&priv->mutex);
9380 	if (wrqu->rts.disabled || !wrqu->rts.fixed)
9381 		priv->rts_threshold = DEFAULT_RTS_THRESHOLD;
9382 	else {
9383 		if (wrqu->rts.value < MIN_RTS_THRESHOLD ||
9384 		    wrqu->rts.value > MAX_RTS_THRESHOLD) {
9385 			mutex_unlock(&priv->mutex);
9386 			return -EINVAL;
9387 		}
9388 		priv->rts_threshold = wrqu->rts.value;
9389 	}
9390 
9391 	ipw_send_rts_threshold(priv, priv->rts_threshold);
9392 	mutex_unlock(&priv->mutex);
9393 	IPW_DEBUG_WX("SET RTS Threshold -> %d\n", priv->rts_threshold);
9394 	return 0;
9395 }
9396 
ipw_wx_get_rts(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9397 static int ipw_wx_get_rts(struct net_device *dev,
9398 			  struct iw_request_info *info,
9399 			  union iwreq_data *wrqu, char *extra)
9400 {
9401 	struct ipw_priv *priv = libipw_priv(dev);
9402 	mutex_lock(&priv->mutex);
9403 	wrqu->rts.value = priv->rts_threshold;
9404 	wrqu->rts.fixed = 0;	/* no auto select */
9405 	wrqu->rts.disabled = (wrqu->rts.value == DEFAULT_RTS_THRESHOLD);
9406 	mutex_unlock(&priv->mutex);
9407 	IPW_DEBUG_WX("GET RTS Threshold -> %d\n", wrqu->rts.value);
9408 	return 0;
9409 }
9410 
ipw_wx_set_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9411 static int ipw_wx_set_txpow(struct net_device *dev,
9412 			    struct iw_request_info *info,
9413 			    union iwreq_data *wrqu, char *extra)
9414 {
9415 	struct ipw_priv *priv = libipw_priv(dev);
9416 	int err = 0;
9417 
9418 	mutex_lock(&priv->mutex);
9419 	if (ipw_radio_kill_sw(priv, wrqu->power.disabled)) {
9420 		err = -EINPROGRESS;
9421 		goto out;
9422 	}
9423 
9424 	if (!wrqu->power.fixed)
9425 		wrqu->power.value = IPW_TX_POWER_DEFAULT;
9426 
9427 	if (wrqu->power.flags != IW_TXPOW_DBM) {
9428 		err = -EINVAL;
9429 		goto out;
9430 	}
9431 
9432 	if ((wrqu->power.value > IPW_TX_POWER_MAX) ||
9433 	    (wrqu->power.value < IPW_TX_POWER_MIN)) {
9434 		err = -EINVAL;
9435 		goto out;
9436 	}
9437 
9438 	priv->tx_power = wrqu->power.value;
9439 	err = ipw_set_tx_power(priv);
9440       out:
9441 	mutex_unlock(&priv->mutex);
9442 	return err;
9443 }
9444 
ipw_wx_get_txpow(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9445 static int ipw_wx_get_txpow(struct net_device *dev,
9446 			    struct iw_request_info *info,
9447 			    union iwreq_data *wrqu, char *extra)
9448 {
9449 	struct ipw_priv *priv = libipw_priv(dev);
9450 	mutex_lock(&priv->mutex);
9451 	wrqu->power.value = priv->tx_power;
9452 	wrqu->power.fixed = 1;
9453 	wrqu->power.flags = IW_TXPOW_DBM;
9454 	wrqu->power.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
9455 	mutex_unlock(&priv->mutex);
9456 
9457 	IPW_DEBUG_WX("GET TX Power -> %s %d\n",
9458 		     wrqu->power.disabled ? "OFF" : "ON", wrqu->power.value);
9459 
9460 	return 0;
9461 }
9462 
ipw_wx_set_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9463 static int ipw_wx_set_frag(struct net_device *dev,
9464 			   struct iw_request_info *info,
9465 			   union iwreq_data *wrqu, char *extra)
9466 {
9467 	struct ipw_priv *priv = libipw_priv(dev);
9468 	mutex_lock(&priv->mutex);
9469 	if (wrqu->frag.disabled || !wrqu->frag.fixed)
9470 		priv->ieee->fts = DEFAULT_FTS;
9471 	else {
9472 		if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
9473 		    wrqu->frag.value > MAX_FRAG_THRESHOLD) {
9474 			mutex_unlock(&priv->mutex);
9475 			return -EINVAL;
9476 		}
9477 
9478 		priv->ieee->fts = wrqu->frag.value & ~0x1;
9479 	}
9480 
9481 	ipw_send_frag_threshold(priv, wrqu->frag.value);
9482 	mutex_unlock(&priv->mutex);
9483 	IPW_DEBUG_WX("SET Frag Threshold -> %d\n", wrqu->frag.value);
9484 	return 0;
9485 }
9486 
ipw_wx_get_frag(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9487 static int ipw_wx_get_frag(struct net_device *dev,
9488 			   struct iw_request_info *info,
9489 			   union iwreq_data *wrqu, char *extra)
9490 {
9491 	struct ipw_priv *priv = libipw_priv(dev);
9492 	mutex_lock(&priv->mutex);
9493 	wrqu->frag.value = priv->ieee->fts;
9494 	wrqu->frag.fixed = 0;	/* no auto select */
9495 	wrqu->frag.disabled = (wrqu->frag.value == DEFAULT_FTS);
9496 	mutex_unlock(&priv->mutex);
9497 	IPW_DEBUG_WX("GET Frag Threshold -> %d\n", wrqu->frag.value);
9498 
9499 	return 0;
9500 }
9501 
ipw_wx_set_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9502 static int ipw_wx_set_retry(struct net_device *dev,
9503 			    struct iw_request_info *info,
9504 			    union iwreq_data *wrqu, char *extra)
9505 {
9506 	struct ipw_priv *priv = libipw_priv(dev);
9507 
9508 	if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
9509 		return -EINVAL;
9510 
9511 	if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
9512 		return 0;
9513 
9514 	if (wrqu->retry.value < 0 || wrqu->retry.value >= 255)
9515 		return -EINVAL;
9516 
9517 	mutex_lock(&priv->mutex);
9518 	if (wrqu->retry.flags & IW_RETRY_SHORT)
9519 		priv->short_retry_limit = (u8) wrqu->retry.value;
9520 	else if (wrqu->retry.flags & IW_RETRY_LONG)
9521 		priv->long_retry_limit = (u8) wrqu->retry.value;
9522 	else {
9523 		priv->short_retry_limit = (u8) wrqu->retry.value;
9524 		priv->long_retry_limit = (u8) wrqu->retry.value;
9525 	}
9526 
9527 	ipw_send_retry_limit(priv, priv->short_retry_limit,
9528 			     priv->long_retry_limit);
9529 	mutex_unlock(&priv->mutex);
9530 	IPW_DEBUG_WX("SET retry limit -> short:%d long:%d\n",
9531 		     priv->short_retry_limit, priv->long_retry_limit);
9532 	return 0;
9533 }
9534 
ipw_wx_get_retry(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9535 static int ipw_wx_get_retry(struct net_device *dev,
9536 			    struct iw_request_info *info,
9537 			    union iwreq_data *wrqu, char *extra)
9538 {
9539 	struct ipw_priv *priv = libipw_priv(dev);
9540 
9541 	mutex_lock(&priv->mutex);
9542 	wrqu->retry.disabled = 0;
9543 
9544 	if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME) {
9545 		mutex_unlock(&priv->mutex);
9546 		return -EINVAL;
9547 	}
9548 
9549 	if (wrqu->retry.flags & IW_RETRY_LONG) {
9550 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
9551 		wrqu->retry.value = priv->long_retry_limit;
9552 	} else if (wrqu->retry.flags & IW_RETRY_SHORT) {
9553 		wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_SHORT;
9554 		wrqu->retry.value = priv->short_retry_limit;
9555 	} else {
9556 		wrqu->retry.flags = IW_RETRY_LIMIT;
9557 		wrqu->retry.value = priv->short_retry_limit;
9558 	}
9559 	mutex_unlock(&priv->mutex);
9560 
9561 	IPW_DEBUG_WX("GET retry -> %d\n", wrqu->retry.value);
9562 
9563 	return 0;
9564 }
9565 
ipw_wx_set_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9566 static int ipw_wx_set_scan(struct net_device *dev,
9567 			   struct iw_request_info *info,
9568 			   union iwreq_data *wrqu, char *extra)
9569 {
9570 	struct ipw_priv *priv = libipw_priv(dev);
9571 	struct iw_scan_req *req = (struct iw_scan_req *)extra;
9572 	struct delayed_work *work = NULL;
9573 
9574 	mutex_lock(&priv->mutex);
9575 
9576 	priv->user_requested_scan = 1;
9577 
9578 	if (wrqu->data.length == sizeof(struct iw_scan_req)) {
9579 		if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
9580 			int len = min((int)req->essid_len,
9581 			              (int)sizeof(priv->direct_scan_ssid));
9582 			memcpy(priv->direct_scan_ssid, req->essid, len);
9583 			priv->direct_scan_ssid_len = len;
9584 			work = &priv->request_direct_scan;
9585 		} else if (req->scan_type == IW_SCAN_TYPE_PASSIVE) {
9586 			work = &priv->request_passive_scan;
9587 		}
9588 	} else {
9589 		/* Normal active broadcast scan */
9590 		work = &priv->request_scan;
9591 	}
9592 
9593 	mutex_unlock(&priv->mutex);
9594 
9595 	IPW_DEBUG_WX("Start scan\n");
9596 
9597 	schedule_delayed_work(work, 0);
9598 
9599 	return 0;
9600 }
9601 
ipw_wx_get_scan(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9602 static int ipw_wx_get_scan(struct net_device *dev,
9603 			   struct iw_request_info *info,
9604 			   union iwreq_data *wrqu, char *extra)
9605 {
9606 	struct ipw_priv *priv = libipw_priv(dev);
9607 	return libipw_wx_get_scan(priv->ieee, info, wrqu, extra);
9608 }
9609 
ipw_wx_set_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9610 static int ipw_wx_set_encode(struct net_device *dev,
9611 			     struct iw_request_info *info,
9612 			     union iwreq_data *wrqu, char *key)
9613 {
9614 	struct ipw_priv *priv = libipw_priv(dev);
9615 	int ret;
9616 	u32 cap = priv->capability;
9617 
9618 	mutex_lock(&priv->mutex);
9619 	ret = libipw_wx_set_encode(priv->ieee, info, wrqu, key);
9620 
9621 	/* In IBSS mode, we need to notify the firmware to update
9622 	 * the beacon info after we changed the capability. */
9623 	if (cap != priv->capability &&
9624 	    priv->ieee->iw_mode == IW_MODE_ADHOC &&
9625 	    priv->status & STATUS_ASSOCIATED)
9626 		ipw_disassociate(priv);
9627 
9628 	mutex_unlock(&priv->mutex);
9629 	return ret;
9630 }
9631 
ipw_wx_get_encode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * key)9632 static int ipw_wx_get_encode(struct net_device *dev,
9633 			     struct iw_request_info *info,
9634 			     union iwreq_data *wrqu, char *key)
9635 {
9636 	struct ipw_priv *priv = libipw_priv(dev);
9637 	return libipw_wx_get_encode(priv->ieee, info, wrqu, key);
9638 }
9639 
ipw_wx_set_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9640 static int ipw_wx_set_power(struct net_device *dev,
9641 			    struct iw_request_info *info,
9642 			    union iwreq_data *wrqu, char *extra)
9643 {
9644 	struct ipw_priv *priv = libipw_priv(dev);
9645 	int err;
9646 	mutex_lock(&priv->mutex);
9647 	if (wrqu->power.disabled) {
9648 		priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
9649 		err = ipw_send_power_mode(priv, IPW_POWER_MODE_CAM);
9650 		if (err) {
9651 			IPW_DEBUG_WX("failed setting power mode.\n");
9652 			mutex_unlock(&priv->mutex);
9653 			return err;
9654 		}
9655 		IPW_DEBUG_WX("SET Power Management Mode -> off\n");
9656 		mutex_unlock(&priv->mutex);
9657 		return 0;
9658 	}
9659 
9660 	switch (wrqu->power.flags & IW_POWER_MODE) {
9661 	case IW_POWER_ON:	/* If not specified */
9662 	case IW_POWER_MODE:	/* If set all mask */
9663 	case IW_POWER_ALL_R:	/* If explicitly state all */
9664 		break;
9665 	default:		/* Otherwise we don't support it */
9666 		IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
9667 			     wrqu->power.flags);
9668 		mutex_unlock(&priv->mutex);
9669 		return -EOPNOTSUPP;
9670 	}
9671 
9672 	/* If the user hasn't specified a power management mode yet, default
9673 	 * to BATTERY */
9674 	if (IPW_POWER_LEVEL(priv->power_mode) == IPW_POWER_AC)
9675 		priv->power_mode = IPW_POWER_ENABLED | IPW_POWER_BATTERY;
9676 	else
9677 		priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
9678 
9679 	err = ipw_send_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
9680 	if (err) {
9681 		IPW_DEBUG_WX("failed setting power mode.\n");
9682 		mutex_unlock(&priv->mutex);
9683 		return err;
9684 	}
9685 
9686 	IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
9687 	mutex_unlock(&priv->mutex);
9688 	return 0;
9689 }
9690 
ipw_wx_get_power(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9691 static int ipw_wx_get_power(struct net_device *dev,
9692 			    struct iw_request_info *info,
9693 			    union iwreq_data *wrqu, char *extra)
9694 {
9695 	struct ipw_priv *priv = libipw_priv(dev);
9696 	mutex_lock(&priv->mutex);
9697 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9698 		wrqu->power.disabled = 1;
9699 	else
9700 		wrqu->power.disabled = 0;
9701 
9702 	mutex_unlock(&priv->mutex);
9703 	IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
9704 
9705 	return 0;
9706 }
9707 
ipw_wx_set_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9708 static int ipw_wx_set_powermode(struct net_device *dev,
9709 				struct iw_request_info *info,
9710 				union iwreq_data *wrqu, char *extra)
9711 {
9712 	struct ipw_priv *priv = libipw_priv(dev);
9713 	int mode = *(int *)extra;
9714 	int err;
9715 
9716 	mutex_lock(&priv->mutex);
9717 	if ((mode < 1) || (mode > IPW_POWER_LIMIT))
9718 		mode = IPW_POWER_AC;
9719 
9720 	if (IPW_POWER_LEVEL(priv->power_mode) != mode) {
9721 		err = ipw_send_power_mode(priv, mode);
9722 		if (err) {
9723 			IPW_DEBUG_WX("failed setting power mode.\n");
9724 			mutex_unlock(&priv->mutex);
9725 			return err;
9726 		}
9727 		priv->power_mode = IPW_POWER_ENABLED | mode;
9728 	}
9729 	mutex_unlock(&priv->mutex);
9730 	return 0;
9731 }
9732 
9733 #define MAX_WX_STRING 80
ipw_wx_get_powermode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9734 static int ipw_wx_get_powermode(struct net_device *dev,
9735 				struct iw_request_info *info,
9736 				union iwreq_data *wrqu, char *extra)
9737 {
9738 	struct ipw_priv *priv = libipw_priv(dev);
9739 	int level = IPW_POWER_LEVEL(priv->power_mode);
9740 	char *p = extra;
9741 
9742 	p += snprintf(p, MAX_WX_STRING, "Power save level: %d ", level);
9743 
9744 	switch (level) {
9745 	case IPW_POWER_AC:
9746 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(AC)");
9747 		break;
9748 	case IPW_POWER_BATTERY:
9749 		p += snprintf(p, MAX_WX_STRING - (p - extra), "(BATTERY)");
9750 		break;
9751 	default:
9752 		p += snprintf(p, MAX_WX_STRING - (p - extra),
9753 			      "(Timeout %dms, Period %dms)",
9754 			      timeout_duration[level - 1] / 1000,
9755 			      period_duration[level - 1] / 1000);
9756 	}
9757 
9758 	if (!(priv->power_mode & IPW_POWER_ENABLED))
9759 		p += snprintf(p, MAX_WX_STRING - (p - extra), " OFF");
9760 
9761 	wrqu->data.length = p - extra + 1;
9762 
9763 	return 0;
9764 }
9765 
ipw_wx_set_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9766 static int ipw_wx_set_wireless_mode(struct net_device *dev,
9767 				    struct iw_request_info *info,
9768 				    union iwreq_data *wrqu, char *extra)
9769 {
9770 	struct ipw_priv *priv = libipw_priv(dev);
9771 	int mode = *(int *)extra;
9772 	u8 band = 0, modulation = 0;
9773 
9774 	if (mode == 0 || mode & ~IEEE_MODE_MASK) {
9775 		IPW_WARNING("Attempt to set invalid wireless mode: %d\n", mode);
9776 		return -EINVAL;
9777 	}
9778 	mutex_lock(&priv->mutex);
9779 	if (priv->adapter == IPW_2915ABG) {
9780 		priv->ieee->abg_true = 1;
9781 		if (mode & IEEE_A) {
9782 			band |= LIBIPW_52GHZ_BAND;
9783 			modulation |= LIBIPW_OFDM_MODULATION;
9784 		} else
9785 			priv->ieee->abg_true = 0;
9786 	} else {
9787 		if (mode & IEEE_A) {
9788 			IPW_WARNING("Attempt to set 2200BG into "
9789 				    "802.11a mode\n");
9790 			mutex_unlock(&priv->mutex);
9791 			return -EINVAL;
9792 		}
9793 
9794 		priv->ieee->abg_true = 0;
9795 	}
9796 
9797 	if (mode & IEEE_B) {
9798 		band |= LIBIPW_24GHZ_BAND;
9799 		modulation |= LIBIPW_CCK_MODULATION;
9800 	} else
9801 		priv->ieee->abg_true = 0;
9802 
9803 	if (mode & IEEE_G) {
9804 		band |= LIBIPW_24GHZ_BAND;
9805 		modulation |= LIBIPW_OFDM_MODULATION;
9806 	} else
9807 		priv->ieee->abg_true = 0;
9808 
9809 	priv->ieee->mode = mode;
9810 	priv->ieee->freq_band = band;
9811 	priv->ieee->modulation = modulation;
9812 	init_supported_rates(priv, &priv->rates);
9813 
9814 	/* Network configuration changed -- force [re]association */
9815 	IPW_DEBUG_ASSOC("[re]association triggered due to mode change.\n");
9816 	if (!ipw_disassociate(priv)) {
9817 		ipw_send_supported_rates(priv, &priv->rates);
9818 		ipw_associate(priv);
9819 	}
9820 
9821 	/* Update the band LEDs */
9822 	ipw_led_band_on(priv);
9823 
9824 	IPW_DEBUG_WX("PRIV SET MODE: %c%c%c\n",
9825 		     mode & IEEE_A ? 'a' : '.',
9826 		     mode & IEEE_B ? 'b' : '.', mode & IEEE_G ? 'g' : '.');
9827 	mutex_unlock(&priv->mutex);
9828 	return 0;
9829 }
9830 
ipw_wx_get_wireless_mode(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9831 static int ipw_wx_get_wireless_mode(struct net_device *dev,
9832 				    struct iw_request_info *info,
9833 				    union iwreq_data *wrqu, char *extra)
9834 {
9835 	struct ipw_priv *priv = libipw_priv(dev);
9836 	mutex_lock(&priv->mutex);
9837 	switch (priv->ieee->mode) {
9838 	case IEEE_A:
9839 		strncpy(extra, "802.11a (1)", MAX_WX_STRING);
9840 		break;
9841 	case IEEE_B:
9842 		strncpy(extra, "802.11b (2)", MAX_WX_STRING);
9843 		break;
9844 	case IEEE_A | IEEE_B:
9845 		strncpy(extra, "802.11ab (3)", MAX_WX_STRING);
9846 		break;
9847 	case IEEE_G:
9848 		strncpy(extra, "802.11g (4)", MAX_WX_STRING);
9849 		break;
9850 	case IEEE_A | IEEE_G:
9851 		strncpy(extra, "802.11ag (5)", MAX_WX_STRING);
9852 		break;
9853 	case IEEE_B | IEEE_G:
9854 		strncpy(extra, "802.11bg (6)", MAX_WX_STRING);
9855 		break;
9856 	case IEEE_A | IEEE_B | IEEE_G:
9857 		strncpy(extra, "802.11abg (7)", MAX_WX_STRING);
9858 		break;
9859 	default:
9860 		strncpy(extra, "unknown", MAX_WX_STRING);
9861 		break;
9862 	}
9863 
9864 	IPW_DEBUG_WX("PRIV GET MODE: %s\n", extra);
9865 
9866 	wrqu->data.length = strlen(extra) + 1;
9867 	mutex_unlock(&priv->mutex);
9868 
9869 	return 0;
9870 }
9871 
ipw_wx_set_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9872 static int ipw_wx_set_preamble(struct net_device *dev,
9873 			       struct iw_request_info *info,
9874 			       union iwreq_data *wrqu, char *extra)
9875 {
9876 	struct ipw_priv *priv = libipw_priv(dev);
9877 	int mode = *(int *)extra;
9878 	mutex_lock(&priv->mutex);
9879 	/* Switching from SHORT -> LONG requires a disassociation */
9880 	if (mode == 1) {
9881 		if (!(priv->config & CFG_PREAMBLE_LONG)) {
9882 			priv->config |= CFG_PREAMBLE_LONG;
9883 
9884 			/* Network configuration changed -- force [re]association */
9885 			IPW_DEBUG_ASSOC
9886 			    ("[re]association triggered due to preamble change.\n");
9887 			if (!ipw_disassociate(priv))
9888 				ipw_associate(priv);
9889 		}
9890 		goto done;
9891 	}
9892 
9893 	if (mode == 0) {
9894 		priv->config &= ~CFG_PREAMBLE_LONG;
9895 		goto done;
9896 	}
9897 	mutex_unlock(&priv->mutex);
9898 	return -EINVAL;
9899 
9900       done:
9901 	mutex_unlock(&priv->mutex);
9902 	return 0;
9903 }
9904 
ipw_wx_get_preamble(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9905 static int ipw_wx_get_preamble(struct net_device *dev,
9906 			       struct iw_request_info *info,
9907 			       union iwreq_data *wrqu, char *extra)
9908 {
9909 	struct ipw_priv *priv = libipw_priv(dev);
9910 	mutex_lock(&priv->mutex);
9911 	if (priv->config & CFG_PREAMBLE_LONG)
9912 		snprintf(wrqu->name, IFNAMSIZ, "long (1)");
9913 	else
9914 		snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
9915 	mutex_unlock(&priv->mutex);
9916 	return 0;
9917 }
9918 
9919 #ifdef CONFIG_IPW2200_MONITOR
ipw_wx_set_monitor(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9920 static int ipw_wx_set_monitor(struct net_device *dev,
9921 			      struct iw_request_info *info,
9922 			      union iwreq_data *wrqu, char *extra)
9923 {
9924 	struct ipw_priv *priv = libipw_priv(dev);
9925 	int *parms = (int *)extra;
9926 	int enable = (parms[0] > 0);
9927 	mutex_lock(&priv->mutex);
9928 	IPW_DEBUG_WX("SET MONITOR: %d %d\n", enable, parms[1]);
9929 	if (enable) {
9930 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9931 #ifdef CONFIG_IPW2200_RADIOTAP
9932 			priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
9933 #else
9934 			priv->net_dev->type = ARPHRD_IEEE80211;
9935 #endif
9936 			schedule_work(&priv->adapter_restart);
9937 		}
9938 
9939 		ipw_set_channel(priv, parms[1]);
9940 	} else {
9941 		if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
9942 			mutex_unlock(&priv->mutex);
9943 			return 0;
9944 		}
9945 		priv->net_dev->type = ARPHRD_ETHER;
9946 		schedule_work(&priv->adapter_restart);
9947 	}
9948 	mutex_unlock(&priv->mutex);
9949 	return 0;
9950 }
9951 
9952 #endif				/* CONFIG_IPW2200_MONITOR */
9953 
ipw_wx_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9954 static int ipw_wx_reset(struct net_device *dev,
9955 			struct iw_request_info *info,
9956 			union iwreq_data *wrqu, char *extra)
9957 {
9958 	struct ipw_priv *priv = libipw_priv(dev);
9959 	IPW_DEBUG_WX("RESET\n");
9960 	schedule_work(&priv->adapter_restart);
9961 	return 0;
9962 }
9963 
ipw_wx_sw_reset(struct net_device * dev,struct iw_request_info * info,union iwreq_data * wrqu,char * extra)9964 static int ipw_wx_sw_reset(struct net_device *dev,
9965 			   struct iw_request_info *info,
9966 			   union iwreq_data *wrqu, char *extra)
9967 {
9968 	struct ipw_priv *priv = libipw_priv(dev);
9969 	union iwreq_data wrqu_sec = {
9970 		.encoding = {
9971 			     .flags = IW_ENCODE_DISABLED,
9972 			     },
9973 	};
9974 	int ret;
9975 
9976 	IPW_DEBUG_WX("SW_RESET\n");
9977 
9978 	mutex_lock(&priv->mutex);
9979 
9980 	ret = ipw_sw_reset(priv, 2);
9981 	if (!ret) {
9982 		free_firmware();
9983 		ipw_adapter_restart(priv);
9984 	}
9985 
9986 	/* The SW reset bit might have been toggled on by the 'disable'
9987 	 * module parameter, so take appropriate action */
9988 	ipw_radio_kill_sw(priv, priv->status & STATUS_RF_KILL_SW);
9989 
9990 	mutex_unlock(&priv->mutex);
9991 	libipw_wx_set_encode(priv->ieee, info, &wrqu_sec, NULL);
9992 	mutex_lock(&priv->mutex);
9993 
9994 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
9995 		/* Configuration likely changed -- force [re]association */
9996 		IPW_DEBUG_ASSOC("[re]association triggered due to sw "
9997 				"reset.\n");
9998 		if (!ipw_disassociate(priv))
9999 			ipw_associate(priv);
10000 	}
10001 
10002 	mutex_unlock(&priv->mutex);
10003 
10004 	return 0;
10005 }
10006 
10007 /* Rebase the WE IOCTLs to zero for the handler array */
10008 static iw_handler ipw_wx_handlers[] = {
10009 	IW_HANDLER(SIOCGIWNAME, (iw_handler)cfg80211_wext_giwname),
10010 	IW_HANDLER(SIOCSIWFREQ, ipw_wx_set_freq),
10011 	IW_HANDLER(SIOCGIWFREQ, ipw_wx_get_freq),
10012 	IW_HANDLER(SIOCSIWMODE, ipw_wx_set_mode),
10013 	IW_HANDLER(SIOCGIWMODE, ipw_wx_get_mode),
10014 	IW_HANDLER(SIOCSIWSENS, ipw_wx_set_sens),
10015 	IW_HANDLER(SIOCGIWSENS, ipw_wx_get_sens),
10016 	IW_HANDLER(SIOCGIWRANGE, ipw_wx_get_range),
10017 	IW_HANDLER(SIOCSIWAP, ipw_wx_set_wap),
10018 	IW_HANDLER(SIOCGIWAP, ipw_wx_get_wap),
10019 	IW_HANDLER(SIOCSIWSCAN, ipw_wx_set_scan),
10020 	IW_HANDLER(SIOCGIWSCAN, ipw_wx_get_scan),
10021 	IW_HANDLER(SIOCSIWESSID, ipw_wx_set_essid),
10022 	IW_HANDLER(SIOCGIWESSID, ipw_wx_get_essid),
10023 	IW_HANDLER(SIOCSIWNICKN, ipw_wx_set_nick),
10024 	IW_HANDLER(SIOCGIWNICKN, ipw_wx_get_nick),
10025 	IW_HANDLER(SIOCSIWRATE, ipw_wx_set_rate),
10026 	IW_HANDLER(SIOCGIWRATE, ipw_wx_get_rate),
10027 	IW_HANDLER(SIOCSIWRTS, ipw_wx_set_rts),
10028 	IW_HANDLER(SIOCGIWRTS, ipw_wx_get_rts),
10029 	IW_HANDLER(SIOCSIWFRAG, ipw_wx_set_frag),
10030 	IW_HANDLER(SIOCGIWFRAG, ipw_wx_get_frag),
10031 	IW_HANDLER(SIOCSIWTXPOW, ipw_wx_set_txpow),
10032 	IW_HANDLER(SIOCGIWTXPOW, ipw_wx_get_txpow),
10033 	IW_HANDLER(SIOCSIWRETRY, ipw_wx_set_retry),
10034 	IW_HANDLER(SIOCGIWRETRY, ipw_wx_get_retry),
10035 	IW_HANDLER(SIOCSIWENCODE, ipw_wx_set_encode),
10036 	IW_HANDLER(SIOCGIWENCODE, ipw_wx_get_encode),
10037 	IW_HANDLER(SIOCSIWPOWER, ipw_wx_set_power),
10038 	IW_HANDLER(SIOCGIWPOWER, ipw_wx_get_power),
10039 	IW_HANDLER(SIOCSIWSPY, iw_handler_set_spy),
10040 	IW_HANDLER(SIOCGIWSPY, iw_handler_get_spy),
10041 	IW_HANDLER(SIOCSIWTHRSPY, iw_handler_set_thrspy),
10042 	IW_HANDLER(SIOCGIWTHRSPY, iw_handler_get_thrspy),
10043 	IW_HANDLER(SIOCSIWGENIE, ipw_wx_set_genie),
10044 	IW_HANDLER(SIOCGIWGENIE, ipw_wx_get_genie),
10045 	IW_HANDLER(SIOCSIWMLME, ipw_wx_set_mlme),
10046 	IW_HANDLER(SIOCSIWAUTH, ipw_wx_set_auth),
10047 	IW_HANDLER(SIOCGIWAUTH, ipw_wx_get_auth),
10048 	IW_HANDLER(SIOCSIWENCODEEXT, ipw_wx_set_encodeext),
10049 	IW_HANDLER(SIOCGIWENCODEEXT, ipw_wx_get_encodeext),
10050 };
10051 
10052 enum {
10053 	IPW_PRIV_SET_POWER = SIOCIWFIRSTPRIV,
10054 	IPW_PRIV_GET_POWER,
10055 	IPW_PRIV_SET_MODE,
10056 	IPW_PRIV_GET_MODE,
10057 	IPW_PRIV_SET_PREAMBLE,
10058 	IPW_PRIV_GET_PREAMBLE,
10059 	IPW_PRIV_RESET,
10060 	IPW_PRIV_SW_RESET,
10061 #ifdef CONFIG_IPW2200_MONITOR
10062 	IPW_PRIV_SET_MONITOR,
10063 #endif
10064 };
10065 
10066 static struct iw_priv_args ipw_priv_args[] = {
10067 	{
10068 	 .cmd = IPW_PRIV_SET_POWER,
10069 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10070 	 .name = "set_power"},
10071 	{
10072 	 .cmd = IPW_PRIV_GET_POWER,
10073 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10074 	 .name = "get_power"},
10075 	{
10076 	 .cmd = IPW_PRIV_SET_MODE,
10077 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10078 	 .name = "set_mode"},
10079 	{
10080 	 .cmd = IPW_PRIV_GET_MODE,
10081 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_WX_STRING,
10082 	 .name = "get_mode"},
10083 	{
10084 	 .cmd = IPW_PRIV_SET_PREAMBLE,
10085 	 .set_args = IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1,
10086 	 .name = "set_preamble"},
10087 	{
10088 	 .cmd = IPW_PRIV_GET_PREAMBLE,
10089 	 .get_args = IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ,
10090 	 .name = "get_preamble"},
10091 	{
10092 	 IPW_PRIV_RESET,
10093 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
10094 	{
10095 	 IPW_PRIV_SW_RESET,
10096 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "sw_reset"},
10097 #ifdef CONFIG_IPW2200_MONITOR
10098 	{
10099 	 IPW_PRIV_SET_MONITOR,
10100 	 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
10101 #endif				/* CONFIG_IPW2200_MONITOR */
10102 };
10103 
10104 static iw_handler ipw_priv_handler[] = {
10105 	ipw_wx_set_powermode,
10106 	ipw_wx_get_powermode,
10107 	ipw_wx_set_wireless_mode,
10108 	ipw_wx_get_wireless_mode,
10109 	ipw_wx_set_preamble,
10110 	ipw_wx_get_preamble,
10111 	ipw_wx_reset,
10112 	ipw_wx_sw_reset,
10113 #ifdef CONFIG_IPW2200_MONITOR
10114 	ipw_wx_set_monitor,
10115 #endif
10116 };
10117 
10118 static struct iw_handler_def ipw_wx_handler_def = {
10119 	.standard = ipw_wx_handlers,
10120 	.num_standard = ARRAY_SIZE(ipw_wx_handlers),
10121 	.num_private = ARRAY_SIZE(ipw_priv_handler),
10122 	.num_private_args = ARRAY_SIZE(ipw_priv_args),
10123 	.private = ipw_priv_handler,
10124 	.private_args = ipw_priv_args,
10125 	.get_wireless_stats = ipw_get_wireless_stats,
10126 };
10127 
10128 /*
10129  * Get wireless statistics.
10130  * Called by /proc/net/wireless
10131  * Also called by SIOCGIWSTATS
10132  */
ipw_get_wireless_stats(struct net_device * dev)10133 static struct iw_statistics *ipw_get_wireless_stats(struct net_device *dev)
10134 {
10135 	struct ipw_priv *priv = libipw_priv(dev);
10136 	struct iw_statistics *wstats;
10137 
10138 	wstats = &priv->wstats;
10139 
10140 	/* if hw is disabled, then ipw_get_ordinal() can't be called.
10141 	 * netdev->get_wireless_stats seems to be called before fw is
10142 	 * initialized.  STATUS_ASSOCIATED will only be set if the hw is up
10143 	 * and associated; if not associcated, the values are all meaningless
10144 	 * anyway, so set them all to NULL and INVALID */
10145 	if (!(priv->status & STATUS_ASSOCIATED)) {
10146 		wstats->miss.beacon = 0;
10147 		wstats->discard.retries = 0;
10148 		wstats->qual.qual = 0;
10149 		wstats->qual.level = 0;
10150 		wstats->qual.noise = 0;
10151 		wstats->qual.updated = 7;
10152 		wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
10153 		    IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
10154 		return wstats;
10155 	}
10156 
10157 	wstats->qual.qual = priv->quality;
10158 	wstats->qual.level = priv->exp_avg_rssi;
10159 	wstats->qual.noise = priv->exp_avg_noise;
10160 	wstats->qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED |
10161 	    IW_QUAL_NOISE_UPDATED | IW_QUAL_DBM;
10162 
10163 	wstats->miss.beacon = average_value(&priv->average_missed_beacons);
10164 	wstats->discard.retries = priv->last_tx_failures;
10165 	wstats->discard.code = priv->ieee->ieee_stats.rx_discards_undecryptable;
10166 
10167 /*	if (ipw_get_ordinal(priv, IPW_ORD_STAT_TX_RETRY, &tx_retry, &len))
10168 	goto fail_get_ordinal;
10169 	wstats->discard.retries += tx_retry; */
10170 
10171 	return wstats;
10172 }
10173 
10174 /* net device stuff */
10175 
init_sys_config(struct ipw_sys_config * sys_config)10176 static  void init_sys_config(struct ipw_sys_config *sys_config)
10177 {
10178 	memset(sys_config, 0, sizeof(struct ipw_sys_config));
10179 	sys_config->bt_coexistence = 0;
10180 	sys_config->answer_broadcast_ssid_probe = 0;
10181 	sys_config->accept_all_data_frames = 0;
10182 	sys_config->accept_non_directed_frames = 1;
10183 	sys_config->exclude_unicast_unencrypted = 0;
10184 	sys_config->disable_unicast_decryption = 1;
10185 	sys_config->exclude_multicast_unencrypted = 0;
10186 	sys_config->disable_multicast_decryption = 1;
10187 	if (antenna < CFG_SYS_ANTENNA_BOTH || antenna > CFG_SYS_ANTENNA_B)
10188 		antenna = CFG_SYS_ANTENNA_BOTH;
10189 	sys_config->antenna_diversity = antenna;
10190 	sys_config->pass_crc_to_host = 0;	/* TODO: See if 1 gives us FCS */
10191 	sys_config->dot11g_auto_detection = 0;
10192 	sys_config->enable_cts_to_self = 0;
10193 	sys_config->bt_coexist_collision_thr = 0;
10194 	sys_config->pass_noise_stats_to_host = 1;	/* 1 -- fix for 256 */
10195 	sys_config->silence_threshold = 0x1e;
10196 }
10197 
ipw_net_open(struct net_device * dev)10198 static int ipw_net_open(struct net_device *dev)
10199 {
10200 	IPW_DEBUG_INFO("dev->open\n");
10201 	netif_start_queue(dev);
10202 	return 0;
10203 }
10204 
ipw_net_stop(struct net_device * dev)10205 static int ipw_net_stop(struct net_device *dev)
10206 {
10207 	IPW_DEBUG_INFO("dev->close\n");
10208 	netif_stop_queue(dev);
10209 	return 0;
10210 }
10211 
10212 /*
10213 todo:
10214 
10215 modify to send one tfd per fragment instead of using chunking.  otherwise
10216 we need to heavily modify the libipw_skb_to_txb.
10217 */
10218 
ipw_tx_skb(struct ipw_priv * priv,struct libipw_txb * txb,int pri)10219 static int ipw_tx_skb(struct ipw_priv *priv, struct libipw_txb *txb,
10220 			     int pri)
10221 {
10222 	struct libipw_hdr_3addrqos *hdr = (struct libipw_hdr_3addrqos *)
10223 	    txb->fragments[0]->data;
10224 	int i = 0;
10225 	struct tfd_frame *tfd;
10226 #ifdef CONFIG_IPW2200_QOS
10227 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10228 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10229 #else
10230 	struct clx2_tx_queue *txq = &priv->txq[0];
10231 #endif
10232 	struct clx2_queue *q = &txq->q;
10233 	u8 id, hdr_len, unicast;
10234 	int fc;
10235 
10236 	if (!(priv->status & STATUS_ASSOCIATED))
10237 		goto drop;
10238 
10239 	hdr_len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_ctl));
10240 	switch (priv->ieee->iw_mode) {
10241 	case IW_MODE_ADHOC:
10242 		unicast = !is_multicast_ether_addr(hdr->addr1);
10243 		id = ipw_find_station(priv, hdr->addr1);
10244 		if (id == IPW_INVALID_STATION) {
10245 			id = ipw_add_station(priv, hdr->addr1);
10246 			if (id == IPW_INVALID_STATION) {
10247 				IPW_WARNING("Attempt to send data to "
10248 					    "invalid cell: %pM\n",
10249 					    hdr->addr1);
10250 				goto drop;
10251 			}
10252 		}
10253 		break;
10254 
10255 	case IW_MODE_INFRA:
10256 	default:
10257 		unicast = !is_multicast_ether_addr(hdr->addr3);
10258 		id = 0;
10259 		break;
10260 	}
10261 
10262 	tfd = &txq->bd[q->first_empty];
10263 	txq->txb[q->first_empty] = txb;
10264 	memset(tfd, 0, sizeof(*tfd));
10265 	tfd->u.data.station_number = id;
10266 
10267 	tfd->control_flags.message_type = TX_FRAME_TYPE;
10268 	tfd->control_flags.control_bits = TFD_NEED_IRQ_MASK;
10269 
10270 	tfd->u.data.cmd_id = DINO_CMD_TX;
10271 	tfd->u.data.len = cpu_to_le16(txb->payload_size);
10272 
10273 	if (priv->assoc_request.ieee_mode == IPW_B_MODE)
10274 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_CCK;
10275 	else
10276 		tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_MODE_OFDM;
10277 
10278 	if (priv->assoc_request.preamble_length == DCT_FLAG_SHORT_PREAMBLE)
10279 		tfd->u.data.tx_flags |= DCT_FLAG_SHORT_PREAMBLE;
10280 
10281 	fc = le16_to_cpu(hdr->frame_ctl);
10282 	hdr->frame_ctl = cpu_to_le16(fc & ~IEEE80211_FCTL_MOREFRAGS);
10283 
10284 	memcpy(&tfd->u.data.tfd.tfd_24.mchdr, hdr, hdr_len);
10285 
10286 	if (likely(unicast))
10287 		tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10288 
10289 	if (txb->encrypted && !priv->ieee->host_encrypt) {
10290 		switch (priv->ieee->sec.level) {
10291 		case SEC_LEVEL_3:
10292 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10293 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10294 			/* XXX: ACK flag must be set for CCMP even if it
10295 			 * is a multicast/broadcast packet, because CCMP
10296 			 * group communication encrypted by GTK is
10297 			 * actually done by the AP. */
10298 			if (!unicast)
10299 				tfd->u.data.tx_flags |= DCT_FLAG_ACK_REQD;
10300 
10301 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10302 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_CCM;
10303 			tfd->u.data.key_index = 0;
10304 			tfd->u.data.key_index |= DCT_WEP_INDEX_USE_IMMEDIATE;
10305 			break;
10306 		case SEC_LEVEL_2:
10307 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10308 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10309 			tfd->u.data.tx_flags &= ~DCT_FLAG_NO_WEP;
10310 			tfd->u.data.tx_flags_ext |= DCT_FLAG_EXT_SECURITY_TKIP;
10311 			tfd->u.data.key_index = DCT_WEP_INDEX_USE_IMMEDIATE;
10312 			break;
10313 		case SEC_LEVEL_1:
10314 			tfd->u.data.tfd.tfd_24.mchdr.frame_ctl |=
10315 			    cpu_to_le16(IEEE80211_FCTL_PROTECTED);
10316 			tfd->u.data.key_index = priv->ieee->crypt_info.tx_keyidx;
10317 			if (priv->ieee->sec.key_sizes[priv->ieee->crypt_info.tx_keyidx] <=
10318 			    40)
10319 				tfd->u.data.key_index |= DCT_WEP_KEY_64Bit;
10320 			else
10321 				tfd->u.data.key_index |= DCT_WEP_KEY_128Bit;
10322 			break;
10323 		case SEC_LEVEL_0:
10324 			break;
10325 		default:
10326 			printk(KERN_ERR "Unknown security level %d\n",
10327 			       priv->ieee->sec.level);
10328 			break;
10329 		}
10330 	} else
10331 		/* No hardware encryption */
10332 		tfd->u.data.tx_flags |= DCT_FLAG_NO_WEP;
10333 
10334 #ifdef CONFIG_IPW2200_QOS
10335 	if (fc & IEEE80211_STYPE_QOS_DATA)
10336 		ipw_qos_set_tx_queue_command(priv, pri, &(tfd->u.data));
10337 #endif				/* CONFIG_IPW2200_QOS */
10338 
10339 	/* payload */
10340 	tfd->u.data.num_chunks = cpu_to_le32(min((u8) (NUM_TFD_CHUNKS - 2),
10341 						 txb->nr_frags));
10342 	IPW_DEBUG_FRAG("%i fragments being sent as %i chunks.\n",
10343 		       txb->nr_frags, le32_to_cpu(tfd->u.data.num_chunks));
10344 	for (i = 0; i < le32_to_cpu(tfd->u.data.num_chunks); i++) {
10345 		IPW_DEBUG_FRAG("Adding fragment %i of %i (%d bytes).\n",
10346 			       i, le32_to_cpu(tfd->u.data.num_chunks),
10347 			       txb->fragments[i]->len - hdr_len);
10348 		IPW_DEBUG_TX("Dumping TX packet frag %i of %i (%d bytes):\n",
10349 			     i, tfd->u.data.num_chunks,
10350 			     txb->fragments[i]->len - hdr_len);
10351 		printk_buf(IPW_DL_TX, txb->fragments[i]->data + hdr_len,
10352 			   txb->fragments[i]->len - hdr_len);
10353 
10354 		tfd->u.data.chunk_ptr[i] =
10355 		    cpu_to_le32(pci_map_single
10356 				(priv->pci_dev,
10357 				 txb->fragments[i]->data + hdr_len,
10358 				 txb->fragments[i]->len - hdr_len,
10359 				 PCI_DMA_TODEVICE));
10360 		tfd->u.data.chunk_len[i] =
10361 		    cpu_to_le16(txb->fragments[i]->len - hdr_len);
10362 	}
10363 
10364 	if (i != txb->nr_frags) {
10365 		struct sk_buff *skb;
10366 		u16 remaining_bytes = 0;
10367 		int j;
10368 
10369 		for (j = i; j < txb->nr_frags; j++)
10370 			remaining_bytes += txb->fragments[j]->len - hdr_len;
10371 
10372 		printk(KERN_INFO "Trying to reallocate for %d bytes\n",
10373 		       remaining_bytes);
10374 		skb = alloc_skb(remaining_bytes, GFP_ATOMIC);
10375 		if (skb != NULL) {
10376 			tfd->u.data.chunk_len[i] = cpu_to_le16(remaining_bytes);
10377 			for (j = i; j < txb->nr_frags; j++) {
10378 				int size = txb->fragments[j]->len - hdr_len;
10379 
10380 				printk(KERN_INFO "Adding frag %d %d...\n",
10381 				       j, size);
10382 				memcpy(skb_put(skb, size),
10383 				       txb->fragments[j]->data + hdr_len, size);
10384 			}
10385 			dev_kfree_skb_any(txb->fragments[i]);
10386 			txb->fragments[i] = skb;
10387 			tfd->u.data.chunk_ptr[i] =
10388 			    cpu_to_le32(pci_map_single
10389 					(priv->pci_dev, skb->data,
10390 					 remaining_bytes,
10391 					 PCI_DMA_TODEVICE));
10392 
10393 			le32_add_cpu(&tfd->u.data.num_chunks, 1);
10394 		}
10395 	}
10396 
10397 	/* kick DMA */
10398 	q->first_empty = ipw_queue_inc_wrap(q->first_empty, q->n_bd);
10399 	ipw_write32(priv, q->reg_w, q->first_empty);
10400 
10401 	if (ipw_tx_queue_space(q) < q->high_mark)
10402 		netif_stop_queue(priv->net_dev);
10403 
10404 	return NETDEV_TX_OK;
10405 
10406       drop:
10407 	IPW_DEBUG_DROP("Silently dropping Tx packet.\n");
10408 	libipw_txb_free(txb);
10409 	return NETDEV_TX_OK;
10410 }
10411 
ipw_net_is_queue_full(struct net_device * dev,int pri)10412 static int ipw_net_is_queue_full(struct net_device *dev, int pri)
10413 {
10414 	struct ipw_priv *priv = libipw_priv(dev);
10415 #ifdef CONFIG_IPW2200_QOS
10416 	int tx_id = ipw_get_tx_queue_number(priv, pri);
10417 	struct clx2_tx_queue *txq = &priv->txq[tx_id];
10418 #else
10419 	struct clx2_tx_queue *txq = &priv->txq[0];
10420 #endif				/* CONFIG_IPW2200_QOS */
10421 
10422 	if (ipw_tx_queue_space(&txq->q) < txq->q.high_mark)
10423 		return 1;
10424 
10425 	return 0;
10426 }
10427 
10428 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_handle_promiscuous_tx(struct ipw_priv * priv,struct libipw_txb * txb)10429 static void ipw_handle_promiscuous_tx(struct ipw_priv *priv,
10430 				      struct libipw_txb *txb)
10431 {
10432 	struct libipw_rx_stats dummystats;
10433 	struct ieee80211_hdr *hdr;
10434 	u8 n;
10435 	u16 filter = priv->prom_priv->filter;
10436 	int hdr_only = 0;
10437 
10438 	if (filter & IPW_PROM_NO_TX)
10439 		return;
10440 
10441 	memset(&dummystats, 0, sizeof(dummystats));
10442 
10443 	/* Filtering of fragment chains is done against the first fragment */
10444 	hdr = (void *)txb->fragments[0]->data;
10445 	if (libipw_is_management(le16_to_cpu(hdr->frame_control))) {
10446 		if (filter & IPW_PROM_NO_MGMT)
10447 			return;
10448 		if (filter & IPW_PROM_MGMT_HEADER_ONLY)
10449 			hdr_only = 1;
10450 	} else if (libipw_is_control(le16_to_cpu(hdr->frame_control))) {
10451 		if (filter & IPW_PROM_NO_CTL)
10452 			return;
10453 		if (filter & IPW_PROM_CTL_HEADER_ONLY)
10454 			hdr_only = 1;
10455 	} else if (libipw_is_data(le16_to_cpu(hdr->frame_control))) {
10456 		if (filter & IPW_PROM_NO_DATA)
10457 			return;
10458 		if (filter & IPW_PROM_DATA_HEADER_ONLY)
10459 			hdr_only = 1;
10460 	}
10461 
10462 	for(n=0; n<txb->nr_frags; ++n) {
10463 		struct sk_buff *src = txb->fragments[n];
10464 		struct sk_buff *dst;
10465 		struct ieee80211_radiotap_header *rt_hdr;
10466 		int len;
10467 
10468 		if (hdr_only) {
10469 			hdr = (void *)src->data;
10470 			len = libipw_get_hdrlen(le16_to_cpu(hdr->frame_control));
10471 		} else
10472 			len = src->len;
10473 
10474 		dst = alloc_skb(len + sizeof(*rt_hdr) + sizeof(u16)*2, GFP_ATOMIC);
10475 		if (!dst)
10476 			continue;
10477 
10478 		rt_hdr = (void *)skb_put(dst, sizeof(*rt_hdr));
10479 
10480 		rt_hdr->it_version = PKTHDR_RADIOTAP_VERSION;
10481 		rt_hdr->it_pad = 0;
10482 		rt_hdr->it_present = 0; /* after all, it's just an idea */
10483 		rt_hdr->it_present |=  cpu_to_le32(1 << IEEE80211_RADIOTAP_CHANNEL);
10484 
10485 		*(__le16*)skb_put(dst, sizeof(u16)) = cpu_to_le16(
10486 			ieee80211chan2mhz(priv->channel));
10487 		if (priv->channel > 14) 	/* 802.11a */
10488 			*(__le16*)skb_put(dst, sizeof(u16)) =
10489 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10490 					     IEEE80211_CHAN_5GHZ);
10491 		else if (priv->ieee->mode == IEEE_B) /* 802.11b */
10492 			*(__le16*)skb_put(dst, sizeof(u16)) =
10493 				cpu_to_le16(IEEE80211_CHAN_CCK |
10494 					     IEEE80211_CHAN_2GHZ);
10495 		else 		/* 802.11g */
10496 			*(__le16*)skb_put(dst, sizeof(u16)) =
10497 				cpu_to_le16(IEEE80211_CHAN_OFDM |
10498 				 IEEE80211_CHAN_2GHZ);
10499 
10500 		rt_hdr->it_len = cpu_to_le16(dst->len);
10501 
10502 		skb_copy_from_linear_data(src, skb_put(dst, len), len);
10503 
10504 		if (!libipw_rx(priv->prom_priv->ieee, dst, &dummystats))
10505 			dev_kfree_skb_any(dst);
10506 	}
10507 }
10508 #endif
10509 
ipw_net_hard_start_xmit(struct libipw_txb * txb,struct net_device * dev,int pri)10510 static netdev_tx_t ipw_net_hard_start_xmit(struct libipw_txb *txb,
10511 					   struct net_device *dev, int pri)
10512 {
10513 	struct ipw_priv *priv = libipw_priv(dev);
10514 	unsigned long flags;
10515 	netdev_tx_t ret;
10516 
10517 	IPW_DEBUG_TX("dev->xmit(%d bytes)\n", txb->payload_size);
10518 	spin_lock_irqsave(&priv->lock, flags);
10519 
10520 #ifdef CONFIG_IPW2200_PROMISCUOUS
10521 	if (rtap_iface && netif_running(priv->prom_net_dev))
10522 		ipw_handle_promiscuous_tx(priv, txb);
10523 #endif
10524 
10525 	ret = ipw_tx_skb(priv, txb, pri);
10526 	if (ret == NETDEV_TX_OK)
10527 		__ipw_led_activity_on(priv);
10528 	spin_unlock_irqrestore(&priv->lock, flags);
10529 
10530 	return ret;
10531 }
10532 
ipw_net_set_multicast_list(struct net_device * dev)10533 static void ipw_net_set_multicast_list(struct net_device *dev)
10534 {
10535 
10536 }
10537 
ipw_net_set_mac_address(struct net_device * dev,void * p)10538 static int ipw_net_set_mac_address(struct net_device *dev, void *p)
10539 {
10540 	struct ipw_priv *priv = libipw_priv(dev);
10541 	struct sockaddr *addr = p;
10542 
10543 	if (!is_valid_ether_addr(addr->sa_data))
10544 		return -EADDRNOTAVAIL;
10545 	mutex_lock(&priv->mutex);
10546 	priv->config |= CFG_CUSTOM_MAC;
10547 	memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
10548 	printk(KERN_INFO "%s: Setting MAC to %pM\n",
10549 	       priv->net_dev->name, priv->mac_addr);
10550 	schedule_work(&priv->adapter_restart);
10551 	mutex_unlock(&priv->mutex);
10552 	return 0;
10553 }
10554 
ipw_ethtool_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)10555 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
10556 				    struct ethtool_drvinfo *info)
10557 {
10558 	struct ipw_priv *p = libipw_priv(dev);
10559 	char vers[64];
10560 	char date[32];
10561 	u32 len;
10562 
10563 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
10564 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
10565 
10566 	len = sizeof(vers);
10567 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_VERSION, vers, &len);
10568 	len = sizeof(date);
10569 	ipw_get_ordinal(p, IPW_ORD_STAT_FW_DATE, date, &len);
10570 
10571 	snprintf(info->fw_version, sizeof(info->fw_version), "%s (%s)",
10572 		 vers, date);
10573 	strlcpy(info->bus_info, pci_name(p->pci_dev),
10574 		sizeof(info->bus_info));
10575 	info->eedump_len = IPW_EEPROM_IMAGE_SIZE;
10576 }
10577 
ipw_ethtool_get_link(struct net_device * dev)10578 static u32 ipw_ethtool_get_link(struct net_device *dev)
10579 {
10580 	struct ipw_priv *priv = libipw_priv(dev);
10581 	return (priv->status & STATUS_ASSOCIATED) != 0;
10582 }
10583 
ipw_ethtool_get_eeprom_len(struct net_device * dev)10584 static int ipw_ethtool_get_eeprom_len(struct net_device *dev)
10585 {
10586 	return IPW_EEPROM_IMAGE_SIZE;
10587 }
10588 
ipw_ethtool_get_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10589 static int ipw_ethtool_get_eeprom(struct net_device *dev,
10590 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10591 {
10592 	struct ipw_priv *p = libipw_priv(dev);
10593 
10594 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10595 		return -EINVAL;
10596 	mutex_lock(&p->mutex);
10597 	memcpy(bytes, &p->eeprom[eeprom->offset], eeprom->len);
10598 	mutex_unlock(&p->mutex);
10599 	return 0;
10600 }
10601 
ipw_ethtool_set_eeprom(struct net_device * dev,struct ethtool_eeprom * eeprom,u8 * bytes)10602 static int ipw_ethtool_set_eeprom(struct net_device *dev,
10603 				  struct ethtool_eeprom *eeprom, u8 * bytes)
10604 {
10605 	struct ipw_priv *p = libipw_priv(dev);
10606 	int i;
10607 
10608 	if (eeprom->offset + eeprom->len > IPW_EEPROM_IMAGE_SIZE)
10609 		return -EINVAL;
10610 	mutex_lock(&p->mutex);
10611 	memcpy(&p->eeprom[eeprom->offset], bytes, eeprom->len);
10612 	for (i = 0; i < IPW_EEPROM_IMAGE_SIZE; i++)
10613 		ipw_write8(p, i + IPW_EEPROM_DATA, p->eeprom[i]);
10614 	mutex_unlock(&p->mutex);
10615 	return 0;
10616 }
10617 
10618 static const struct ethtool_ops ipw_ethtool_ops = {
10619 	.get_link = ipw_ethtool_get_link,
10620 	.get_drvinfo = ipw_ethtool_get_drvinfo,
10621 	.get_eeprom_len = ipw_ethtool_get_eeprom_len,
10622 	.get_eeprom = ipw_ethtool_get_eeprom,
10623 	.set_eeprom = ipw_ethtool_set_eeprom,
10624 };
10625 
ipw_isr(int irq,void * data)10626 static irqreturn_t ipw_isr(int irq, void *data)
10627 {
10628 	struct ipw_priv *priv = data;
10629 	u32 inta, inta_mask;
10630 
10631 	if (!priv)
10632 		return IRQ_NONE;
10633 
10634 	spin_lock(&priv->irq_lock);
10635 
10636 	if (!(priv->status & STATUS_INT_ENABLED)) {
10637 		/* IRQ is disabled */
10638 		goto none;
10639 	}
10640 
10641 	inta = ipw_read32(priv, IPW_INTA_RW);
10642 	inta_mask = ipw_read32(priv, IPW_INTA_MASK_R);
10643 
10644 	if (inta == 0xFFFFFFFF) {
10645 		/* Hardware disappeared */
10646 		IPW_WARNING("IRQ INTA == 0xFFFFFFFF\n");
10647 		goto none;
10648 	}
10649 
10650 	if (!(inta & (IPW_INTA_MASK_ALL & inta_mask))) {
10651 		/* Shared interrupt */
10652 		goto none;
10653 	}
10654 
10655 	/* tell the device to stop sending interrupts */
10656 	__ipw_disable_interrupts(priv);
10657 
10658 	/* ack current interrupts */
10659 	inta &= (IPW_INTA_MASK_ALL & inta_mask);
10660 	ipw_write32(priv, IPW_INTA_RW, inta);
10661 
10662 	/* Cache INTA value for our tasklet */
10663 	priv->isr_inta = inta;
10664 
10665 	tasklet_schedule(&priv->irq_tasklet);
10666 
10667 	spin_unlock(&priv->irq_lock);
10668 
10669 	return IRQ_HANDLED;
10670       none:
10671 	spin_unlock(&priv->irq_lock);
10672 	return IRQ_NONE;
10673 }
10674 
ipw_rf_kill(void * adapter)10675 static void ipw_rf_kill(void *adapter)
10676 {
10677 	struct ipw_priv *priv = adapter;
10678 	unsigned long flags;
10679 
10680 	spin_lock_irqsave(&priv->lock, flags);
10681 
10682 	if (rf_kill_active(priv)) {
10683 		IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
10684 		schedule_delayed_work(&priv->rf_kill, 2 * HZ);
10685 		goto exit_unlock;
10686 	}
10687 
10688 	/* RF Kill is now disabled, so bring the device back up */
10689 
10690 	if (!(priv->status & STATUS_RF_KILL_MASK)) {
10691 		IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
10692 				  "device\n");
10693 
10694 		/* we can not do an adapter restart while inside an irq lock */
10695 		schedule_work(&priv->adapter_restart);
10696 	} else
10697 		IPW_DEBUG_RF_KILL("HW RF Kill deactivated.  SW RF Kill still "
10698 				  "enabled\n");
10699 
10700       exit_unlock:
10701 	spin_unlock_irqrestore(&priv->lock, flags);
10702 }
10703 
ipw_bg_rf_kill(struct work_struct * work)10704 static void ipw_bg_rf_kill(struct work_struct *work)
10705 {
10706 	struct ipw_priv *priv =
10707 		container_of(work, struct ipw_priv, rf_kill.work);
10708 	mutex_lock(&priv->mutex);
10709 	ipw_rf_kill(priv);
10710 	mutex_unlock(&priv->mutex);
10711 }
10712 
ipw_link_up(struct ipw_priv * priv)10713 static void ipw_link_up(struct ipw_priv *priv)
10714 {
10715 	priv->last_seq_num = -1;
10716 	priv->last_frag_num = -1;
10717 	priv->last_packet_time = 0;
10718 
10719 	netif_carrier_on(priv->net_dev);
10720 
10721 	cancel_delayed_work(&priv->request_scan);
10722 	cancel_delayed_work(&priv->request_direct_scan);
10723 	cancel_delayed_work(&priv->request_passive_scan);
10724 	cancel_delayed_work(&priv->scan_event);
10725 	ipw_reset_stats(priv);
10726 	/* Ensure the rate is updated immediately */
10727 	priv->last_rate = ipw_get_current_rate(priv);
10728 	ipw_gather_stats(priv);
10729 	ipw_led_link_up(priv);
10730 	notify_wx_assoc_event(priv);
10731 
10732 	if (priv->config & CFG_BACKGROUND_SCAN)
10733 		schedule_delayed_work(&priv->request_scan, HZ);
10734 }
10735 
ipw_bg_link_up(struct work_struct * work)10736 static void ipw_bg_link_up(struct work_struct *work)
10737 {
10738 	struct ipw_priv *priv =
10739 		container_of(work, struct ipw_priv, link_up);
10740 	mutex_lock(&priv->mutex);
10741 	ipw_link_up(priv);
10742 	mutex_unlock(&priv->mutex);
10743 }
10744 
ipw_link_down(struct ipw_priv * priv)10745 static void ipw_link_down(struct ipw_priv *priv)
10746 {
10747 	ipw_led_link_down(priv);
10748 	netif_carrier_off(priv->net_dev);
10749 	notify_wx_assoc_event(priv);
10750 
10751 	/* Cancel any queued work ... */
10752 	cancel_delayed_work(&priv->request_scan);
10753 	cancel_delayed_work(&priv->request_direct_scan);
10754 	cancel_delayed_work(&priv->request_passive_scan);
10755 	cancel_delayed_work(&priv->adhoc_check);
10756 	cancel_delayed_work(&priv->gather_stats);
10757 
10758 	ipw_reset_stats(priv);
10759 
10760 	if (!(priv->status & STATUS_EXIT_PENDING)) {
10761 		/* Queue up another scan... */
10762 		schedule_delayed_work(&priv->request_scan, 0);
10763 	} else
10764 		cancel_delayed_work(&priv->scan_event);
10765 }
10766 
ipw_bg_link_down(struct work_struct * work)10767 static void ipw_bg_link_down(struct work_struct *work)
10768 {
10769 	struct ipw_priv *priv =
10770 		container_of(work, struct ipw_priv, link_down);
10771 	mutex_lock(&priv->mutex);
10772 	ipw_link_down(priv);
10773 	mutex_unlock(&priv->mutex);
10774 }
10775 
ipw_setup_deferred_work(struct ipw_priv * priv)10776 static int __devinit ipw_setup_deferred_work(struct ipw_priv *priv)
10777 {
10778 	int ret = 0;
10779 
10780 	init_waitqueue_head(&priv->wait_command_queue);
10781 	init_waitqueue_head(&priv->wait_state);
10782 
10783 	INIT_DELAYED_WORK(&priv->adhoc_check, ipw_bg_adhoc_check);
10784 	INIT_WORK(&priv->associate, ipw_bg_associate);
10785 	INIT_WORK(&priv->disassociate, ipw_bg_disassociate);
10786 	INIT_WORK(&priv->system_config, ipw_system_config);
10787 	INIT_WORK(&priv->rx_replenish, ipw_bg_rx_queue_replenish);
10788 	INIT_WORK(&priv->adapter_restart, ipw_bg_adapter_restart);
10789 	INIT_DELAYED_WORK(&priv->rf_kill, ipw_bg_rf_kill);
10790 	INIT_WORK(&priv->up, ipw_bg_up);
10791 	INIT_WORK(&priv->down, ipw_bg_down);
10792 	INIT_DELAYED_WORK(&priv->request_scan, ipw_request_scan);
10793 	INIT_DELAYED_WORK(&priv->request_direct_scan, ipw_request_direct_scan);
10794 	INIT_DELAYED_WORK(&priv->request_passive_scan, ipw_request_passive_scan);
10795 	INIT_DELAYED_WORK(&priv->scan_event, ipw_scan_event);
10796 	INIT_DELAYED_WORK(&priv->gather_stats, ipw_bg_gather_stats);
10797 	INIT_WORK(&priv->abort_scan, ipw_bg_abort_scan);
10798 	INIT_WORK(&priv->roam, ipw_bg_roam);
10799 	INIT_DELAYED_WORK(&priv->scan_check, ipw_bg_scan_check);
10800 	INIT_WORK(&priv->link_up, ipw_bg_link_up);
10801 	INIT_WORK(&priv->link_down, ipw_bg_link_down);
10802 	INIT_DELAYED_WORK(&priv->led_link_on, ipw_bg_led_link_on);
10803 	INIT_DELAYED_WORK(&priv->led_link_off, ipw_bg_led_link_off);
10804 	INIT_DELAYED_WORK(&priv->led_act_off, ipw_bg_led_activity_off);
10805 	INIT_WORK(&priv->merge_networks, ipw_merge_adhoc_network);
10806 
10807 #ifdef CONFIG_IPW2200_QOS
10808 	INIT_WORK(&priv->qos_activate, ipw_bg_qos_activate);
10809 #endif				/* CONFIG_IPW2200_QOS */
10810 
10811 	tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
10812 		     ipw_irq_tasklet, (unsigned long)priv);
10813 
10814 	return ret;
10815 }
10816 
shim__set_security(struct net_device * dev,struct libipw_security * sec)10817 static void shim__set_security(struct net_device *dev,
10818 			       struct libipw_security *sec)
10819 {
10820 	struct ipw_priv *priv = libipw_priv(dev);
10821 	int i;
10822 	for (i = 0; i < 4; i++) {
10823 		if (sec->flags & (1 << i)) {
10824 			priv->ieee->sec.encode_alg[i] = sec->encode_alg[i];
10825 			priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
10826 			if (sec->key_sizes[i] == 0)
10827 				priv->ieee->sec.flags &= ~(1 << i);
10828 			else {
10829 				memcpy(priv->ieee->sec.keys[i], sec->keys[i],
10830 				       sec->key_sizes[i]);
10831 				priv->ieee->sec.flags |= (1 << i);
10832 			}
10833 			priv->status |= STATUS_SECURITY_UPDATED;
10834 		} else if (sec->level != SEC_LEVEL_1)
10835 			priv->ieee->sec.flags &= ~(1 << i);
10836 	}
10837 
10838 	if (sec->flags & SEC_ACTIVE_KEY) {
10839 		if (sec->active_key <= 3) {
10840 			priv->ieee->sec.active_key = sec->active_key;
10841 			priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
10842 		} else
10843 			priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10844 		priv->status |= STATUS_SECURITY_UPDATED;
10845 	} else
10846 		priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
10847 
10848 	if ((sec->flags & SEC_AUTH_MODE) &&
10849 	    (priv->ieee->sec.auth_mode != sec->auth_mode)) {
10850 		priv->ieee->sec.auth_mode = sec->auth_mode;
10851 		priv->ieee->sec.flags |= SEC_AUTH_MODE;
10852 		if (sec->auth_mode == WLAN_AUTH_SHARED_KEY)
10853 			priv->capability |= CAP_SHARED_KEY;
10854 		else
10855 			priv->capability &= ~CAP_SHARED_KEY;
10856 		priv->status |= STATUS_SECURITY_UPDATED;
10857 	}
10858 
10859 	if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
10860 		priv->ieee->sec.flags |= SEC_ENABLED;
10861 		priv->ieee->sec.enabled = sec->enabled;
10862 		priv->status |= STATUS_SECURITY_UPDATED;
10863 		if (sec->enabled)
10864 			priv->capability |= CAP_PRIVACY_ON;
10865 		else
10866 			priv->capability &= ~CAP_PRIVACY_ON;
10867 	}
10868 
10869 	if (sec->flags & SEC_ENCRYPT)
10870 		priv->ieee->sec.encrypt = sec->encrypt;
10871 
10872 	if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
10873 		priv->ieee->sec.level = sec->level;
10874 		priv->ieee->sec.flags |= SEC_LEVEL;
10875 		priv->status |= STATUS_SECURITY_UPDATED;
10876 	}
10877 
10878 	if (!priv->ieee->host_encrypt && (sec->flags & SEC_ENCRYPT))
10879 		ipw_set_hwcrypto_keys(priv);
10880 
10881 	/* To match current functionality of ipw2100 (which works well w/
10882 	 * various supplicants, we don't force a disassociate if the
10883 	 * privacy capability changes ... */
10884 #if 0
10885 	if ((priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)) &&
10886 	    (((priv->assoc_request.capability &
10887 	       cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && !sec->enabled) ||
10888 	     (!(priv->assoc_request.capability &
10889 		cpu_to_le16(WLAN_CAPABILITY_PRIVACY)) && sec->enabled))) {
10890 		IPW_DEBUG_ASSOC("Disassociating due to capability "
10891 				"change.\n");
10892 		ipw_disassociate(priv);
10893 	}
10894 #endif
10895 }
10896 
init_supported_rates(struct ipw_priv * priv,struct ipw_supported_rates * rates)10897 static int init_supported_rates(struct ipw_priv *priv,
10898 				struct ipw_supported_rates *rates)
10899 {
10900 	/* TODO: Mask out rates based on priv->rates_mask */
10901 
10902 	memset(rates, 0, sizeof(*rates));
10903 	/* configure supported rates */
10904 	switch (priv->ieee->freq_band) {
10905 	case LIBIPW_52GHZ_BAND:
10906 		rates->ieee_mode = IPW_A_MODE;
10907 		rates->purpose = IPW_RATE_CAPABILITIES;
10908 		ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10909 					LIBIPW_OFDM_DEFAULT_RATES_MASK);
10910 		break;
10911 
10912 	default:		/* Mixed or 2.4Ghz */
10913 		rates->ieee_mode = IPW_G_MODE;
10914 		rates->purpose = IPW_RATE_CAPABILITIES;
10915 		ipw_add_cck_scan_rates(rates, LIBIPW_CCK_MODULATION,
10916 				       LIBIPW_CCK_DEFAULT_RATES_MASK);
10917 		if (priv->ieee->modulation & LIBIPW_OFDM_MODULATION) {
10918 			ipw_add_ofdm_scan_rates(rates, LIBIPW_CCK_MODULATION,
10919 						LIBIPW_OFDM_DEFAULT_RATES_MASK);
10920 		}
10921 		break;
10922 	}
10923 
10924 	return 0;
10925 }
10926 
ipw_config(struct ipw_priv * priv)10927 static int ipw_config(struct ipw_priv *priv)
10928 {
10929 	/* This is only called from ipw_up, which resets/reloads the firmware
10930 	   so, we don't need to first disable the card before we configure
10931 	   it */
10932 	if (ipw_set_tx_power(priv))
10933 		goto error;
10934 
10935 	/* initialize adapter address */
10936 	if (ipw_send_adapter_address(priv, priv->net_dev->dev_addr))
10937 		goto error;
10938 
10939 	/* set basic system config settings */
10940 	init_sys_config(&priv->sys_config);
10941 
10942 	/* Support Bluetooth if we have BT h/w on board, and user wants to.
10943 	 * Does not support BT priority yet (don't abort or defer our Tx) */
10944 	if (bt_coexist) {
10945 		unsigned char bt_caps = priv->eeprom[EEPROM_SKU_CAPABILITY];
10946 
10947 		if (bt_caps & EEPROM_SKU_CAP_BT_CHANNEL_SIG)
10948 			priv->sys_config.bt_coexistence
10949 			    |= CFG_BT_COEXISTENCE_SIGNAL_CHNL;
10950 		if (bt_caps & EEPROM_SKU_CAP_BT_OOB)
10951 			priv->sys_config.bt_coexistence
10952 			    |= CFG_BT_COEXISTENCE_OOB;
10953 	}
10954 
10955 #ifdef CONFIG_IPW2200_PROMISCUOUS
10956 	if (priv->prom_net_dev && netif_running(priv->prom_net_dev)) {
10957 		priv->sys_config.accept_all_data_frames = 1;
10958 		priv->sys_config.accept_non_directed_frames = 1;
10959 		priv->sys_config.accept_all_mgmt_bcpr = 1;
10960 		priv->sys_config.accept_all_mgmt_frames = 1;
10961 	}
10962 #endif
10963 
10964 	if (priv->ieee->iw_mode == IW_MODE_ADHOC)
10965 		priv->sys_config.answer_broadcast_ssid_probe = 1;
10966 	else
10967 		priv->sys_config.answer_broadcast_ssid_probe = 0;
10968 
10969 	if (ipw_send_system_config(priv))
10970 		goto error;
10971 
10972 	init_supported_rates(priv, &priv->rates);
10973 	if (ipw_send_supported_rates(priv, &priv->rates))
10974 		goto error;
10975 
10976 	/* Set request-to-send threshold */
10977 	if (priv->rts_threshold) {
10978 		if (ipw_send_rts_threshold(priv, priv->rts_threshold))
10979 			goto error;
10980 	}
10981 #ifdef CONFIG_IPW2200_QOS
10982 	IPW_DEBUG_QOS("QoS: call ipw_qos_activate\n");
10983 	ipw_qos_activate(priv, NULL);
10984 #endif				/* CONFIG_IPW2200_QOS */
10985 
10986 	if (ipw_set_random_seed(priv))
10987 		goto error;
10988 
10989 	/* final state transition to the RUN state */
10990 	if (ipw_send_host_complete(priv))
10991 		goto error;
10992 
10993 	priv->status |= STATUS_INIT;
10994 
10995 	ipw_led_init(priv);
10996 	ipw_led_radio_on(priv);
10997 	priv->notif_missed_beacons = 0;
10998 
10999 	/* Set hardware WEP key if it is configured. */
11000 	if ((priv->capability & CAP_PRIVACY_ON) &&
11001 	    (priv->ieee->sec.level == SEC_LEVEL_1) &&
11002 	    !(priv->ieee->host_encrypt || priv->ieee->host_decrypt))
11003 		ipw_set_hwcrypto_keys(priv);
11004 
11005 	return 0;
11006 
11007       error:
11008 	return -EIO;
11009 }
11010 
11011 /*
11012  * NOTE:
11013  *
11014  * These tables have been tested in conjunction with the
11015  * Intel PRO/Wireless 2200BG and 2915ABG Network Connection Adapters.
11016  *
11017  * Altering this values, using it on other hardware, or in geographies
11018  * not intended for resale of the above mentioned Intel adapters has
11019  * not been tested.
11020  *
11021  * Remember to update the table in README.ipw2200 when changing this
11022  * table.
11023  *
11024  */
11025 static const struct libipw_geo ipw_geos[] = {
11026 	{			/* Restricted */
11027 	 "---",
11028 	 .bg_channels = 11,
11029 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11030 		{2427, 4}, {2432, 5}, {2437, 6},
11031 		{2442, 7}, {2447, 8}, {2452, 9},
11032 		{2457, 10}, {2462, 11}},
11033 	 },
11034 
11035 	{			/* Custom US/Canada */
11036 	 "ZZF",
11037 	 .bg_channels = 11,
11038 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11039 		{2427, 4}, {2432, 5}, {2437, 6},
11040 		{2442, 7}, {2447, 8}, {2452, 9},
11041 		{2457, 10}, {2462, 11}},
11042 	 .a_channels = 8,
11043 	 .a = {{5180, 36},
11044 	       {5200, 40},
11045 	       {5220, 44},
11046 	       {5240, 48},
11047 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11048 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11049 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11050 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY}},
11051 	 },
11052 
11053 	{			/* Rest of World */
11054 	 "ZZD",
11055 	 .bg_channels = 13,
11056 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11057 		{2427, 4}, {2432, 5}, {2437, 6},
11058 		{2442, 7}, {2447, 8}, {2452, 9},
11059 		{2457, 10}, {2462, 11}, {2467, 12},
11060 		{2472, 13}},
11061 	 },
11062 
11063 	{			/* Custom USA & Europe & High */
11064 	 "ZZA",
11065 	 .bg_channels = 11,
11066 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11067 		{2427, 4}, {2432, 5}, {2437, 6},
11068 		{2442, 7}, {2447, 8}, {2452, 9},
11069 		{2457, 10}, {2462, 11}},
11070 	 .a_channels = 13,
11071 	 .a = {{5180, 36},
11072 	       {5200, 40},
11073 	       {5220, 44},
11074 	       {5240, 48},
11075 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11076 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11077 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11078 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11079 	       {5745, 149},
11080 	       {5765, 153},
11081 	       {5785, 157},
11082 	       {5805, 161},
11083 	       {5825, 165}},
11084 	 },
11085 
11086 	{			/* Custom NA & Europe */
11087 	 "ZZB",
11088 	 .bg_channels = 11,
11089 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11090 		{2427, 4}, {2432, 5}, {2437, 6},
11091 		{2442, 7}, {2447, 8}, {2452, 9},
11092 		{2457, 10}, {2462, 11}},
11093 	 .a_channels = 13,
11094 	 .a = {{5180, 36},
11095 	       {5200, 40},
11096 	       {5220, 44},
11097 	       {5240, 48},
11098 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11099 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11100 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11101 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11102 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11103 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11104 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11105 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11106 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11107 	 },
11108 
11109 	{			/* Custom Japan */
11110 	 "ZZC",
11111 	 .bg_channels = 11,
11112 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11113 		{2427, 4}, {2432, 5}, {2437, 6},
11114 		{2442, 7}, {2447, 8}, {2452, 9},
11115 		{2457, 10}, {2462, 11}},
11116 	 .a_channels = 4,
11117 	 .a = {{5170, 34}, {5190, 38},
11118 	       {5210, 42}, {5230, 46}},
11119 	 },
11120 
11121 	{			/* Custom */
11122 	 "ZZM",
11123 	 .bg_channels = 11,
11124 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11125 		{2427, 4}, {2432, 5}, {2437, 6},
11126 		{2442, 7}, {2447, 8}, {2452, 9},
11127 		{2457, 10}, {2462, 11}},
11128 	 },
11129 
11130 	{			/* Europe */
11131 	 "ZZE",
11132 	 .bg_channels = 13,
11133 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11134 		{2427, 4}, {2432, 5}, {2437, 6},
11135 		{2442, 7}, {2447, 8}, {2452, 9},
11136 		{2457, 10}, {2462, 11}, {2467, 12},
11137 		{2472, 13}},
11138 	 .a_channels = 19,
11139 	 .a = {{5180, 36},
11140 	       {5200, 40},
11141 	       {5220, 44},
11142 	       {5240, 48},
11143 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11144 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11145 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11146 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11147 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11148 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11149 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11150 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11151 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11152 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11153 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11154 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11155 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11156 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11157 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY}},
11158 	 },
11159 
11160 	{			/* Custom Japan */
11161 	 "ZZJ",
11162 	 .bg_channels = 14,
11163 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11164 		{2427, 4}, {2432, 5}, {2437, 6},
11165 		{2442, 7}, {2447, 8}, {2452, 9},
11166 		{2457, 10}, {2462, 11}, {2467, 12},
11167 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY}},
11168 	 .a_channels = 4,
11169 	 .a = {{5170, 34}, {5190, 38},
11170 	       {5210, 42}, {5230, 46}},
11171 	 },
11172 
11173 	{			/* Rest of World */
11174 	 "ZZR",
11175 	 .bg_channels = 14,
11176 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11177 		{2427, 4}, {2432, 5}, {2437, 6},
11178 		{2442, 7}, {2447, 8}, {2452, 9},
11179 		{2457, 10}, {2462, 11}, {2467, 12},
11180 		{2472, 13}, {2484, 14, LIBIPW_CH_B_ONLY |
11181 			     LIBIPW_CH_PASSIVE_ONLY}},
11182 	 },
11183 
11184 	{			/* High Band */
11185 	 "ZZH",
11186 	 .bg_channels = 13,
11187 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11188 		{2427, 4}, {2432, 5}, {2437, 6},
11189 		{2442, 7}, {2447, 8}, {2452, 9},
11190 		{2457, 10}, {2462, 11},
11191 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11192 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11193 	 .a_channels = 4,
11194 	 .a = {{5745, 149}, {5765, 153},
11195 	       {5785, 157}, {5805, 161}},
11196 	 },
11197 
11198 	{			/* Custom Europe */
11199 	 "ZZG",
11200 	 .bg_channels = 13,
11201 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11202 		{2427, 4}, {2432, 5}, {2437, 6},
11203 		{2442, 7}, {2447, 8}, {2452, 9},
11204 		{2457, 10}, {2462, 11},
11205 		{2467, 12}, {2472, 13}},
11206 	 .a_channels = 4,
11207 	 .a = {{5180, 36}, {5200, 40},
11208 	       {5220, 44}, {5240, 48}},
11209 	 },
11210 
11211 	{			/* Europe */
11212 	 "ZZK",
11213 	 .bg_channels = 13,
11214 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11215 		{2427, 4}, {2432, 5}, {2437, 6},
11216 		{2442, 7}, {2447, 8}, {2452, 9},
11217 		{2457, 10}, {2462, 11},
11218 		{2467, 12, LIBIPW_CH_PASSIVE_ONLY},
11219 		{2472, 13, LIBIPW_CH_PASSIVE_ONLY}},
11220 	 .a_channels = 24,
11221 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11222 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11223 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11224 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11225 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11226 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11227 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11228 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11229 	       {5500, 100, LIBIPW_CH_PASSIVE_ONLY},
11230 	       {5520, 104, LIBIPW_CH_PASSIVE_ONLY},
11231 	       {5540, 108, LIBIPW_CH_PASSIVE_ONLY},
11232 	       {5560, 112, LIBIPW_CH_PASSIVE_ONLY},
11233 	       {5580, 116, LIBIPW_CH_PASSIVE_ONLY},
11234 	       {5600, 120, LIBIPW_CH_PASSIVE_ONLY},
11235 	       {5620, 124, LIBIPW_CH_PASSIVE_ONLY},
11236 	       {5640, 128, LIBIPW_CH_PASSIVE_ONLY},
11237 	       {5660, 132, LIBIPW_CH_PASSIVE_ONLY},
11238 	       {5680, 136, LIBIPW_CH_PASSIVE_ONLY},
11239 	       {5700, 140, LIBIPW_CH_PASSIVE_ONLY},
11240 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11241 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11242 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11243 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11244 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11245 	 },
11246 
11247 	{			/* Europe */
11248 	 "ZZL",
11249 	 .bg_channels = 11,
11250 	 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
11251 		{2427, 4}, {2432, 5}, {2437, 6},
11252 		{2442, 7}, {2447, 8}, {2452, 9},
11253 		{2457, 10}, {2462, 11}},
11254 	 .a_channels = 13,
11255 	 .a = {{5180, 36, LIBIPW_CH_PASSIVE_ONLY},
11256 	       {5200, 40, LIBIPW_CH_PASSIVE_ONLY},
11257 	       {5220, 44, LIBIPW_CH_PASSIVE_ONLY},
11258 	       {5240, 48, LIBIPW_CH_PASSIVE_ONLY},
11259 	       {5260, 52, LIBIPW_CH_PASSIVE_ONLY},
11260 	       {5280, 56, LIBIPW_CH_PASSIVE_ONLY},
11261 	       {5300, 60, LIBIPW_CH_PASSIVE_ONLY},
11262 	       {5320, 64, LIBIPW_CH_PASSIVE_ONLY},
11263 	       {5745, 149, LIBIPW_CH_PASSIVE_ONLY},
11264 	       {5765, 153, LIBIPW_CH_PASSIVE_ONLY},
11265 	       {5785, 157, LIBIPW_CH_PASSIVE_ONLY},
11266 	       {5805, 161, LIBIPW_CH_PASSIVE_ONLY},
11267 	       {5825, 165, LIBIPW_CH_PASSIVE_ONLY}},
11268 	 }
11269 };
11270 
11271 #define MAX_HW_RESTARTS 5
ipw_up(struct ipw_priv * priv)11272 static int ipw_up(struct ipw_priv *priv)
11273 {
11274 	int rc, i, j;
11275 
11276 	/* Age scan list entries found before suspend */
11277 	if (priv->suspend_time) {
11278 		libipw_networks_age(priv->ieee, priv->suspend_time);
11279 		priv->suspend_time = 0;
11280 	}
11281 
11282 	if (priv->status & STATUS_EXIT_PENDING)
11283 		return -EIO;
11284 
11285 	if (cmdlog && !priv->cmdlog) {
11286 		priv->cmdlog = kcalloc(cmdlog, sizeof(*priv->cmdlog),
11287 				       GFP_KERNEL);
11288 		if (priv->cmdlog == NULL) {
11289 			IPW_ERROR("Error allocating %d command log entries.\n",
11290 				  cmdlog);
11291 			return -ENOMEM;
11292 		} else {
11293 			priv->cmdlog_len = cmdlog;
11294 		}
11295 	}
11296 
11297 	for (i = 0; i < MAX_HW_RESTARTS; i++) {
11298 		/* Load the microcode, firmware, and eeprom.
11299 		 * Also start the clocks. */
11300 		rc = ipw_load(priv);
11301 		if (rc) {
11302 			IPW_ERROR("Unable to load firmware: %d\n", rc);
11303 			return rc;
11304 		}
11305 
11306 		ipw_init_ordinals(priv);
11307 		if (!(priv->config & CFG_CUSTOM_MAC))
11308 			eeprom_parse_mac(priv, priv->mac_addr);
11309 		memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11310 		memcpy(priv->net_dev->perm_addr, priv->mac_addr, ETH_ALEN);
11311 
11312 		for (j = 0; j < ARRAY_SIZE(ipw_geos); j++) {
11313 			if (!memcmp(&priv->eeprom[EEPROM_COUNTRY_CODE],
11314 				    ipw_geos[j].name, 3))
11315 				break;
11316 		}
11317 		if (j == ARRAY_SIZE(ipw_geos)) {
11318 			IPW_WARNING("SKU [%c%c%c] not recognized.\n",
11319 				    priv->eeprom[EEPROM_COUNTRY_CODE + 0],
11320 				    priv->eeprom[EEPROM_COUNTRY_CODE + 1],
11321 				    priv->eeprom[EEPROM_COUNTRY_CODE + 2]);
11322 			j = 0;
11323 		}
11324 		if (libipw_set_geo(priv->ieee, &ipw_geos[j])) {
11325 			IPW_WARNING("Could not set geography.");
11326 			return 0;
11327 		}
11328 
11329 		if (priv->status & STATUS_RF_KILL_SW) {
11330 			IPW_WARNING("Radio disabled by module parameter.\n");
11331 			return 0;
11332 		} else if (rf_kill_active(priv)) {
11333 			IPW_WARNING("Radio Frequency Kill Switch is On:\n"
11334 				    "Kill switch must be turned off for "
11335 				    "wireless networking to work.\n");
11336 			schedule_delayed_work(&priv->rf_kill, 2 * HZ);
11337 			return 0;
11338 		}
11339 
11340 		rc = ipw_config(priv);
11341 		if (!rc) {
11342 			IPW_DEBUG_INFO("Configured device on count %i\n", i);
11343 
11344 			/* If configure to try and auto-associate, kick
11345 			 * off a scan. */
11346 			schedule_delayed_work(&priv->request_scan, 0);
11347 
11348 			return 0;
11349 		}
11350 
11351 		IPW_DEBUG_INFO("Device configuration failed: 0x%08X\n", rc);
11352 		IPW_DEBUG_INFO("Failed to config device on retry %d of %d\n",
11353 			       i, MAX_HW_RESTARTS);
11354 
11355 		/* We had an error bringing up the hardware, so take it
11356 		 * all the way back down so we can try again */
11357 		ipw_down(priv);
11358 	}
11359 
11360 	/* tried to restart and config the device for as long as our
11361 	 * patience could withstand */
11362 	IPW_ERROR("Unable to initialize device after %d attempts.\n", i);
11363 
11364 	return -EIO;
11365 }
11366 
ipw_bg_up(struct work_struct * work)11367 static void ipw_bg_up(struct work_struct *work)
11368 {
11369 	struct ipw_priv *priv =
11370 		container_of(work, struct ipw_priv, up);
11371 	mutex_lock(&priv->mutex);
11372 	ipw_up(priv);
11373 	mutex_unlock(&priv->mutex);
11374 }
11375 
ipw_deinit(struct ipw_priv * priv)11376 static void ipw_deinit(struct ipw_priv *priv)
11377 {
11378 	int i;
11379 
11380 	if (priv->status & STATUS_SCANNING) {
11381 		IPW_DEBUG_INFO("Aborting scan during shutdown.\n");
11382 		ipw_abort_scan(priv);
11383 	}
11384 
11385 	if (priv->status & STATUS_ASSOCIATED) {
11386 		IPW_DEBUG_INFO("Disassociating during shutdown.\n");
11387 		ipw_disassociate(priv);
11388 	}
11389 
11390 	ipw_led_shutdown(priv);
11391 
11392 	/* Wait up to 1s for status to change to not scanning and not
11393 	 * associated (disassociation can take a while for a ful 802.11
11394 	 * exchange */
11395 	for (i = 1000; i && (priv->status &
11396 			     (STATUS_DISASSOCIATING |
11397 			      STATUS_ASSOCIATED | STATUS_SCANNING)); i--)
11398 		udelay(10);
11399 
11400 	if (priv->status & (STATUS_DISASSOCIATING |
11401 			    STATUS_ASSOCIATED | STATUS_SCANNING))
11402 		IPW_DEBUG_INFO("Still associated or scanning...\n");
11403 	else
11404 		IPW_DEBUG_INFO("Took %dms to de-init\n", 1000 - i);
11405 
11406 	/* Attempt to disable the card */
11407 	ipw_send_card_disable(priv, 0);
11408 
11409 	priv->status &= ~STATUS_INIT;
11410 }
11411 
ipw_down(struct ipw_priv * priv)11412 static void ipw_down(struct ipw_priv *priv)
11413 {
11414 	int exit_pending = priv->status & STATUS_EXIT_PENDING;
11415 
11416 	priv->status |= STATUS_EXIT_PENDING;
11417 
11418 	if (ipw_is_init(priv))
11419 		ipw_deinit(priv);
11420 
11421 	/* Wipe out the EXIT_PENDING status bit if we are not actually
11422 	 * exiting the module */
11423 	if (!exit_pending)
11424 		priv->status &= ~STATUS_EXIT_PENDING;
11425 
11426 	/* tell the device to stop sending interrupts */
11427 	ipw_disable_interrupts(priv);
11428 
11429 	/* Clear all bits but the RF Kill */
11430 	priv->status &= STATUS_RF_KILL_MASK | STATUS_EXIT_PENDING;
11431 	netif_carrier_off(priv->net_dev);
11432 
11433 	ipw_stop_nic(priv);
11434 
11435 	ipw_led_radio_off(priv);
11436 }
11437 
ipw_bg_down(struct work_struct * work)11438 static void ipw_bg_down(struct work_struct *work)
11439 {
11440 	struct ipw_priv *priv =
11441 		container_of(work, struct ipw_priv, down);
11442 	mutex_lock(&priv->mutex);
11443 	ipw_down(priv);
11444 	mutex_unlock(&priv->mutex);
11445 }
11446 
11447 /* Called by register_netdev() */
ipw_net_init(struct net_device * dev)11448 static int ipw_net_init(struct net_device *dev)
11449 {
11450 	int rc = 0;
11451 	struct ipw_priv *priv = libipw_priv(dev);
11452 
11453 	mutex_lock(&priv->mutex);
11454 	if (ipw_up(priv))
11455 		rc = -EIO;
11456 	mutex_unlock(&priv->mutex);
11457 
11458 	return rc;
11459 }
11460 
ipw_wdev_init(struct net_device * dev)11461 static int ipw_wdev_init(struct net_device *dev)
11462 {
11463 	int i, rc = 0;
11464 	struct ipw_priv *priv = libipw_priv(dev);
11465 	const struct libipw_geo *geo = libipw_get_geo(priv->ieee);
11466 	struct wireless_dev *wdev = &priv->ieee->wdev;
11467 
11468 	memcpy(wdev->wiphy->perm_addr, priv->mac_addr, ETH_ALEN);
11469 
11470 	/* fill-out priv->ieee->bg_band */
11471 	if (geo->bg_channels) {
11472 		struct ieee80211_supported_band *bg_band = &priv->ieee->bg_band;
11473 
11474 		bg_band->band = IEEE80211_BAND_2GHZ;
11475 		bg_band->n_channels = geo->bg_channels;
11476 		bg_band->channels = kcalloc(geo->bg_channels,
11477 					    sizeof(struct ieee80211_channel),
11478 					    GFP_KERNEL);
11479 		if (!bg_band->channels) {
11480 			rc = -ENOMEM;
11481 			goto out;
11482 		}
11483 		/* translate geo->bg to bg_band.channels */
11484 		for (i = 0; i < geo->bg_channels; i++) {
11485 			bg_band->channels[i].band = IEEE80211_BAND_2GHZ;
11486 			bg_band->channels[i].center_freq = geo->bg[i].freq;
11487 			bg_band->channels[i].hw_value = geo->bg[i].channel;
11488 			bg_band->channels[i].max_power = geo->bg[i].max_power;
11489 			if (geo->bg[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11490 				bg_band->channels[i].flags |=
11491 					IEEE80211_CHAN_PASSIVE_SCAN;
11492 			if (geo->bg[i].flags & LIBIPW_CH_NO_IBSS)
11493 				bg_band->channels[i].flags |=
11494 					IEEE80211_CHAN_NO_IBSS;
11495 			if (geo->bg[i].flags & LIBIPW_CH_RADAR_DETECT)
11496 				bg_band->channels[i].flags |=
11497 					IEEE80211_CHAN_RADAR;
11498 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11499 			   LIBIPW_CH_UNIFORM_SPREADING, or
11500 			   LIBIPW_CH_B_ONLY... */
11501 		}
11502 		/* point at bitrate info */
11503 		bg_band->bitrates = ipw2200_bg_rates;
11504 		bg_band->n_bitrates = ipw2200_num_bg_rates;
11505 
11506 		wdev->wiphy->bands[IEEE80211_BAND_2GHZ] = bg_band;
11507 	}
11508 
11509 	/* fill-out priv->ieee->a_band */
11510 	if (geo->a_channels) {
11511 		struct ieee80211_supported_band *a_band = &priv->ieee->a_band;
11512 
11513 		a_band->band = IEEE80211_BAND_5GHZ;
11514 		a_band->n_channels = geo->a_channels;
11515 		a_band->channels = kcalloc(geo->a_channels,
11516 					   sizeof(struct ieee80211_channel),
11517 					   GFP_KERNEL);
11518 		if (!a_band->channels) {
11519 			rc = -ENOMEM;
11520 			goto out;
11521 		}
11522 		/* translate geo->a to a_band.channels */
11523 		for (i = 0; i < geo->a_channels; i++) {
11524 			a_band->channels[i].band = IEEE80211_BAND_5GHZ;
11525 			a_band->channels[i].center_freq = geo->a[i].freq;
11526 			a_band->channels[i].hw_value = geo->a[i].channel;
11527 			a_band->channels[i].max_power = geo->a[i].max_power;
11528 			if (geo->a[i].flags & LIBIPW_CH_PASSIVE_ONLY)
11529 				a_band->channels[i].flags |=
11530 					IEEE80211_CHAN_PASSIVE_SCAN;
11531 			if (geo->a[i].flags & LIBIPW_CH_NO_IBSS)
11532 				a_band->channels[i].flags |=
11533 					IEEE80211_CHAN_NO_IBSS;
11534 			if (geo->a[i].flags & LIBIPW_CH_RADAR_DETECT)
11535 				a_band->channels[i].flags |=
11536 					IEEE80211_CHAN_RADAR;
11537 			/* No equivalent for LIBIPW_CH_80211H_RULES,
11538 			   LIBIPW_CH_UNIFORM_SPREADING, or
11539 			   LIBIPW_CH_B_ONLY... */
11540 		}
11541 		/* point at bitrate info */
11542 		a_band->bitrates = ipw2200_a_rates;
11543 		a_band->n_bitrates = ipw2200_num_a_rates;
11544 
11545 		wdev->wiphy->bands[IEEE80211_BAND_5GHZ] = a_band;
11546 	}
11547 
11548 	wdev->wiphy->cipher_suites = ipw_cipher_suites;
11549 	wdev->wiphy->n_cipher_suites = ARRAY_SIZE(ipw_cipher_suites);
11550 
11551 	set_wiphy_dev(wdev->wiphy, &priv->pci_dev->dev);
11552 
11553 	/* With that information in place, we can now register the wiphy... */
11554 	if (wiphy_register(wdev->wiphy))
11555 		rc = -EIO;
11556 out:
11557 	return rc;
11558 }
11559 
11560 /* PCI driver stuff */
11561 static DEFINE_PCI_DEVICE_TABLE(card_ids) = {
11562 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2701, 0, 0, 0},
11563 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2702, 0, 0, 0},
11564 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2711, 0, 0, 0},
11565 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2712, 0, 0, 0},
11566 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2721, 0, 0, 0},
11567 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2722, 0, 0, 0},
11568 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2731, 0, 0, 0},
11569 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2732, 0, 0, 0},
11570 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2741, 0, 0, 0},
11571 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x103c, 0x2741, 0, 0, 0},
11572 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2742, 0, 0, 0},
11573 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2751, 0, 0, 0},
11574 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2752, 0, 0, 0},
11575 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2753, 0, 0, 0},
11576 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2754, 0, 0, 0},
11577 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2761, 0, 0, 0},
11578 	{PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, 0x2762, 0, 0, 0},
11579 	{PCI_VDEVICE(INTEL, 0x104f), 0},
11580 	{PCI_VDEVICE(INTEL, 0x4220), 0},	/* BG */
11581 	{PCI_VDEVICE(INTEL, 0x4221), 0},	/* BG */
11582 	{PCI_VDEVICE(INTEL, 0x4223), 0},	/* ABG */
11583 	{PCI_VDEVICE(INTEL, 0x4224), 0},	/* ABG */
11584 
11585 	/* required last entry */
11586 	{0,}
11587 };
11588 
11589 MODULE_DEVICE_TABLE(pci, card_ids);
11590 
11591 static struct attribute *ipw_sysfs_entries[] = {
11592 	&dev_attr_rf_kill.attr,
11593 	&dev_attr_direct_dword.attr,
11594 	&dev_attr_indirect_byte.attr,
11595 	&dev_attr_indirect_dword.attr,
11596 	&dev_attr_mem_gpio_reg.attr,
11597 	&dev_attr_command_event_reg.attr,
11598 	&dev_attr_nic_type.attr,
11599 	&dev_attr_status.attr,
11600 	&dev_attr_cfg.attr,
11601 	&dev_attr_error.attr,
11602 	&dev_attr_event_log.attr,
11603 	&dev_attr_cmd_log.attr,
11604 	&dev_attr_eeprom_delay.attr,
11605 	&dev_attr_ucode_version.attr,
11606 	&dev_attr_rtc.attr,
11607 	&dev_attr_scan_age.attr,
11608 	&dev_attr_led.attr,
11609 	&dev_attr_speed_scan.attr,
11610 	&dev_attr_net_stats.attr,
11611 	&dev_attr_channels.attr,
11612 #ifdef CONFIG_IPW2200_PROMISCUOUS
11613 	&dev_attr_rtap_iface.attr,
11614 	&dev_attr_rtap_filter.attr,
11615 #endif
11616 	NULL
11617 };
11618 
11619 static struct attribute_group ipw_attribute_group = {
11620 	.name = NULL,		/* put in device directory */
11621 	.attrs = ipw_sysfs_entries,
11622 };
11623 
11624 #ifdef CONFIG_IPW2200_PROMISCUOUS
ipw_prom_open(struct net_device * dev)11625 static int ipw_prom_open(struct net_device *dev)
11626 {
11627 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11628 	struct ipw_priv *priv = prom_priv->priv;
11629 
11630 	IPW_DEBUG_INFO("prom dev->open\n");
11631 	netif_carrier_off(dev);
11632 
11633 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11634 		priv->sys_config.accept_all_data_frames = 1;
11635 		priv->sys_config.accept_non_directed_frames = 1;
11636 		priv->sys_config.accept_all_mgmt_bcpr = 1;
11637 		priv->sys_config.accept_all_mgmt_frames = 1;
11638 
11639 		ipw_send_system_config(priv);
11640 	}
11641 
11642 	return 0;
11643 }
11644 
ipw_prom_stop(struct net_device * dev)11645 static int ipw_prom_stop(struct net_device *dev)
11646 {
11647 	struct ipw_prom_priv *prom_priv = libipw_priv(dev);
11648 	struct ipw_priv *priv = prom_priv->priv;
11649 
11650 	IPW_DEBUG_INFO("prom dev->stop\n");
11651 
11652 	if (priv->ieee->iw_mode != IW_MODE_MONITOR) {
11653 		priv->sys_config.accept_all_data_frames = 0;
11654 		priv->sys_config.accept_non_directed_frames = 0;
11655 		priv->sys_config.accept_all_mgmt_bcpr = 0;
11656 		priv->sys_config.accept_all_mgmt_frames = 0;
11657 
11658 		ipw_send_system_config(priv);
11659 	}
11660 
11661 	return 0;
11662 }
11663 
ipw_prom_hard_start_xmit(struct sk_buff * skb,struct net_device * dev)11664 static netdev_tx_t ipw_prom_hard_start_xmit(struct sk_buff *skb,
11665 					    struct net_device *dev)
11666 {
11667 	IPW_DEBUG_INFO("prom dev->xmit\n");
11668 	dev_kfree_skb(skb);
11669 	return NETDEV_TX_OK;
11670 }
11671 
11672 static const struct net_device_ops ipw_prom_netdev_ops = {
11673 	.ndo_open 		= ipw_prom_open,
11674 	.ndo_stop		= ipw_prom_stop,
11675 	.ndo_start_xmit		= ipw_prom_hard_start_xmit,
11676 	.ndo_change_mtu		= libipw_change_mtu,
11677 	.ndo_set_mac_address 	= eth_mac_addr,
11678 	.ndo_validate_addr	= eth_validate_addr,
11679 };
11680 
ipw_prom_alloc(struct ipw_priv * priv)11681 static int ipw_prom_alloc(struct ipw_priv *priv)
11682 {
11683 	int rc = 0;
11684 
11685 	if (priv->prom_net_dev)
11686 		return -EPERM;
11687 
11688 	priv->prom_net_dev = alloc_libipw(sizeof(struct ipw_prom_priv), 1);
11689 	if (priv->prom_net_dev == NULL)
11690 		return -ENOMEM;
11691 
11692 	priv->prom_priv = libipw_priv(priv->prom_net_dev);
11693 	priv->prom_priv->ieee = netdev_priv(priv->prom_net_dev);
11694 	priv->prom_priv->priv = priv;
11695 
11696 	strcpy(priv->prom_net_dev->name, "rtap%d");
11697 	memcpy(priv->prom_net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
11698 
11699 	priv->prom_net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
11700 	priv->prom_net_dev->netdev_ops = &ipw_prom_netdev_ops;
11701 
11702 	priv->prom_priv->ieee->iw_mode = IW_MODE_MONITOR;
11703 	SET_NETDEV_DEV(priv->prom_net_dev, &priv->pci_dev->dev);
11704 
11705 	rc = register_netdev(priv->prom_net_dev);
11706 	if (rc) {
11707 		free_libipw(priv->prom_net_dev, 1);
11708 		priv->prom_net_dev = NULL;
11709 		return rc;
11710 	}
11711 
11712 	return 0;
11713 }
11714 
ipw_prom_free(struct ipw_priv * priv)11715 static void ipw_prom_free(struct ipw_priv *priv)
11716 {
11717 	if (!priv->prom_net_dev)
11718 		return;
11719 
11720 	unregister_netdev(priv->prom_net_dev);
11721 	free_libipw(priv->prom_net_dev, 1);
11722 
11723 	priv->prom_net_dev = NULL;
11724 }
11725 
11726 #endif
11727 
11728 static const struct net_device_ops ipw_netdev_ops = {
11729 	.ndo_init		= ipw_net_init,
11730 	.ndo_open		= ipw_net_open,
11731 	.ndo_stop		= ipw_net_stop,
11732 	.ndo_set_rx_mode	= ipw_net_set_multicast_list,
11733 	.ndo_set_mac_address	= ipw_net_set_mac_address,
11734 	.ndo_start_xmit		= libipw_xmit,
11735 	.ndo_change_mtu		= libipw_change_mtu,
11736 	.ndo_validate_addr	= eth_validate_addr,
11737 };
11738 
ipw_pci_probe(struct pci_dev * pdev,const struct pci_device_id * ent)11739 static int __devinit ipw_pci_probe(struct pci_dev *pdev,
11740 				   const struct pci_device_id *ent)
11741 {
11742 	int err = 0;
11743 	struct net_device *net_dev;
11744 	void __iomem *base;
11745 	u32 length, val;
11746 	struct ipw_priv *priv;
11747 	int i;
11748 
11749 	net_dev = alloc_libipw(sizeof(struct ipw_priv), 0);
11750 	if (net_dev == NULL) {
11751 		err = -ENOMEM;
11752 		goto out;
11753 	}
11754 
11755 	priv = libipw_priv(net_dev);
11756 	priv->ieee = netdev_priv(net_dev);
11757 
11758 	priv->net_dev = net_dev;
11759 	priv->pci_dev = pdev;
11760 	ipw_debug_level = debug;
11761 	spin_lock_init(&priv->irq_lock);
11762 	spin_lock_init(&priv->lock);
11763 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++)
11764 		INIT_LIST_HEAD(&priv->ibss_mac_hash[i]);
11765 
11766 	mutex_init(&priv->mutex);
11767 	if (pci_enable_device(pdev)) {
11768 		err = -ENODEV;
11769 		goto out_free_libipw;
11770 	}
11771 
11772 	pci_set_master(pdev);
11773 
11774 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
11775 	if (!err)
11776 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
11777 	if (err) {
11778 		printk(KERN_WARNING DRV_NAME ": No suitable DMA available.\n");
11779 		goto out_pci_disable_device;
11780 	}
11781 
11782 	pci_set_drvdata(pdev, priv);
11783 
11784 	err = pci_request_regions(pdev, DRV_NAME);
11785 	if (err)
11786 		goto out_pci_disable_device;
11787 
11788 	/* We disable the RETRY_TIMEOUT register (0x41) to keep
11789 	 * PCI Tx retries from interfering with C3 CPU state */
11790 	pci_read_config_dword(pdev, 0x40, &val);
11791 	if ((val & 0x0000ff00) != 0)
11792 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
11793 
11794 	length = pci_resource_len(pdev, 0);
11795 	priv->hw_len = length;
11796 
11797 	base = pci_ioremap_bar(pdev, 0);
11798 	if (!base) {
11799 		err = -ENODEV;
11800 		goto out_pci_release_regions;
11801 	}
11802 
11803 	priv->hw_base = base;
11804 	IPW_DEBUG_INFO("pci_resource_len = 0x%08x\n", length);
11805 	IPW_DEBUG_INFO("pci_resource_base = %p\n", base);
11806 
11807 	err = ipw_setup_deferred_work(priv);
11808 	if (err) {
11809 		IPW_ERROR("Unable to setup deferred work\n");
11810 		goto out_iounmap;
11811 	}
11812 
11813 	ipw_sw_reset(priv, 1);
11814 
11815 	err = request_irq(pdev->irq, ipw_isr, IRQF_SHARED, DRV_NAME, priv);
11816 	if (err) {
11817 		IPW_ERROR("Error allocating IRQ %d\n", pdev->irq);
11818 		goto out_iounmap;
11819 	}
11820 
11821 	SET_NETDEV_DEV(net_dev, &pdev->dev);
11822 
11823 	mutex_lock(&priv->mutex);
11824 
11825 	priv->ieee->hard_start_xmit = ipw_net_hard_start_xmit;
11826 	priv->ieee->set_security = shim__set_security;
11827 	priv->ieee->is_queue_full = ipw_net_is_queue_full;
11828 
11829 #ifdef CONFIG_IPW2200_QOS
11830 	priv->ieee->is_qos_active = ipw_is_qos_active;
11831 	priv->ieee->handle_probe_response = ipw_handle_beacon;
11832 	priv->ieee->handle_beacon = ipw_handle_probe_response;
11833 	priv->ieee->handle_assoc_response = ipw_handle_assoc_response;
11834 #endif				/* CONFIG_IPW2200_QOS */
11835 
11836 	priv->ieee->perfect_rssi = -20;
11837 	priv->ieee->worst_rssi = -85;
11838 
11839 	net_dev->netdev_ops = &ipw_netdev_ops;
11840 	priv->wireless_data.spy_data = &priv->ieee->spy_data;
11841 	net_dev->wireless_data = &priv->wireless_data;
11842 	net_dev->wireless_handlers = &ipw_wx_handler_def;
11843 	net_dev->ethtool_ops = &ipw_ethtool_ops;
11844 	net_dev->irq = pdev->irq;
11845 	net_dev->base_addr = (unsigned long)priv->hw_base;
11846 	net_dev->mem_start = pci_resource_start(pdev, 0);
11847 	net_dev->mem_end = net_dev->mem_start + pci_resource_len(pdev, 0) - 1;
11848 
11849 	err = sysfs_create_group(&pdev->dev.kobj, &ipw_attribute_group);
11850 	if (err) {
11851 		IPW_ERROR("failed to create sysfs device attributes\n");
11852 		mutex_unlock(&priv->mutex);
11853 		goto out_release_irq;
11854 	}
11855 
11856 	mutex_unlock(&priv->mutex);
11857 	err = register_netdev(net_dev);
11858 	if (err) {
11859 		IPW_ERROR("failed to register network device\n");
11860 		goto out_remove_sysfs;
11861 	}
11862 
11863 	err = ipw_wdev_init(net_dev);
11864 	if (err) {
11865 		IPW_ERROR("failed to register wireless device\n");
11866 		goto out_unregister_netdev;
11867 	}
11868 
11869 #ifdef CONFIG_IPW2200_PROMISCUOUS
11870 	if (rtap_iface) {
11871 	        err = ipw_prom_alloc(priv);
11872 		if (err) {
11873 			IPW_ERROR("Failed to register promiscuous network "
11874 				  "device (error %d).\n", err);
11875 			wiphy_unregister(priv->ieee->wdev.wiphy);
11876 			kfree(priv->ieee->a_band.channels);
11877 			kfree(priv->ieee->bg_band.channels);
11878 			goto out_unregister_netdev;
11879 		}
11880 	}
11881 #endif
11882 
11883 	printk(KERN_INFO DRV_NAME ": Detected geography %s (%d 802.11bg "
11884 	       "channels, %d 802.11a channels)\n",
11885 	       priv->ieee->geo.name, priv->ieee->geo.bg_channels,
11886 	       priv->ieee->geo.a_channels);
11887 
11888 	return 0;
11889 
11890       out_unregister_netdev:
11891 	unregister_netdev(priv->net_dev);
11892       out_remove_sysfs:
11893 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11894       out_release_irq:
11895 	free_irq(pdev->irq, priv);
11896       out_iounmap:
11897 	iounmap(priv->hw_base);
11898       out_pci_release_regions:
11899 	pci_release_regions(pdev);
11900       out_pci_disable_device:
11901 	pci_disable_device(pdev);
11902 	pci_set_drvdata(pdev, NULL);
11903       out_free_libipw:
11904 	free_libipw(priv->net_dev, 0);
11905       out:
11906 	return err;
11907 }
11908 
ipw_pci_remove(struct pci_dev * pdev)11909 static void __devexit ipw_pci_remove(struct pci_dev *pdev)
11910 {
11911 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11912 	struct list_head *p, *q;
11913 	int i;
11914 
11915 	if (!priv)
11916 		return;
11917 
11918 	mutex_lock(&priv->mutex);
11919 
11920 	priv->status |= STATUS_EXIT_PENDING;
11921 	ipw_down(priv);
11922 	sysfs_remove_group(&pdev->dev.kobj, &ipw_attribute_group);
11923 
11924 	mutex_unlock(&priv->mutex);
11925 
11926 	unregister_netdev(priv->net_dev);
11927 
11928 	if (priv->rxq) {
11929 		ipw_rx_queue_free(priv, priv->rxq);
11930 		priv->rxq = NULL;
11931 	}
11932 	ipw_tx_queue_free(priv);
11933 
11934 	if (priv->cmdlog) {
11935 		kfree(priv->cmdlog);
11936 		priv->cmdlog = NULL;
11937 	}
11938 
11939 	/* make sure all works are inactive */
11940 	cancel_delayed_work_sync(&priv->adhoc_check);
11941 	cancel_work_sync(&priv->associate);
11942 	cancel_work_sync(&priv->disassociate);
11943 	cancel_work_sync(&priv->system_config);
11944 	cancel_work_sync(&priv->rx_replenish);
11945 	cancel_work_sync(&priv->adapter_restart);
11946 	cancel_delayed_work_sync(&priv->rf_kill);
11947 	cancel_work_sync(&priv->up);
11948 	cancel_work_sync(&priv->down);
11949 	cancel_delayed_work_sync(&priv->request_scan);
11950 	cancel_delayed_work_sync(&priv->request_direct_scan);
11951 	cancel_delayed_work_sync(&priv->request_passive_scan);
11952 	cancel_delayed_work_sync(&priv->scan_event);
11953 	cancel_delayed_work_sync(&priv->gather_stats);
11954 	cancel_work_sync(&priv->abort_scan);
11955 	cancel_work_sync(&priv->roam);
11956 	cancel_delayed_work_sync(&priv->scan_check);
11957 	cancel_work_sync(&priv->link_up);
11958 	cancel_work_sync(&priv->link_down);
11959 	cancel_delayed_work_sync(&priv->led_link_on);
11960 	cancel_delayed_work_sync(&priv->led_link_off);
11961 	cancel_delayed_work_sync(&priv->led_act_off);
11962 	cancel_work_sync(&priv->merge_networks);
11963 
11964 	/* Free MAC hash list for ADHOC */
11965 	for (i = 0; i < IPW_IBSS_MAC_HASH_SIZE; i++) {
11966 		list_for_each_safe(p, q, &priv->ibss_mac_hash[i]) {
11967 			list_del(p);
11968 			kfree(list_entry(p, struct ipw_ibss_seq, list));
11969 		}
11970 	}
11971 
11972 	kfree(priv->error);
11973 	priv->error = NULL;
11974 
11975 #ifdef CONFIG_IPW2200_PROMISCUOUS
11976 	ipw_prom_free(priv);
11977 #endif
11978 
11979 	free_irq(pdev->irq, priv);
11980 	iounmap(priv->hw_base);
11981 	pci_release_regions(pdev);
11982 	pci_disable_device(pdev);
11983 	pci_set_drvdata(pdev, NULL);
11984 	/* wiphy_unregister needs to be here, before free_libipw */
11985 	wiphy_unregister(priv->ieee->wdev.wiphy);
11986 	kfree(priv->ieee->a_band.channels);
11987 	kfree(priv->ieee->bg_band.channels);
11988 	free_libipw(priv->net_dev, 0);
11989 	free_firmware();
11990 }
11991 
11992 #ifdef CONFIG_PM
ipw_pci_suspend(struct pci_dev * pdev,pm_message_t state)11993 static int ipw_pci_suspend(struct pci_dev *pdev, pm_message_t state)
11994 {
11995 	struct ipw_priv *priv = pci_get_drvdata(pdev);
11996 	struct net_device *dev = priv->net_dev;
11997 
11998 	printk(KERN_INFO "%s: Going into suspend...\n", dev->name);
11999 
12000 	/* Take down the device; powers it off, etc. */
12001 	ipw_down(priv);
12002 
12003 	/* Remove the PRESENT state of the device */
12004 	netif_device_detach(dev);
12005 
12006 	pci_save_state(pdev);
12007 	pci_disable_device(pdev);
12008 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
12009 
12010 	priv->suspend_at = get_seconds();
12011 
12012 	return 0;
12013 }
12014 
ipw_pci_resume(struct pci_dev * pdev)12015 static int ipw_pci_resume(struct pci_dev *pdev)
12016 {
12017 	struct ipw_priv *priv = pci_get_drvdata(pdev);
12018 	struct net_device *dev = priv->net_dev;
12019 	int err;
12020 	u32 val;
12021 
12022 	printk(KERN_INFO "%s: Coming out of suspend...\n", dev->name);
12023 
12024 	pci_set_power_state(pdev, PCI_D0);
12025 	err = pci_enable_device(pdev);
12026 	if (err) {
12027 		printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
12028 		       dev->name);
12029 		return err;
12030 	}
12031 	pci_restore_state(pdev);
12032 
12033 	/*
12034 	 * Suspend/Resume resets the PCI configuration space, so we have to
12035 	 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
12036 	 * from interfering with C3 CPU state. pci_restore_state won't help
12037 	 * here since it only restores the first 64 bytes pci config header.
12038 	 */
12039 	pci_read_config_dword(pdev, 0x40, &val);
12040 	if ((val & 0x0000ff00) != 0)
12041 		pci_write_config_dword(pdev, 0x40, val & 0xffff00ff);
12042 
12043 	/* Set the device back into the PRESENT state; this will also wake
12044 	 * the queue of needed */
12045 	netif_device_attach(dev);
12046 
12047 	priv->suspend_time = get_seconds() - priv->suspend_at;
12048 
12049 	/* Bring the device back up */
12050 	schedule_work(&priv->up);
12051 
12052 	return 0;
12053 }
12054 #endif
12055 
ipw_pci_shutdown(struct pci_dev * pdev)12056 static void ipw_pci_shutdown(struct pci_dev *pdev)
12057 {
12058 	struct ipw_priv *priv = pci_get_drvdata(pdev);
12059 
12060 	/* Take down the device; powers it off, etc. */
12061 	ipw_down(priv);
12062 
12063 	pci_disable_device(pdev);
12064 }
12065 
12066 /* driver initialization stuff */
12067 static struct pci_driver ipw_driver = {
12068 	.name = DRV_NAME,
12069 	.id_table = card_ids,
12070 	.probe = ipw_pci_probe,
12071 	.remove = __devexit_p(ipw_pci_remove),
12072 #ifdef CONFIG_PM
12073 	.suspend = ipw_pci_suspend,
12074 	.resume = ipw_pci_resume,
12075 #endif
12076 	.shutdown = ipw_pci_shutdown,
12077 };
12078 
ipw_init(void)12079 static int __init ipw_init(void)
12080 {
12081 	int ret;
12082 
12083 	printk(KERN_INFO DRV_NAME ": " DRV_DESCRIPTION ", " DRV_VERSION "\n");
12084 	printk(KERN_INFO DRV_NAME ": " DRV_COPYRIGHT "\n");
12085 
12086 	ret = pci_register_driver(&ipw_driver);
12087 	if (ret) {
12088 		IPW_ERROR("Unable to initialize PCI module\n");
12089 		return ret;
12090 	}
12091 
12092 	ret = driver_create_file(&ipw_driver.driver, &driver_attr_debug_level);
12093 	if (ret) {
12094 		IPW_ERROR("Unable to create driver sysfs file\n");
12095 		pci_unregister_driver(&ipw_driver);
12096 		return ret;
12097 	}
12098 
12099 	return ret;
12100 }
12101 
ipw_exit(void)12102 static void __exit ipw_exit(void)
12103 {
12104 	driver_remove_file(&ipw_driver.driver, &driver_attr_debug_level);
12105 	pci_unregister_driver(&ipw_driver);
12106 }
12107 
12108 module_param(disable, int, 0444);
12109 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
12110 
12111 module_param(associate, int, 0444);
12112 MODULE_PARM_DESC(associate, "auto associate when scanning (default off)");
12113 
12114 module_param(auto_create, int, 0444);
12115 MODULE_PARM_DESC(auto_create, "auto create adhoc network (default on)");
12116 
12117 module_param_named(led, led_support, int, 0444);
12118 MODULE_PARM_DESC(led, "enable led control on some systems (default 1 on)");
12119 
12120 module_param(debug, int, 0444);
12121 MODULE_PARM_DESC(debug, "debug output mask");
12122 
12123 module_param_named(channel, default_channel, int, 0444);
12124 MODULE_PARM_DESC(channel, "channel to limit associate to (default 0 [ANY])");
12125 
12126 #ifdef CONFIG_IPW2200_PROMISCUOUS
12127 module_param(rtap_iface, int, 0444);
12128 MODULE_PARM_DESC(rtap_iface, "create the rtap interface (1 - create, default 0)");
12129 #endif
12130 
12131 #ifdef CONFIG_IPW2200_QOS
12132 module_param(qos_enable, int, 0444);
12133 MODULE_PARM_DESC(qos_enable, "enable all QoS functionalitis");
12134 
12135 module_param(qos_burst_enable, int, 0444);
12136 MODULE_PARM_DESC(qos_burst_enable, "enable QoS burst mode");
12137 
12138 module_param(qos_no_ack_mask, int, 0444);
12139 MODULE_PARM_DESC(qos_no_ack_mask, "mask Tx_Queue to no ack");
12140 
12141 module_param(burst_duration_CCK, int, 0444);
12142 MODULE_PARM_DESC(burst_duration_CCK, "set CCK burst value");
12143 
12144 module_param(burst_duration_OFDM, int, 0444);
12145 MODULE_PARM_DESC(burst_duration_OFDM, "set OFDM burst value");
12146 #endif				/* CONFIG_IPW2200_QOS */
12147 
12148 #ifdef CONFIG_IPW2200_MONITOR
12149 module_param_named(mode, network_mode, int, 0444);
12150 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
12151 #else
12152 module_param_named(mode, network_mode, int, 0444);
12153 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS)");
12154 #endif
12155 
12156 module_param(bt_coexist, int, 0444);
12157 MODULE_PARM_DESC(bt_coexist, "enable bluetooth coexistence (default off)");
12158 
12159 module_param(hwcrypto, int, 0444);
12160 MODULE_PARM_DESC(hwcrypto, "enable hardware crypto (default off)");
12161 
12162 module_param(cmdlog, int, 0444);
12163 MODULE_PARM_DESC(cmdlog,
12164 		 "allocate a ring buffer for logging firmware commands");
12165 
12166 module_param(roaming, int, 0444);
12167 MODULE_PARM_DESC(roaming, "enable roaming support (default on)");
12168 
12169 module_param(antenna, int, 0444);
12170 MODULE_PARM_DESC(antenna, "select antenna 1=Main, 3=Aux, default 0 [both], 2=slow_diversity (choose the one with lower background noise)");
12171 
12172 module_exit(ipw_exit);
12173 module_init(ipw_init);
12174