• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Gas Gauge driver for SBS Compliant Batteries
3  *
4  * Copyright (c) 2010, NVIDIA Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along
17  * with this program; if not, write to the Free Software Foundation, Inc.,
18  * 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
19  */
20 
21 #include <linux/init.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/err.h>
25 #include <linux/power_supply.h>
26 #include <linux/i2c.h>
27 #include <linux/slab.h>
28 #include <linux/interrupt.h>
29 #include <linux/gpio.h>
30 
31 #include <linux/power/sbs-battery.h>
32 
33 enum {
34 	REG_MANUFACTURER_DATA,
35 	REG_TEMPERATURE,
36 	REG_VOLTAGE,
37 	REG_CURRENT,
38 	REG_CAPACITY,
39 	REG_TIME_TO_EMPTY,
40 	REG_TIME_TO_FULL,
41 	REG_STATUS,
42 	REG_CYCLE_COUNT,
43 	REG_SERIAL_NUMBER,
44 	REG_REMAINING_CAPACITY,
45 	REG_REMAINING_CAPACITY_CHARGE,
46 	REG_FULL_CHARGE_CAPACITY,
47 	REG_FULL_CHARGE_CAPACITY_CHARGE,
48 	REG_DESIGN_CAPACITY,
49 	REG_DESIGN_CAPACITY_CHARGE,
50 	REG_DESIGN_VOLTAGE,
51 };
52 
53 /* Battery Mode defines */
54 #define BATTERY_MODE_OFFSET		0x03
55 #define BATTERY_MODE_MASK		0x8000
56 enum sbs_battery_mode {
57 	BATTERY_MODE_AMPS,
58 	BATTERY_MODE_WATTS
59 };
60 
61 /* manufacturer access defines */
62 #define MANUFACTURER_ACCESS_STATUS	0x0006
63 #define MANUFACTURER_ACCESS_SLEEP	0x0011
64 
65 /* battery status value bits */
66 #define BATTERY_DISCHARGING		0x40
67 #define BATTERY_FULL_CHARGED		0x20
68 #define BATTERY_FULL_DISCHARGED		0x10
69 
70 #define SBS_DATA(_psp, _addr, _min_value, _max_value) { \
71 	.psp = _psp, \
72 	.addr = _addr, \
73 	.min_value = _min_value, \
74 	.max_value = _max_value, \
75 }
76 
77 static const struct chip_data {
78 	enum power_supply_property psp;
79 	u8 addr;
80 	int min_value;
81 	int max_value;
82 } sbs_data[] = {
83 	[REG_MANUFACTURER_DATA] =
84 		SBS_DATA(POWER_SUPPLY_PROP_PRESENT, 0x00, 0, 65535),
85 	[REG_TEMPERATURE] =
86 		SBS_DATA(POWER_SUPPLY_PROP_TEMP, 0x08, 0, 65535),
87 	[REG_VOLTAGE] =
88 		SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_NOW, 0x09, 0, 20000),
89 	[REG_CURRENT] =
90 		SBS_DATA(POWER_SUPPLY_PROP_CURRENT_NOW, 0x0A, -32768, 32767),
91 	[REG_CAPACITY] =
92 		SBS_DATA(POWER_SUPPLY_PROP_CAPACITY, 0x0E, 0, 100),
93 	[REG_REMAINING_CAPACITY] =
94 		SBS_DATA(POWER_SUPPLY_PROP_ENERGY_NOW, 0x0F, 0, 65535),
95 	[REG_REMAINING_CAPACITY_CHARGE] =
96 		SBS_DATA(POWER_SUPPLY_PROP_CHARGE_NOW, 0x0F, 0, 65535),
97 	[REG_FULL_CHARGE_CAPACITY] =
98 		SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL, 0x10, 0, 65535),
99 	[REG_FULL_CHARGE_CAPACITY_CHARGE] =
100 		SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL, 0x10, 0, 65535),
101 	[REG_TIME_TO_EMPTY] =
102 		SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, 0x12, 0, 65535),
103 	[REG_TIME_TO_FULL] =
104 		SBS_DATA(POWER_SUPPLY_PROP_TIME_TO_FULL_AVG, 0x13, 0, 65535),
105 	[REG_STATUS] =
106 		SBS_DATA(POWER_SUPPLY_PROP_STATUS, 0x16, 0, 65535),
107 	[REG_CYCLE_COUNT] =
108 		SBS_DATA(POWER_SUPPLY_PROP_CYCLE_COUNT, 0x17, 0, 65535),
109 	[REG_DESIGN_CAPACITY] =
110 		SBS_DATA(POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN, 0x18, 0, 65535),
111 	[REG_DESIGN_CAPACITY_CHARGE] =
112 		SBS_DATA(POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, 0x18, 0, 65535),
113 	[REG_DESIGN_VOLTAGE] =
114 		SBS_DATA(POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN, 0x19, 0, 65535),
115 	[REG_SERIAL_NUMBER] =
116 		SBS_DATA(POWER_SUPPLY_PROP_SERIAL_NUMBER, 0x1C, 0, 65535),
117 };
118 
119 static enum power_supply_property sbs_properties[] = {
120 	POWER_SUPPLY_PROP_STATUS,
121 	POWER_SUPPLY_PROP_HEALTH,
122 	POWER_SUPPLY_PROP_PRESENT,
123 	POWER_SUPPLY_PROP_TECHNOLOGY,
124 	POWER_SUPPLY_PROP_CYCLE_COUNT,
125 	POWER_SUPPLY_PROP_VOLTAGE_NOW,
126 	POWER_SUPPLY_PROP_CURRENT_NOW,
127 	POWER_SUPPLY_PROP_CAPACITY,
128 	POWER_SUPPLY_PROP_TEMP,
129 	POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG,
130 	POWER_SUPPLY_PROP_TIME_TO_FULL_AVG,
131 	POWER_SUPPLY_PROP_SERIAL_NUMBER,
132 	POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
133 	POWER_SUPPLY_PROP_ENERGY_NOW,
134 	POWER_SUPPLY_PROP_ENERGY_FULL,
135 	POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN,
136 	POWER_SUPPLY_PROP_CHARGE_NOW,
137 	POWER_SUPPLY_PROP_CHARGE_FULL,
138 	POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
139 };
140 
141 struct sbs_info {
142 	struct i2c_client		*client;
143 	struct power_supply		power_supply;
144 	struct sbs_platform_data	*pdata;
145 	bool				is_present;
146 	bool				gpio_detect;
147 	bool				enable_detection;
148 	int				irq;
149 	int				last_state;
150 	int				poll_time;
151 	struct delayed_work		work;
152 	int				ignore_changes;
153 };
154 
sbs_read_word_data(struct i2c_client * client,u8 address)155 static int sbs_read_word_data(struct i2c_client *client, u8 address)
156 {
157 	struct sbs_info *chip = i2c_get_clientdata(client);
158 	s32 ret = 0;
159 	int retries = 1;
160 
161 	if (chip->pdata)
162 		retries = max(chip->pdata->i2c_retry_count + 1, 1);
163 
164 	while (retries > 0) {
165 		ret = i2c_smbus_read_word_data(client, address);
166 		if (ret >= 0)
167 			break;
168 		retries--;
169 	}
170 
171 	if (ret < 0) {
172 		dev_dbg(&client->dev,
173 			"%s: i2c read at address 0x%x failed\n",
174 			__func__, address);
175 		return ret;
176 	}
177 
178 	return le16_to_cpu(ret);
179 }
180 
sbs_write_word_data(struct i2c_client * client,u8 address,u16 value)181 static int sbs_write_word_data(struct i2c_client *client, u8 address,
182 	u16 value)
183 {
184 	struct sbs_info *chip = i2c_get_clientdata(client);
185 	s32 ret = 0;
186 	int retries = 1;
187 
188 	if (chip->pdata)
189 		retries = max(chip->pdata->i2c_retry_count + 1, 1);
190 
191 	while (retries > 0) {
192 		ret = i2c_smbus_write_word_data(client, address,
193 			le16_to_cpu(value));
194 		if (ret >= 0)
195 			break;
196 		retries--;
197 	}
198 
199 	if (ret < 0) {
200 		dev_dbg(&client->dev,
201 			"%s: i2c write to address 0x%x failed\n",
202 			__func__, address);
203 		return ret;
204 	}
205 
206 	return 0;
207 }
208 
sbs_get_battery_presence_and_health(struct i2c_client * client,enum power_supply_property psp,union power_supply_propval * val)209 static int sbs_get_battery_presence_and_health(
210 	struct i2c_client *client, enum power_supply_property psp,
211 	union power_supply_propval *val)
212 {
213 	s32 ret;
214 	struct sbs_info *chip = i2c_get_clientdata(client);
215 
216 	if (psp == POWER_SUPPLY_PROP_PRESENT &&
217 		chip->gpio_detect) {
218 		ret = gpio_get_value(chip->pdata->battery_detect);
219 		if (ret == chip->pdata->battery_detect_present)
220 			val->intval = 1;
221 		else
222 			val->intval = 0;
223 		chip->is_present = val->intval;
224 		return ret;
225 	}
226 
227 	/* Write to ManufacturerAccess with
228 	 * ManufacturerAccess command and then
229 	 * read the status */
230 	ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
231 					MANUFACTURER_ACCESS_STATUS);
232 	if (ret < 0) {
233 		if (psp == POWER_SUPPLY_PROP_PRESENT)
234 			val->intval = 0; /* battery removed */
235 		return ret;
236 	}
237 
238 	ret = sbs_read_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr);
239 	if (ret < 0)
240 		return ret;
241 
242 	if (ret < sbs_data[REG_MANUFACTURER_DATA].min_value ||
243 	    ret > sbs_data[REG_MANUFACTURER_DATA].max_value) {
244 		val->intval = 0;
245 		return 0;
246 	}
247 
248 	/* Mask the upper nibble of 2nd byte and
249 	 * lower byte of response then
250 	 * shift the result by 8 to get status*/
251 	ret &= 0x0F00;
252 	ret >>= 8;
253 	if (psp == POWER_SUPPLY_PROP_PRESENT) {
254 		if (ret == 0x0F)
255 			/* battery removed */
256 			val->intval = 0;
257 		else
258 			val->intval = 1;
259 	} else if (psp == POWER_SUPPLY_PROP_HEALTH) {
260 		if (ret == 0x09)
261 			val->intval = POWER_SUPPLY_HEALTH_UNSPEC_FAILURE;
262 		else if (ret == 0x0B)
263 			val->intval = POWER_SUPPLY_HEALTH_OVERHEAT;
264 		else if (ret == 0x0C)
265 			val->intval = POWER_SUPPLY_HEALTH_DEAD;
266 		else
267 			val->intval = POWER_SUPPLY_HEALTH_GOOD;
268 	}
269 
270 	return 0;
271 }
272 
sbs_get_battery_property(struct i2c_client * client,int reg_offset,enum power_supply_property psp,union power_supply_propval * val)273 static int sbs_get_battery_property(struct i2c_client *client,
274 	int reg_offset, enum power_supply_property psp,
275 	union power_supply_propval *val)
276 {
277 	struct sbs_info *chip = i2c_get_clientdata(client);
278 	s32 ret;
279 
280 	ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
281 	if (ret < 0)
282 		return ret;
283 
284 	/* returned values are 16 bit */
285 	if (sbs_data[reg_offset].min_value < 0)
286 		ret = (s16)ret;
287 
288 	if (ret >= sbs_data[reg_offset].min_value &&
289 	    ret <= sbs_data[reg_offset].max_value) {
290 		val->intval = ret;
291 		if (psp != POWER_SUPPLY_PROP_STATUS)
292 			return 0;
293 
294 		if (ret & BATTERY_FULL_CHARGED)
295 			val->intval = POWER_SUPPLY_STATUS_FULL;
296 		else if (ret & BATTERY_FULL_DISCHARGED)
297 			val->intval = POWER_SUPPLY_STATUS_NOT_CHARGING;
298 		else if (ret & BATTERY_DISCHARGING)
299 			val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
300 		else
301 			val->intval = POWER_SUPPLY_STATUS_CHARGING;
302 
303 		if (chip->poll_time == 0)
304 			chip->last_state = val->intval;
305 		else if (chip->last_state != val->intval) {
306 			cancel_delayed_work_sync(&chip->work);
307 			power_supply_changed(&chip->power_supply);
308 			chip->poll_time = 0;
309 		}
310 	} else {
311 		if (psp == POWER_SUPPLY_PROP_STATUS)
312 			val->intval = POWER_SUPPLY_STATUS_UNKNOWN;
313 		else
314 			val->intval = 0;
315 	}
316 
317 	return 0;
318 }
319 
sbs_unit_adjustment(struct i2c_client * client,enum power_supply_property psp,union power_supply_propval * val)320 static void  sbs_unit_adjustment(struct i2c_client *client,
321 	enum power_supply_property psp, union power_supply_propval *val)
322 {
323 #define BASE_UNIT_CONVERSION		1000
324 #define BATTERY_MODE_CAP_MULT_WATT	(10 * BASE_UNIT_CONVERSION)
325 #define TIME_UNIT_CONVERSION		60
326 #define TEMP_KELVIN_TO_CELSIUS		2731
327 	switch (psp) {
328 	case POWER_SUPPLY_PROP_ENERGY_NOW:
329 	case POWER_SUPPLY_PROP_ENERGY_FULL:
330 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
331 		/* sbs provides energy in units of 10mWh.
332 		 * Convert to µWh
333 		 */
334 		val->intval *= BATTERY_MODE_CAP_MULT_WATT;
335 		break;
336 
337 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
338 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
339 	case POWER_SUPPLY_PROP_CURRENT_NOW:
340 	case POWER_SUPPLY_PROP_CHARGE_NOW:
341 	case POWER_SUPPLY_PROP_CHARGE_FULL:
342 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
343 		val->intval *= BASE_UNIT_CONVERSION;
344 		break;
345 
346 	case POWER_SUPPLY_PROP_TEMP:
347 		/* sbs provides battery temperature in 0.1K
348 		 * so convert it to 0.1°C
349 		 */
350 		val->intval -= TEMP_KELVIN_TO_CELSIUS;
351 		break;
352 
353 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
354 	case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
355 		/* sbs provides time to empty and time to full in minutes.
356 		 * Convert to seconds
357 		 */
358 		val->intval *= TIME_UNIT_CONVERSION;
359 		break;
360 
361 	default:
362 		dev_dbg(&client->dev,
363 			"%s: no need for unit conversion %d\n", __func__, psp);
364 	}
365 }
366 
sbs_set_battery_mode(struct i2c_client * client,enum sbs_battery_mode mode)367 static enum sbs_battery_mode sbs_set_battery_mode(struct i2c_client *client,
368 	enum sbs_battery_mode mode)
369 {
370 	int ret, original_val;
371 
372 	original_val = sbs_read_word_data(client, BATTERY_MODE_OFFSET);
373 	if (original_val < 0)
374 		return original_val;
375 
376 	if ((original_val & BATTERY_MODE_MASK) == mode)
377 		return mode;
378 
379 	if (mode == BATTERY_MODE_AMPS)
380 		ret = original_val & ~BATTERY_MODE_MASK;
381 	else
382 		ret = original_val | BATTERY_MODE_MASK;
383 
384 	ret = sbs_write_word_data(client, BATTERY_MODE_OFFSET, ret);
385 	if (ret < 0)
386 		return ret;
387 
388 	return original_val & BATTERY_MODE_MASK;
389 }
390 
sbs_get_battery_capacity(struct i2c_client * client,int reg_offset,enum power_supply_property psp,union power_supply_propval * val)391 static int sbs_get_battery_capacity(struct i2c_client *client,
392 	int reg_offset, enum power_supply_property psp,
393 	union power_supply_propval *val)
394 {
395 	s32 ret;
396 	enum sbs_battery_mode mode = BATTERY_MODE_WATTS;
397 
398 	if (power_supply_is_amp_property(psp))
399 		mode = BATTERY_MODE_AMPS;
400 
401 	mode = sbs_set_battery_mode(client, mode);
402 	if (mode < 0)
403 		return mode;
404 
405 	ret = sbs_read_word_data(client, sbs_data[reg_offset].addr);
406 	if (ret < 0)
407 		return ret;
408 
409 	if (psp == POWER_SUPPLY_PROP_CAPACITY) {
410 		/* sbs spec says that this can be >100 %
411 		* even if max value is 100 % */
412 		val->intval = min(ret, 100);
413 	} else
414 		val->intval = ret;
415 
416 	ret = sbs_set_battery_mode(client, mode);
417 	if (ret < 0)
418 		return ret;
419 
420 	return 0;
421 }
422 
423 static char sbs_serial[5];
sbs_get_battery_serial_number(struct i2c_client * client,union power_supply_propval * val)424 static int sbs_get_battery_serial_number(struct i2c_client *client,
425 	union power_supply_propval *val)
426 {
427 	int ret;
428 
429 	ret = sbs_read_word_data(client, sbs_data[REG_SERIAL_NUMBER].addr);
430 	if (ret < 0)
431 		return ret;
432 
433 	ret = sprintf(sbs_serial, "%04x", ret);
434 	val->strval = sbs_serial;
435 
436 	return 0;
437 }
438 
sbs_get_property_index(struct i2c_client * client,enum power_supply_property psp)439 static int sbs_get_property_index(struct i2c_client *client,
440 	enum power_supply_property psp)
441 {
442 	int count;
443 	for (count = 0; count < ARRAY_SIZE(sbs_data); count++)
444 		if (psp == sbs_data[count].psp)
445 			return count;
446 
447 	dev_warn(&client->dev,
448 		"%s: Invalid Property - %d\n", __func__, psp);
449 
450 	return -EINVAL;
451 }
452 
sbs_get_property(struct power_supply * psy,enum power_supply_property psp,union power_supply_propval * val)453 static int sbs_get_property(struct power_supply *psy,
454 	enum power_supply_property psp,
455 	union power_supply_propval *val)
456 {
457 	int ret = 0;
458 	struct sbs_info *chip = container_of(psy,
459 				struct sbs_info, power_supply);
460 	struct i2c_client *client = chip->client;
461 
462 	switch (psp) {
463 	case POWER_SUPPLY_PROP_PRESENT:
464 	case POWER_SUPPLY_PROP_HEALTH:
465 		ret = sbs_get_battery_presence_and_health(client, psp, val);
466 		if (psp == POWER_SUPPLY_PROP_PRESENT)
467 			return 0;
468 		break;
469 
470 	case POWER_SUPPLY_PROP_TECHNOLOGY:
471 		val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
472 		break;
473 
474 	case POWER_SUPPLY_PROP_ENERGY_NOW:
475 	case POWER_SUPPLY_PROP_ENERGY_FULL:
476 	case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN:
477 	case POWER_SUPPLY_PROP_CHARGE_NOW:
478 	case POWER_SUPPLY_PROP_CHARGE_FULL:
479 	case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
480 	case POWER_SUPPLY_PROP_CAPACITY:
481 		ret = sbs_get_property_index(client, psp);
482 		if (ret < 0)
483 			break;
484 
485 		ret = sbs_get_battery_capacity(client, ret, psp, val);
486 		break;
487 
488 	case POWER_SUPPLY_PROP_SERIAL_NUMBER:
489 		ret = sbs_get_battery_serial_number(client, val);
490 		break;
491 
492 	case POWER_SUPPLY_PROP_STATUS:
493 	case POWER_SUPPLY_PROP_CYCLE_COUNT:
494 	case POWER_SUPPLY_PROP_VOLTAGE_NOW:
495 	case POWER_SUPPLY_PROP_CURRENT_NOW:
496 	case POWER_SUPPLY_PROP_TEMP:
497 	case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG:
498 	case POWER_SUPPLY_PROP_TIME_TO_FULL_AVG:
499 	case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
500 		ret = sbs_get_property_index(client, psp);
501 		if (ret < 0)
502 			break;
503 
504 		ret = sbs_get_battery_property(client, ret, psp, val);
505 		break;
506 
507 	default:
508 		dev_err(&client->dev,
509 			"%s: INVALID property\n", __func__);
510 		return -EINVAL;
511 	}
512 
513 	if (!chip->enable_detection)
514 		goto done;
515 
516 	if (!chip->gpio_detect &&
517 		chip->is_present != (ret >= 0)) {
518 		chip->is_present = (ret >= 0);
519 		power_supply_changed(&chip->power_supply);
520 	}
521 
522 done:
523 	if (!ret) {
524 		/* Convert units to match requirements for power supply class */
525 		sbs_unit_adjustment(client, psp, val);
526 	}
527 
528 	dev_dbg(&client->dev,
529 		"%s: property = %d, value = %x\n", __func__, psp, val->intval);
530 
531 	if (ret && chip->is_present)
532 		return ret;
533 
534 	/* battery not present, so return NODATA for properties */
535 	if (ret)
536 		return -ENODATA;
537 
538 	return 0;
539 }
540 
sbs_irq(int irq,void * devid)541 static irqreturn_t sbs_irq(int irq, void *devid)
542 {
543 	struct power_supply *battery = devid;
544 
545 	power_supply_changed(battery);
546 
547 	return IRQ_HANDLED;
548 }
549 
sbs_external_power_changed(struct power_supply * psy)550 static void sbs_external_power_changed(struct power_supply *psy)
551 {
552 	struct sbs_info *chip;
553 
554 	chip = container_of(psy, struct sbs_info, power_supply);
555 
556 	if (chip->ignore_changes > 0) {
557 		chip->ignore_changes--;
558 		return;
559 	}
560 
561 	/* cancel outstanding work */
562 	cancel_delayed_work_sync(&chip->work);
563 
564 	schedule_delayed_work(&chip->work, HZ);
565 	chip->poll_time = chip->pdata->poll_retry_count;
566 }
567 
sbs_delayed_work(struct work_struct * work)568 static void sbs_delayed_work(struct work_struct *work)
569 {
570 	struct sbs_info *chip;
571 	s32 ret;
572 
573 	chip = container_of(work, struct sbs_info, work.work);
574 
575 	ret = sbs_read_word_data(chip->client, sbs_data[REG_STATUS].addr);
576 	/* if the read failed, give up on this work */
577 	if (ret < 0) {
578 		chip->poll_time = 0;
579 		return;
580 	}
581 
582 	if (ret & BATTERY_FULL_CHARGED)
583 		ret = POWER_SUPPLY_STATUS_FULL;
584 	else if (ret & BATTERY_FULL_DISCHARGED)
585 		ret = POWER_SUPPLY_STATUS_NOT_CHARGING;
586 	else if (ret & BATTERY_DISCHARGING)
587 		ret = POWER_SUPPLY_STATUS_DISCHARGING;
588 	else
589 		ret = POWER_SUPPLY_STATUS_CHARGING;
590 
591 	if (chip->last_state != ret) {
592 		chip->poll_time = 0;
593 		power_supply_changed(&chip->power_supply);
594 		return;
595 	}
596 	if (chip->poll_time > 0) {
597 		schedule_delayed_work(&chip->work, HZ);
598 		chip->poll_time--;
599 		return;
600 	}
601 }
602 
603 #if defined(CONFIG_OF)
604 
605 #include <linux/of_device.h>
606 #include <linux/of_gpio.h>
607 
608 static const struct of_device_id sbs_dt_ids[] = {
609 	{ .compatible = "sbs,sbs-battery" },
610 	{ .compatible = "ti,bq20z75" },
611 	{ }
612 };
613 MODULE_DEVICE_TABLE(of, sbs_dt_ids);
614 
sbs_of_populate_pdata(struct i2c_client * client)615 static struct sbs_platform_data *sbs_of_populate_pdata(
616 		struct i2c_client *client)
617 {
618 	struct device_node *of_node = client->dev.of_node;
619 	struct sbs_platform_data *pdata = client->dev.platform_data;
620 	enum of_gpio_flags gpio_flags;
621 	int rc;
622 	u32 prop;
623 
624 	/* verify this driver matches this device */
625 	if (!of_node)
626 		return NULL;
627 
628 	/* if platform data is set, honor it */
629 	if (pdata)
630 		return pdata;
631 
632 	/* first make sure at least one property is set, otherwise
633 	 * it won't change behavior from running without pdata.
634 	 */
635 	if (!of_get_property(of_node, "sbs,i2c-retry-count", NULL) &&
636 		!of_get_property(of_node, "sbs,poll-retry-count", NULL) &&
637 		!of_get_property(of_node, "sbs,battery-detect-gpios", NULL))
638 		goto of_out;
639 
640 	pdata = devm_kzalloc(&client->dev, sizeof(struct sbs_platform_data),
641 				GFP_KERNEL);
642 	if (!pdata)
643 		goto of_out;
644 
645 	rc = of_property_read_u32(of_node, "sbs,i2c-retry-count", &prop);
646 	if (!rc)
647 		pdata->i2c_retry_count = prop;
648 
649 	rc = of_property_read_u32(of_node, "sbs,poll-retry-count", &prop);
650 	if (!rc)
651 		pdata->poll_retry_count = prop;
652 
653 	if (!of_get_property(of_node, "sbs,battery-detect-gpios", NULL)) {
654 		pdata->battery_detect = -1;
655 		goto of_out;
656 	}
657 
658 	pdata->battery_detect = of_get_named_gpio_flags(of_node,
659 			"sbs,battery-detect-gpios", 0, &gpio_flags);
660 
661 	if (gpio_flags & OF_GPIO_ACTIVE_LOW)
662 		pdata->battery_detect_present = 0;
663 	else
664 		pdata->battery_detect_present = 1;
665 
666 of_out:
667 	return pdata;
668 }
669 #else
670 #define sbs_dt_ids NULL
sbs_of_populate_pdata(struct i2c_client * client)671 static struct sbs_platform_data *sbs_of_populate_pdata(
672 	struct i2c_client *client)
673 {
674 	return client->dev.platform_data;
675 }
676 #endif
677 
sbs_probe(struct i2c_client * client,const struct i2c_device_id * id)678 static int __devinit sbs_probe(struct i2c_client *client,
679 	const struct i2c_device_id *id)
680 {
681 	struct sbs_info *chip;
682 	struct sbs_platform_data *pdata = client->dev.platform_data;
683 	int rc;
684 	int irq;
685 	char *name;
686 
687 	name = kasprintf(GFP_KERNEL, "sbs-%s", dev_name(&client->dev));
688 	if (!name) {
689 		dev_err(&client->dev, "Failed to allocate device name\n");
690 		return -ENOMEM;
691 	}
692 
693 	chip = kzalloc(sizeof(struct sbs_info), GFP_KERNEL);
694 	if (!chip) {
695 		rc = -ENOMEM;
696 		goto exit_free_name;
697 	}
698 
699 	chip->client = client;
700 	chip->enable_detection = false;
701 	chip->gpio_detect = false;
702 	chip->power_supply.name = name;
703 	chip->power_supply.type = POWER_SUPPLY_TYPE_BATTERY;
704 	chip->power_supply.properties = sbs_properties;
705 	chip->power_supply.num_properties = ARRAY_SIZE(sbs_properties);
706 	chip->power_supply.get_property = sbs_get_property;
707 	/* ignore first notification of external change, it is generated
708 	 * from the power_supply_register call back
709 	 */
710 	chip->ignore_changes = 1;
711 	chip->last_state = POWER_SUPPLY_STATUS_UNKNOWN;
712 	chip->power_supply.external_power_changed = sbs_external_power_changed;
713 
714 	pdata = sbs_of_populate_pdata(client);
715 
716 	if (pdata) {
717 		chip->gpio_detect = gpio_is_valid(pdata->battery_detect);
718 		chip->pdata = pdata;
719 	}
720 
721 	i2c_set_clientdata(client, chip);
722 
723 	if (!chip->gpio_detect)
724 		goto skip_gpio;
725 
726 	rc = gpio_request(pdata->battery_detect, dev_name(&client->dev));
727 	if (rc) {
728 		dev_warn(&client->dev, "Failed to request gpio: %d\n", rc);
729 		chip->gpio_detect = false;
730 		goto skip_gpio;
731 	}
732 
733 	rc = gpio_direction_input(pdata->battery_detect);
734 	if (rc) {
735 		dev_warn(&client->dev, "Failed to get gpio as input: %d\n", rc);
736 		gpio_free(pdata->battery_detect);
737 		chip->gpio_detect = false;
738 		goto skip_gpio;
739 	}
740 
741 	irq = gpio_to_irq(pdata->battery_detect);
742 	if (irq <= 0) {
743 		dev_warn(&client->dev, "Failed to get gpio as irq: %d\n", irq);
744 		gpio_free(pdata->battery_detect);
745 		chip->gpio_detect = false;
746 		goto skip_gpio;
747 	}
748 
749 	rc = request_irq(irq, sbs_irq,
750 		IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING,
751 		dev_name(&client->dev), &chip->power_supply);
752 	if (rc) {
753 		dev_warn(&client->dev, "Failed to request irq: %d\n", rc);
754 		gpio_free(pdata->battery_detect);
755 		chip->gpio_detect = false;
756 		goto skip_gpio;
757 	}
758 
759 	chip->irq = irq;
760 
761 skip_gpio:
762 
763 	rc = power_supply_register(&client->dev, &chip->power_supply);
764 	if (rc) {
765 		dev_err(&client->dev,
766 			"%s: Failed to register power supply\n", __func__);
767 		goto exit_psupply;
768 	}
769 
770 	dev_info(&client->dev,
771 		"%s: battery gas gauge device registered\n", client->name);
772 
773 	INIT_DELAYED_WORK(&chip->work, sbs_delayed_work);
774 
775 	chip->enable_detection = true;
776 
777 	return 0;
778 
779 exit_psupply:
780 	if (chip->irq)
781 		free_irq(chip->irq, &chip->power_supply);
782 	if (chip->gpio_detect)
783 		gpio_free(pdata->battery_detect);
784 
785 	kfree(chip);
786 
787 exit_free_name:
788 	kfree(name);
789 
790 	return rc;
791 }
792 
sbs_remove(struct i2c_client * client)793 static int __devexit sbs_remove(struct i2c_client *client)
794 {
795 	struct sbs_info *chip = i2c_get_clientdata(client);
796 
797 	if (chip->irq)
798 		free_irq(chip->irq, &chip->power_supply);
799 	if (chip->gpio_detect)
800 		gpio_free(chip->pdata->battery_detect);
801 
802 	power_supply_unregister(&chip->power_supply);
803 
804 	cancel_delayed_work_sync(&chip->work);
805 
806 	kfree(chip->power_supply.name);
807 	kfree(chip);
808 	chip = NULL;
809 
810 	return 0;
811 }
812 
813 #if defined CONFIG_PM
sbs_suspend(struct i2c_client * client,pm_message_t state)814 static int sbs_suspend(struct i2c_client *client,
815 	pm_message_t state)
816 {
817 	struct sbs_info *chip = i2c_get_clientdata(client);
818 	s32 ret;
819 
820 	if (chip->poll_time > 0)
821 		cancel_delayed_work_sync(&chip->work);
822 
823 	/* write to manufacturer access with sleep command */
824 	ret = sbs_write_word_data(client, sbs_data[REG_MANUFACTURER_DATA].addr,
825 		MANUFACTURER_ACCESS_SLEEP);
826 	if (chip->is_present && ret < 0)
827 		return ret;
828 
829 	return 0;
830 }
831 #else
832 #define sbs_suspend		NULL
833 #endif
834 /* any smbus transaction will wake up sbs */
835 #define sbs_resume		NULL
836 
837 static const struct i2c_device_id sbs_id[] = {
838 	{ "bq20z75", 0 },
839 	{ "sbs-battery", 1 },
840 	{}
841 };
842 MODULE_DEVICE_TABLE(i2c, sbs_id);
843 
844 static struct i2c_driver sbs_battery_driver = {
845 	.probe		= sbs_probe,
846 	.remove		= __devexit_p(sbs_remove),
847 	.suspend	= sbs_suspend,
848 	.resume		= sbs_resume,
849 	.id_table	= sbs_id,
850 	.driver = {
851 		.name	= "sbs-battery",
852 		.of_match_table = sbs_dt_ids,
853 	},
854 };
855 module_i2c_driver(sbs_battery_driver);
856 
857 MODULE_DESCRIPTION("SBS battery monitor driver");
858 MODULE_LICENSE("GPL");
859