• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3  *
4  * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5  * Copyright (C) 2006 David Brownell (convert to new framework)
6  *
7  * This program is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU General Public License
9  * as published by the Free Software Foundation; either version
10  * 2 of the License, or (at your option) any later version.
11  */
12 
13 /*
14  * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15  * That defined the register interface now provided by all PCs, some
16  * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17  * integrate an MC146818 clone in their southbridge, and boards use
18  * that instead of discrete clones like the DS12887 or M48T86.  There
19  * are also clones that connect using the LPC bus.
20  *
21  * That register API is also used directly by various other drivers
22  * (notably for integrated NVRAM), infrastructure (x86 has code to
23  * bypass the RTC framework, directly reading the RTC during boot
24  * and updating minutes/seconds for systems using NTP synch) and
25  * utilities (like userspace 'hwclock', if no /dev node exists).
26  *
27  * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28  * interrupts disabled, holding the global rtc_lock, to exclude those
29  * other drivers and utilities on correctly configured systems.
30  */
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/interrupt.h>
35 #include <linux/spinlock.h>
36 #include <linux/platform_device.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/log2.h>
39 #include <linux/pm.h>
40 #include <linux/of.h>
41 #include <linux/of_platform.h>
42 
43 /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44 #include <asm-generic/rtc.h>
45 
46 struct cmos_rtc {
47 	struct rtc_device	*rtc;
48 	struct device		*dev;
49 	int			irq;
50 	struct resource		*iomem;
51 
52 	void			(*wake_on)(struct device *);
53 	void			(*wake_off)(struct device *);
54 
55 	u8			enabled_wake;
56 	u8			suspend_ctrl;
57 
58 	/* newer hardware extends the original register set */
59 	u8			day_alrm;
60 	u8			mon_alrm;
61 	u8			century;
62 };
63 
64 /* both platform and pnp busses use negative numbers for invalid irqs */
65 #define is_valid_irq(n)		((n) > 0)
66 
67 static const char driver_name[] = "rtc_cmos";
68 
69 /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70  * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
71  * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72  */
73 #define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
74 
is_intr(u8 rtc_intr)75 static inline int is_intr(u8 rtc_intr)
76 {
77 	if (!(rtc_intr & RTC_IRQF))
78 		return 0;
79 	return rtc_intr & RTC_IRQMASK;
80 }
81 
82 /*----------------------------------------------------------------*/
83 
84 /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85  * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86  * used in a broken "legacy replacement" mode.  The breakage includes
87  * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88  * other (better) use.
89  *
90  * When that broken mode is in use, platform glue provides a partial
91  * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
92  * want to use HPET for anything except those IRQs though...
93  */
94 #ifdef CONFIG_HPET_EMULATE_RTC
95 #include <asm/hpet.h>
96 #else
97 
is_hpet_enabled(void)98 static inline int is_hpet_enabled(void)
99 {
100 	return 0;
101 }
102 
hpet_mask_rtc_irq_bit(unsigned long mask)103 static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104 {
105 	return 0;
106 }
107 
hpet_set_rtc_irq_bit(unsigned long mask)108 static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109 {
110 	return 0;
111 }
112 
113 static inline int
hpet_set_alarm_time(unsigned char hrs,unsigned char min,unsigned char sec)114 hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115 {
116 	return 0;
117 }
118 
hpet_set_periodic_freq(unsigned long freq)119 static inline int hpet_set_periodic_freq(unsigned long freq)
120 {
121 	return 0;
122 }
123 
hpet_rtc_dropped_irq(void)124 static inline int hpet_rtc_dropped_irq(void)
125 {
126 	return 0;
127 }
128 
hpet_rtc_timer_init(void)129 static inline int hpet_rtc_timer_init(void)
130 {
131 	return 0;
132 }
133 
134 extern irq_handler_t hpet_rtc_interrupt;
135 
hpet_register_irq_handler(irq_handler_t handler)136 static inline int hpet_register_irq_handler(irq_handler_t handler)
137 {
138 	return 0;
139 }
140 
hpet_unregister_irq_handler(irq_handler_t handler)141 static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142 {
143 	return 0;
144 }
145 
146 #endif
147 
148 /*----------------------------------------------------------------*/
149 
150 #ifdef RTC_PORT
151 
152 /* Most newer x86 systems have two register banks, the first used
153  * for RTC and NVRAM and the second only for NVRAM.  Caller must
154  * own rtc_lock ... and we won't worry about access during NMI.
155  */
156 #define can_bank2	true
157 
cmos_read_bank2(unsigned char addr)158 static inline unsigned char cmos_read_bank2(unsigned char addr)
159 {
160 	outb(addr, RTC_PORT(2));
161 	return inb(RTC_PORT(3));
162 }
163 
cmos_write_bank2(unsigned char val,unsigned char addr)164 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165 {
166 	outb(addr, RTC_PORT(2));
167 	outb(val, RTC_PORT(3));
168 }
169 
170 #else
171 
172 #define can_bank2	false
173 
cmos_read_bank2(unsigned char addr)174 static inline unsigned char cmos_read_bank2(unsigned char addr)
175 {
176 	return 0;
177 }
178 
cmos_write_bank2(unsigned char val,unsigned char addr)179 static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180 {
181 }
182 
183 #endif
184 
185 /*----------------------------------------------------------------*/
186 
cmos_read_time(struct device * dev,struct rtc_time * t)187 static int cmos_read_time(struct device *dev, struct rtc_time *t)
188 {
189 	/* REVISIT:  if the clock has a "century" register, use
190 	 * that instead of the heuristic in get_rtc_time().
191 	 * That'll make Y3K compatility (year > 2070) easy!
192 	 */
193 	get_rtc_time(t);
194 	return 0;
195 }
196 
cmos_set_time(struct device * dev,struct rtc_time * t)197 static int cmos_set_time(struct device *dev, struct rtc_time *t)
198 {
199 	/* REVISIT:  set the "century" register if available
200 	 *
201 	 * NOTE: this ignores the issue whereby updating the seconds
202 	 * takes effect exactly 500ms after we write the register.
203 	 * (Also queueing and other delays before we get this far.)
204 	 */
205 	return set_rtc_time(t);
206 }
207 
cmos_read_alarm(struct device * dev,struct rtc_wkalrm * t)208 static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209 {
210 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
211 	unsigned char	rtc_control;
212 
213 	if (!is_valid_irq(cmos->irq))
214 		return -EIO;
215 
216 	/* Basic alarms only support hour, minute, and seconds fields.
217 	 * Some also support day and month, for alarms up to a year in
218 	 * the future.
219 	 */
220 	t->time.tm_mday = -1;
221 	t->time.tm_mon = -1;
222 
223 	spin_lock_irq(&rtc_lock);
224 	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227 
228 	if (cmos->day_alrm) {
229 		/* ignore upper bits on readback per ACPI spec */
230 		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231 		if (!t->time.tm_mday)
232 			t->time.tm_mday = -1;
233 
234 		if (cmos->mon_alrm) {
235 			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 			if (!t->time.tm_mon)
237 				t->time.tm_mon = -1;
238 		}
239 	}
240 
241 	rtc_control = CMOS_READ(RTC_CONTROL);
242 	spin_unlock_irq(&rtc_lock);
243 
244 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 		if (((unsigned)t->time.tm_sec) < 0x60)
246 			t->time.tm_sec = bcd2bin(t->time.tm_sec);
247 		else
248 			t->time.tm_sec = -1;
249 		if (((unsigned)t->time.tm_min) < 0x60)
250 			t->time.tm_min = bcd2bin(t->time.tm_min);
251 		else
252 			t->time.tm_min = -1;
253 		if (((unsigned)t->time.tm_hour) < 0x24)
254 			t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 		else
256 			t->time.tm_hour = -1;
257 
258 		if (cmos->day_alrm) {
259 			if (((unsigned)t->time.tm_mday) <= 0x31)
260 				t->time.tm_mday = bcd2bin(t->time.tm_mday);
261 			else
262 				t->time.tm_mday = -1;
263 
264 			if (cmos->mon_alrm) {
265 				if (((unsigned)t->time.tm_mon) <= 0x12)
266 					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 				else
268 					t->time.tm_mon = -1;
269 			}
270 		}
271 	}
272 	t->time.tm_year = -1;
273 
274 	t->enabled = !!(rtc_control & RTC_AIE);
275 	t->pending = 0;
276 
277 	return 0;
278 }
279 
cmos_checkintr(struct cmos_rtc * cmos,unsigned char rtc_control)280 static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281 {
282 	unsigned char	rtc_intr;
283 
284 	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 	 * allegedly some older rtcs need that to handle irqs properly
286 	 */
287 	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288 
289 	if (is_hpet_enabled())
290 		return;
291 
292 	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 	if (is_intr(rtc_intr))
294 		rtc_update_irq(cmos->rtc, 1, rtc_intr);
295 }
296 
cmos_irq_enable(struct cmos_rtc * cmos,unsigned char mask)297 static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298 {
299 	unsigned char	rtc_control;
300 
301 	/* flush any pending IRQ status, notably for update irqs,
302 	 * before we enable new IRQs
303 	 */
304 	rtc_control = CMOS_READ(RTC_CONTROL);
305 	cmos_checkintr(cmos, rtc_control);
306 
307 	rtc_control |= mask;
308 	CMOS_WRITE(rtc_control, RTC_CONTROL);
309 	hpet_set_rtc_irq_bit(mask);
310 
311 	cmos_checkintr(cmos, rtc_control);
312 }
313 
cmos_irq_disable(struct cmos_rtc * cmos,unsigned char mask)314 static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315 {
316 	unsigned char	rtc_control;
317 
318 	rtc_control = CMOS_READ(RTC_CONTROL);
319 	rtc_control &= ~mask;
320 	CMOS_WRITE(rtc_control, RTC_CONTROL);
321 	hpet_mask_rtc_irq_bit(mask);
322 
323 	cmos_checkintr(cmos, rtc_control);
324 }
325 
cmos_set_alarm(struct device * dev,struct rtc_wkalrm * t)326 static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327 {
328 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
329        unsigned char   mon, mday, hrs, min, sec, rtc_control;
330 
331 	if (!is_valid_irq(cmos->irq))
332 		return -EIO;
333 
334 	mon = t->time.tm_mon + 1;
335 	mday = t->time.tm_mday;
336 	hrs = t->time.tm_hour;
337 	min = t->time.tm_min;
338 	sec = t->time.tm_sec;
339 
340 	rtc_control = CMOS_READ(RTC_CONTROL);
341 	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 		/* Writing 0xff means "don't care" or "match all".  */
343 		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 		min = (min < 60) ? bin2bcd(min) : 0xff;
347 		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 	}
349 
350 	spin_lock_irq(&rtc_lock);
351 
352 	/* next rtc irq must not be from previous alarm setting */
353 	cmos_irq_disable(cmos, RTC_AIE);
354 
355 	/* update alarm */
356 	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 	CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359 
360 	/* the system may support an "enhanced" alarm */
361 	if (cmos->day_alrm) {
362 		CMOS_WRITE(mday, cmos->day_alrm);
363 		if (cmos->mon_alrm)
364 			CMOS_WRITE(mon, cmos->mon_alrm);
365 	}
366 
367 	/* FIXME the HPET alarm glue currently ignores day_alrm
368 	 * and mon_alrm ...
369 	 */
370 	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371 
372 	if (t->enabled)
373 		cmos_irq_enable(cmos, RTC_AIE);
374 
375 	spin_unlock_irq(&rtc_lock);
376 
377 	return 0;
378 }
379 
cmos_alarm_irq_enable(struct device * dev,unsigned int enabled)380 static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
381 {
382 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
383 	unsigned long	flags;
384 
385 	if (!is_valid_irq(cmos->irq))
386 		return -EINVAL;
387 
388 	spin_lock_irqsave(&rtc_lock, flags);
389 
390 	if (enabled)
391 		cmos_irq_enable(cmos, RTC_AIE);
392 	else
393 		cmos_irq_disable(cmos, RTC_AIE);
394 
395 	spin_unlock_irqrestore(&rtc_lock, flags);
396 	return 0;
397 }
398 
399 #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
400 
cmos_procfs(struct device * dev,struct seq_file * seq)401 static int cmos_procfs(struct device *dev, struct seq_file *seq)
402 {
403 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
404 	unsigned char	rtc_control, valid;
405 
406 	spin_lock_irq(&rtc_lock);
407 	rtc_control = CMOS_READ(RTC_CONTROL);
408 	valid = CMOS_READ(RTC_VALID);
409 	spin_unlock_irq(&rtc_lock);
410 
411 	/* NOTE:  at least ICH6 reports battery status using a different
412 	 * (non-RTC) bit; and SQWE is ignored on many current systems.
413 	 */
414 	return seq_printf(seq,
415 			"periodic_IRQ\t: %s\n"
416 			"update_IRQ\t: %s\n"
417 			"HPET_emulated\t: %s\n"
418 			// "square_wave\t: %s\n"
419 			"BCD\t\t: %s\n"
420 			"DST_enable\t: %s\n"
421 			"periodic_freq\t: %d\n"
422 			"batt_status\t: %s\n",
423 			(rtc_control & RTC_PIE) ? "yes" : "no",
424 			(rtc_control & RTC_UIE) ? "yes" : "no",
425 			is_hpet_enabled() ? "yes" : "no",
426 			// (rtc_control & RTC_SQWE) ? "yes" : "no",
427 			(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
428 			(rtc_control & RTC_DST_EN) ? "yes" : "no",
429 			cmos->rtc->irq_freq,
430 			(valid & RTC_VRT) ? "okay" : "dead");
431 }
432 
433 #else
434 #define	cmos_procfs	NULL
435 #endif
436 
437 static const struct rtc_class_ops cmos_rtc_ops = {
438 	.read_time		= cmos_read_time,
439 	.set_time		= cmos_set_time,
440 	.read_alarm		= cmos_read_alarm,
441 	.set_alarm		= cmos_set_alarm,
442 	.proc			= cmos_procfs,
443 	.alarm_irq_enable	= cmos_alarm_irq_enable,
444 };
445 
446 /*----------------------------------------------------------------*/
447 
448 /*
449  * All these chips have at least 64 bytes of address space, shared by
450  * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
451  * by boot firmware.  Modern chips have 128 or 256 bytes.
452  */
453 
454 #define NVRAM_OFFSET	(RTC_REG_D + 1)
455 
456 static ssize_t
cmos_nvram_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)457 cmos_nvram_read(struct file *filp, struct kobject *kobj,
458 		struct bin_attribute *attr,
459 		char *buf, loff_t off, size_t count)
460 {
461 	int	retval;
462 
463 	if (unlikely(off >= attr->size))
464 		return 0;
465 	if (unlikely(off < 0))
466 		return -EINVAL;
467 	if ((off + count) > attr->size)
468 		count = attr->size - off;
469 
470 	off += NVRAM_OFFSET;
471 	spin_lock_irq(&rtc_lock);
472 	for (retval = 0; count; count--, off++, retval++) {
473 		if (off < 128)
474 			*buf++ = CMOS_READ(off);
475 		else if (can_bank2)
476 			*buf++ = cmos_read_bank2(off);
477 		else
478 			break;
479 	}
480 	spin_unlock_irq(&rtc_lock);
481 
482 	return retval;
483 }
484 
485 static ssize_t
cmos_nvram_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t off,size_t count)486 cmos_nvram_write(struct file *filp, struct kobject *kobj,
487 		struct bin_attribute *attr,
488 		char *buf, loff_t off, size_t count)
489 {
490 	struct cmos_rtc	*cmos;
491 	int		retval;
492 
493 	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
494 	if (unlikely(off >= attr->size))
495 		return -EFBIG;
496 	if (unlikely(off < 0))
497 		return -EINVAL;
498 	if ((off + count) > attr->size)
499 		count = attr->size - off;
500 
501 	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
502 	 * checksum on part of the NVRAM data.  That's currently ignored
503 	 * here.  If userspace is smart enough to know what fields of
504 	 * NVRAM to update, updating checksums is also part of its job.
505 	 */
506 	off += NVRAM_OFFSET;
507 	spin_lock_irq(&rtc_lock);
508 	for (retval = 0; count; count--, off++, retval++) {
509 		/* don't trash RTC registers */
510 		if (off == cmos->day_alrm
511 				|| off == cmos->mon_alrm
512 				|| off == cmos->century)
513 			buf++;
514 		else if (off < 128)
515 			CMOS_WRITE(*buf++, off);
516 		else if (can_bank2)
517 			cmos_write_bank2(*buf++, off);
518 		else
519 			break;
520 	}
521 	spin_unlock_irq(&rtc_lock);
522 
523 	return retval;
524 }
525 
526 static struct bin_attribute nvram = {
527 	.attr = {
528 		.name	= "nvram",
529 		.mode	= S_IRUGO | S_IWUSR,
530 	},
531 
532 	.read	= cmos_nvram_read,
533 	.write	= cmos_nvram_write,
534 	/* size gets set up later */
535 };
536 
537 /*----------------------------------------------------------------*/
538 
539 static struct cmos_rtc	cmos_rtc;
540 
cmos_interrupt(int irq,void * p)541 static irqreturn_t cmos_interrupt(int irq, void *p)
542 {
543 	u8		irqstat;
544 	u8		rtc_control;
545 
546 	spin_lock(&rtc_lock);
547 
548 	/* When the HPET interrupt handler calls us, the interrupt
549 	 * status is passed as arg1 instead of the irq number.  But
550 	 * always clear irq status, even when HPET is in the way.
551 	 *
552 	 * Note that HPET and RTC are almost certainly out of phase,
553 	 * giving different IRQ status ...
554 	 */
555 	irqstat = CMOS_READ(RTC_INTR_FLAGS);
556 	rtc_control = CMOS_READ(RTC_CONTROL);
557 	if (is_hpet_enabled())
558 		irqstat = (unsigned long)irq & 0xF0;
559 	irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
560 
561 	/* All Linux RTC alarms should be treated as if they were oneshot.
562 	 * Similar code may be needed in system wakeup paths, in case the
563 	 * alarm woke the system.
564 	 */
565 	if (irqstat & RTC_AIE) {
566 		rtc_control &= ~RTC_AIE;
567 		CMOS_WRITE(rtc_control, RTC_CONTROL);
568 		hpet_mask_rtc_irq_bit(RTC_AIE);
569 
570 		CMOS_READ(RTC_INTR_FLAGS);
571 	}
572 	spin_unlock(&rtc_lock);
573 
574 	if (is_intr(irqstat)) {
575 		rtc_update_irq(p, 1, irqstat);
576 		return IRQ_HANDLED;
577 	} else
578 		return IRQ_NONE;
579 }
580 
581 #ifdef	CONFIG_PNP
582 #define	INITSECTION
583 
584 #else
585 #define	INITSECTION	__init
586 #endif
587 
588 static int INITSECTION
cmos_do_probe(struct device * dev,struct resource * ports,int rtc_irq)589 cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
590 {
591 	struct cmos_rtc_board_info	*info = dev->platform_data;
592 	int				retval = 0;
593 	unsigned char			rtc_control;
594 	unsigned			address_space;
595 
596 	/* there can be only one ... */
597 	if (cmos_rtc.dev)
598 		return -EBUSY;
599 
600 	if (!ports)
601 		return -ENODEV;
602 
603 	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
604 	 *
605 	 * REVISIT non-x86 systems may instead use memory space resources
606 	 * (needing ioremap etc), not i/o space resources like this ...
607 	 */
608 	ports = request_region(ports->start,
609 			resource_size(ports),
610 			driver_name);
611 	if (!ports) {
612 		dev_dbg(dev, "i/o registers already in use\n");
613 		return -EBUSY;
614 	}
615 
616 	cmos_rtc.irq = rtc_irq;
617 	cmos_rtc.iomem = ports;
618 
619 	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
620 	 * driver did, but don't reject unknown configs.   Old hardware
621 	 * won't address 128 bytes.  Newer chips have multiple banks,
622 	 * though they may not be listed in one I/O resource.
623 	 */
624 #if	defined(CONFIG_ATARI)
625 	address_space = 64;
626 #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
627 			|| defined(__sparc__) || defined(__mips__) \
628 			|| defined(__powerpc__)
629 	address_space = 128;
630 #else
631 #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
632 	address_space = 128;
633 #endif
634 	if (can_bank2 && ports->end > (ports->start + 1))
635 		address_space = 256;
636 
637 	/* For ACPI systems extension info comes from the FADT.  On others,
638 	 * board specific setup provides it as appropriate.  Systems where
639 	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
640 	 * some almost-clones) can provide hooks to make that behave.
641 	 *
642 	 * Note that ACPI doesn't preclude putting these registers into
643 	 * "extended" areas of the chip, including some that we won't yet
644 	 * expect CMOS_READ and friends to handle.
645 	 */
646 	if (info) {
647 		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
648 			cmos_rtc.day_alrm = info->rtc_day_alarm;
649 		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
650 			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
651 		if (info->rtc_century && info->rtc_century < 128)
652 			cmos_rtc.century = info->rtc_century;
653 
654 		if (info->wake_on && info->wake_off) {
655 			cmos_rtc.wake_on = info->wake_on;
656 			cmos_rtc.wake_off = info->wake_off;
657 		}
658 	}
659 
660 	cmos_rtc.dev = dev;
661 	dev_set_drvdata(dev, &cmos_rtc);
662 
663 	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
664 				&cmos_rtc_ops, THIS_MODULE);
665 	if (IS_ERR(cmos_rtc.rtc)) {
666 		retval = PTR_ERR(cmos_rtc.rtc);
667 		goto cleanup0;
668 	}
669 
670 	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
671 
672 	spin_lock_irq(&rtc_lock);
673 
674 	/* force periodic irq to CMOS reset default of 1024Hz;
675 	 *
676 	 * REVISIT it's been reported that at least one x86_64 ALI mobo
677 	 * doesn't use 32KHz here ... for portability we might need to
678 	 * do something about other clock frequencies.
679 	 */
680 	cmos_rtc.rtc->irq_freq = 1024;
681 	hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
682 	CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
683 
684 	/* disable irqs */
685 	cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
686 
687 	rtc_control = CMOS_READ(RTC_CONTROL);
688 
689 	spin_unlock_irq(&rtc_lock);
690 
691 	/* FIXME:
692 	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
693 	 */
694        if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
695 		dev_warn(dev, "only 24-hr supported\n");
696 		retval = -ENXIO;
697 		goto cleanup1;
698 	}
699 
700 	if (is_valid_irq(rtc_irq)) {
701 		irq_handler_t rtc_cmos_int_handler;
702 
703 		if (is_hpet_enabled()) {
704 			int err;
705 
706 			rtc_cmos_int_handler = hpet_rtc_interrupt;
707 			err = hpet_register_irq_handler(cmos_interrupt);
708 			if (err != 0) {
709 				printk(KERN_WARNING "hpet_register_irq_handler "
710 						" failed in rtc_init().");
711 				goto cleanup1;
712 			}
713 		} else
714 			rtc_cmos_int_handler = cmos_interrupt;
715 
716 		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
717 				0, dev_name(&cmos_rtc.rtc->dev),
718 				cmos_rtc.rtc);
719 		if (retval < 0) {
720 			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
721 			goto cleanup1;
722 		}
723 	}
724 	hpet_rtc_timer_init();
725 
726 	/* export at least the first block of NVRAM */
727 	nvram.size = address_space - NVRAM_OFFSET;
728 	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
729 	if (retval < 0) {
730 		dev_dbg(dev, "can't create nvram file? %d\n", retval);
731 		goto cleanup2;
732 	}
733 
734 	pr_info("%s: %s%s, %zd bytes nvram%s\n",
735 		dev_name(&cmos_rtc.rtc->dev),
736 		!is_valid_irq(rtc_irq) ? "no alarms" :
737 			cmos_rtc.mon_alrm ? "alarms up to one year" :
738 			cmos_rtc.day_alrm ? "alarms up to one month" :
739 			"alarms up to one day",
740 		cmos_rtc.century ? ", y3k" : "",
741 		nvram.size,
742 		is_hpet_enabled() ? ", hpet irqs" : "");
743 
744 	return 0;
745 
746 cleanup2:
747 	if (is_valid_irq(rtc_irq))
748 		free_irq(rtc_irq, cmos_rtc.rtc);
749 cleanup1:
750 	cmos_rtc.dev = NULL;
751 	rtc_device_unregister(cmos_rtc.rtc);
752 cleanup0:
753 	release_region(ports->start, resource_size(ports));
754 	return retval;
755 }
756 
cmos_do_shutdown(void)757 static void cmos_do_shutdown(void)
758 {
759 	spin_lock_irq(&rtc_lock);
760 	cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
761 	spin_unlock_irq(&rtc_lock);
762 }
763 
cmos_do_remove(struct device * dev)764 static void __exit cmos_do_remove(struct device *dev)
765 {
766 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
767 	struct resource *ports;
768 
769 	cmos_do_shutdown();
770 
771 	sysfs_remove_bin_file(&dev->kobj, &nvram);
772 
773 	if (is_valid_irq(cmos->irq)) {
774 		free_irq(cmos->irq, cmos->rtc);
775 		hpet_unregister_irq_handler(cmos_interrupt);
776 	}
777 
778 	rtc_device_unregister(cmos->rtc);
779 	cmos->rtc = NULL;
780 
781 	ports = cmos->iomem;
782 	release_region(ports->start, resource_size(ports));
783 	cmos->iomem = NULL;
784 
785 	cmos->dev = NULL;
786 	dev_set_drvdata(dev, NULL);
787 }
788 
789 #ifdef	CONFIG_PM
790 
cmos_suspend(struct device * dev)791 static int cmos_suspend(struct device *dev)
792 {
793 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
794 	unsigned char	tmp;
795 
796 	/* only the alarm might be a wakeup event source */
797 	spin_lock_irq(&rtc_lock);
798 	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
799 	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
800 		unsigned char	mask;
801 
802 		if (device_may_wakeup(dev))
803 			mask = RTC_IRQMASK & ~RTC_AIE;
804 		else
805 			mask = RTC_IRQMASK;
806 		tmp &= ~mask;
807 		CMOS_WRITE(tmp, RTC_CONTROL);
808 		hpet_mask_rtc_irq_bit(mask);
809 
810 		cmos_checkintr(cmos, tmp);
811 	}
812 	spin_unlock_irq(&rtc_lock);
813 
814 	if (tmp & RTC_AIE) {
815 		cmos->enabled_wake = 1;
816 		if (cmos->wake_on)
817 			cmos->wake_on(dev);
818 		else
819 			enable_irq_wake(cmos->irq);
820 	}
821 
822 	pr_debug("%s: suspend%s, ctrl %02x\n",
823 			dev_name(&cmos_rtc.rtc->dev),
824 			(tmp & RTC_AIE) ? ", alarm may wake" : "",
825 			tmp);
826 
827 	return 0;
828 }
829 
830 /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
831  * after a detour through G3 "mechanical off", although the ACPI spec
832  * says wakeup should only work from G1/S4 "hibernate".  To most users,
833  * distinctions between S4 and S5 are pointless.  So when the hardware
834  * allows, don't draw that distinction.
835  */
cmos_poweroff(struct device * dev)836 static inline int cmos_poweroff(struct device *dev)
837 {
838 	return cmos_suspend(dev);
839 }
840 
cmos_resume(struct device * dev)841 static int cmos_resume(struct device *dev)
842 {
843 	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
844 	unsigned char	tmp = cmos->suspend_ctrl;
845 
846 	/* re-enable any irqs previously active */
847 	if (tmp & RTC_IRQMASK) {
848 		unsigned char	mask;
849 
850 		if (cmos->enabled_wake) {
851 			if (cmos->wake_off)
852 				cmos->wake_off(dev);
853 			else
854 				disable_irq_wake(cmos->irq);
855 			cmos->enabled_wake = 0;
856 		}
857 
858 		spin_lock_irq(&rtc_lock);
859 		do {
860 			CMOS_WRITE(tmp, RTC_CONTROL);
861 			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
862 
863 			mask = CMOS_READ(RTC_INTR_FLAGS);
864 			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
865 			if (!is_hpet_enabled() || !is_intr(mask))
866 				break;
867 
868 			/* force one-shot behavior if HPET blocked
869 			 * the wake alarm's irq
870 			 */
871 			rtc_update_irq(cmos->rtc, 1, mask);
872 			tmp &= ~RTC_AIE;
873 			hpet_mask_rtc_irq_bit(RTC_AIE);
874 			hpet_rtc_timer_init();
875 		} while (mask & RTC_AIE);
876 		spin_unlock_irq(&rtc_lock);
877 	}
878 
879 	pr_debug("%s: resume, ctrl %02x\n",
880 			dev_name(&cmos_rtc.rtc->dev),
881 			tmp);
882 
883 	return 0;
884 }
885 
886 static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
887 
888 #else
889 
cmos_poweroff(struct device * dev)890 static inline int cmos_poweroff(struct device *dev)
891 {
892 	return -ENOSYS;
893 }
894 
895 #endif
896 
897 /*----------------------------------------------------------------*/
898 
899 /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
900  * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
901  * probably list them in similar PNPBIOS tables; so PNP is more common.
902  *
903  * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
904  * predate even PNPBIOS should set up platform_bus devices.
905  */
906 
907 #ifdef	CONFIG_ACPI
908 
909 #include <linux/acpi.h>
910 
rtc_handler(void * context)911 static u32 rtc_handler(void *context)
912 {
913 	acpi_clear_event(ACPI_EVENT_RTC);
914 	acpi_disable_event(ACPI_EVENT_RTC, 0);
915 	return ACPI_INTERRUPT_HANDLED;
916 }
917 
rtc_wake_setup(void)918 static inline void rtc_wake_setup(void)
919 {
920 	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
921 	/*
922 	 * After the RTC handler is installed, the Fixed_RTC event should
923 	 * be disabled. Only when the RTC alarm is set will it be enabled.
924 	 */
925 	acpi_clear_event(ACPI_EVENT_RTC);
926 	acpi_disable_event(ACPI_EVENT_RTC, 0);
927 }
928 
rtc_wake_on(struct device * dev)929 static void rtc_wake_on(struct device *dev)
930 {
931 	acpi_clear_event(ACPI_EVENT_RTC);
932 	acpi_enable_event(ACPI_EVENT_RTC, 0);
933 }
934 
rtc_wake_off(struct device * dev)935 static void rtc_wake_off(struct device *dev)
936 {
937 	acpi_disable_event(ACPI_EVENT_RTC, 0);
938 }
939 
940 /* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
941  * its device node and pass extra config data.  This helps its driver use
942  * capabilities that the now-obsolete mc146818 didn't have, and informs it
943  * that this board's RTC is wakeup-capable (per ACPI spec).
944  */
945 static struct cmos_rtc_board_info acpi_rtc_info;
946 
947 static void __devinit
cmos_wake_setup(struct device * dev)948 cmos_wake_setup(struct device *dev)
949 {
950 	if (acpi_disabled)
951 		return;
952 
953 	rtc_wake_setup();
954 	acpi_rtc_info.wake_on = rtc_wake_on;
955 	acpi_rtc_info.wake_off = rtc_wake_off;
956 
957 	/* workaround bug in some ACPI tables */
958 	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
959 		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
960 			acpi_gbl_FADT.month_alarm);
961 		acpi_gbl_FADT.month_alarm = 0;
962 	}
963 
964 	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
965 	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
966 	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
967 
968 	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
969 	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
970 		dev_info(dev, "RTC can wake from S4\n");
971 
972 	dev->platform_data = &acpi_rtc_info;
973 
974 	/* RTC always wakes from S1/S2/S3, and often S4/STD */
975 	device_init_wakeup(dev, 1);
976 }
977 
978 #else
979 
980 static void __devinit
cmos_wake_setup(struct device * dev)981 cmos_wake_setup(struct device *dev)
982 {
983 }
984 
985 #endif
986 
987 #ifdef	CONFIG_PNP
988 
989 #include <linux/pnp.h>
990 
991 static int __devinit
cmos_pnp_probe(struct pnp_dev * pnp,const struct pnp_device_id * id)992 cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
993 {
994 	cmos_wake_setup(&pnp->dev);
995 
996 	if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
997 		/* Some machines contain a PNP entry for the RTC, but
998 		 * don't define the IRQ. It should always be safe to
999 		 * hardcode it in these cases
1000 		 */
1001 		return cmos_do_probe(&pnp->dev,
1002 				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1003 	else
1004 		return cmos_do_probe(&pnp->dev,
1005 				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1006 				pnp_irq(pnp, 0));
1007 }
1008 
cmos_pnp_remove(struct pnp_dev * pnp)1009 static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1010 {
1011 	cmos_do_remove(&pnp->dev);
1012 }
1013 
1014 #ifdef	CONFIG_PM
1015 
cmos_pnp_suspend(struct pnp_dev * pnp,pm_message_t mesg)1016 static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
1017 {
1018 	return cmos_suspend(&pnp->dev);
1019 }
1020 
cmos_pnp_resume(struct pnp_dev * pnp)1021 static int cmos_pnp_resume(struct pnp_dev *pnp)
1022 {
1023 	return cmos_resume(&pnp->dev);
1024 }
1025 
1026 #else
1027 #define	cmos_pnp_suspend	NULL
1028 #define	cmos_pnp_resume		NULL
1029 #endif
1030 
cmos_pnp_shutdown(struct pnp_dev * pnp)1031 static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1032 {
1033 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
1034 		return;
1035 
1036 	cmos_do_shutdown();
1037 }
1038 
1039 static const struct pnp_device_id rtc_ids[] = {
1040 	{ .id = "PNP0b00", },
1041 	{ .id = "PNP0b01", },
1042 	{ .id = "PNP0b02", },
1043 	{ },
1044 };
1045 MODULE_DEVICE_TABLE(pnp, rtc_ids);
1046 
1047 static struct pnp_driver cmos_pnp_driver = {
1048 	.name		= (char *) driver_name,
1049 	.id_table	= rtc_ids,
1050 	.probe		= cmos_pnp_probe,
1051 	.remove		= __exit_p(cmos_pnp_remove),
1052 	.shutdown	= cmos_pnp_shutdown,
1053 
1054 	/* flag ensures resume() gets called, and stops syslog spam */
1055 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1056 	.suspend	= cmos_pnp_suspend,
1057 	.resume		= cmos_pnp_resume,
1058 };
1059 
1060 #endif	/* CONFIG_PNP */
1061 
1062 #ifdef CONFIG_OF
1063 static const struct of_device_id of_cmos_match[] = {
1064 	{
1065 		.compatible = "motorola,mc146818",
1066 	},
1067 	{ },
1068 };
1069 MODULE_DEVICE_TABLE(of, of_cmos_match);
1070 
cmos_of_init(struct platform_device * pdev)1071 static __init void cmos_of_init(struct platform_device *pdev)
1072 {
1073 	struct device_node *node = pdev->dev.of_node;
1074 	struct rtc_time time;
1075 	int ret;
1076 	const __be32 *val;
1077 
1078 	if (!node)
1079 		return;
1080 
1081 	val = of_get_property(node, "ctrl-reg", NULL);
1082 	if (val)
1083 		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1084 
1085 	val = of_get_property(node, "freq-reg", NULL);
1086 	if (val)
1087 		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1088 
1089 	get_rtc_time(&time);
1090 	ret = rtc_valid_tm(&time);
1091 	if (ret) {
1092 		struct rtc_time def_time = {
1093 			.tm_year = 1,
1094 			.tm_mday = 1,
1095 		};
1096 		set_rtc_time(&def_time);
1097 	}
1098 }
1099 #else
cmos_of_init(struct platform_device * pdev)1100 static inline void cmos_of_init(struct platform_device *pdev) {}
1101 #define of_cmos_match NULL
1102 #endif
1103 /*----------------------------------------------------------------*/
1104 
1105 /* Platform setup should have set up an RTC device, when PNP is
1106  * unavailable ... this could happen even on (older) PCs.
1107  */
1108 
cmos_platform_probe(struct platform_device * pdev)1109 static int __init cmos_platform_probe(struct platform_device *pdev)
1110 {
1111 	cmos_of_init(pdev);
1112 	cmos_wake_setup(&pdev->dev);
1113 	return cmos_do_probe(&pdev->dev,
1114 			platform_get_resource(pdev, IORESOURCE_IO, 0),
1115 			platform_get_irq(pdev, 0));
1116 }
1117 
cmos_platform_remove(struct platform_device * pdev)1118 static int __exit cmos_platform_remove(struct platform_device *pdev)
1119 {
1120 	cmos_do_remove(&pdev->dev);
1121 	return 0;
1122 }
1123 
cmos_platform_shutdown(struct platform_device * pdev)1124 static void cmos_platform_shutdown(struct platform_device *pdev)
1125 {
1126 	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
1127 		return;
1128 
1129 	cmos_do_shutdown();
1130 }
1131 
1132 /* work with hotplug and coldplug */
1133 MODULE_ALIAS("platform:rtc_cmos");
1134 
1135 static struct platform_driver cmos_platform_driver = {
1136 	.remove		= __exit_p(cmos_platform_remove),
1137 	.shutdown	= cmos_platform_shutdown,
1138 	.driver = {
1139 		.name		= (char *) driver_name,
1140 #ifdef CONFIG_PM
1141 		.pm		= &cmos_pm_ops,
1142 #endif
1143 		.of_match_table = of_cmos_match,
1144 	}
1145 };
1146 
1147 #ifdef CONFIG_PNP
1148 static bool pnp_driver_registered;
1149 #endif
1150 static bool platform_driver_registered;
1151 
cmos_init(void)1152 static int __init cmos_init(void)
1153 {
1154 	int retval = 0;
1155 
1156 #ifdef	CONFIG_PNP
1157 	retval = pnp_register_driver(&cmos_pnp_driver);
1158 	if (retval == 0)
1159 		pnp_driver_registered = true;
1160 #endif
1161 
1162 	if (!cmos_rtc.dev) {
1163 		retval = platform_driver_probe(&cmos_platform_driver,
1164 					       cmos_platform_probe);
1165 		if (retval == 0)
1166 			platform_driver_registered = true;
1167 	}
1168 
1169 	if (retval == 0)
1170 		return 0;
1171 
1172 #ifdef	CONFIG_PNP
1173 	if (pnp_driver_registered)
1174 		pnp_unregister_driver(&cmos_pnp_driver);
1175 #endif
1176 	return retval;
1177 }
1178 module_init(cmos_init);
1179 
cmos_exit(void)1180 static void __exit cmos_exit(void)
1181 {
1182 #ifdef	CONFIG_PNP
1183 	if (pnp_driver_registered)
1184 		pnp_unregister_driver(&cmos_pnp_driver);
1185 #endif
1186 	if (platform_driver_registered)
1187 		platform_driver_unregister(&cmos_platform_driver);
1188 }
1189 module_exit(cmos_exit);
1190 
1191 
1192 MODULE_AUTHOR("David Brownell");
1193 MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1194 MODULE_LICENSE("GPL");
1195