1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 * * Redistributions of source code must retain the above copyright
34 * notice, this list of conditions and the following disclaimer.
35 * * Redistributions in binary form must reproduce the above copyright
36 * notice, this list of conditions and the following disclaimer in
37 * the documentation and/or other materials provided with the
38 * distribution.
39 * * Neither the name of Intel Corporation nor the names of its
40 * contributors may be used to endorse or promote products derived
41 * from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56 #include <scsi/scsi_cmnd.h>
57 #include "isci.h"
58 #include "task.h"
59 #include "request.h"
60 #include "scu_completion_codes.h"
61 #include "scu_event_codes.h"
62 #include "sas.h"
63
64 #undef C
65 #define C(a) (#a)
req_state_name(enum sci_base_request_states state)66 const char *req_state_name(enum sci_base_request_states state)
67 {
68 static const char * const strings[] = REQUEST_STATES;
69
70 return strings[state];
71 }
72 #undef C
73
to_sgl_element_pair(struct isci_request * ireq,int idx)74 static struct scu_sgl_element_pair *to_sgl_element_pair(struct isci_request *ireq,
75 int idx)
76 {
77 if (idx == 0)
78 return &ireq->tc->sgl_pair_ab;
79 else if (idx == 1)
80 return &ireq->tc->sgl_pair_cd;
81 else if (idx < 0)
82 return NULL;
83 else
84 return &ireq->sg_table[idx - 2];
85 }
86
to_sgl_element_pair_dma(struct isci_host * ihost,struct isci_request * ireq,u32 idx)87 static dma_addr_t to_sgl_element_pair_dma(struct isci_host *ihost,
88 struct isci_request *ireq, u32 idx)
89 {
90 u32 offset;
91
92 if (idx == 0) {
93 offset = (void *) &ireq->tc->sgl_pair_ab -
94 (void *) &ihost->task_context_table[0];
95 return ihost->task_context_dma + offset;
96 } else if (idx == 1) {
97 offset = (void *) &ireq->tc->sgl_pair_cd -
98 (void *) &ihost->task_context_table[0];
99 return ihost->task_context_dma + offset;
100 }
101
102 return sci_io_request_get_dma_addr(ireq, &ireq->sg_table[idx - 2]);
103 }
104
init_sgl_element(struct scu_sgl_element * e,struct scatterlist * sg)105 static void init_sgl_element(struct scu_sgl_element *e, struct scatterlist *sg)
106 {
107 e->length = sg_dma_len(sg);
108 e->address_upper = upper_32_bits(sg_dma_address(sg));
109 e->address_lower = lower_32_bits(sg_dma_address(sg));
110 e->address_modifier = 0;
111 }
112
sci_request_build_sgl(struct isci_request * ireq)113 static void sci_request_build_sgl(struct isci_request *ireq)
114 {
115 struct isci_host *ihost = ireq->isci_host;
116 struct sas_task *task = isci_request_access_task(ireq);
117 struct scatterlist *sg = NULL;
118 dma_addr_t dma_addr;
119 u32 sg_idx = 0;
120 struct scu_sgl_element_pair *scu_sg = NULL;
121 struct scu_sgl_element_pair *prev_sg = NULL;
122
123 if (task->num_scatter > 0) {
124 sg = task->scatter;
125
126 while (sg) {
127 scu_sg = to_sgl_element_pair(ireq, sg_idx);
128 init_sgl_element(&scu_sg->A, sg);
129 sg = sg_next(sg);
130 if (sg) {
131 init_sgl_element(&scu_sg->B, sg);
132 sg = sg_next(sg);
133 } else
134 memset(&scu_sg->B, 0, sizeof(scu_sg->B));
135
136 if (prev_sg) {
137 dma_addr = to_sgl_element_pair_dma(ihost,
138 ireq,
139 sg_idx);
140
141 prev_sg->next_pair_upper =
142 upper_32_bits(dma_addr);
143 prev_sg->next_pair_lower =
144 lower_32_bits(dma_addr);
145 }
146
147 prev_sg = scu_sg;
148 sg_idx++;
149 }
150 } else { /* handle when no sg */
151 scu_sg = to_sgl_element_pair(ireq, sg_idx);
152
153 dma_addr = dma_map_single(&ihost->pdev->dev,
154 task->scatter,
155 task->total_xfer_len,
156 task->data_dir);
157
158 ireq->zero_scatter_daddr = dma_addr;
159
160 scu_sg->A.length = task->total_xfer_len;
161 scu_sg->A.address_upper = upper_32_bits(dma_addr);
162 scu_sg->A.address_lower = lower_32_bits(dma_addr);
163 }
164
165 if (scu_sg) {
166 scu_sg->next_pair_upper = 0;
167 scu_sg->next_pair_lower = 0;
168 }
169 }
170
sci_io_request_build_ssp_command_iu(struct isci_request * ireq)171 static void sci_io_request_build_ssp_command_iu(struct isci_request *ireq)
172 {
173 struct ssp_cmd_iu *cmd_iu;
174 struct sas_task *task = isci_request_access_task(ireq);
175
176 cmd_iu = &ireq->ssp.cmd;
177
178 memcpy(cmd_iu->LUN, task->ssp_task.LUN, 8);
179 cmd_iu->add_cdb_len = 0;
180 cmd_iu->_r_a = 0;
181 cmd_iu->_r_b = 0;
182 cmd_iu->en_fburst = 0; /* unsupported */
183 cmd_iu->task_prio = task->ssp_task.task_prio;
184 cmd_iu->task_attr = task->ssp_task.task_attr;
185 cmd_iu->_r_c = 0;
186
187 sci_swab32_cpy(&cmd_iu->cdb, task->ssp_task.cdb,
188 sizeof(task->ssp_task.cdb) / sizeof(u32));
189 }
190
sci_task_request_build_ssp_task_iu(struct isci_request * ireq)191 static void sci_task_request_build_ssp_task_iu(struct isci_request *ireq)
192 {
193 struct ssp_task_iu *task_iu;
194 struct sas_task *task = isci_request_access_task(ireq);
195 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
196
197 task_iu = &ireq->ssp.tmf;
198
199 memset(task_iu, 0, sizeof(struct ssp_task_iu));
200
201 memcpy(task_iu->LUN, task->ssp_task.LUN, 8);
202
203 task_iu->task_func = isci_tmf->tmf_code;
204 task_iu->task_tag =
205 (test_bit(IREQ_TMF, &ireq->flags)) ?
206 isci_tmf->io_tag :
207 SCI_CONTROLLER_INVALID_IO_TAG;
208 }
209
210 /**
211 * This method is will fill in the SCU Task Context for any type of SSP request.
212 * @sci_req:
213 * @task_context:
214 *
215 */
scu_ssp_reqeust_construct_task_context(struct isci_request * ireq,struct scu_task_context * task_context)216 static void scu_ssp_reqeust_construct_task_context(
217 struct isci_request *ireq,
218 struct scu_task_context *task_context)
219 {
220 dma_addr_t dma_addr;
221 struct isci_remote_device *idev;
222 struct isci_port *iport;
223
224 idev = ireq->target_device;
225 iport = idev->owning_port;
226
227 /* Fill in the TC with the its required data */
228 task_context->abort = 0;
229 task_context->priority = 0;
230 task_context->initiator_request = 1;
231 task_context->connection_rate = idev->connection_rate;
232 task_context->protocol_engine_index = ISCI_PEG;
233 task_context->logical_port_index = iport->physical_port_index;
234 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SSP;
235 task_context->valid = SCU_TASK_CONTEXT_VALID;
236 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
237
238 task_context->remote_node_index = idev->rnc.remote_node_index;
239 task_context->command_code = 0;
240
241 task_context->link_layer_control = 0;
242 task_context->do_not_dma_ssp_good_response = 1;
243 task_context->strict_ordering = 0;
244 task_context->control_frame = 0;
245 task_context->timeout_enable = 0;
246 task_context->block_guard_enable = 0;
247
248 task_context->address_modifier = 0;
249
250 /* task_context->type.ssp.tag = ireq->io_tag; */
251 task_context->task_phase = 0x01;
252
253 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
254 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
255 (iport->physical_port_index <<
256 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
257 ISCI_TAG_TCI(ireq->io_tag));
258
259 /*
260 * Copy the physical address for the command buffer to the
261 * SCU Task Context
262 */
263 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.cmd);
264
265 task_context->command_iu_upper = upper_32_bits(dma_addr);
266 task_context->command_iu_lower = lower_32_bits(dma_addr);
267
268 /*
269 * Copy the physical address for the response buffer to the
270 * SCU Task Context
271 */
272 dma_addr = sci_io_request_get_dma_addr(ireq, &ireq->ssp.rsp);
273
274 task_context->response_iu_upper = upper_32_bits(dma_addr);
275 task_context->response_iu_lower = lower_32_bits(dma_addr);
276 }
277
scu_bg_blk_size(struct scsi_device * sdp)278 static u8 scu_bg_blk_size(struct scsi_device *sdp)
279 {
280 switch (sdp->sector_size) {
281 case 512:
282 return 0;
283 case 1024:
284 return 1;
285 case 4096:
286 return 3;
287 default:
288 return 0xff;
289 }
290 }
291
scu_dif_bytes(u32 len,u32 sector_size)292 static u32 scu_dif_bytes(u32 len, u32 sector_size)
293 {
294 return (len >> ilog2(sector_size)) * 8;
295 }
296
scu_ssp_ireq_dif_insert(struct isci_request * ireq,u8 type,u8 op)297 static void scu_ssp_ireq_dif_insert(struct isci_request *ireq, u8 type, u8 op)
298 {
299 struct scu_task_context *tc = ireq->tc;
300 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
301 u8 blk_sz = scu_bg_blk_size(scmd->device);
302
303 tc->block_guard_enable = 1;
304 tc->blk_prot_en = 1;
305 tc->blk_sz = blk_sz;
306 /* DIF write insert */
307 tc->blk_prot_func = 0x2;
308
309 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
310 scmd->device->sector_size);
311
312 /* always init to 0, used by hw */
313 tc->interm_crc_val = 0;
314
315 tc->init_crc_seed = 0;
316 tc->app_tag_verify = 0;
317 tc->app_tag_gen = 0;
318 tc->ref_tag_seed_verify = 0;
319
320 /* always init to same as bg_blk_sz */
321 tc->UD_bytes_immed_val = scmd->device->sector_size;
322
323 tc->reserved_DC_0 = 0;
324
325 /* always init to 8 */
326 tc->DIF_bytes_immed_val = 8;
327
328 tc->reserved_DC_1 = 0;
329 tc->bgc_blk_sz = scmd->device->sector_size;
330 tc->reserved_E0_0 = 0;
331 tc->app_tag_gen_mask = 0;
332
333 /** setup block guard control **/
334 tc->bgctl = 0;
335
336 /* DIF write insert */
337 tc->bgctl_f.op = 0x2;
338
339 tc->app_tag_verify_mask = 0;
340
341 /* must init to 0 for hw */
342 tc->blk_guard_err = 0;
343
344 tc->reserved_E8_0 = 0;
345
346 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
347 tc->ref_tag_seed_gen = scsi_get_lba(scmd) & 0xffffffff;
348 else if (type & SCSI_PROT_DIF_TYPE3)
349 tc->ref_tag_seed_gen = 0;
350 }
351
scu_ssp_ireq_dif_strip(struct isci_request * ireq,u8 type,u8 op)352 static void scu_ssp_ireq_dif_strip(struct isci_request *ireq, u8 type, u8 op)
353 {
354 struct scu_task_context *tc = ireq->tc;
355 struct scsi_cmnd *scmd = ireq->ttype_ptr.io_task_ptr->uldd_task;
356 u8 blk_sz = scu_bg_blk_size(scmd->device);
357
358 tc->block_guard_enable = 1;
359 tc->blk_prot_en = 1;
360 tc->blk_sz = blk_sz;
361 /* DIF read strip */
362 tc->blk_prot_func = 0x1;
363
364 tc->transfer_length_bytes += scu_dif_bytes(tc->transfer_length_bytes,
365 scmd->device->sector_size);
366
367 /* always init to 0, used by hw */
368 tc->interm_crc_val = 0;
369
370 tc->init_crc_seed = 0;
371 tc->app_tag_verify = 0;
372 tc->app_tag_gen = 0;
373
374 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2))
375 tc->ref_tag_seed_verify = scsi_get_lba(scmd) & 0xffffffff;
376 else if (type & SCSI_PROT_DIF_TYPE3)
377 tc->ref_tag_seed_verify = 0;
378
379 /* always init to same as bg_blk_sz */
380 tc->UD_bytes_immed_val = scmd->device->sector_size;
381
382 tc->reserved_DC_0 = 0;
383
384 /* always init to 8 */
385 tc->DIF_bytes_immed_val = 8;
386
387 tc->reserved_DC_1 = 0;
388 tc->bgc_blk_sz = scmd->device->sector_size;
389 tc->reserved_E0_0 = 0;
390 tc->app_tag_gen_mask = 0;
391
392 /** setup block guard control **/
393 tc->bgctl = 0;
394
395 /* DIF read strip */
396 tc->bgctl_f.crc_verify = 1;
397 tc->bgctl_f.op = 0x1;
398 if ((type & SCSI_PROT_DIF_TYPE1) || (type & SCSI_PROT_DIF_TYPE2)) {
399 tc->bgctl_f.ref_tag_chk = 1;
400 tc->bgctl_f.app_f_detect = 1;
401 } else if (type & SCSI_PROT_DIF_TYPE3)
402 tc->bgctl_f.app_ref_f_detect = 1;
403
404 tc->app_tag_verify_mask = 0;
405
406 /* must init to 0 for hw */
407 tc->blk_guard_err = 0;
408
409 tc->reserved_E8_0 = 0;
410 tc->ref_tag_seed_gen = 0;
411 }
412
413 /**
414 * This method is will fill in the SCU Task Context for a SSP IO request.
415 * @sci_req:
416 *
417 */
scu_ssp_io_request_construct_task_context(struct isci_request * ireq,enum dma_data_direction dir,u32 len)418 static void scu_ssp_io_request_construct_task_context(struct isci_request *ireq,
419 enum dma_data_direction dir,
420 u32 len)
421 {
422 struct scu_task_context *task_context = ireq->tc;
423 struct sas_task *sas_task = ireq->ttype_ptr.io_task_ptr;
424 struct scsi_cmnd *scmd = sas_task->uldd_task;
425 u8 prot_type = scsi_get_prot_type(scmd);
426 u8 prot_op = scsi_get_prot_op(scmd);
427
428 scu_ssp_reqeust_construct_task_context(ireq, task_context);
429
430 task_context->ssp_command_iu_length =
431 sizeof(struct ssp_cmd_iu) / sizeof(u32);
432 task_context->type.ssp.frame_type = SSP_COMMAND;
433
434 switch (dir) {
435 case DMA_FROM_DEVICE:
436 case DMA_NONE:
437 default:
438 task_context->task_type = SCU_TASK_TYPE_IOREAD;
439 break;
440 case DMA_TO_DEVICE:
441 task_context->task_type = SCU_TASK_TYPE_IOWRITE;
442 break;
443 }
444
445 task_context->transfer_length_bytes = len;
446
447 if (task_context->transfer_length_bytes > 0)
448 sci_request_build_sgl(ireq);
449
450 if (prot_type != SCSI_PROT_DIF_TYPE0) {
451 if (prot_op == SCSI_PROT_READ_STRIP)
452 scu_ssp_ireq_dif_strip(ireq, prot_type, prot_op);
453 else if (prot_op == SCSI_PROT_WRITE_INSERT)
454 scu_ssp_ireq_dif_insert(ireq, prot_type, prot_op);
455 }
456 }
457
458 /**
459 * This method will fill in the SCU Task Context for a SSP Task request. The
460 * following important settings are utilized: -# priority ==
461 * SCU_TASK_PRIORITY_HIGH. This ensures that the task request is issued
462 * ahead of other task destined for the same Remote Node. -# task_type ==
463 * SCU_TASK_TYPE_IOREAD. This simply indicates that a normal request type
464 * (i.e. non-raw frame) is being utilized to perform task management. -#
465 * control_frame == 1. This ensures that the proper endianess is set so
466 * that the bytes are transmitted in the right order for a task frame.
467 * @sci_req: This parameter specifies the task request object being
468 * constructed.
469 *
470 */
scu_ssp_task_request_construct_task_context(struct isci_request * ireq)471 static void scu_ssp_task_request_construct_task_context(struct isci_request *ireq)
472 {
473 struct scu_task_context *task_context = ireq->tc;
474
475 scu_ssp_reqeust_construct_task_context(ireq, task_context);
476
477 task_context->control_frame = 1;
478 task_context->priority = SCU_TASK_PRIORITY_HIGH;
479 task_context->task_type = SCU_TASK_TYPE_RAW_FRAME;
480 task_context->transfer_length_bytes = 0;
481 task_context->type.ssp.frame_type = SSP_TASK;
482 task_context->ssp_command_iu_length =
483 sizeof(struct ssp_task_iu) / sizeof(u32);
484 }
485
486 /**
487 * This method is will fill in the SCU Task Context for any type of SATA
488 * request. This is called from the various SATA constructors.
489 * @sci_req: The general IO request object which is to be used in
490 * constructing the SCU task context.
491 * @task_context: The buffer pointer for the SCU task context which is being
492 * constructed.
493 *
494 * The general io request construction is complete. The buffer assignment for
495 * the command buffer is complete. none Revisit task context construction to
496 * determine what is common for SSP/SMP/STP task context structures.
497 */
scu_sata_reqeust_construct_task_context(struct isci_request * ireq,struct scu_task_context * task_context)498 static void scu_sata_reqeust_construct_task_context(
499 struct isci_request *ireq,
500 struct scu_task_context *task_context)
501 {
502 dma_addr_t dma_addr;
503 struct isci_remote_device *idev;
504 struct isci_port *iport;
505
506 idev = ireq->target_device;
507 iport = idev->owning_port;
508
509 /* Fill in the TC with the its required data */
510 task_context->abort = 0;
511 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
512 task_context->initiator_request = 1;
513 task_context->connection_rate = idev->connection_rate;
514 task_context->protocol_engine_index = ISCI_PEG;
515 task_context->logical_port_index = iport->physical_port_index;
516 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_STP;
517 task_context->valid = SCU_TASK_CONTEXT_VALID;
518 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
519
520 task_context->remote_node_index = idev->rnc.remote_node_index;
521 task_context->command_code = 0;
522
523 task_context->link_layer_control = 0;
524 task_context->do_not_dma_ssp_good_response = 1;
525 task_context->strict_ordering = 0;
526 task_context->control_frame = 0;
527 task_context->timeout_enable = 0;
528 task_context->block_guard_enable = 0;
529
530 task_context->address_modifier = 0;
531 task_context->task_phase = 0x01;
532
533 task_context->ssp_command_iu_length =
534 (sizeof(struct host_to_dev_fis) - sizeof(u32)) / sizeof(u32);
535
536 /* Set the first word of the H2D REG FIS */
537 task_context->type.words[0] = *(u32 *)&ireq->stp.cmd;
538
539 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
540 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
541 (iport->physical_port_index <<
542 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
543 ISCI_TAG_TCI(ireq->io_tag));
544 /*
545 * Copy the physical address for the command buffer to the SCU Task
546 * Context. We must offset the command buffer by 4 bytes because the
547 * first 4 bytes are transfered in the body of the TC.
548 */
549 dma_addr = sci_io_request_get_dma_addr(ireq,
550 ((char *) &ireq->stp.cmd) +
551 sizeof(u32));
552
553 task_context->command_iu_upper = upper_32_bits(dma_addr);
554 task_context->command_iu_lower = lower_32_bits(dma_addr);
555
556 /* SATA Requests do not have a response buffer */
557 task_context->response_iu_upper = 0;
558 task_context->response_iu_lower = 0;
559 }
560
scu_stp_raw_request_construct_task_context(struct isci_request * ireq)561 static void scu_stp_raw_request_construct_task_context(struct isci_request *ireq)
562 {
563 struct scu_task_context *task_context = ireq->tc;
564
565 scu_sata_reqeust_construct_task_context(ireq, task_context);
566
567 task_context->control_frame = 0;
568 task_context->priority = SCU_TASK_PRIORITY_NORMAL;
569 task_context->task_type = SCU_TASK_TYPE_SATA_RAW_FRAME;
570 task_context->type.stp.fis_type = FIS_REGH2D;
571 task_context->transfer_length_bytes = sizeof(struct host_to_dev_fis) - sizeof(u32);
572 }
573
sci_stp_pio_request_construct(struct isci_request * ireq,bool copy_rx_frame)574 static enum sci_status sci_stp_pio_request_construct(struct isci_request *ireq,
575 bool copy_rx_frame)
576 {
577 struct isci_stp_request *stp_req = &ireq->stp.req;
578
579 scu_stp_raw_request_construct_task_context(ireq);
580
581 stp_req->status = 0;
582 stp_req->sgl.offset = 0;
583 stp_req->sgl.set = SCU_SGL_ELEMENT_PAIR_A;
584
585 if (copy_rx_frame) {
586 sci_request_build_sgl(ireq);
587 stp_req->sgl.index = 0;
588 } else {
589 /* The user does not want the data copied to the SGL buffer location */
590 stp_req->sgl.index = -1;
591 }
592
593 return SCI_SUCCESS;
594 }
595
596 /**
597 *
598 * @sci_req: This parameter specifies the request to be constructed as an
599 * optimized request.
600 * @optimized_task_type: This parameter specifies whether the request is to be
601 * an UDMA request or a NCQ request. - A value of 0 indicates UDMA. - A
602 * value of 1 indicates NCQ.
603 *
604 * This method will perform request construction common to all types of STP
605 * requests that are optimized by the silicon (i.e. UDMA, NCQ). This method
606 * returns an indication as to whether the construction was successful.
607 */
sci_stp_optimized_request_construct(struct isci_request * ireq,u8 optimized_task_type,u32 len,enum dma_data_direction dir)608 static void sci_stp_optimized_request_construct(struct isci_request *ireq,
609 u8 optimized_task_type,
610 u32 len,
611 enum dma_data_direction dir)
612 {
613 struct scu_task_context *task_context = ireq->tc;
614
615 /* Build the STP task context structure */
616 scu_sata_reqeust_construct_task_context(ireq, task_context);
617
618 /* Copy over the SGL elements */
619 sci_request_build_sgl(ireq);
620
621 /* Copy over the number of bytes to be transfered */
622 task_context->transfer_length_bytes = len;
623
624 if (dir == DMA_TO_DEVICE) {
625 /*
626 * The difference between the DMA IN and DMA OUT request task type
627 * values are consistent with the difference between FPDMA READ
628 * and FPDMA WRITE values. Add the supplied task type parameter
629 * to this difference to set the task type properly for this
630 * DATA OUT (WRITE) case. */
631 task_context->task_type = optimized_task_type + (SCU_TASK_TYPE_DMA_OUT
632 - SCU_TASK_TYPE_DMA_IN);
633 } else {
634 /*
635 * For the DATA IN (READ) case, simply save the supplied
636 * optimized task type. */
637 task_context->task_type = optimized_task_type;
638 }
639 }
640
sci_atapi_construct(struct isci_request * ireq)641 static void sci_atapi_construct(struct isci_request *ireq)
642 {
643 struct host_to_dev_fis *h2d_fis = &ireq->stp.cmd;
644 struct sas_task *task;
645
646 /* To simplify the implementation we take advantage of the
647 * silicon's partial acceleration of atapi protocol (dma data
648 * transfers), so we promote all commands to dma protocol. This
649 * breaks compatibility with ATA_HORKAGE_ATAPI_MOD16_DMA drives.
650 */
651 h2d_fis->features |= ATAPI_PKT_DMA;
652
653 scu_stp_raw_request_construct_task_context(ireq);
654
655 task = isci_request_access_task(ireq);
656 if (task->data_dir == DMA_NONE)
657 task->total_xfer_len = 0;
658
659 /* clear the response so we can detect arrivial of an
660 * unsolicited h2d fis
661 */
662 ireq->stp.rsp.fis_type = 0;
663 }
664
665 static enum sci_status
sci_io_request_construct_sata(struct isci_request * ireq,u32 len,enum dma_data_direction dir,bool copy)666 sci_io_request_construct_sata(struct isci_request *ireq,
667 u32 len,
668 enum dma_data_direction dir,
669 bool copy)
670 {
671 enum sci_status status = SCI_SUCCESS;
672 struct sas_task *task = isci_request_access_task(ireq);
673 struct domain_device *dev = ireq->target_device->domain_dev;
674
675 /* check for management protocols */
676 if (test_bit(IREQ_TMF, &ireq->flags)) {
677 struct isci_tmf *tmf = isci_request_access_tmf(ireq);
678
679 dev_err(&ireq->owning_controller->pdev->dev,
680 "%s: Request 0x%p received un-handled SAT "
681 "management protocol 0x%x.\n",
682 __func__, ireq, tmf->tmf_code);
683
684 return SCI_FAILURE;
685 }
686
687 if (!sas_protocol_ata(task->task_proto)) {
688 dev_err(&ireq->owning_controller->pdev->dev,
689 "%s: Non-ATA protocol in SATA path: 0x%x\n",
690 __func__,
691 task->task_proto);
692 return SCI_FAILURE;
693
694 }
695
696 /* ATAPI */
697 if (dev->sata_dev.command_set == ATAPI_COMMAND_SET &&
698 task->ata_task.fis.command == ATA_CMD_PACKET) {
699 sci_atapi_construct(ireq);
700 return SCI_SUCCESS;
701 }
702
703 /* non data */
704 if (task->data_dir == DMA_NONE) {
705 scu_stp_raw_request_construct_task_context(ireq);
706 return SCI_SUCCESS;
707 }
708
709 /* NCQ */
710 if (task->ata_task.use_ncq) {
711 sci_stp_optimized_request_construct(ireq,
712 SCU_TASK_TYPE_FPDMAQ_READ,
713 len, dir);
714 return SCI_SUCCESS;
715 }
716
717 /* DMA */
718 if (task->ata_task.dma_xfer) {
719 sci_stp_optimized_request_construct(ireq,
720 SCU_TASK_TYPE_DMA_IN,
721 len, dir);
722 return SCI_SUCCESS;
723 } else /* PIO */
724 return sci_stp_pio_request_construct(ireq, copy);
725
726 return status;
727 }
728
sci_io_request_construct_basic_ssp(struct isci_request * ireq)729 static enum sci_status sci_io_request_construct_basic_ssp(struct isci_request *ireq)
730 {
731 struct sas_task *task = isci_request_access_task(ireq);
732
733 ireq->protocol = SCIC_SSP_PROTOCOL;
734
735 scu_ssp_io_request_construct_task_context(ireq,
736 task->data_dir,
737 task->total_xfer_len);
738
739 sci_io_request_build_ssp_command_iu(ireq);
740
741 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
742
743 return SCI_SUCCESS;
744 }
745
sci_task_request_construct_ssp(struct isci_request * ireq)746 enum sci_status sci_task_request_construct_ssp(
747 struct isci_request *ireq)
748 {
749 /* Construct the SSP Task SCU Task Context */
750 scu_ssp_task_request_construct_task_context(ireq);
751
752 /* Fill in the SSP Task IU */
753 sci_task_request_build_ssp_task_iu(ireq);
754
755 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
756
757 return SCI_SUCCESS;
758 }
759
sci_io_request_construct_basic_sata(struct isci_request * ireq)760 static enum sci_status sci_io_request_construct_basic_sata(struct isci_request *ireq)
761 {
762 enum sci_status status;
763 bool copy = false;
764 struct sas_task *task = isci_request_access_task(ireq);
765
766 ireq->protocol = SCIC_STP_PROTOCOL;
767
768 copy = (task->data_dir == DMA_NONE) ? false : true;
769
770 status = sci_io_request_construct_sata(ireq,
771 task->total_xfer_len,
772 task->data_dir,
773 copy);
774
775 if (status == SCI_SUCCESS)
776 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
777
778 return status;
779 }
780
781 /**
782 * sci_req_tx_bytes - bytes transferred when reply underruns request
783 * @ireq: request that was terminated early
784 */
785 #define SCU_TASK_CONTEXT_SRAM 0x200000
sci_req_tx_bytes(struct isci_request * ireq)786 static u32 sci_req_tx_bytes(struct isci_request *ireq)
787 {
788 struct isci_host *ihost = ireq->owning_controller;
789 u32 ret_val = 0;
790
791 if (readl(&ihost->smu_registers->address_modifier) == 0) {
792 void __iomem *scu_reg_base = ihost->scu_registers;
793
794 /* get the bytes of data from the Address == BAR1 + 20002Ch + (256*TCi) where
795 * BAR1 is the scu_registers
796 * 0x20002C = 0x200000 + 0x2c
797 * = start of task context SRAM + offset of (type.ssp.data_offset)
798 * TCi is the io_tag of struct sci_request
799 */
800 ret_val = readl(scu_reg_base +
801 (SCU_TASK_CONTEXT_SRAM + offsetof(struct scu_task_context, type.ssp.data_offset)) +
802 ((sizeof(struct scu_task_context)) * ISCI_TAG_TCI(ireq->io_tag)));
803 }
804
805 return ret_val;
806 }
807
sci_request_start(struct isci_request * ireq)808 enum sci_status sci_request_start(struct isci_request *ireq)
809 {
810 enum sci_base_request_states state;
811 struct scu_task_context *tc = ireq->tc;
812 struct isci_host *ihost = ireq->owning_controller;
813
814 state = ireq->sm.current_state_id;
815 if (state != SCI_REQ_CONSTRUCTED) {
816 dev_warn(&ihost->pdev->dev,
817 "%s: SCIC IO Request requested to start while in wrong "
818 "state %d\n", __func__, state);
819 return SCI_FAILURE_INVALID_STATE;
820 }
821
822 tc->task_index = ISCI_TAG_TCI(ireq->io_tag);
823
824 switch (tc->protocol_type) {
825 case SCU_TASK_CONTEXT_PROTOCOL_SMP:
826 case SCU_TASK_CONTEXT_PROTOCOL_SSP:
827 /* SSP/SMP Frame */
828 tc->type.ssp.tag = ireq->io_tag;
829 tc->type.ssp.target_port_transfer_tag = 0xFFFF;
830 break;
831
832 case SCU_TASK_CONTEXT_PROTOCOL_STP:
833 /* STP/SATA Frame
834 * tc->type.stp.ncq_tag = ireq->ncq_tag;
835 */
836 break;
837
838 case SCU_TASK_CONTEXT_PROTOCOL_NONE:
839 /* / @todo When do we set no protocol type? */
840 break;
841
842 default:
843 /* This should never happen since we build the IO
844 * requests */
845 break;
846 }
847
848 /* Add to the post_context the io tag value */
849 ireq->post_context |= ISCI_TAG_TCI(ireq->io_tag);
850
851 /* Everything is good go ahead and change state */
852 sci_change_state(&ireq->sm, SCI_REQ_STARTED);
853
854 return SCI_SUCCESS;
855 }
856
857 enum sci_status
sci_io_request_terminate(struct isci_request * ireq)858 sci_io_request_terminate(struct isci_request *ireq)
859 {
860 enum sci_base_request_states state;
861
862 state = ireq->sm.current_state_id;
863
864 switch (state) {
865 case SCI_REQ_CONSTRUCTED:
866 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
867 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
868 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
869 return SCI_SUCCESS;
870 case SCI_REQ_STARTED:
871 case SCI_REQ_TASK_WAIT_TC_COMP:
872 case SCI_REQ_SMP_WAIT_RESP:
873 case SCI_REQ_SMP_WAIT_TC_COMP:
874 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
875 case SCI_REQ_STP_UDMA_WAIT_D2H:
876 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
877 case SCI_REQ_STP_NON_DATA_WAIT_D2H:
878 case SCI_REQ_STP_PIO_WAIT_H2D:
879 case SCI_REQ_STP_PIO_WAIT_FRAME:
880 case SCI_REQ_STP_PIO_DATA_IN:
881 case SCI_REQ_STP_PIO_DATA_OUT:
882 case SCI_REQ_ATAPI_WAIT_H2D:
883 case SCI_REQ_ATAPI_WAIT_PIO_SETUP:
884 case SCI_REQ_ATAPI_WAIT_D2H:
885 case SCI_REQ_ATAPI_WAIT_TC_COMP:
886 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
887 return SCI_SUCCESS;
888 case SCI_REQ_TASK_WAIT_TC_RESP:
889 /* The task frame was already confirmed to have been
890 * sent by the SCU HW. Since the state machine is
891 * now only waiting for the task response itself,
892 * abort the request and complete it immediately
893 * and don't wait for the task response.
894 */
895 sci_change_state(&ireq->sm, SCI_REQ_ABORTING);
896 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
897 return SCI_SUCCESS;
898 case SCI_REQ_ABORTING:
899 /* If a request has a termination requested twice, return
900 * a failure indication, since HW confirmation of the first
901 * abort is still outstanding.
902 */
903 case SCI_REQ_COMPLETED:
904 default:
905 dev_warn(&ireq->owning_controller->pdev->dev,
906 "%s: SCIC IO Request requested to abort while in wrong "
907 "state %d\n",
908 __func__,
909 ireq->sm.current_state_id);
910 break;
911 }
912
913 return SCI_FAILURE_INVALID_STATE;
914 }
915
sci_request_complete(struct isci_request * ireq)916 enum sci_status sci_request_complete(struct isci_request *ireq)
917 {
918 enum sci_base_request_states state;
919 struct isci_host *ihost = ireq->owning_controller;
920
921 state = ireq->sm.current_state_id;
922 if (WARN_ONCE(state != SCI_REQ_COMPLETED,
923 "isci: request completion from wrong state (%s)\n",
924 req_state_name(state)))
925 return SCI_FAILURE_INVALID_STATE;
926
927 if (ireq->saved_rx_frame_index != SCU_INVALID_FRAME_INDEX)
928 sci_controller_release_frame(ihost,
929 ireq->saved_rx_frame_index);
930
931 /* XXX can we just stop the machine and remove the 'final' state? */
932 sci_change_state(&ireq->sm, SCI_REQ_FINAL);
933 return SCI_SUCCESS;
934 }
935
sci_io_request_event_handler(struct isci_request * ireq,u32 event_code)936 enum sci_status sci_io_request_event_handler(struct isci_request *ireq,
937 u32 event_code)
938 {
939 enum sci_base_request_states state;
940 struct isci_host *ihost = ireq->owning_controller;
941
942 state = ireq->sm.current_state_id;
943
944 if (state != SCI_REQ_STP_PIO_DATA_IN) {
945 dev_warn(&ihost->pdev->dev, "%s: (%x) in wrong state %s\n",
946 __func__, event_code, req_state_name(state));
947
948 return SCI_FAILURE_INVALID_STATE;
949 }
950
951 switch (scu_get_event_specifier(event_code)) {
952 case SCU_TASK_DONE_CRC_ERR << SCU_EVENT_SPECIFIC_CODE_SHIFT:
953 /* We are waiting for data and the SCU has R_ERR the data frame.
954 * Go back to waiting for the D2H Register FIS
955 */
956 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
957 return SCI_SUCCESS;
958 default:
959 dev_err(&ihost->pdev->dev,
960 "%s: pio request unexpected event %#x\n",
961 __func__, event_code);
962
963 /* TODO Should we fail the PIO request when we get an
964 * unexpected event?
965 */
966 return SCI_FAILURE;
967 }
968 }
969
970 /*
971 * This function copies response data for requests returning response data
972 * instead of sense data.
973 * @sci_req: This parameter specifies the request object for which to copy
974 * the response data.
975 */
sci_io_request_copy_response(struct isci_request * ireq)976 static void sci_io_request_copy_response(struct isci_request *ireq)
977 {
978 void *resp_buf;
979 u32 len;
980 struct ssp_response_iu *ssp_response;
981 struct isci_tmf *isci_tmf = isci_request_access_tmf(ireq);
982
983 ssp_response = &ireq->ssp.rsp;
984
985 resp_buf = &isci_tmf->resp.resp_iu;
986
987 len = min_t(u32,
988 SSP_RESP_IU_MAX_SIZE,
989 be32_to_cpu(ssp_response->response_data_len));
990
991 memcpy(resp_buf, ssp_response->resp_data, len);
992 }
993
994 static enum sci_status
request_started_state_tc_event(struct isci_request * ireq,u32 completion_code)995 request_started_state_tc_event(struct isci_request *ireq,
996 u32 completion_code)
997 {
998 struct ssp_response_iu *resp_iu;
999 u8 datapres;
1000
1001 /* TODO: Any SDMA return code of other than 0 is bad decode 0x003C0000
1002 * to determine SDMA status
1003 */
1004 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1005 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1006 ireq->scu_status = SCU_TASK_DONE_GOOD;
1007 ireq->sci_status = SCI_SUCCESS;
1008 break;
1009 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EARLY_RESP): {
1010 /* There are times when the SCU hardware will return an early
1011 * response because the io request specified more data than is
1012 * returned by the target device (mode pages, inquiry data,
1013 * etc.). We must check the response stats to see if this is
1014 * truly a failed request or a good request that just got
1015 * completed early.
1016 */
1017 struct ssp_response_iu *resp = &ireq->ssp.rsp;
1018 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1019
1020 sci_swab32_cpy(&ireq->ssp.rsp,
1021 &ireq->ssp.rsp,
1022 word_cnt);
1023
1024 if (resp->status == 0) {
1025 ireq->scu_status = SCU_TASK_DONE_GOOD;
1026 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
1027 } else {
1028 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1029 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1030 }
1031 break;
1032 }
1033 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CHECK_RESPONSE): {
1034 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1035
1036 sci_swab32_cpy(&ireq->ssp.rsp,
1037 &ireq->ssp.rsp,
1038 word_cnt);
1039
1040 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1041 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1042 break;
1043 }
1044
1045 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RESP_LEN_ERR):
1046 /* TODO With TASK_DONE_RESP_LEN_ERR is the response frame
1047 * guaranteed to be received before this completion status is
1048 * posted?
1049 */
1050 resp_iu = &ireq->ssp.rsp;
1051 datapres = resp_iu->datapres;
1052
1053 if (datapres == 1 || datapres == 2) {
1054 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1055 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1056 } else {
1057 ireq->scu_status = SCU_TASK_DONE_GOOD;
1058 ireq->sci_status = SCI_SUCCESS;
1059 }
1060 break;
1061 /* only stp device gets suspended. */
1062 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1063 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_PERR):
1064 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_ERR):
1065 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_DATA_LEN_ERR):
1066 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_ABORT_ERR):
1067 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_WD_LEN):
1068 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
1069 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_RESP):
1070 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_SDBFIS):
1071 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
1072 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDB_ERR):
1073 if (ireq->protocol == SCIC_STP_PROTOCOL) {
1074 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1075 SCU_COMPLETION_TL_STATUS_SHIFT;
1076 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1077 } else {
1078 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1079 SCU_COMPLETION_TL_STATUS_SHIFT;
1080 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1081 }
1082 break;
1083
1084 /* both stp/ssp device gets suspended */
1085 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LF_ERR):
1086 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_WRONG_DESTINATION):
1087 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1):
1088 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2):
1089 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3):
1090 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_BAD_DESTINATION):
1091 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_ZONE_VIOLATION):
1092 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY):
1093 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED):
1094 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED):
1095 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1096 SCU_COMPLETION_TL_STATUS_SHIFT;
1097 ireq->sci_status = SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED;
1098 break;
1099
1100 /* neither ssp nor stp gets suspended. */
1101 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_NAK_CMD_ERR):
1102 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_XR):
1103 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_XR_IU_LEN_ERR):
1104 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SDMA_ERR):
1105 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OFFSET_ERR):
1106 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_EXCESS_DATA):
1107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1108 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1109 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1110 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1111 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_DATA):
1112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_OPEN_FAIL):
1113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_VIIT_ENTRY_NV):
1114 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_IIT_ENTRY_NV):
1115 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_RNCNV_OUTBOUND):
1116 default:
1117 ireq->scu_status = SCU_GET_COMPLETION_TL_STATUS(completion_code) >>
1118 SCU_COMPLETION_TL_STATUS_SHIFT;
1119 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1120 break;
1121 }
1122
1123 /*
1124 * TODO: This is probably wrong for ACK/NAK timeout conditions
1125 */
1126
1127 /* In all cases we will treat this as the completion of the IO req. */
1128 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1129 return SCI_SUCCESS;
1130 }
1131
1132 static enum sci_status
request_aborting_state_tc_event(struct isci_request * ireq,u32 completion_code)1133 request_aborting_state_tc_event(struct isci_request *ireq,
1134 u32 completion_code)
1135 {
1136 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1137 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
1138 case (SCU_TASK_DONE_TASK_ABORT << SCU_COMPLETION_TL_STATUS_SHIFT):
1139 ireq->scu_status = SCU_TASK_DONE_TASK_ABORT;
1140 ireq->sci_status = SCI_FAILURE_IO_TERMINATED;
1141 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1142 break;
1143
1144 default:
1145 /* Unless we get some strange error wait for the task abort to complete
1146 * TODO: Should there be a state change for this completion?
1147 */
1148 break;
1149 }
1150
1151 return SCI_SUCCESS;
1152 }
1153
ssp_task_request_await_tc_event(struct isci_request * ireq,u32 completion_code)1154 static enum sci_status ssp_task_request_await_tc_event(struct isci_request *ireq,
1155 u32 completion_code)
1156 {
1157 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1158 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1159 ireq->scu_status = SCU_TASK_DONE_GOOD;
1160 ireq->sci_status = SCI_SUCCESS;
1161 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1162 break;
1163 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_ACK_NAK_TO):
1164 /* Currently, the decision is to simply allow the task request
1165 * to timeout if the task IU wasn't received successfully.
1166 * There is a potential for receiving multiple task responses if
1167 * we decide to send the task IU again.
1168 */
1169 dev_warn(&ireq->owning_controller->pdev->dev,
1170 "%s: TaskRequest:0x%p CompletionCode:%x - "
1171 "ACK/NAK timeout\n", __func__, ireq,
1172 completion_code);
1173
1174 sci_change_state(&ireq->sm, SCI_REQ_TASK_WAIT_TC_RESP);
1175 break;
1176 default:
1177 /*
1178 * All other completion status cause the IO to be complete.
1179 * If a NAK was received, then it is up to the user to retry
1180 * the request.
1181 */
1182 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1183 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1184 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1185 break;
1186 }
1187
1188 return SCI_SUCCESS;
1189 }
1190
1191 static enum sci_status
smp_request_await_response_tc_event(struct isci_request * ireq,u32 completion_code)1192 smp_request_await_response_tc_event(struct isci_request *ireq,
1193 u32 completion_code)
1194 {
1195 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1196 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1197 /* In the AWAIT RESPONSE state, any TC completion is
1198 * unexpected. but if the TC has success status, we
1199 * complete the IO anyway.
1200 */
1201 ireq->scu_status = SCU_TASK_DONE_GOOD;
1202 ireq->sci_status = SCI_SUCCESS;
1203 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1204 break;
1205 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_RESP_TO_ERR):
1206 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_UFI_ERR):
1207 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_FRM_TYPE_ERR):
1208 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_SMP_LL_RX_ERR):
1209 /* These status has been seen in a specific LSI
1210 * expander, which sometimes is not able to send smp
1211 * response within 2 ms. This causes our hardware break
1212 * the connection and set TC completion with one of
1213 * these SMP_XXX_XX_ERR status. For these type of error,
1214 * we ask ihost user to retry the request.
1215 */
1216 ireq->scu_status = SCU_TASK_DONE_SMP_RESP_TO_ERR;
1217 ireq->sci_status = SCI_FAILURE_RETRY_REQUIRED;
1218 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1219 break;
1220 default:
1221 /* All other completion status cause the IO to be complete. If a NAK
1222 * was received, then it is up to the user to retry the request
1223 */
1224 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1225 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1226 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1227 break;
1228 }
1229
1230 return SCI_SUCCESS;
1231 }
1232
1233 static enum sci_status
smp_request_await_tc_event(struct isci_request * ireq,u32 completion_code)1234 smp_request_await_tc_event(struct isci_request *ireq,
1235 u32 completion_code)
1236 {
1237 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1238 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1239 ireq->scu_status = SCU_TASK_DONE_GOOD;
1240 ireq->sci_status = SCI_SUCCESS;
1241 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1242 break;
1243 default:
1244 /* All other completion status cause the IO to be
1245 * complete. If a NAK was received, then it is up to
1246 * the user to retry the request.
1247 */
1248 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1249 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1250 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1251 break;
1252 }
1253
1254 return SCI_SUCCESS;
1255 }
1256
pio_sgl_next(struct isci_stp_request * stp_req)1257 static struct scu_sgl_element *pio_sgl_next(struct isci_stp_request *stp_req)
1258 {
1259 struct scu_sgl_element *sgl;
1260 struct scu_sgl_element_pair *sgl_pair;
1261 struct isci_request *ireq = to_ireq(stp_req);
1262 struct isci_stp_pio_sgl *pio_sgl = &stp_req->sgl;
1263
1264 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1265 if (!sgl_pair)
1266 sgl = NULL;
1267 else if (pio_sgl->set == SCU_SGL_ELEMENT_PAIR_A) {
1268 if (sgl_pair->B.address_lower == 0 &&
1269 sgl_pair->B.address_upper == 0) {
1270 sgl = NULL;
1271 } else {
1272 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_B;
1273 sgl = &sgl_pair->B;
1274 }
1275 } else {
1276 if (sgl_pair->next_pair_lower == 0 &&
1277 sgl_pair->next_pair_upper == 0) {
1278 sgl = NULL;
1279 } else {
1280 pio_sgl->index++;
1281 pio_sgl->set = SCU_SGL_ELEMENT_PAIR_A;
1282 sgl_pair = to_sgl_element_pair(ireq, pio_sgl->index);
1283 sgl = &sgl_pair->A;
1284 }
1285 }
1286
1287 return sgl;
1288 }
1289
1290 static enum sci_status
stp_request_non_data_await_h2d_tc_event(struct isci_request * ireq,u32 completion_code)1291 stp_request_non_data_await_h2d_tc_event(struct isci_request *ireq,
1292 u32 completion_code)
1293 {
1294 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1295 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1296 ireq->scu_status = SCU_TASK_DONE_GOOD;
1297 ireq->sci_status = SCI_SUCCESS;
1298 sci_change_state(&ireq->sm, SCI_REQ_STP_NON_DATA_WAIT_D2H);
1299 break;
1300
1301 default:
1302 /* All other completion status cause the IO to be
1303 * complete. If a NAK was received, then it is up to
1304 * the user to retry the request.
1305 */
1306 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1307 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1308 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1309 break;
1310 }
1311
1312 return SCI_SUCCESS;
1313 }
1314
1315 #define SCU_MAX_FRAME_BUFFER_SIZE 0x400 /* 1K is the maximum SCU frame data payload */
1316
1317 /* transmit DATA_FIS from (current sgl + offset) for input
1318 * parameter length. current sgl and offset is alreay stored in the IO request
1319 */
sci_stp_request_pio_data_out_trasmit_data_frame(struct isci_request * ireq,u32 length)1320 static enum sci_status sci_stp_request_pio_data_out_trasmit_data_frame(
1321 struct isci_request *ireq,
1322 u32 length)
1323 {
1324 struct isci_stp_request *stp_req = &ireq->stp.req;
1325 struct scu_task_context *task_context = ireq->tc;
1326 struct scu_sgl_element_pair *sgl_pair;
1327 struct scu_sgl_element *current_sgl;
1328
1329 /* Recycle the TC and reconstruct it for sending out DATA FIS containing
1330 * for the data from current_sgl+offset for the input length
1331 */
1332 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1333 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A)
1334 current_sgl = &sgl_pair->A;
1335 else
1336 current_sgl = &sgl_pair->B;
1337
1338 /* update the TC */
1339 task_context->command_iu_upper = current_sgl->address_upper;
1340 task_context->command_iu_lower = current_sgl->address_lower;
1341 task_context->transfer_length_bytes = length;
1342 task_context->type.stp.fis_type = FIS_DATA;
1343
1344 /* send the new TC out. */
1345 return sci_controller_continue_io(ireq);
1346 }
1347
sci_stp_request_pio_data_out_transmit_data(struct isci_request * ireq)1348 static enum sci_status sci_stp_request_pio_data_out_transmit_data(struct isci_request *ireq)
1349 {
1350 struct isci_stp_request *stp_req = &ireq->stp.req;
1351 struct scu_sgl_element_pair *sgl_pair;
1352 enum sci_status status = SCI_SUCCESS;
1353 struct scu_sgl_element *sgl;
1354 u32 offset;
1355 u32 len = 0;
1356
1357 offset = stp_req->sgl.offset;
1358 sgl_pair = to_sgl_element_pair(ireq, stp_req->sgl.index);
1359 if (WARN_ONCE(!sgl_pair, "%s: null sgl element", __func__))
1360 return SCI_FAILURE;
1361
1362 if (stp_req->sgl.set == SCU_SGL_ELEMENT_PAIR_A) {
1363 sgl = &sgl_pair->A;
1364 len = sgl_pair->A.length - offset;
1365 } else {
1366 sgl = &sgl_pair->B;
1367 len = sgl_pair->B.length - offset;
1368 }
1369
1370 if (stp_req->pio_len == 0)
1371 return SCI_SUCCESS;
1372
1373 if (stp_req->pio_len >= len) {
1374 status = sci_stp_request_pio_data_out_trasmit_data_frame(ireq, len);
1375 if (status != SCI_SUCCESS)
1376 return status;
1377 stp_req->pio_len -= len;
1378
1379 /* update the current sgl, offset and save for future */
1380 sgl = pio_sgl_next(stp_req);
1381 offset = 0;
1382 } else if (stp_req->pio_len < len) {
1383 sci_stp_request_pio_data_out_trasmit_data_frame(ireq, stp_req->pio_len);
1384
1385 /* Sgl offset will be adjusted and saved for future */
1386 offset += stp_req->pio_len;
1387 sgl->address_lower += stp_req->pio_len;
1388 stp_req->pio_len = 0;
1389 }
1390
1391 stp_req->sgl.offset = offset;
1392
1393 return status;
1394 }
1395
1396 /**
1397 *
1398 * @stp_request: The request that is used for the SGL processing.
1399 * @data_buffer: The buffer of data to be copied.
1400 * @length: The length of the data transfer.
1401 *
1402 * Copy the data from the buffer for the length specified to the IO reqeust SGL
1403 * specified data region. enum sci_status
1404 */
1405 static enum sci_status
sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request * stp_req,u8 * data_buf,u32 len)1406 sci_stp_request_pio_data_in_copy_data_buffer(struct isci_stp_request *stp_req,
1407 u8 *data_buf, u32 len)
1408 {
1409 struct isci_request *ireq;
1410 u8 *src_addr;
1411 int copy_len;
1412 struct sas_task *task;
1413 struct scatterlist *sg;
1414 void *kaddr;
1415 int total_len = len;
1416
1417 ireq = to_ireq(stp_req);
1418 task = isci_request_access_task(ireq);
1419 src_addr = data_buf;
1420
1421 if (task->num_scatter > 0) {
1422 sg = task->scatter;
1423
1424 while (total_len > 0) {
1425 struct page *page = sg_page(sg);
1426
1427 copy_len = min_t(int, total_len, sg_dma_len(sg));
1428 kaddr = kmap_atomic(page);
1429 memcpy(kaddr + sg->offset, src_addr, copy_len);
1430 kunmap_atomic(kaddr);
1431 total_len -= copy_len;
1432 src_addr += copy_len;
1433 sg = sg_next(sg);
1434 }
1435 } else {
1436 BUG_ON(task->total_xfer_len < total_len);
1437 memcpy(task->scatter, src_addr, total_len);
1438 }
1439
1440 return SCI_SUCCESS;
1441 }
1442
1443 /**
1444 *
1445 * @sci_req: The PIO DATA IN request that is to receive the data.
1446 * @data_buffer: The buffer to copy from.
1447 *
1448 * Copy the data buffer to the io request data region. enum sci_status
1449 */
sci_stp_request_pio_data_in_copy_data(struct isci_stp_request * stp_req,u8 * data_buffer)1450 static enum sci_status sci_stp_request_pio_data_in_copy_data(
1451 struct isci_stp_request *stp_req,
1452 u8 *data_buffer)
1453 {
1454 enum sci_status status;
1455
1456 /*
1457 * If there is less than 1K remaining in the transfer request
1458 * copy just the data for the transfer */
1459 if (stp_req->pio_len < SCU_MAX_FRAME_BUFFER_SIZE) {
1460 status = sci_stp_request_pio_data_in_copy_data_buffer(
1461 stp_req, data_buffer, stp_req->pio_len);
1462
1463 if (status == SCI_SUCCESS)
1464 stp_req->pio_len = 0;
1465 } else {
1466 /* We are transfering the whole frame so copy */
1467 status = sci_stp_request_pio_data_in_copy_data_buffer(
1468 stp_req, data_buffer, SCU_MAX_FRAME_BUFFER_SIZE);
1469
1470 if (status == SCI_SUCCESS)
1471 stp_req->pio_len -= SCU_MAX_FRAME_BUFFER_SIZE;
1472 }
1473
1474 return status;
1475 }
1476
1477 static enum sci_status
stp_request_pio_await_h2d_completion_tc_event(struct isci_request * ireq,u32 completion_code)1478 stp_request_pio_await_h2d_completion_tc_event(struct isci_request *ireq,
1479 u32 completion_code)
1480 {
1481 enum sci_status status = SCI_SUCCESS;
1482
1483 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1484 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1485 ireq->scu_status = SCU_TASK_DONE_GOOD;
1486 ireq->sci_status = SCI_SUCCESS;
1487 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1488 break;
1489
1490 default:
1491 /* All other completion status cause the IO to be
1492 * complete. If a NAK was received, then it is up to
1493 * the user to retry the request.
1494 */
1495 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1496 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1497 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1498 break;
1499 }
1500
1501 return status;
1502 }
1503
1504 static enum sci_status
pio_data_out_tx_done_tc_event(struct isci_request * ireq,u32 completion_code)1505 pio_data_out_tx_done_tc_event(struct isci_request *ireq,
1506 u32 completion_code)
1507 {
1508 enum sci_status status = SCI_SUCCESS;
1509 bool all_frames_transferred = false;
1510 struct isci_stp_request *stp_req = &ireq->stp.req;
1511
1512 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
1513 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
1514 /* Transmit data */
1515 if (stp_req->pio_len != 0) {
1516 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1517 if (status == SCI_SUCCESS) {
1518 if (stp_req->pio_len == 0)
1519 all_frames_transferred = true;
1520 }
1521 } else if (stp_req->pio_len == 0) {
1522 /*
1523 * this will happen if the all data is written at the
1524 * first time after the pio setup fis is received
1525 */
1526 all_frames_transferred = true;
1527 }
1528
1529 /* all data transferred. */
1530 if (all_frames_transferred) {
1531 /*
1532 * Change the state to SCI_REQ_STP_PIO_DATA_IN
1533 * and wait for PIO_SETUP fis / or D2H REg fis. */
1534 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1535 }
1536 break;
1537
1538 default:
1539 /*
1540 * All other completion status cause the IO to be complete.
1541 * If a NAK was received, then it is up to the user to retry
1542 * the request.
1543 */
1544 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
1545 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1546 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1547 break;
1548 }
1549
1550 return status;
1551 }
1552
sci_stp_request_udma_general_frame_handler(struct isci_request * ireq,u32 frame_index)1553 static enum sci_status sci_stp_request_udma_general_frame_handler(struct isci_request *ireq,
1554 u32 frame_index)
1555 {
1556 struct isci_host *ihost = ireq->owning_controller;
1557 struct dev_to_host_fis *frame_header;
1558 enum sci_status status;
1559 u32 *frame_buffer;
1560
1561 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1562 frame_index,
1563 (void **)&frame_header);
1564
1565 if ((status == SCI_SUCCESS) &&
1566 (frame_header->fis_type == FIS_REGD2H)) {
1567 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1568 frame_index,
1569 (void **)&frame_buffer);
1570
1571 sci_controller_copy_sata_response(&ireq->stp.rsp,
1572 frame_header,
1573 frame_buffer);
1574 }
1575
1576 sci_controller_release_frame(ihost, frame_index);
1577
1578 return status;
1579 }
1580
process_unsolicited_fis(struct isci_request * ireq,u32 frame_index)1581 static enum sci_status process_unsolicited_fis(struct isci_request *ireq,
1582 u32 frame_index)
1583 {
1584 struct isci_host *ihost = ireq->owning_controller;
1585 enum sci_status status;
1586 struct dev_to_host_fis *frame_header;
1587 u32 *frame_buffer;
1588
1589 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1590 frame_index,
1591 (void **)&frame_header);
1592
1593 if (status != SCI_SUCCESS)
1594 return status;
1595
1596 if (frame_header->fis_type != FIS_REGD2H) {
1597 dev_err(&ireq->isci_host->pdev->dev,
1598 "%s ERROR: invalid fis type 0x%X\n",
1599 __func__, frame_header->fis_type);
1600 return SCI_FAILURE;
1601 }
1602
1603 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1604 frame_index,
1605 (void **)&frame_buffer);
1606
1607 sci_controller_copy_sata_response(&ireq->stp.rsp,
1608 (u32 *)frame_header,
1609 frame_buffer);
1610
1611 /* Frame has been decoded return it to the controller */
1612 sci_controller_release_frame(ihost, frame_index);
1613
1614 return status;
1615 }
1616
atapi_d2h_reg_frame_handler(struct isci_request * ireq,u32 frame_index)1617 static enum sci_status atapi_d2h_reg_frame_handler(struct isci_request *ireq,
1618 u32 frame_index)
1619 {
1620 struct sas_task *task = isci_request_access_task(ireq);
1621 enum sci_status status;
1622
1623 status = process_unsolicited_fis(ireq, frame_index);
1624
1625 if (status == SCI_SUCCESS) {
1626 if (ireq->stp.rsp.status & ATA_ERR)
1627 status = SCI_IO_FAILURE_RESPONSE_VALID;
1628 } else {
1629 status = SCI_IO_FAILURE_RESPONSE_VALID;
1630 }
1631
1632 if (status != SCI_SUCCESS) {
1633 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1634 ireq->sci_status = status;
1635 } else {
1636 ireq->scu_status = SCU_TASK_DONE_GOOD;
1637 ireq->sci_status = SCI_SUCCESS;
1638 }
1639
1640 /* the d2h ufi is the end of non-data commands */
1641 if (task->data_dir == DMA_NONE)
1642 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1643
1644 return status;
1645 }
1646
scu_atapi_reconstruct_raw_frame_task_context(struct isci_request * ireq)1647 static void scu_atapi_reconstruct_raw_frame_task_context(struct isci_request *ireq)
1648 {
1649 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1650 void *atapi_cdb = ireq->ttype_ptr.io_task_ptr->ata_task.atapi_packet;
1651 struct scu_task_context *task_context = ireq->tc;
1652
1653 /* fill in the SCU Task Context for a DATA fis containing CDB in Raw Frame
1654 * type. The TC for previous Packet fis was already there, we only need to
1655 * change the H2D fis content.
1656 */
1657 memset(&ireq->stp.cmd, 0, sizeof(struct host_to_dev_fis));
1658 memcpy(((u8 *)&ireq->stp.cmd + sizeof(u32)), atapi_cdb, ATAPI_CDB_LEN);
1659 memset(&(task_context->type.stp), 0, sizeof(struct stp_task_context));
1660 task_context->type.stp.fis_type = FIS_DATA;
1661 task_context->transfer_length_bytes = dev->cdb_len;
1662 }
1663
scu_atapi_construct_task_context(struct isci_request * ireq)1664 static void scu_atapi_construct_task_context(struct isci_request *ireq)
1665 {
1666 struct ata_device *dev = sas_to_ata_dev(ireq->target_device->domain_dev);
1667 struct sas_task *task = isci_request_access_task(ireq);
1668 struct scu_task_context *task_context = ireq->tc;
1669 int cdb_len = dev->cdb_len;
1670
1671 /* reference: SSTL 1.13.4.2
1672 * task_type, sata_direction
1673 */
1674 if (task->data_dir == DMA_TO_DEVICE) {
1675 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_OUT;
1676 task_context->sata_direction = 0;
1677 } else {
1678 /* todo: for NO_DATA command, we need to send out raw frame. */
1679 task_context->task_type = SCU_TASK_TYPE_PACKET_DMA_IN;
1680 task_context->sata_direction = 1;
1681 }
1682
1683 memset(&task_context->type.stp, 0, sizeof(task_context->type.stp));
1684 task_context->type.stp.fis_type = FIS_DATA;
1685
1686 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
1687 memcpy(&ireq->stp.cmd.lbal, task->ata_task.atapi_packet, cdb_len);
1688 task_context->ssp_command_iu_length = cdb_len / sizeof(u32);
1689
1690 /* task phase is set to TX_CMD */
1691 task_context->task_phase = 0x1;
1692
1693 /* retry counter */
1694 task_context->stp_retry_count = 0;
1695
1696 /* data transfer size. */
1697 task_context->transfer_length_bytes = task->total_xfer_len;
1698
1699 /* setup sgl */
1700 sci_request_build_sgl(ireq);
1701 }
1702
1703 enum sci_status
sci_io_request_frame_handler(struct isci_request * ireq,u32 frame_index)1704 sci_io_request_frame_handler(struct isci_request *ireq,
1705 u32 frame_index)
1706 {
1707 struct isci_host *ihost = ireq->owning_controller;
1708 struct isci_stp_request *stp_req = &ireq->stp.req;
1709 enum sci_base_request_states state;
1710 enum sci_status status;
1711 ssize_t word_cnt;
1712
1713 state = ireq->sm.current_state_id;
1714 switch (state) {
1715 case SCI_REQ_STARTED: {
1716 struct ssp_frame_hdr ssp_hdr;
1717 void *frame_header;
1718
1719 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1720 frame_index,
1721 &frame_header);
1722
1723 word_cnt = sizeof(struct ssp_frame_hdr) / sizeof(u32);
1724 sci_swab32_cpy(&ssp_hdr, frame_header, word_cnt);
1725
1726 if (ssp_hdr.frame_type == SSP_RESPONSE) {
1727 struct ssp_response_iu *resp_iu;
1728 ssize_t word_cnt = SSP_RESP_IU_MAX_SIZE / sizeof(u32);
1729
1730 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1731 frame_index,
1732 (void **)&resp_iu);
1733
1734 sci_swab32_cpy(&ireq->ssp.rsp, resp_iu, word_cnt);
1735
1736 resp_iu = &ireq->ssp.rsp;
1737
1738 if (resp_iu->datapres == 0x01 ||
1739 resp_iu->datapres == 0x02) {
1740 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1741 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1742 } else {
1743 ireq->scu_status = SCU_TASK_DONE_GOOD;
1744 ireq->sci_status = SCI_SUCCESS;
1745 }
1746 } else {
1747 /* not a response frame, why did it get forwarded? */
1748 dev_err(&ihost->pdev->dev,
1749 "%s: SCIC IO Request 0x%p received unexpected "
1750 "frame %d type 0x%02x\n", __func__, ireq,
1751 frame_index, ssp_hdr.frame_type);
1752 }
1753
1754 /*
1755 * In any case we are done with this frame buffer return it to
1756 * the controller
1757 */
1758 sci_controller_release_frame(ihost, frame_index);
1759
1760 return SCI_SUCCESS;
1761 }
1762
1763 case SCI_REQ_TASK_WAIT_TC_RESP:
1764 sci_io_request_copy_response(ireq);
1765 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1766 sci_controller_release_frame(ihost, frame_index);
1767 return SCI_SUCCESS;
1768
1769 case SCI_REQ_SMP_WAIT_RESP: {
1770 struct sas_task *task = isci_request_access_task(ireq);
1771 struct scatterlist *sg = &task->smp_task.smp_resp;
1772 void *frame_header, *kaddr;
1773 u8 *rsp;
1774
1775 sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1776 frame_index,
1777 &frame_header);
1778 kaddr = kmap_atomic(sg_page(sg));
1779 rsp = kaddr + sg->offset;
1780 sci_swab32_cpy(rsp, frame_header, 1);
1781
1782 if (rsp[0] == SMP_RESPONSE) {
1783 void *smp_resp;
1784
1785 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1786 frame_index,
1787 &smp_resp);
1788
1789 word_cnt = (sg->length/4)-1;
1790 if (word_cnt > 0)
1791 word_cnt = min_t(unsigned int, word_cnt,
1792 SCU_UNSOLICITED_FRAME_BUFFER_SIZE/4);
1793 sci_swab32_cpy(rsp + 4, smp_resp, word_cnt);
1794
1795 ireq->scu_status = SCU_TASK_DONE_GOOD;
1796 ireq->sci_status = SCI_SUCCESS;
1797 sci_change_state(&ireq->sm, SCI_REQ_SMP_WAIT_TC_COMP);
1798 } else {
1799 /*
1800 * This was not a response frame why did it get
1801 * forwarded?
1802 */
1803 dev_err(&ihost->pdev->dev,
1804 "%s: SCIC SMP Request 0x%p received unexpected "
1805 "frame %d type 0x%02x\n",
1806 __func__,
1807 ireq,
1808 frame_index,
1809 rsp[0]);
1810
1811 ireq->scu_status = SCU_TASK_DONE_SMP_FRM_TYPE_ERR;
1812 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
1813 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1814 }
1815 kunmap_atomic(kaddr);
1816
1817 sci_controller_release_frame(ihost, frame_index);
1818
1819 return SCI_SUCCESS;
1820 }
1821
1822 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
1823 return sci_stp_request_udma_general_frame_handler(ireq,
1824 frame_index);
1825
1826 case SCI_REQ_STP_UDMA_WAIT_D2H:
1827 /* Use the general frame handler to copy the resposne data */
1828 status = sci_stp_request_udma_general_frame_handler(ireq, frame_index);
1829
1830 if (status != SCI_SUCCESS)
1831 return status;
1832
1833 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1834 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1835 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1836 return SCI_SUCCESS;
1837
1838 case SCI_REQ_STP_NON_DATA_WAIT_D2H: {
1839 struct dev_to_host_fis *frame_header;
1840 u32 *frame_buffer;
1841
1842 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1843 frame_index,
1844 (void **)&frame_header);
1845
1846 if (status != SCI_SUCCESS) {
1847 dev_err(&ihost->pdev->dev,
1848 "%s: SCIC IO Request 0x%p could not get frame "
1849 "header for frame index %d, status %x\n",
1850 __func__,
1851 stp_req,
1852 frame_index,
1853 status);
1854
1855 return status;
1856 }
1857
1858 switch (frame_header->fis_type) {
1859 case FIS_REGD2H:
1860 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1861 frame_index,
1862 (void **)&frame_buffer);
1863
1864 sci_controller_copy_sata_response(&ireq->stp.rsp,
1865 frame_header,
1866 frame_buffer);
1867
1868 /* The command has completed with error */
1869 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1870 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1871 break;
1872
1873 default:
1874 dev_warn(&ihost->pdev->dev,
1875 "%s: IO Request:0x%p Frame Id:%d protocol "
1876 "violation occurred\n", __func__, stp_req,
1877 frame_index);
1878
1879 ireq->scu_status = SCU_TASK_DONE_UNEXP_FIS;
1880 ireq->sci_status = SCI_FAILURE_PROTOCOL_VIOLATION;
1881 break;
1882 }
1883
1884 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1885
1886 /* Frame has been decoded return it to the controller */
1887 sci_controller_release_frame(ihost, frame_index);
1888
1889 return status;
1890 }
1891
1892 case SCI_REQ_STP_PIO_WAIT_FRAME: {
1893 struct sas_task *task = isci_request_access_task(ireq);
1894 struct dev_to_host_fis *frame_header;
1895 u32 *frame_buffer;
1896
1897 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1898 frame_index,
1899 (void **)&frame_header);
1900
1901 if (status != SCI_SUCCESS) {
1902 dev_err(&ihost->pdev->dev,
1903 "%s: SCIC IO Request 0x%p could not get frame "
1904 "header for frame index %d, status %x\n",
1905 __func__, stp_req, frame_index, status);
1906 return status;
1907 }
1908
1909 switch (frame_header->fis_type) {
1910 case FIS_PIO_SETUP:
1911 /* Get from the frame buffer the PIO Setup Data */
1912 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1913 frame_index,
1914 (void **)&frame_buffer);
1915
1916 /* Get the data from the PIO Setup The SCU Hardware
1917 * returns first word in the frame_header and the rest
1918 * of the data is in the frame buffer so we need to
1919 * back up one dword
1920 */
1921
1922 /* transfer_count: first 16bits in the 4th dword */
1923 stp_req->pio_len = frame_buffer[3] & 0xffff;
1924
1925 /* status: 4th byte in the 3rd dword */
1926 stp_req->status = (frame_buffer[2] >> 24) & 0xff;
1927
1928 sci_controller_copy_sata_response(&ireq->stp.rsp,
1929 frame_header,
1930 frame_buffer);
1931
1932 ireq->stp.rsp.status = stp_req->status;
1933
1934 /* The next state is dependent on whether the
1935 * request was PIO Data-in or Data out
1936 */
1937 if (task->data_dir == DMA_FROM_DEVICE) {
1938 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_IN);
1939 } else if (task->data_dir == DMA_TO_DEVICE) {
1940 /* Transmit data */
1941 status = sci_stp_request_pio_data_out_transmit_data(ireq);
1942 if (status != SCI_SUCCESS)
1943 break;
1944 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_DATA_OUT);
1945 }
1946 break;
1947
1948 case FIS_SETDEVBITS:
1949 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
1950 break;
1951
1952 case FIS_REGD2H:
1953 if (frame_header->status & ATA_BUSY) {
1954 /*
1955 * Now why is the drive sending a D2H Register
1956 * FIS when it is still busy? Do nothing since
1957 * we are still in the right state.
1958 */
1959 dev_dbg(&ihost->pdev->dev,
1960 "%s: SCIC PIO Request 0x%p received "
1961 "D2H Register FIS with BSY status "
1962 "0x%x\n",
1963 __func__,
1964 stp_req,
1965 frame_header->status);
1966 break;
1967 }
1968
1969 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1970 frame_index,
1971 (void **)&frame_buffer);
1972
1973 sci_controller_copy_sata_response(&ireq->stp.rsp,
1974 frame_header,
1975 frame_buffer);
1976
1977 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
1978 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
1979 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
1980 break;
1981
1982 default:
1983 /* FIXME: what do we do here? */
1984 break;
1985 }
1986
1987 /* Frame is decoded return it to the controller */
1988 sci_controller_release_frame(ihost, frame_index);
1989
1990 return status;
1991 }
1992
1993 case SCI_REQ_STP_PIO_DATA_IN: {
1994 struct dev_to_host_fis *frame_header;
1995 struct sata_fis_data *frame_buffer;
1996
1997 status = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1998 frame_index,
1999 (void **)&frame_header);
2000
2001 if (status != SCI_SUCCESS) {
2002 dev_err(&ihost->pdev->dev,
2003 "%s: SCIC IO Request 0x%p could not get frame "
2004 "header for frame index %d, status %x\n",
2005 __func__,
2006 stp_req,
2007 frame_index,
2008 status);
2009 return status;
2010 }
2011
2012 if (frame_header->fis_type != FIS_DATA) {
2013 dev_err(&ihost->pdev->dev,
2014 "%s: SCIC PIO Request 0x%p received frame %d "
2015 "with fis type 0x%02x when expecting a data "
2016 "fis.\n",
2017 __func__,
2018 stp_req,
2019 frame_index,
2020 frame_header->fis_type);
2021
2022 ireq->scu_status = SCU_TASK_DONE_GOOD;
2023 ireq->sci_status = SCI_FAILURE_IO_REQUIRES_SCSI_ABORT;
2024 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2025
2026 /* Frame is decoded return it to the controller */
2027 sci_controller_release_frame(ihost, frame_index);
2028 return status;
2029 }
2030
2031 if (stp_req->sgl.index < 0) {
2032 ireq->saved_rx_frame_index = frame_index;
2033 stp_req->pio_len = 0;
2034 } else {
2035 sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
2036 frame_index,
2037 (void **)&frame_buffer);
2038
2039 status = sci_stp_request_pio_data_in_copy_data(stp_req,
2040 (u8 *)frame_buffer);
2041
2042 /* Frame is decoded return it to the controller */
2043 sci_controller_release_frame(ihost, frame_index);
2044 }
2045
2046 /* Check for the end of the transfer, are there more
2047 * bytes remaining for this data transfer
2048 */
2049 if (status != SCI_SUCCESS || stp_req->pio_len != 0)
2050 return status;
2051
2052 if ((stp_req->status & ATA_BUSY) == 0) {
2053 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2054 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2055 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2056 } else {
2057 sci_change_state(&ireq->sm, SCI_REQ_STP_PIO_WAIT_FRAME);
2058 }
2059 return status;
2060 }
2061
2062 case SCI_REQ_ATAPI_WAIT_PIO_SETUP: {
2063 struct sas_task *task = isci_request_access_task(ireq);
2064
2065 sci_controller_release_frame(ihost, frame_index);
2066 ireq->target_device->working_request = ireq;
2067 if (task->data_dir == DMA_NONE) {
2068 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_TC_COMP);
2069 scu_atapi_reconstruct_raw_frame_task_context(ireq);
2070 } else {
2071 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2072 scu_atapi_construct_task_context(ireq);
2073 }
2074
2075 sci_controller_continue_io(ireq);
2076 return SCI_SUCCESS;
2077 }
2078 case SCI_REQ_ATAPI_WAIT_D2H:
2079 return atapi_d2h_reg_frame_handler(ireq, frame_index);
2080 case SCI_REQ_ABORTING:
2081 /*
2082 * TODO: Is it even possible to get an unsolicited frame in the
2083 * aborting state?
2084 */
2085 sci_controller_release_frame(ihost, frame_index);
2086 return SCI_SUCCESS;
2087
2088 default:
2089 dev_warn(&ihost->pdev->dev,
2090 "%s: SCIC IO Request given unexpected frame %x while "
2091 "in state %d\n",
2092 __func__,
2093 frame_index,
2094 state);
2095
2096 sci_controller_release_frame(ihost, frame_index);
2097 return SCI_FAILURE_INVALID_STATE;
2098 }
2099 }
2100
stp_request_udma_await_tc_event(struct isci_request * ireq,u32 completion_code)2101 static enum sci_status stp_request_udma_await_tc_event(struct isci_request *ireq,
2102 u32 completion_code)
2103 {
2104 enum sci_status status = SCI_SUCCESS;
2105
2106 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2107 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2108 ireq->scu_status = SCU_TASK_DONE_GOOD;
2109 ireq->sci_status = SCI_SUCCESS;
2110 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2111 break;
2112 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_UNEXP_FIS):
2113 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_REG_ERR):
2114 /* We must check ther response buffer to see if the D2H
2115 * Register FIS was received before we got the TC
2116 * completion.
2117 */
2118 if (ireq->stp.rsp.fis_type == FIS_REGD2H) {
2119 sci_remote_device_suspend(ireq->target_device,
2120 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
2121
2122 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2123 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2124 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2125 } else {
2126 /* If we have an error completion status for the
2127 * TC then we can expect a D2H register FIS from
2128 * the device so we must change state to wait
2129 * for it
2130 */
2131 sci_change_state(&ireq->sm, SCI_REQ_STP_UDMA_WAIT_D2H);
2132 }
2133 break;
2134
2135 /* TODO Check to see if any of these completion status need to
2136 * wait for the device to host register fis.
2137 */
2138 /* TODO We can retry the command for SCU_TASK_DONE_CMD_LL_R_ERR
2139 * - this comes only for B0
2140 */
2141 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_INV_FIS_LEN):
2142 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_MAX_PLD_ERR):
2143 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_LL_R_ERR):
2144 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_CMD_LL_R_ERR):
2145 sci_remote_device_suspend(ireq->target_device,
2146 SCU_EVENT_SPECIFIC(SCU_NORMALIZE_COMPLETION_STATUS(completion_code)));
2147 /* Fall through to the default case */
2148 default:
2149 /* All other completion status cause the IO to be complete. */
2150 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2151 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2152 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2153 break;
2154 }
2155
2156 return status;
2157 }
2158
atapi_raw_completion(struct isci_request * ireq,u32 completion_code,enum sci_base_request_states next)2159 static enum sci_status atapi_raw_completion(struct isci_request *ireq, u32 completion_code,
2160 enum sci_base_request_states next)
2161 {
2162 enum sci_status status = SCI_SUCCESS;
2163
2164 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2165 case SCU_MAKE_COMPLETION_STATUS(SCU_TASK_DONE_GOOD):
2166 ireq->scu_status = SCU_TASK_DONE_GOOD;
2167 ireq->sci_status = SCI_SUCCESS;
2168 sci_change_state(&ireq->sm, next);
2169 break;
2170 default:
2171 /* All other completion status cause the IO to be complete.
2172 * If a NAK was received, then it is up to the user to retry
2173 * the request.
2174 */
2175 ireq->scu_status = SCU_NORMALIZE_COMPLETION_STATUS(completion_code);
2176 ireq->sci_status = SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR;
2177
2178 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2179 break;
2180 }
2181
2182 return status;
2183 }
2184
atapi_data_tc_completion_handler(struct isci_request * ireq,u32 completion_code)2185 static enum sci_status atapi_data_tc_completion_handler(struct isci_request *ireq,
2186 u32 completion_code)
2187 {
2188 struct isci_remote_device *idev = ireq->target_device;
2189 struct dev_to_host_fis *d2h = &ireq->stp.rsp;
2190 enum sci_status status = SCI_SUCCESS;
2191
2192 switch (SCU_GET_COMPLETION_TL_STATUS(completion_code)) {
2193 case (SCU_TASK_DONE_GOOD << SCU_COMPLETION_TL_STATUS_SHIFT):
2194 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2195 break;
2196
2197 case (SCU_TASK_DONE_UNEXP_FIS << SCU_COMPLETION_TL_STATUS_SHIFT): {
2198 u16 len = sci_req_tx_bytes(ireq);
2199
2200 /* likely non-error data underrrun, workaround missing
2201 * d2h frame from the controller
2202 */
2203 if (d2h->fis_type != FIS_REGD2H) {
2204 d2h->fis_type = FIS_REGD2H;
2205 d2h->flags = (1 << 6);
2206 d2h->status = 0x50;
2207 d2h->error = 0;
2208 d2h->lbal = 0;
2209 d2h->byte_count_low = len & 0xff;
2210 d2h->byte_count_high = len >> 8;
2211 d2h->device = 0xa0;
2212 d2h->lbal_exp = 0;
2213 d2h->lbam_exp = 0;
2214 d2h->lbah_exp = 0;
2215 d2h->_r_a = 0;
2216 d2h->sector_count = 0x3;
2217 d2h->sector_count_exp = 0;
2218 d2h->_r_b = 0;
2219 d2h->_r_c = 0;
2220 d2h->_r_d = 0;
2221 }
2222
2223 ireq->scu_status = SCU_TASK_DONE_GOOD;
2224 ireq->sci_status = SCI_SUCCESS_IO_DONE_EARLY;
2225 status = ireq->sci_status;
2226
2227 /* the hw will have suspended the rnc, so complete the
2228 * request upon pending resume
2229 */
2230 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2231 break;
2232 }
2233 case (SCU_TASK_DONE_EXCESS_DATA << SCU_COMPLETION_TL_STATUS_SHIFT):
2234 /* In this case, there is no UF coming after.
2235 * compelte the IO now.
2236 */
2237 ireq->scu_status = SCU_TASK_DONE_GOOD;
2238 ireq->sci_status = SCI_SUCCESS;
2239 sci_change_state(&ireq->sm, SCI_REQ_COMPLETED);
2240 break;
2241
2242 default:
2243 if (d2h->fis_type == FIS_REGD2H) {
2244 /* UF received change the device state to ATAPI_ERROR */
2245 status = ireq->sci_status;
2246 sci_change_state(&idev->sm, SCI_STP_DEV_ATAPI_ERROR);
2247 } else {
2248 /* If receiving any non-sucess TC status, no UF
2249 * received yet, then an UF for the status fis
2250 * is coming after (XXX: suspect this is
2251 * actually a protocol error or a bug like the
2252 * DONE_UNEXP_FIS case)
2253 */
2254 ireq->scu_status = SCU_TASK_DONE_CHECK_RESPONSE;
2255 ireq->sci_status = SCI_FAILURE_IO_RESPONSE_VALID;
2256
2257 sci_change_state(&ireq->sm, SCI_REQ_ATAPI_WAIT_D2H);
2258 }
2259 break;
2260 }
2261
2262 return status;
2263 }
2264
2265 enum sci_status
sci_io_request_tc_completion(struct isci_request * ireq,u32 completion_code)2266 sci_io_request_tc_completion(struct isci_request *ireq,
2267 u32 completion_code)
2268 {
2269 enum sci_base_request_states state;
2270 struct isci_host *ihost = ireq->owning_controller;
2271
2272 state = ireq->sm.current_state_id;
2273
2274 switch (state) {
2275 case SCI_REQ_STARTED:
2276 return request_started_state_tc_event(ireq, completion_code);
2277
2278 case SCI_REQ_TASK_WAIT_TC_COMP:
2279 return ssp_task_request_await_tc_event(ireq,
2280 completion_code);
2281
2282 case SCI_REQ_SMP_WAIT_RESP:
2283 return smp_request_await_response_tc_event(ireq,
2284 completion_code);
2285
2286 case SCI_REQ_SMP_WAIT_TC_COMP:
2287 return smp_request_await_tc_event(ireq, completion_code);
2288
2289 case SCI_REQ_STP_UDMA_WAIT_TC_COMP:
2290 return stp_request_udma_await_tc_event(ireq,
2291 completion_code);
2292
2293 case SCI_REQ_STP_NON_DATA_WAIT_H2D:
2294 return stp_request_non_data_await_h2d_tc_event(ireq,
2295 completion_code);
2296
2297 case SCI_REQ_STP_PIO_WAIT_H2D:
2298 return stp_request_pio_await_h2d_completion_tc_event(ireq,
2299 completion_code);
2300
2301 case SCI_REQ_STP_PIO_DATA_OUT:
2302 return pio_data_out_tx_done_tc_event(ireq, completion_code);
2303
2304 case SCI_REQ_ABORTING:
2305 return request_aborting_state_tc_event(ireq,
2306 completion_code);
2307
2308 case SCI_REQ_ATAPI_WAIT_H2D:
2309 return atapi_raw_completion(ireq, completion_code,
2310 SCI_REQ_ATAPI_WAIT_PIO_SETUP);
2311
2312 case SCI_REQ_ATAPI_WAIT_TC_COMP:
2313 return atapi_raw_completion(ireq, completion_code,
2314 SCI_REQ_ATAPI_WAIT_D2H);
2315
2316 case SCI_REQ_ATAPI_WAIT_D2H:
2317 return atapi_data_tc_completion_handler(ireq, completion_code);
2318
2319 default:
2320 dev_warn(&ihost->pdev->dev, "%s: %x in wrong state %s\n",
2321 __func__, completion_code, req_state_name(state));
2322 return SCI_FAILURE_INVALID_STATE;
2323 }
2324 }
2325
2326 /**
2327 * isci_request_process_response_iu() - This function sets the status and
2328 * response iu, in the task struct, from the request object for the upper
2329 * layer driver.
2330 * @sas_task: This parameter is the task struct from the upper layer driver.
2331 * @resp_iu: This parameter points to the response iu of the completed request.
2332 * @dev: This parameter specifies the linux device struct.
2333 *
2334 * none.
2335 */
isci_request_process_response_iu(struct sas_task * task,struct ssp_response_iu * resp_iu,struct device * dev)2336 static void isci_request_process_response_iu(
2337 struct sas_task *task,
2338 struct ssp_response_iu *resp_iu,
2339 struct device *dev)
2340 {
2341 dev_dbg(dev,
2342 "%s: resp_iu = %p "
2343 "resp_iu->status = 0x%x,\nresp_iu->datapres = %d "
2344 "resp_iu->response_data_len = %x, "
2345 "resp_iu->sense_data_len = %x\nrepsonse data: ",
2346 __func__,
2347 resp_iu,
2348 resp_iu->status,
2349 resp_iu->datapres,
2350 resp_iu->response_data_len,
2351 resp_iu->sense_data_len);
2352
2353 task->task_status.stat = resp_iu->status;
2354
2355 /* libsas updates the task status fields based on the response iu. */
2356 sas_ssp_task_response(dev, task, resp_iu);
2357 }
2358
2359 /**
2360 * isci_request_set_open_reject_status() - This function prepares the I/O
2361 * completion for OPEN_REJECT conditions.
2362 * @request: This parameter is the completed isci_request object.
2363 * @response_ptr: This parameter specifies the service response for the I/O.
2364 * @status_ptr: This parameter specifies the exec status for the I/O.
2365 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2366 * the LLDD with respect to completing this request or forcing an abort
2367 * condition on the I/O.
2368 * @open_rej_reason: This parameter specifies the encoded reason for the
2369 * abandon-class reject.
2370 *
2371 * none.
2372 */
isci_request_set_open_reject_status(struct isci_request * request,struct sas_task * task,enum service_response * response_ptr,enum exec_status * status_ptr,enum isci_completion_selection * complete_to_host_ptr,enum sas_open_rej_reason open_rej_reason)2373 static void isci_request_set_open_reject_status(
2374 struct isci_request *request,
2375 struct sas_task *task,
2376 enum service_response *response_ptr,
2377 enum exec_status *status_ptr,
2378 enum isci_completion_selection *complete_to_host_ptr,
2379 enum sas_open_rej_reason open_rej_reason)
2380 {
2381 /* Task in the target is done. */
2382 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2383 *response_ptr = SAS_TASK_UNDELIVERED;
2384 *status_ptr = SAS_OPEN_REJECT;
2385 *complete_to_host_ptr = isci_perform_normal_io_completion;
2386 task->task_status.open_rej_reason = open_rej_reason;
2387 }
2388
2389 /**
2390 * isci_request_handle_controller_specific_errors() - This function decodes
2391 * controller-specific I/O completion error conditions.
2392 * @request: This parameter is the completed isci_request object.
2393 * @response_ptr: This parameter specifies the service response for the I/O.
2394 * @status_ptr: This parameter specifies the exec status for the I/O.
2395 * @complete_to_host_ptr: This parameter specifies the action to be taken by
2396 * the LLDD with respect to completing this request or forcing an abort
2397 * condition on the I/O.
2398 *
2399 * none.
2400 */
isci_request_handle_controller_specific_errors(struct isci_remote_device * idev,struct isci_request * request,struct sas_task * task,enum service_response * response_ptr,enum exec_status * status_ptr,enum isci_completion_selection * complete_to_host_ptr)2401 static void isci_request_handle_controller_specific_errors(
2402 struct isci_remote_device *idev,
2403 struct isci_request *request,
2404 struct sas_task *task,
2405 enum service_response *response_ptr,
2406 enum exec_status *status_ptr,
2407 enum isci_completion_selection *complete_to_host_ptr)
2408 {
2409 unsigned int cstatus;
2410
2411 cstatus = request->scu_status;
2412
2413 dev_dbg(&request->isci_host->pdev->dev,
2414 "%s: %p SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR "
2415 "- controller status = 0x%x\n",
2416 __func__, request, cstatus);
2417
2418 /* Decode the controller-specific errors; most
2419 * important is to recognize those conditions in which
2420 * the target may still have a task outstanding that
2421 * must be aborted.
2422 *
2423 * Note that there are SCU completion codes being
2424 * named in the decode below for which SCIC has already
2425 * done work to handle them in a way other than as
2426 * a controller-specific completion code; these are left
2427 * in the decode below for completeness sake.
2428 */
2429 switch (cstatus) {
2430 case SCU_TASK_DONE_DMASETUP_DIRERR:
2431 /* Also SCU_TASK_DONE_SMP_FRM_TYPE_ERR: */
2432 case SCU_TASK_DONE_XFERCNT_ERR:
2433 /* Also SCU_TASK_DONE_SMP_UFI_ERR: */
2434 if (task->task_proto == SAS_PROTOCOL_SMP) {
2435 /* SCU_TASK_DONE_SMP_UFI_ERR == Task Done. */
2436 *response_ptr = SAS_TASK_COMPLETE;
2437
2438 /* See if the device has been/is being stopped. Note
2439 * that we ignore the quiesce state, since we are
2440 * concerned about the actual device state.
2441 */
2442 if (!idev)
2443 *status_ptr = SAS_DEVICE_UNKNOWN;
2444 else
2445 *status_ptr = SAS_ABORTED_TASK;
2446
2447 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2448
2449 *complete_to_host_ptr =
2450 isci_perform_normal_io_completion;
2451 } else {
2452 /* Task in the target is not done. */
2453 *response_ptr = SAS_TASK_UNDELIVERED;
2454
2455 if (!idev)
2456 *status_ptr = SAS_DEVICE_UNKNOWN;
2457 else
2458 *status_ptr = SAM_STAT_TASK_ABORTED;
2459
2460 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2461
2462 *complete_to_host_ptr =
2463 isci_perform_error_io_completion;
2464 }
2465
2466 break;
2467
2468 case SCU_TASK_DONE_CRC_ERR:
2469 case SCU_TASK_DONE_NAK_CMD_ERR:
2470 case SCU_TASK_DONE_EXCESS_DATA:
2471 case SCU_TASK_DONE_UNEXP_FIS:
2472 /* Also SCU_TASK_DONE_UNEXP_RESP: */
2473 case SCU_TASK_DONE_VIIT_ENTRY_NV: /* TODO - conditions? */
2474 case SCU_TASK_DONE_IIT_ENTRY_NV: /* TODO - conditions? */
2475 case SCU_TASK_DONE_RNCNV_OUTBOUND: /* TODO - conditions? */
2476 /* These are conditions in which the target
2477 * has completed the task, so that no cleanup
2478 * is necessary.
2479 */
2480 *response_ptr = SAS_TASK_COMPLETE;
2481
2482 /* See if the device has been/is being stopped. Note
2483 * that we ignore the quiesce state, since we are
2484 * concerned about the actual device state.
2485 */
2486 if (!idev)
2487 *status_ptr = SAS_DEVICE_UNKNOWN;
2488 else
2489 *status_ptr = SAS_ABORTED_TASK;
2490
2491 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2492
2493 *complete_to_host_ptr = isci_perform_normal_io_completion;
2494 break;
2495
2496
2497 /* Note that the only open reject completion codes seen here will be
2498 * abandon-class codes; all others are automatically retried in the SCU.
2499 */
2500 case SCU_TASK_OPEN_REJECT_WRONG_DESTINATION:
2501
2502 isci_request_set_open_reject_status(
2503 request, task, response_ptr, status_ptr,
2504 complete_to_host_ptr, SAS_OREJ_WRONG_DEST);
2505 break;
2506
2507 case SCU_TASK_OPEN_REJECT_ZONE_VIOLATION:
2508
2509 /* Note - the return of AB0 will change when
2510 * libsas implements detection of zone violations.
2511 */
2512 isci_request_set_open_reject_status(
2513 request, task, response_ptr, status_ptr,
2514 complete_to_host_ptr, SAS_OREJ_RESV_AB0);
2515 break;
2516
2517 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_1:
2518
2519 isci_request_set_open_reject_status(
2520 request, task, response_ptr, status_ptr,
2521 complete_to_host_ptr, SAS_OREJ_RESV_AB1);
2522 break;
2523
2524 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_2:
2525
2526 isci_request_set_open_reject_status(
2527 request, task, response_ptr, status_ptr,
2528 complete_to_host_ptr, SAS_OREJ_RESV_AB2);
2529 break;
2530
2531 case SCU_TASK_OPEN_REJECT_RESERVED_ABANDON_3:
2532
2533 isci_request_set_open_reject_status(
2534 request, task, response_ptr, status_ptr,
2535 complete_to_host_ptr, SAS_OREJ_RESV_AB3);
2536 break;
2537
2538 case SCU_TASK_OPEN_REJECT_BAD_DESTINATION:
2539
2540 isci_request_set_open_reject_status(
2541 request, task, response_ptr, status_ptr,
2542 complete_to_host_ptr, SAS_OREJ_BAD_DEST);
2543 break;
2544
2545 case SCU_TASK_OPEN_REJECT_STP_RESOURCES_BUSY:
2546
2547 isci_request_set_open_reject_status(
2548 request, task, response_ptr, status_ptr,
2549 complete_to_host_ptr, SAS_OREJ_STP_NORES);
2550 break;
2551
2552 case SCU_TASK_OPEN_REJECT_PROTOCOL_NOT_SUPPORTED:
2553
2554 isci_request_set_open_reject_status(
2555 request, task, response_ptr, status_ptr,
2556 complete_to_host_ptr, SAS_OREJ_EPROTO);
2557 break;
2558
2559 case SCU_TASK_OPEN_REJECT_CONNECTION_RATE_NOT_SUPPORTED:
2560
2561 isci_request_set_open_reject_status(
2562 request, task, response_ptr, status_ptr,
2563 complete_to_host_ptr, SAS_OREJ_CONN_RATE);
2564 break;
2565
2566 case SCU_TASK_DONE_LL_R_ERR:
2567 /* Also SCU_TASK_DONE_ACK_NAK_TO: */
2568 case SCU_TASK_DONE_LL_PERR:
2569 case SCU_TASK_DONE_LL_SY_TERM:
2570 /* Also SCU_TASK_DONE_NAK_ERR:*/
2571 case SCU_TASK_DONE_LL_LF_TERM:
2572 /* Also SCU_TASK_DONE_DATA_LEN_ERR: */
2573 case SCU_TASK_DONE_LL_ABORT_ERR:
2574 case SCU_TASK_DONE_SEQ_INV_TYPE:
2575 /* Also SCU_TASK_DONE_UNEXP_XR: */
2576 case SCU_TASK_DONE_XR_IU_LEN_ERR:
2577 case SCU_TASK_DONE_INV_FIS_LEN:
2578 /* Also SCU_TASK_DONE_XR_WD_LEN: */
2579 case SCU_TASK_DONE_SDMA_ERR:
2580 case SCU_TASK_DONE_OFFSET_ERR:
2581 case SCU_TASK_DONE_MAX_PLD_ERR:
2582 case SCU_TASK_DONE_LF_ERR:
2583 case SCU_TASK_DONE_SMP_RESP_TO_ERR: /* Escalate to dev reset? */
2584 case SCU_TASK_DONE_SMP_LL_RX_ERR:
2585 case SCU_TASK_DONE_UNEXP_DATA:
2586 case SCU_TASK_DONE_UNEXP_SDBFIS:
2587 case SCU_TASK_DONE_REG_ERR:
2588 case SCU_TASK_DONE_SDB_ERR:
2589 case SCU_TASK_DONE_TASK_ABORT:
2590 default:
2591 /* Task in the target is not done. */
2592 *response_ptr = SAS_TASK_UNDELIVERED;
2593 *status_ptr = SAM_STAT_TASK_ABORTED;
2594
2595 if (task->task_proto == SAS_PROTOCOL_SMP) {
2596 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2597
2598 *complete_to_host_ptr = isci_perform_normal_io_completion;
2599 } else {
2600 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2601
2602 *complete_to_host_ptr = isci_perform_error_io_completion;
2603 }
2604 break;
2605 }
2606 }
2607
2608 /**
2609 * isci_task_save_for_upper_layer_completion() - This function saves the
2610 * request for later completion to the upper layer driver.
2611 * @host: This parameter is a pointer to the host on which the the request
2612 * should be queued (either as an error or success).
2613 * @request: This parameter is the completed request.
2614 * @response: This parameter is the response code for the completed task.
2615 * @status: This parameter is the status code for the completed task.
2616 *
2617 * none.
2618 */
isci_task_save_for_upper_layer_completion(struct isci_host * host,struct isci_request * request,enum service_response response,enum exec_status status,enum isci_completion_selection task_notification_selection)2619 static void isci_task_save_for_upper_layer_completion(
2620 struct isci_host *host,
2621 struct isci_request *request,
2622 enum service_response response,
2623 enum exec_status status,
2624 enum isci_completion_selection task_notification_selection)
2625 {
2626 struct sas_task *task = isci_request_access_task(request);
2627
2628 task_notification_selection
2629 = isci_task_set_completion_status(task, response, status,
2630 task_notification_selection);
2631
2632 /* Tasks aborted specifically by a call to the lldd_abort_task
2633 * function should not be completed to the host in the regular path.
2634 */
2635 switch (task_notification_selection) {
2636
2637 case isci_perform_normal_io_completion:
2638 /* Normal notification (task_done) */
2639
2640 /* Add to the completed list. */
2641 list_add(&request->completed_node,
2642 &host->requests_to_complete);
2643
2644 /* Take the request off the device's pending request list. */
2645 list_del_init(&request->dev_node);
2646 break;
2647
2648 case isci_perform_aborted_io_completion:
2649 /* No notification to libsas because this request is
2650 * already in the abort path.
2651 */
2652 /* Wake up whatever process was waiting for this
2653 * request to complete.
2654 */
2655 WARN_ON(request->io_request_completion == NULL);
2656
2657 if (request->io_request_completion != NULL) {
2658
2659 /* Signal whoever is waiting that this
2660 * request is complete.
2661 */
2662 complete(request->io_request_completion);
2663 }
2664 break;
2665
2666 case isci_perform_error_io_completion:
2667 /* Use sas_task_abort */
2668 /* Add to the aborted list. */
2669 list_add(&request->completed_node,
2670 &host->requests_to_errorback);
2671 break;
2672
2673 default:
2674 /* Add to the error to libsas list. */
2675 list_add(&request->completed_node,
2676 &host->requests_to_errorback);
2677 break;
2678 }
2679 dev_dbg(&host->pdev->dev,
2680 "%s: %d - task = %p, response=%d (%d), status=%d (%d)\n",
2681 __func__, task_notification_selection, task,
2682 (task) ? task->task_status.resp : 0, response,
2683 (task) ? task->task_status.stat : 0, status);
2684 }
2685
isci_process_stp_response(struct sas_task * task,struct dev_to_host_fis * fis)2686 static void isci_process_stp_response(struct sas_task *task, struct dev_to_host_fis *fis)
2687 {
2688 struct task_status_struct *ts = &task->task_status;
2689 struct ata_task_resp *resp = (void *)&ts->buf[0];
2690
2691 resp->frame_len = sizeof(*fis);
2692 memcpy(resp->ending_fis, fis, sizeof(*fis));
2693 ts->buf_valid_size = sizeof(*resp);
2694
2695 /* If the device fault bit is set in the status register, then
2696 * set the sense data and return.
2697 */
2698 if (fis->status & ATA_DF)
2699 ts->stat = SAS_PROTO_RESPONSE;
2700 else if (fis->status & ATA_ERR)
2701 ts->stat = SAM_STAT_CHECK_CONDITION;
2702 else
2703 ts->stat = SAM_STAT_GOOD;
2704
2705 ts->resp = SAS_TASK_COMPLETE;
2706 }
2707
isci_request_io_request_complete(struct isci_host * ihost,struct isci_request * request,enum sci_io_status completion_status)2708 static void isci_request_io_request_complete(struct isci_host *ihost,
2709 struct isci_request *request,
2710 enum sci_io_status completion_status)
2711 {
2712 struct sas_task *task = isci_request_access_task(request);
2713 struct ssp_response_iu *resp_iu;
2714 unsigned long task_flags;
2715 struct isci_remote_device *idev = request->target_device;
2716 enum service_response response = SAS_TASK_UNDELIVERED;
2717 enum exec_status status = SAS_ABORTED_TASK;
2718 enum isci_request_status request_status;
2719 enum isci_completion_selection complete_to_host
2720 = isci_perform_normal_io_completion;
2721
2722 dev_dbg(&ihost->pdev->dev,
2723 "%s: request = %p, task = %p,\n"
2724 "task->data_dir = %d completion_status = 0x%x\n",
2725 __func__,
2726 request,
2727 task,
2728 task->data_dir,
2729 completion_status);
2730
2731 spin_lock(&request->state_lock);
2732 request_status = request->status;
2733
2734 /* Decode the request status. Note that if the request has been
2735 * aborted by a task management function, we don't care
2736 * what the status is.
2737 */
2738 switch (request_status) {
2739
2740 case aborted:
2741 /* "aborted" indicates that the request was aborted by a task
2742 * management function, since once a task management request is
2743 * perfomed by the device, the request only completes because
2744 * of the subsequent driver terminate.
2745 *
2746 * Aborted also means an external thread is explicitly managing
2747 * this request, so that we do not complete it up the stack.
2748 *
2749 * The target is still there (since the TMF was successful).
2750 */
2751 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2752 response = SAS_TASK_COMPLETE;
2753
2754 /* See if the device has been/is being stopped. Note
2755 * that we ignore the quiesce state, since we are
2756 * concerned about the actual device state.
2757 */
2758 if (!idev)
2759 status = SAS_DEVICE_UNKNOWN;
2760 else
2761 status = SAS_ABORTED_TASK;
2762
2763 complete_to_host = isci_perform_aborted_io_completion;
2764 /* This was an aborted request. */
2765
2766 spin_unlock(&request->state_lock);
2767 break;
2768
2769 case aborting:
2770 /* aborting means that the task management function tried and
2771 * failed to abort the request. We need to note the request
2772 * as SAS_TASK_UNDELIVERED, so that the scsi mid layer marks the
2773 * target as down.
2774 *
2775 * Aborting also means an external thread is explicitly managing
2776 * this request, so that we do not complete it up the stack.
2777 */
2778 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2779 response = SAS_TASK_UNDELIVERED;
2780
2781 if (!idev)
2782 /* The device has been /is being stopped. Note that
2783 * we ignore the quiesce state, since we are
2784 * concerned about the actual device state.
2785 */
2786 status = SAS_DEVICE_UNKNOWN;
2787 else
2788 status = SAS_PHY_DOWN;
2789
2790 complete_to_host = isci_perform_aborted_io_completion;
2791
2792 /* This was an aborted request. */
2793
2794 spin_unlock(&request->state_lock);
2795 break;
2796
2797 case terminating:
2798
2799 /* This was an terminated request. This happens when
2800 * the I/O is being terminated because of an action on
2801 * the device (reset, tear down, etc.), and the I/O needs
2802 * to be completed up the stack.
2803 */
2804 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2805 response = SAS_TASK_UNDELIVERED;
2806
2807 /* See if the device has been/is being stopped. Note
2808 * that we ignore the quiesce state, since we are
2809 * concerned about the actual device state.
2810 */
2811 if (!idev)
2812 status = SAS_DEVICE_UNKNOWN;
2813 else
2814 status = SAS_ABORTED_TASK;
2815
2816 complete_to_host = isci_perform_aborted_io_completion;
2817
2818 /* This was a terminated request. */
2819
2820 spin_unlock(&request->state_lock);
2821 break;
2822
2823 case dead:
2824 /* This was a terminated request that timed-out during the
2825 * termination process. There is no task to complete to
2826 * libsas.
2827 */
2828 complete_to_host = isci_perform_normal_io_completion;
2829 spin_unlock(&request->state_lock);
2830 break;
2831
2832 default:
2833
2834 /* The request is done from an SCU HW perspective. */
2835 request->status = completed;
2836
2837 spin_unlock(&request->state_lock);
2838
2839 /* This is an active request being completed from the core. */
2840 switch (completion_status) {
2841
2842 case SCI_IO_FAILURE_RESPONSE_VALID:
2843 dev_dbg(&ihost->pdev->dev,
2844 "%s: SCI_IO_FAILURE_RESPONSE_VALID (%p/%p)\n",
2845 __func__,
2846 request,
2847 task);
2848
2849 if (sas_protocol_ata(task->task_proto)) {
2850 isci_process_stp_response(task, &request->stp.rsp);
2851 } else if (SAS_PROTOCOL_SSP == task->task_proto) {
2852
2853 /* crack the iu response buffer. */
2854 resp_iu = &request->ssp.rsp;
2855 isci_request_process_response_iu(task, resp_iu,
2856 &ihost->pdev->dev);
2857
2858 } else if (SAS_PROTOCOL_SMP == task->task_proto) {
2859
2860 dev_err(&ihost->pdev->dev,
2861 "%s: SCI_IO_FAILURE_RESPONSE_VALID: "
2862 "SAS_PROTOCOL_SMP protocol\n",
2863 __func__);
2864
2865 } else
2866 dev_err(&ihost->pdev->dev,
2867 "%s: unknown protocol\n", __func__);
2868
2869 /* use the task status set in the task struct by the
2870 * isci_request_process_response_iu call.
2871 */
2872 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2873 response = task->task_status.resp;
2874 status = task->task_status.stat;
2875 break;
2876
2877 case SCI_IO_SUCCESS:
2878 case SCI_IO_SUCCESS_IO_DONE_EARLY:
2879
2880 response = SAS_TASK_COMPLETE;
2881 status = SAM_STAT_GOOD;
2882 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2883
2884 if (completion_status == SCI_IO_SUCCESS_IO_DONE_EARLY) {
2885
2886 /* This was an SSP / STP / SATA transfer.
2887 * There is a possibility that less data than
2888 * the maximum was transferred.
2889 */
2890 u32 transferred_length = sci_req_tx_bytes(request);
2891
2892 task->task_status.residual
2893 = task->total_xfer_len - transferred_length;
2894
2895 /* If there were residual bytes, call this an
2896 * underrun.
2897 */
2898 if (task->task_status.residual != 0)
2899 status = SAS_DATA_UNDERRUN;
2900
2901 dev_dbg(&ihost->pdev->dev,
2902 "%s: SCI_IO_SUCCESS_IO_DONE_EARLY %d\n",
2903 __func__,
2904 status);
2905
2906 } else
2907 dev_dbg(&ihost->pdev->dev,
2908 "%s: SCI_IO_SUCCESS\n",
2909 __func__);
2910
2911 break;
2912
2913 case SCI_IO_FAILURE_TERMINATED:
2914 dev_dbg(&ihost->pdev->dev,
2915 "%s: SCI_IO_FAILURE_TERMINATED (%p/%p)\n",
2916 __func__,
2917 request,
2918 task);
2919
2920 /* The request was terminated explicitly. No handling
2921 * is needed in the SCSI error handler path.
2922 */
2923 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2924 response = SAS_TASK_UNDELIVERED;
2925
2926 /* See if the device has been/is being stopped. Note
2927 * that we ignore the quiesce state, since we are
2928 * concerned about the actual device state.
2929 */
2930 if (!idev)
2931 status = SAS_DEVICE_UNKNOWN;
2932 else
2933 status = SAS_ABORTED_TASK;
2934
2935 complete_to_host = isci_perform_normal_io_completion;
2936 break;
2937
2938 case SCI_FAILURE_CONTROLLER_SPECIFIC_IO_ERR:
2939
2940 isci_request_handle_controller_specific_errors(
2941 idev, request, task, &response, &status,
2942 &complete_to_host);
2943
2944 break;
2945
2946 case SCI_IO_FAILURE_REMOTE_DEVICE_RESET_REQUIRED:
2947 /* This is a special case, in that the I/O completion
2948 * is telling us that the device needs a reset.
2949 * In order for the device reset condition to be
2950 * noticed, the I/O has to be handled in the error
2951 * handler. Set the reset flag and cause the
2952 * SCSI error thread to be scheduled.
2953 */
2954 spin_lock_irqsave(&task->task_state_lock, task_flags);
2955 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
2956 spin_unlock_irqrestore(&task->task_state_lock, task_flags);
2957
2958 /* Fail the I/O. */
2959 response = SAS_TASK_UNDELIVERED;
2960 status = SAM_STAT_TASK_ABORTED;
2961
2962 complete_to_host = isci_perform_error_io_completion;
2963 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2964 break;
2965
2966 case SCI_FAILURE_RETRY_REQUIRED:
2967
2968 /* Fail the I/O so it can be retried. */
2969 response = SAS_TASK_UNDELIVERED;
2970 if (!idev)
2971 status = SAS_DEVICE_UNKNOWN;
2972 else
2973 status = SAS_ABORTED_TASK;
2974
2975 complete_to_host = isci_perform_normal_io_completion;
2976 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
2977 break;
2978
2979
2980 default:
2981 /* Catch any otherwise unhandled error codes here. */
2982 dev_dbg(&ihost->pdev->dev,
2983 "%s: invalid completion code: 0x%x - "
2984 "isci_request = %p\n",
2985 __func__, completion_status, request);
2986
2987 response = SAS_TASK_UNDELIVERED;
2988
2989 /* See if the device has been/is being stopped. Note
2990 * that we ignore the quiesce state, since we are
2991 * concerned about the actual device state.
2992 */
2993 if (!idev)
2994 status = SAS_DEVICE_UNKNOWN;
2995 else
2996 status = SAS_ABORTED_TASK;
2997
2998 if (SAS_PROTOCOL_SMP == task->task_proto) {
2999 set_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
3000 complete_to_host = isci_perform_normal_io_completion;
3001 } else {
3002 clear_bit(IREQ_COMPLETE_IN_TARGET, &request->flags);
3003 complete_to_host = isci_perform_error_io_completion;
3004 }
3005 break;
3006 }
3007 break;
3008 }
3009
3010 switch (task->task_proto) {
3011 case SAS_PROTOCOL_SSP:
3012 if (task->data_dir == DMA_NONE)
3013 break;
3014 if (task->num_scatter == 0)
3015 /* 0 indicates a single dma address */
3016 dma_unmap_single(&ihost->pdev->dev,
3017 request->zero_scatter_daddr,
3018 task->total_xfer_len, task->data_dir);
3019 else /* unmap the sgl dma addresses */
3020 dma_unmap_sg(&ihost->pdev->dev, task->scatter,
3021 request->num_sg_entries, task->data_dir);
3022 break;
3023 case SAS_PROTOCOL_SMP: {
3024 struct scatterlist *sg = &task->smp_task.smp_req;
3025 struct smp_req *smp_req;
3026 void *kaddr;
3027
3028 dma_unmap_sg(&ihost->pdev->dev, sg, 1, DMA_TO_DEVICE);
3029
3030 /* need to swab it back in case the command buffer is re-used */
3031 kaddr = kmap_atomic(sg_page(sg));
3032 smp_req = kaddr + sg->offset;
3033 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3034 kunmap_atomic(kaddr);
3035 break;
3036 }
3037 default:
3038 break;
3039 }
3040
3041 /* Put the completed request on the correct list */
3042 isci_task_save_for_upper_layer_completion(ihost, request, response,
3043 status, complete_to_host
3044 );
3045
3046 /* complete the io request to the core. */
3047 sci_controller_complete_io(ihost, request->target_device, request);
3048
3049 /* set terminated handle so it cannot be completed or
3050 * terminated again, and to cause any calls into abort
3051 * task to recognize the already completed case.
3052 */
3053 set_bit(IREQ_TERMINATED, &request->flags);
3054 }
3055
sci_request_started_state_enter(struct sci_base_state_machine * sm)3056 static void sci_request_started_state_enter(struct sci_base_state_machine *sm)
3057 {
3058 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3059 struct domain_device *dev = ireq->target_device->domain_dev;
3060 enum sci_base_request_states state;
3061 struct sas_task *task;
3062
3063 /* XXX as hch said always creating an internal sas_task for tmf
3064 * requests would simplify the driver
3065 */
3066 task = (test_bit(IREQ_TMF, &ireq->flags)) ? NULL : isci_request_access_task(ireq);
3067
3068 /* all unaccelerated request types (non ssp or ncq) handled with
3069 * substates
3070 */
3071 if (!task && dev->dev_type == SAS_END_DEV) {
3072 state = SCI_REQ_TASK_WAIT_TC_COMP;
3073 } else if (task && task->task_proto == SAS_PROTOCOL_SMP) {
3074 state = SCI_REQ_SMP_WAIT_RESP;
3075 } else if (task && sas_protocol_ata(task->task_proto) &&
3076 !task->ata_task.use_ncq) {
3077 if (dev->sata_dev.command_set == ATAPI_COMMAND_SET &&
3078 task->ata_task.fis.command == ATA_CMD_PACKET) {
3079 state = SCI_REQ_ATAPI_WAIT_H2D;
3080 } else if (task->data_dir == DMA_NONE) {
3081 state = SCI_REQ_STP_NON_DATA_WAIT_H2D;
3082 } else if (task->ata_task.dma_xfer) {
3083 state = SCI_REQ_STP_UDMA_WAIT_TC_COMP;
3084 } else /* PIO */ {
3085 state = SCI_REQ_STP_PIO_WAIT_H2D;
3086 }
3087 } else {
3088 /* SSP or NCQ are fully accelerated, no substates */
3089 return;
3090 }
3091 sci_change_state(sm, state);
3092 }
3093
sci_request_completed_state_enter(struct sci_base_state_machine * sm)3094 static void sci_request_completed_state_enter(struct sci_base_state_machine *sm)
3095 {
3096 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3097 struct isci_host *ihost = ireq->owning_controller;
3098
3099 /* Tell the SCI_USER that the IO request is complete */
3100 if (!test_bit(IREQ_TMF, &ireq->flags))
3101 isci_request_io_request_complete(ihost, ireq,
3102 ireq->sci_status);
3103 else
3104 isci_task_request_complete(ihost, ireq, ireq->sci_status);
3105 }
3106
sci_request_aborting_state_enter(struct sci_base_state_machine * sm)3107 static void sci_request_aborting_state_enter(struct sci_base_state_machine *sm)
3108 {
3109 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3110
3111 /* Setting the abort bit in the Task Context is required by the silicon. */
3112 ireq->tc->abort = 1;
3113 }
3114
sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine * sm)3115 static void sci_stp_request_started_non_data_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3116 {
3117 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3118
3119 ireq->target_device->working_request = ireq;
3120 }
3121
sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine * sm)3122 static void sci_stp_request_started_pio_await_h2d_completion_enter(struct sci_base_state_machine *sm)
3123 {
3124 struct isci_request *ireq = container_of(sm, typeof(*ireq), sm);
3125
3126 ireq->target_device->working_request = ireq;
3127 }
3128
3129 static const struct sci_base_state sci_request_state_table[] = {
3130 [SCI_REQ_INIT] = { },
3131 [SCI_REQ_CONSTRUCTED] = { },
3132 [SCI_REQ_STARTED] = {
3133 .enter_state = sci_request_started_state_enter,
3134 },
3135 [SCI_REQ_STP_NON_DATA_WAIT_H2D] = {
3136 .enter_state = sci_stp_request_started_non_data_await_h2d_completion_enter,
3137 },
3138 [SCI_REQ_STP_NON_DATA_WAIT_D2H] = { },
3139 [SCI_REQ_STP_PIO_WAIT_H2D] = {
3140 .enter_state = sci_stp_request_started_pio_await_h2d_completion_enter,
3141 },
3142 [SCI_REQ_STP_PIO_WAIT_FRAME] = { },
3143 [SCI_REQ_STP_PIO_DATA_IN] = { },
3144 [SCI_REQ_STP_PIO_DATA_OUT] = { },
3145 [SCI_REQ_STP_UDMA_WAIT_TC_COMP] = { },
3146 [SCI_REQ_STP_UDMA_WAIT_D2H] = { },
3147 [SCI_REQ_TASK_WAIT_TC_COMP] = { },
3148 [SCI_REQ_TASK_WAIT_TC_RESP] = { },
3149 [SCI_REQ_SMP_WAIT_RESP] = { },
3150 [SCI_REQ_SMP_WAIT_TC_COMP] = { },
3151 [SCI_REQ_ATAPI_WAIT_H2D] = { },
3152 [SCI_REQ_ATAPI_WAIT_PIO_SETUP] = { },
3153 [SCI_REQ_ATAPI_WAIT_D2H] = { },
3154 [SCI_REQ_ATAPI_WAIT_TC_COMP] = { },
3155 [SCI_REQ_COMPLETED] = {
3156 .enter_state = sci_request_completed_state_enter,
3157 },
3158 [SCI_REQ_ABORTING] = {
3159 .enter_state = sci_request_aborting_state_enter,
3160 },
3161 [SCI_REQ_FINAL] = { },
3162 };
3163
3164 static void
sci_general_request_construct(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)3165 sci_general_request_construct(struct isci_host *ihost,
3166 struct isci_remote_device *idev,
3167 struct isci_request *ireq)
3168 {
3169 sci_init_sm(&ireq->sm, sci_request_state_table, SCI_REQ_INIT);
3170
3171 ireq->target_device = idev;
3172 ireq->protocol = SCIC_NO_PROTOCOL;
3173 ireq->saved_rx_frame_index = SCU_INVALID_FRAME_INDEX;
3174
3175 ireq->sci_status = SCI_SUCCESS;
3176 ireq->scu_status = 0;
3177 ireq->post_context = 0xFFFFFFFF;
3178 }
3179
3180 static enum sci_status
sci_io_request_construct(struct isci_host * ihost,struct isci_remote_device * idev,struct isci_request * ireq)3181 sci_io_request_construct(struct isci_host *ihost,
3182 struct isci_remote_device *idev,
3183 struct isci_request *ireq)
3184 {
3185 struct domain_device *dev = idev->domain_dev;
3186 enum sci_status status = SCI_SUCCESS;
3187
3188 /* Build the common part of the request */
3189 sci_general_request_construct(ihost, idev, ireq);
3190
3191 if (idev->rnc.remote_node_index == SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX)
3192 return SCI_FAILURE_INVALID_REMOTE_DEVICE;
3193
3194 if (dev->dev_type == SAS_END_DEV)
3195 /* pass */;
3196 else if (dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP))
3197 memset(&ireq->stp.cmd, 0, sizeof(ireq->stp.cmd));
3198 else if (dev_is_expander(dev))
3199 /* pass */;
3200 else
3201 return SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3202
3203 memset(ireq->tc, 0, offsetof(struct scu_task_context, sgl_pair_ab));
3204
3205 return status;
3206 }
3207
sci_task_request_construct(struct isci_host * ihost,struct isci_remote_device * idev,u16 io_tag,struct isci_request * ireq)3208 enum sci_status sci_task_request_construct(struct isci_host *ihost,
3209 struct isci_remote_device *idev,
3210 u16 io_tag, struct isci_request *ireq)
3211 {
3212 struct domain_device *dev = idev->domain_dev;
3213 enum sci_status status = SCI_SUCCESS;
3214
3215 /* Build the common part of the request */
3216 sci_general_request_construct(ihost, idev, ireq);
3217
3218 if (dev->dev_type == SAS_END_DEV ||
3219 dev->dev_type == SATA_DEV || (dev->tproto & SAS_PROTOCOL_STP)) {
3220 set_bit(IREQ_TMF, &ireq->flags);
3221 memset(ireq->tc, 0, sizeof(struct scu_task_context));
3222 } else
3223 status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3224
3225 return status;
3226 }
3227
isci_request_ssp_request_construct(struct isci_request * request)3228 static enum sci_status isci_request_ssp_request_construct(
3229 struct isci_request *request)
3230 {
3231 enum sci_status status;
3232
3233 dev_dbg(&request->isci_host->pdev->dev,
3234 "%s: request = %p\n",
3235 __func__,
3236 request);
3237 status = sci_io_request_construct_basic_ssp(request);
3238 return status;
3239 }
3240
isci_request_stp_request_construct(struct isci_request * ireq)3241 static enum sci_status isci_request_stp_request_construct(struct isci_request *ireq)
3242 {
3243 struct sas_task *task = isci_request_access_task(ireq);
3244 struct host_to_dev_fis *fis = &ireq->stp.cmd;
3245 struct ata_queued_cmd *qc = task->uldd_task;
3246 enum sci_status status;
3247
3248 dev_dbg(&ireq->isci_host->pdev->dev,
3249 "%s: ireq = %p\n",
3250 __func__,
3251 ireq);
3252
3253 memcpy(fis, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
3254 if (!task->ata_task.device_control_reg_update)
3255 fis->flags |= 0x80;
3256 fis->flags &= 0xF0;
3257
3258 status = sci_io_request_construct_basic_sata(ireq);
3259
3260 if (qc && (qc->tf.command == ATA_CMD_FPDMA_WRITE ||
3261 qc->tf.command == ATA_CMD_FPDMA_READ)) {
3262 fis->sector_count = qc->tag << 3;
3263 ireq->tc->type.stp.ncq_tag = qc->tag;
3264 }
3265
3266 return status;
3267 }
3268
3269 static enum sci_status
sci_io_request_construct_smp(struct device * dev,struct isci_request * ireq,struct sas_task * task)3270 sci_io_request_construct_smp(struct device *dev,
3271 struct isci_request *ireq,
3272 struct sas_task *task)
3273 {
3274 struct scatterlist *sg = &task->smp_task.smp_req;
3275 struct isci_remote_device *idev;
3276 struct scu_task_context *task_context;
3277 struct isci_port *iport;
3278 struct smp_req *smp_req;
3279 void *kaddr;
3280 u8 req_len;
3281 u32 cmd;
3282
3283 kaddr = kmap_atomic(sg_page(sg));
3284 smp_req = kaddr + sg->offset;
3285 /*
3286 * Look at the SMP requests' header fields; for certain SAS 1.x SMP
3287 * functions under SAS 2.0, a zero request length really indicates
3288 * a non-zero default length.
3289 */
3290 if (smp_req->req_len == 0) {
3291 switch (smp_req->func) {
3292 case SMP_DISCOVER:
3293 case SMP_REPORT_PHY_ERR_LOG:
3294 case SMP_REPORT_PHY_SATA:
3295 case SMP_REPORT_ROUTE_INFO:
3296 smp_req->req_len = 2;
3297 break;
3298 case SMP_CONF_ROUTE_INFO:
3299 case SMP_PHY_CONTROL:
3300 case SMP_PHY_TEST_FUNCTION:
3301 smp_req->req_len = 9;
3302 break;
3303 /* Default - zero is a valid default for 2.0. */
3304 }
3305 }
3306 req_len = smp_req->req_len;
3307 sci_swab32_cpy(smp_req, smp_req, sg->length / sizeof(u32));
3308 cmd = *(u32 *) smp_req;
3309 kunmap_atomic(kaddr);
3310
3311 if (!dma_map_sg(dev, sg, 1, DMA_TO_DEVICE))
3312 return SCI_FAILURE;
3313
3314 ireq->protocol = SCIC_SMP_PROTOCOL;
3315
3316 /* byte swap the smp request. */
3317
3318 task_context = ireq->tc;
3319
3320 idev = ireq->target_device;
3321 iport = idev->owning_port;
3322
3323 /*
3324 * Fill in the TC with the its required data
3325 * 00h
3326 */
3327 task_context->priority = 0;
3328 task_context->initiator_request = 1;
3329 task_context->connection_rate = idev->connection_rate;
3330 task_context->protocol_engine_index = ISCI_PEG;
3331 task_context->logical_port_index = iport->physical_port_index;
3332 task_context->protocol_type = SCU_TASK_CONTEXT_PROTOCOL_SMP;
3333 task_context->abort = 0;
3334 task_context->valid = SCU_TASK_CONTEXT_VALID;
3335 task_context->context_type = SCU_TASK_CONTEXT_TYPE;
3336
3337 /* 04h */
3338 task_context->remote_node_index = idev->rnc.remote_node_index;
3339 task_context->command_code = 0;
3340 task_context->task_type = SCU_TASK_TYPE_SMP_REQUEST;
3341
3342 /* 08h */
3343 task_context->link_layer_control = 0;
3344 task_context->do_not_dma_ssp_good_response = 1;
3345 task_context->strict_ordering = 0;
3346 task_context->control_frame = 1;
3347 task_context->timeout_enable = 0;
3348 task_context->block_guard_enable = 0;
3349
3350 /* 0ch */
3351 task_context->address_modifier = 0;
3352
3353 /* 10h */
3354 task_context->ssp_command_iu_length = req_len;
3355
3356 /* 14h */
3357 task_context->transfer_length_bytes = 0;
3358
3359 /*
3360 * 18h ~ 30h, protocol specific
3361 * since commandIU has been build by framework at this point, we just
3362 * copy the frist DWord from command IU to this location. */
3363 memcpy(&task_context->type.smp, &cmd, sizeof(u32));
3364
3365 /*
3366 * 40h
3367 * "For SMP you could program it to zero. We would prefer that way
3368 * so that done code will be consistent." - Venki
3369 */
3370 task_context->task_phase = 0;
3371
3372 ireq->post_context = (SCU_CONTEXT_COMMAND_REQUEST_TYPE_POST_TC |
3373 (ISCI_PEG << SCU_CONTEXT_COMMAND_PROTOCOL_ENGINE_GROUP_SHIFT) |
3374 (iport->physical_port_index <<
3375 SCU_CONTEXT_COMMAND_LOGICAL_PORT_SHIFT) |
3376 ISCI_TAG_TCI(ireq->io_tag));
3377 /*
3378 * Copy the physical address for the command buffer to the SCU Task
3379 * Context command buffer should not contain command header.
3380 */
3381 task_context->command_iu_upper = upper_32_bits(sg_dma_address(sg));
3382 task_context->command_iu_lower = lower_32_bits(sg_dma_address(sg) + sizeof(u32));
3383
3384 /* SMP response comes as UF, so no need to set response IU address. */
3385 task_context->response_iu_upper = 0;
3386 task_context->response_iu_lower = 0;
3387
3388 sci_change_state(&ireq->sm, SCI_REQ_CONSTRUCTED);
3389
3390 return SCI_SUCCESS;
3391 }
3392
3393 /*
3394 * isci_smp_request_build() - This function builds the smp request.
3395 * @ireq: This parameter points to the isci_request allocated in the
3396 * request construct function.
3397 *
3398 * SCI_SUCCESS on successfull completion, or specific failure code.
3399 */
isci_smp_request_build(struct isci_request * ireq)3400 static enum sci_status isci_smp_request_build(struct isci_request *ireq)
3401 {
3402 struct sas_task *task = isci_request_access_task(ireq);
3403 struct device *dev = &ireq->isci_host->pdev->dev;
3404 enum sci_status status = SCI_FAILURE;
3405
3406 status = sci_io_request_construct_smp(dev, ireq, task);
3407 if (status != SCI_SUCCESS)
3408 dev_dbg(&ireq->isci_host->pdev->dev,
3409 "%s: failed with status = %d\n",
3410 __func__,
3411 status);
3412
3413 return status;
3414 }
3415
3416 /**
3417 * isci_io_request_build() - This function builds the io request object.
3418 * @ihost: This parameter specifies the ISCI host object
3419 * @request: This parameter points to the isci_request object allocated in the
3420 * request construct function.
3421 * @sci_device: This parameter is the handle for the sci core's remote device
3422 * object that is the destination for this request.
3423 *
3424 * SCI_SUCCESS on successfull completion, or specific failure code.
3425 */
isci_io_request_build(struct isci_host * ihost,struct isci_request * request,struct isci_remote_device * idev)3426 static enum sci_status isci_io_request_build(struct isci_host *ihost,
3427 struct isci_request *request,
3428 struct isci_remote_device *idev)
3429 {
3430 enum sci_status status = SCI_SUCCESS;
3431 struct sas_task *task = isci_request_access_task(request);
3432
3433 dev_dbg(&ihost->pdev->dev,
3434 "%s: idev = 0x%p; request = %p, "
3435 "num_scatter = %d\n",
3436 __func__,
3437 idev,
3438 request,
3439 task->num_scatter);
3440
3441 /* map the sgl addresses, if present.
3442 * libata does the mapping for sata devices
3443 * before we get the request.
3444 */
3445 if (task->num_scatter &&
3446 !sas_protocol_ata(task->task_proto) &&
3447 !(SAS_PROTOCOL_SMP & task->task_proto)) {
3448
3449 request->num_sg_entries = dma_map_sg(
3450 &ihost->pdev->dev,
3451 task->scatter,
3452 task->num_scatter,
3453 task->data_dir
3454 );
3455
3456 if (request->num_sg_entries == 0)
3457 return SCI_FAILURE_INSUFFICIENT_RESOURCES;
3458 }
3459
3460 status = sci_io_request_construct(ihost, idev, request);
3461
3462 if (status != SCI_SUCCESS) {
3463 dev_dbg(&ihost->pdev->dev,
3464 "%s: failed request construct\n",
3465 __func__);
3466 return SCI_FAILURE;
3467 }
3468
3469 switch (task->task_proto) {
3470 case SAS_PROTOCOL_SMP:
3471 status = isci_smp_request_build(request);
3472 break;
3473 case SAS_PROTOCOL_SSP:
3474 status = isci_request_ssp_request_construct(request);
3475 break;
3476 case SAS_PROTOCOL_SATA:
3477 case SAS_PROTOCOL_STP:
3478 case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
3479 status = isci_request_stp_request_construct(request);
3480 break;
3481 default:
3482 dev_dbg(&ihost->pdev->dev,
3483 "%s: unknown protocol\n", __func__);
3484 return SCI_FAILURE;
3485 }
3486
3487 return SCI_SUCCESS;
3488 }
3489
isci_request_from_tag(struct isci_host * ihost,u16 tag)3490 static struct isci_request *isci_request_from_tag(struct isci_host *ihost, u16 tag)
3491 {
3492 struct isci_request *ireq;
3493
3494 ireq = ihost->reqs[ISCI_TAG_TCI(tag)];
3495 ireq->io_tag = tag;
3496 ireq->io_request_completion = NULL;
3497 ireq->flags = 0;
3498 ireq->num_sg_entries = 0;
3499 INIT_LIST_HEAD(&ireq->completed_node);
3500 INIT_LIST_HEAD(&ireq->dev_node);
3501 isci_request_change_state(ireq, allocated);
3502
3503 return ireq;
3504 }
3505
isci_io_request_from_tag(struct isci_host * ihost,struct sas_task * task,u16 tag)3506 static struct isci_request *isci_io_request_from_tag(struct isci_host *ihost,
3507 struct sas_task *task,
3508 u16 tag)
3509 {
3510 struct isci_request *ireq;
3511
3512 ireq = isci_request_from_tag(ihost, tag);
3513 ireq->ttype_ptr.io_task_ptr = task;
3514 clear_bit(IREQ_TMF, &ireq->flags);
3515 task->lldd_task = ireq;
3516
3517 return ireq;
3518 }
3519
isci_tmf_request_from_tag(struct isci_host * ihost,struct isci_tmf * isci_tmf,u16 tag)3520 struct isci_request *isci_tmf_request_from_tag(struct isci_host *ihost,
3521 struct isci_tmf *isci_tmf,
3522 u16 tag)
3523 {
3524 struct isci_request *ireq;
3525
3526 ireq = isci_request_from_tag(ihost, tag);
3527 ireq->ttype_ptr.tmf_task_ptr = isci_tmf;
3528 set_bit(IREQ_TMF, &ireq->flags);
3529
3530 return ireq;
3531 }
3532
isci_request_execute(struct isci_host * ihost,struct isci_remote_device * idev,struct sas_task * task,u16 tag)3533 int isci_request_execute(struct isci_host *ihost, struct isci_remote_device *idev,
3534 struct sas_task *task, u16 tag)
3535 {
3536 enum sci_status status = SCI_FAILURE_UNSUPPORTED_PROTOCOL;
3537 struct isci_request *ireq;
3538 unsigned long flags;
3539 int ret = 0;
3540
3541 /* do common allocation and init of request object. */
3542 ireq = isci_io_request_from_tag(ihost, task, tag);
3543
3544 status = isci_io_request_build(ihost, ireq, idev);
3545 if (status != SCI_SUCCESS) {
3546 dev_dbg(&ihost->pdev->dev,
3547 "%s: request_construct failed - status = 0x%x\n",
3548 __func__,
3549 status);
3550 return status;
3551 }
3552
3553 spin_lock_irqsave(&ihost->scic_lock, flags);
3554
3555 if (test_bit(IDEV_IO_NCQERROR, &idev->flags)) {
3556
3557 if (isci_task_is_ncq_recovery(task)) {
3558
3559 /* The device is in an NCQ recovery state. Issue the
3560 * request on the task side. Note that it will
3561 * complete on the I/O request side because the
3562 * request was built that way (ie.
3563 * ireq->is_task_management_request is false).
3564 */
3565 status = sci_controller_start_task(ihost,
3566 idev,
3567 ireq);
3568 } else {
3569 status = SCI_FAILURE;
3570 }
3571 } else {
3572 /* send the request, let the core assign the IO TAG. */
3573 status = sci_controller_start_io(ihost, idev,
3574 ireq);
3575 }
3576
3577 if (status != SCI_SUCCESS &&
3578 status != SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3579 dev_dbg(&ihost->pdev->dev,
3580 "%s: failed request start (0x%x)\n",
3581 __func__, status);
3582 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3583 return status;
3584 }
3585
3586 /* Either I/O started OK, or the core has signaled that
3587 * the device needs a target reset.
3588 *
3589 * In either case, hold onto the I/O for later.
3590 *
3591 * Update it's status and add it to the list in the
3592 * remote device object.
3593 */
3594 list_add(&ireq->dev_node, &idev->reqs_in_process);
3595
3596 if (status == SCI_SUCCESS) {
3597 isci_request_change_state(ireq, started);
3598 } else {
3599 /* The request did not really start in the
3600 * hardware, so clear the request handle
3601 * here so no terminations will be done.
3602 */
3603 set_bit(IREQ_TERMINATED, &ireq->flags);
3604 isci_request_change_state(ireq, completed);
3605 }
3606 spin_unlock_irqrestore(&ihost->scic_lock, flags);
3607
3608 if (status ==
3609 SCI_FAILURE_REMOTE_DEVICE_RESET_REQUIRED) {
3610 /* Signal libsas that we need the SCSI error
3611 * handler thread to work on this I/O and that
3612 * we want a device reset.
3613 */
3614 spin_lock_irqsave(&task->task_state_lock, flags);
3615 task->task_state_flags |= SAS_TASK_NEED_DEV_RESET;
3616 spin_unlock_irqrestore(&task->task_state_lock, flags);
3617
3618 /* Cause this task to be scheduled in the SCSI error
3619 * handler thread.
3620 */
3621 sas_task_abort(task);
3622
3623 /* Change the status, since we are holding
3624 * the I/O until it is managed by the SCSI
3625 * error handler.
3626 */
3627 status = SCI_SUCCESS;
3628 }
3629
3630 return ret;
3631 }
3632