• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2009 Texas Instruments.
3  * Copyright (C) 2010 EF Johnson Technologies
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  */
19 
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/gpio.h>
23 #include <linux/module.h>
24 #include <linux/delay.h>
25 #include <linux/platform_device.h>
26 #include <linux/err.h>
27 #include <linux/clk.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi_bitbang.h>
31 #include <linux/slab.h>
32 
33 #include <mach/spi.h>
34 #include <mach/edma.h>
35 
36 #define SPI_NO_RESOURCE		((resource_size_t)-1)
37 
38 #define SPI_MAX_CHIPSELECT	2
39 
40 #define CS_DEFAULT	0xFF
41 
42 #define SPIFMT_PHASE_MASK	BIT(16)
43 #define SPIFMT_POLARITY_MASK	BIT(17)
44 #define SPIFMT_DISTIMER_MASK	BIT(18)
45 #define SPIFMT_SHIFTDIR_MASK	BIT(20)
46 #define SPIFMT_WAITENA_MASK	BIT(21)
47 #define SPIFMT_PARITYENA_MASK	BIT(22)
48 #define SPIFMT_ODD_PARITY_MASK	BIT(23)
49 #define SPIFMT_WDELAY_MASK	0x3f000000u
50 #define SPIFMT_WDELAY_SHIFT	24
51 #define SPIFMT_PRESCALE_SHIFT	8
52 
53 /* SPIPC0 */
54 #define SPIPC0_DIFUN_MASK	BIT(11)		/* MISO */
55 #define SPIPC0_DOFUN_MASK	BIT(10)		/* MOSI */
56 #define SPIPC0_CLKFUN_MASK	BIT(9)		/* CLK */
57 #define SPIPC0_SPIENA_MASK	BIT(8)		/* nREADY */
58 
59 #define SPIINT_MASKALL		0x0101035F
60 #define SPIINT_MASKINT		0x0000015F
61 #define SPI_INTLVL_1		0x000001FF
62 #define SPI_INTLVL_0		0x00000000
63 
64 /* SPIDAT1 (upper 16 bit defines) */
65 #define SPIDAT1_CSHOLD_MASK	BIT(12)
66 
67 /* SPIGCR1 */
68 #define SPIGCR1_CLKMOD_MASK	BIT(1)
69 #define SPIGCR1_MASTER_MASK     BIT(0)
70 #define SPIGCR1_POWERDOWN_MASK	BIT(8)
71 #define SPIGCR1_LOOPBACK_MASK	BIT(16)
72 #define SPIGCR1_SPIENA_MASK	BIT(24)
73 
74 /* SPIBUF */
75 #define SPIBUF_TXFULL_MASK	BIT(29)
76 #define SPIBUF_RXEMPTY_MASK	BIT(31)
77 
78 /* SPIDELAY */
79 #define SPIDELAY_C2TDELAY_SHIFT 24
80 #define SPIDELAY_C2TDELAY_MASK  (0xFF << SPIDELAY_C2TDELAY_SHIFT)
81 #define SPIDELAY_T2CDELAY_SHIFT 16
82 #define SPIDELAY_T2CDELAY_MASK  (0xFF << SPIDELAY_T2CDELAY_SHIFT)
83 #define SPIDELAY_T2EDELAY_SHIFT 8
84 #define SPIDELAY_T2EDELAY_MASK  (0xFF << SPIDELAY_T2EDELAY_SHIFT)
85 #define SPIDELAY_C2EDELAY_SHIFT 0
86 #define SPIDELAY_C2EDELAY_MASK  0xFF
87 
88 /* Error Masks */
89 #define SPIFLG_DLEN_ERR_MASK		BIT(0)
90 #define SPIFLG_TIMEOUT_MASK		BIT(1)
91 #define SPIFLG_PARERR_MASK		BIT(2)
92 #define SPIFLG_DESYNC_MASK		BIT(3)
93 #define SPIFLG_BITERR_MASK		BIT(4)
94 #define SPIFLG_OVRRUN_MASK		BIT(6)
95 #define SPIFLG_BUF_INIT_ACTIVE_MASK	BIT(24)
96 #define SPIFLG_ERROR_MASK		(SPIFLG_DLEN_ERR_MASK \
97 				| SPIFLG_TIMEOUT_MASK | SPIFLG_PARERR_MASK \
98 				| SPIFLG_DESYNC_MASK | SPIFLG_BITERR_MASK \
99 				| SPIFLG_OVRRUN_MASK)
100 
101 #define SPIINT_DMA_REQ_EN	BIT(16)
102 
103 /* SPI Controller registers */
104 #define SPIGCR0		0x00
105 #define SPIGCR1		0x04
106 #define SPIINT		0x08
107 #define SPILVL		0x0c
108 #define SPIFLG		0x10
109 #define SPIPC0		0x14
110 #define SPIDAT1		0x3c
111 #define SPIBUF		0x40
112 #define SPIDELAY	0x48
113 #define SPIDEF		0x4c
114 #define SPIFMT0		0x50
115 
116 /* We have 2 DMA channels per CS, one for RX and one for TX */
117 struct davinci_spi_dma {
118 	int			tx_channel;
119 	int			rx_channel;
120 	int			dummy_param_slot;
121 	enum dma_event_q	eventq;
122 };
123 
124 /* SPI Controller driver's private data. */
125 struct davinci_spi {
126 	struct spi_bitbang	bitbang;
127 	struct clk		*clk;
128 
129 	u8			version;
130 	resource_size_t		pbase;
131 	void __iomem		*base;
132 	u32			irq;
133 	struct completion	done;
134 
135 	const void		*tx;
136 	void			*rx;
137 #define SPI_TMP_BUFSZ	(SMP_CACHE_BYTES + 1)
138 	u8			rx_tmp_buf[SPI_TMP_BUFSZ];
139 	int			rcount;
140 	int			wcount;
141 	struct davinci_spi_dma	dma;
142 	struct davinci_spi_platform_data *pdata;
143 
144 	void			(*get_rx)(u32 rx_data, struct davinci_spi *);
145 	u32			(*get_tx)(struct davinci_spi *);
146 
147 	u8			bytes_per_word[SPI_MAX_CHIPSELECT];
148 };
149 
150 static struct davinci_spi_config davinci_spi_default_cfg;
151 
davinci_spi_rx_buf_u8(u32 data,struct davinci_spi * dspi)152 static void davinci_spi_rx_buf_u8(u32 data, struct davinci_spi *dspi)
153 {
154 	if (dspi->rx) {
155 		u8 *rx = dspi->rx;
156 		*rx++ = (u8)data;
157 		dspi->rx = rx;
158 	}
159 }
160 
davinci_spi_rx_buf_u16(u32 data,struct davinci_spi * dspi)161 static void davinci_spi_rx_buf_u16(u32 data, struct davinci_spi *dspi)
162 {
163 	if (dspi->rx) {
164 		u16 *rx = dspi->rx;
165 		*rx++ = (u16)data;
166 		dspi->rx = rx;
167 	}
168 }
169 
davinci_spi_tx_buf_u8(struct davinci_spi * dspi)170 static u32 davinci_spi_tx_buf_u8(struct davinci_spi *dspi)
171 {
172 	u32 data = 0;
173 	if (dspi->tx) {
174 		const u8 *tx = dspi->tx;
175 		data = *tx++;
176 		dspi->tx = tx;
177 	}
178 	return data;
179 }
180 
davinci_spi_tx_buf_u16(struct davinci_spi * dspi)181 static u32 davinci_spi_tx_buf_u16(struct davinci_spi *dspi)
182 {
183 	u32 data = 0;
184 	if (dspi->tx) {
185 		const u16 *tx = dspi->tx;
186 		data = *tx++;
187 		dspi->tx = tx;
188 	}
189 	return data;
190 }
191 
set_io_bits(void __iomem * addr,u32 bits)192 static inline void set_io_bits(void __iomem *addr, u32 bits)
193 {
194 	u32 v = ioread32(addr);
195 
196 	v |= bits;
197 	iowrite32(v, addr);
198 }
199 
clear_io_bits(void __iomem * addr,u32 bits)200 static inline void clear_io_bits(void __iomem *addr, u32 bits)
201 {
202 	u32 v = ioread32(addr);
203 
204 	v &= ~bits;
205 	iowrite32(v, addr);
206 }
207 
208 /*
209  * Interface to control the chip select signal
210  */
davinci_spi_chipselect(struct spi_device * spi,int value)211 static void davinci_spi_chipselect(struct spi_device *spi, int value)
212 {
213 	struct davinci_spi *dspi;
214 	struct davinci_spi_platform_data *pdata;
215 	u8 chip_sel = spi->chip_select;
216 	u16 spidat1 = CS_DEFAULT;
217 	bool gpio_chipsel = false;
218 
219 	dspi = spi_master_get_devdata(spi->master);
220 	pdata = dspi->pdata;
221 
222 	if (pdata->chip_sel && chip_sel < pdata->num_chipselect &&
223 				pdata->chip_sel[chip_sel] != SPI_INTERN_CS)
224 		gpio_chipsel = true;
225 
226 	/*
227 	 * Board specific chip select logic decides the polarity and cs
228 	 * line for the controller
229 	 */
230 	if (gpio_chipsel) {
231 		if (value == BITBANG_CS_ACTIVE)
232 			gpio_set_value(pdata->chip_sel[chip_sel], 0);
233 		else
234 			gpio_set_value(pdata->chip_sel[chip_sel], 1);
235 	} else {
236 		if (value == BITBANG_CS_ACTIVE) {
237 			spidat1 |= SPIDAT1_CSHOLD_MASK;
238 			spidat1 &= ~(0x1 << chip_sel);
239 		}
240 
241 		iowrite16(spidat1, dspi->base + SPIDAT1 + 2);
242 	}
243 }
244 
245 /**
246  * davinci_spi_get_prescale - Calculates the correct prescale value
247  * @maxspeed_hz: the maximum rate the SPI clock can run at
248  *
249  * This function calculates the prescale value that generates a clock rate
250  * less than or equal to the specified maximum.
251  *
252  * Returns: calculated prescale - 1 for easy programming into SPI registers
253  * or negative error number if valid prescalar cannot be updated.
254  */
davinci_spi_get_prescale(struct davinci_spi * dspi,u32 max_speed_hz)255 static inline int davinci_spi_get_prescale(struct davinci_spi *dspi,
256 							u32 max_speed_hz)
257 {
258 	int ret;
259 
260 	ret = DIV_ROUND_UP(clk_get_rate(dspi->clk), max_speed_hz);
261 
262 	if (ret < 3 || ret > 256)
263 		return -EINVAL;
264 
265 	return ret - 1;
266 }
267 
268 /**
269  * davinci_spi_setup_transfer - This functions will determine transfer method
270  * @spi: spi device on which data transfer to be done
271  * @t: spi transfer in which transfer info is filled
272  *
273  * This function determines data transfer method (8/16/32 bit transfer).
274  * It will also set the SPI Clock Control register according to
275  * SPI slave device freq.
276  */
davinci_spi_setup_transfer(struct spi_device * spi,struct spi_transfer * t)277 static int davinci_spi_setup_transfer(struct spi_device *spi,
278 		struct spi_transfer *t)
279 {
280 
281 	struct davinci_spi *dspi;
282 	struct davinci_spi_config *spicfg;
283 	u8 bits_per_word = 0;
284 	u32 hz = 0, spifmt = 0, prescale = 0;
285 
286 	dspi = spi_master_get_devdata(spi->master);
287 	spicfg = (struct davinci_spi_config *)spi->controller_data;
288 	if (!spicfg)
289 		spicfg = &davinci_spi_default_cfg;
290 
291 	if (t) {
292 		bits_per_word = t->bits_per_word;
293 		hz = t->speed_hz;
294 	}
295 
296 	/* if bits_per_word is not set then set it default */
297 	if (!bits_per_word)
298 		bits_per_word = spi->bits_per_word;
299 
300 	/*
301 	 * Assign function pointer to appropriate transfer method
302 	 * 8bit, 16bit or 32bit transfer
303 	 */
304 	if (bits_per_word <= 8 && bits_per_word >= 2) {
305 		dspi->get_rx = davinci_spi_rx_buf_u8;
306 		dspi->get_tx = davinci_spi_tx_buf_u8;
307 		dspi->bytes_per_word[spi->chip_select] = 1;
308 	} else if (bits_per_word <= 16 && bits_per_word >= 2) {
309 		dspi->get_rx = davinci_spi_rx_buf_u16;
310 		dspi->get_tx = davinci_spi_tx_buf_u16;
311 		dspi->bytes_per_word[spi->chip_select] = 2;
312 	} else
313 		return -EINVAL;
314 
315 	if (!hz)
316 		hz = spi->max_speed_hz;
317 
318 	/* Set up SPIFMTn register, unique to this chipselect. */
319 
320 	prescale = davinci_spi_get_prescale(dspi, hz);
321 	if (prescale < 0)
322 		return prescale;
323 
324 	spifmt = (prescale << SPIFMT_PRESCALE_SHIFT) | (bits_per_word & 0x1f);
325 
326 	if (spi->mode & SPI_LSB_FIRST)
327 		spifmt |= SPIFMT_SHIFTDIR_MASK;
328 
329 	if (spi->mode & SPI_CPOL)
330 		spifmt |= SPIFMT_POLARITY_MASK;
331 
332 	if (!(spi->mode & SPI_CPHA))
333 		spifmt |= SPIFMT_PHASE_MASK;
334 
335 	/*
336 	 * Version 1 hardware supports two basic SPI modes:
337 	 *  - Standard SPI mode uses 4 pins, with chipselect
338 	 *  - 3 pin SPI is a 4 pin variant without CS (SPI_NO_CS)
339 	 *	(distinct from SPI_3WIRE, with just one data wire;
340 	 *	or similar variants without MOSI or without MISO)
341 	 *
342 	 * Version 2 hardware supports an optional handshaking signal,
343 	 * so it can support two more modes:
344 	 *  - 5 pin SPI variant is standard SPI plus SPI_READY
345 	 *  - 4 pin with enable is (SPI_READY | SPI_NO_CS)
346 	 */
347 
348 	if (dspi->version == SPI_VERSION_2) {
349 
350 		u32 delay = 0;
351 
352 		spifmt |= ((spicfg->wdelay << SPIFMT_WDELAY_SHIFT)
353 							& SPIFMT_WDELAY_MASK);
354 
355 		if (spicfg->odd_parity)
356 			spifmt |= SPIFMT_ODD_PARITY_MASK;
357 
358 		if (spicfg->parity_enable)
359 			spifmt |= SPIFMT_PARITYENA_MASK;
360 
361 		if (spicfg->timer_disable) {
362 			spifmt |= SPIFMT_DISTIMER_MASK;
363 		} else {
364 			delay |= (spicfg->c2tdelay << SPIDELAY_C2TDELAY_SHIFT)
365 						& SPIDELAY_C2TDELAY_MASK;
366 			delay |= (spicfg->t2cdelay << SPIDELAY_T2CDELAY_SHIFT)
367 						& SPIDELAY_T2CDELAY_MASK;
368 		}
369 
370 		if (spi->mode & SPI_READY) {
371 			spifmt |= SPIFMT_WAITENA_MASK;
372 			delay |= (spicfg->t2edelay << SPIDELAY_T2EDELAY_SHIFT)
373 						& SPIDELAY_T2EDELAY_MASK;
374 			delay |= (spicfg->c2edelay << SPIDELAY_C2EDELAY_SHIFT)
375 						& SPIDELAY_C2EDELAY_MASK;
376 		}
377 
378 		iowrite32(delay, dspi->base + SPIDELAY);
379 	}
380 
381 	iowrite32(spifmt, dspi->base + SPIFMT0);
382 
383 	return 0;
384 }
385 
386 /**
387  * davinci_spi_setup - This functions will set default transfer method
388  * @spi: spi device on which data transfer to be done
389  *
390  * This functions sets the default transfer method.
391  */
davinci_spi_setup(struct spi_device * spi)392 static int davinci_spi_setup(struct spi_device *spi)
393 {
394 	int retval = 0;
395 	struct davinci_spi *dspi;
396 	struct davinci_spi_platform_data *pdata;
397 
398 	dspi = spi_master_get_devdata(spi->master);
399 	pdata = dspi->pdata;
400 
401 	/* if bits per word length is zero then set it default 8 */
402 	if (!spi->bits_per_word)
403 		spi->bits_per_word = 8;
404 
405 	if (!(spi->mode & SPI_NO_CS)) {
406 		if ((pdata->chip_sel == NULL) ||
407 		    (pdata->chip_sel[spi->chip_select] == SPI_INTERN_CS))
408 			set_io_bits(dspi->base + SPIPC0, 1 << spi->chip_select);
409 
410 	}
411 
412 	if (spi->mode & SPI_READY)
413 		set_io_bits(dspi->base + SPIPC0, SPIPC0_SPIENA_MASK);
414 
415 	if (spi->mode & SPI_LOOP)
416 		set_io_bits(dspi->base + SPIGCR1, SPIGCR1_LOOPBACK_MASK);
417 	else
418 		clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_LOOPBACK_MASK);
419 
420 	return retval;
421 }
422 
davinci_spi_check_error(struct davinci_spi * dspi,int int_status)423 static int davinci_spi_check_error(struct davinci_spi *dspi, int int_status)
424 {
425 	struct device *sdev = dspi->bitbang.master->dev.parent;
426 
427 	if (int_status & SPIFLG_TIMEOUT_MASK) {
428 		dev_dbg(sdev, "SPI Time-out Error\n");
429 		return -ETIMEDOUT;
430 	}
431 	if (int_status & SPIFLG_DESYNC_MASK) {
432 		dev_dbg(sdev, "SPI Desynchronization Error\n");
433 		return -EIO;
434 	}
435 	if (int_status & SPIFLG_BITERR_MASK) {
436 		dev_dbg(sdev, "SPI Bit error\n");
437 		return -EIO;
438 	}
439 
440 	if (dspi->version == SPI_VERSION_2) {
441 		if (int_status & SPIFLG_DLEN_ERR_MASK) {
442 			dev_dbg(sdev, "SPI Data Length Error\n");
443 			return -EIO;
444 		}
445 		if (int_status & SPIFLG_PARERR_MASK) {
446 			dev_dbg(sdev, "SPI Parity Error\n");
447 			return -EIO;
448 		}
449 		if (int_status & SPIFLG_OVRRUN_MASK) {
450 			dev_dbg(sdev, "SPI Data Overrun error\n");
451 			return -EIO;
452 		}
453 		if (int_status & SPIFLG_BUF_INIT_ACTIVE_MASK) {
454 			dev_dbg(sdev, "SPI Buffer Init Active\n");
455 			return -EBUSY;
456 		}
457 	}
458 
459 	return 0;
460 }
461 
462 /**
463  * davinci_spi_process_events - check for and handle any SPI controller events
464  * @dspi: the controller data
465  *
466  * This function will check the SPIFLG register and handle any events that are
467  * detected there
468  */
davinci_spi_process_events(struct davinci_spi * dspi)469 static int davinci_spi_process_events(struct davinci_spi *dspi)
470 {
471 	u32 buf, status, errors = 0, spidat1;
472 
473 	buf = ioread32(dspi->base + SPIBUF);
474 
475 	if (dspi->rcount > 0 && !(buf & SPIBUF_RXEMPTY_MASK)) {
476 		dspi->get_rx(buf & 0xFFFF, dspi);
477 		dspi->rcount--;
478 	}
479 
480 	status = ioread32(dspi->base + SPIFLG);
481 
482 	if (unlikely(status & SPIFLG_ERROR_MASK)) {
483 		errors = status & SPIFLG_ERROR_MASK;
484 		goto out;
485 	}
486 
487 	if (dspi->wcount > 0 && !(buf & SPIBUF_TXFULL_MASK)) {
488 		spidat1 = ioread32(dspi->base + SPIDAT1);
489 		dspi->wcount--;
490 		spidat1 &= ~0xFFFF;
491 		spidat1 |= 0xFFFF & dspi->get_tx(dspi);
492 		iowrite32(spidat1, dspi->base + SPIDAT1);
493 	}
494 
495 out:
496 	return errors;
497 }
498 
davinci_spi_dma_callback(unsigned lch,u16 status,void * data)499 static void davinci_spi_dma_callback(unsigned lch, u16 status, void *data)
500 {
501 	struct davinci_spi *dspi = data;
502 	struct davinci_spi_dma *dma = &dspi->dma;
503 
504 	edma_stop(lch);
505 
506 	if (status == DMA_COMPLETE) {
507 		if (lch == dma->rx_channel)
508 			dspi->rcount = 0;
509 		if (lch == dma->tx_channel)
510 			dspi->wcount = 0;
511 	}
512 
513 	if ((!dspi->wcount && !dspi->rcount) || (status != DMA_COMPLETE))
514 		complete(&dspi->done);
515 }
516 
517 /**
518  * davinci_spi_bufs - functions which will handle transfer data
519  * @spi: spi device on which data transfer to be done
520  * @t: spi transfer in which transfer info is filled
521  *
522  * This function will put data to be transferred into data register
523  * of SPI controller and then wait until the completion will be marked
524  * by the IRQ Handler.
525  */
davinci_spi_bufs(struct spi_device * spi,struct spi_transfer * t)526 static int davinci_spi_bufs(struct spi_device *spi, struct spi_transfer *t)
527 {
528 	struct davinci_spi *dspi;
529 	int data_type, ret;
530 	u32 tx_data, spidat1;
531 	u32 errors = 0;
532 	struct davinci_spi_config *spicfg;
533 	struct davinci_spi_platform_data *pdata;
534 	unsigned uninitialized_var(rx_buf_count);
535 	struct device *sdev;
536 
537 	dspi = spi_master_get_devdata(spi->master);
538 	pdata = dspi->pdata;
539 	spicfg = (struct davinci_spi_config *)spi->controller_data;
540 	if (!spicfg)
541 		spicfg = &davinci_spi_default_cfg;
542 	sdev = dspi->bitbang.master->dev.parent;
543 
544 	/* convert len to words based on bits_per_word */
545 	data_type = dspi->bytes_per_word[spi->chip_select];
546 
547 	dspi->tx = t->tx_buf;
548 	dspi->rx = t->rx_buf;
549 	dspi->wcount = t->len / data_type;
550 	dspi->rcount = dspi->wcount;
551 
552 	spidat1 = ioread32(dspi->base + SPIDAT1);
553 
554 	clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK);
555 	set_io_bits(dspi->base + SPIGCR1, SPIGCR1_SPIENA_MASK);
556 
557 	INIT_COMPLETION(dspi->done);
558 
559 	if (spicfg->io_type == SPI_IO_TYPE_INTR)
560 		set_io_bits(dspi->base + SPIINT, SPIINT_MASKINT);
561 
562 	if (spicfg->io_type != SPI_IO_TYPE_DMA) {
563 		/* start the transfer */
564 		dspi->wcount--;
565 		tx_data = dspi->get_tx(dspi);
566 		spidat1 &= 0xFFFF0000;
567 		spidat1 |= tx_data & 0xFFFF;
568 		iowrite32(spidat1, dspi->base + SPIDAT1);
569 	} else {
570 		struct davinci_spi_dma *dma;
571 		unsigned long tx_reg, rx_reg;
572 		struct edmacc_param param;
573 		void *rx_buf;
574 		int b, c;
575 
576 		dma = &dspi->dma;
577 
578 		tx_reg = (unsigned long)dspi->pbase + SPIDAT1;
579 		rx_reg = (unsigned long)dspi->pbase + SPIBUF;
580 
581 		/*
582 		 * Transmit DMA setup
583 		 *
584 		 * If there is transmit data, map the transmit buffer, set it
585 		 * as the source of data and set the source B index to data
586 		 * size. If there is no transmit data, set the transmit register
587 		 * as the source of data, and set the source B index to zero.
588 		 *
589 		 * The destination is always the transmit register itself. And
590 		 * the destination never increments.
591 		 */
592 
593 		if (t->tx_buf) {
594 			t->tx_dma = dma_map_single(&spi->dev, (void *)t->tx_buf,
595 						t->len, DMA_TO_DEVICE);
596 			if (dma_mapping_error(&spi->dev, t->tx_dma)) {
597 				dev_dbg(sdev, "Unable to DMA map %d bytes"
598 						"TX buffer\n", t->len);
599 				return -ENOMEM;
600 			}
601 		}
602 
603 		/*
604 		 * If number of words is greater than 65535, then we need
605 		 * to configure a 3 dimension transfer.  Use the BCNTRLD
606 		 * feature to allow for transfers that aren't even multiples
607 		 * of 65535 (or any other possible b size) by first transferring
608 		 * the remainder amount then grabbing the next N blocks of
609 		 * 65535 words.
610 		 */
611 
612 		c = dspi->wcount / (SZ_64K - 1);	/* N 65535 Blocks */
613 		b = dspi->wcount - c * (SZ_64K - 1);	/* Remainder */
614 		if (b)
615 			c++;
616 		else
617 			b = SZ_64K - 1;
618 
619 		param.opt = TCINTEN | EDMA_TCC(dma->tx_channel);
620 		param.src = t->tx_buf ? t->tx_dma : tx_reg;
621 		param.a_b_cnt = b << 16 | data_type;
622 		param.dst = tx_reg;
623 		param.src_dst_bidx = t->tx_buf ? data_type : 0;
624 		param.link_bcntrld = 0xffffffff;
625 		param.src_dst_cidx = t->tx_buf ? data_type : 0;
626 		param.ccnt = c;
627 		edma_write_slot(dma->tx_channel, &param);
628 		edma_link(dma->tx_channel, dma->dummy_param_slot);
629 
630 		/*
631 		 * Receive DMA setup
632 		 *
633 		 * If there is receive buffer, use it to receive data. If there
634 		 * is none provided, use a temporary receive buffer. Set the
635 		 * destination B index to 0 so effectively only one byte is used
636 		 * in the temporary buffer (address does not increment).
637 		 *
638 		 * The source of receive data is the receive data register. The
639 		 * source address never increments.
640 		 */
641 
642 		if (t->rx_buf) {
643 			rx_buf = t->rx_buf;
644 			rx_buf_count = t->len;
645 		} else {
646 			rx_buf = dspi->rx_tmp_buf;
647 			rx_buf_count = sizeof(dspi->rx_tmp_buf);
648 		}
649 
650 		t->rx_dma = dma_map_single(&spi->dev, rx_buf, rx_buf_count,
651 							DMA_FROM_DEVICE);
652 		if (dma_mapping_error(&spi->dev, t->rx_dma)) {
653 			dev_dbg(sdev, "Couldn't DMA map a %d bytes RX buffer\n",
654 								rx_buf_count);
655 			if (t->tx_buf)
656 				dma_unmap_single(&spi->dev, t->tx_dma, t->len,
657 								DMA_TO_DEVICE);
658 			return -ENOMEM;
659 		}
660 
661 		param.opt = TCINTEN | EDMA_TCC(dma->rx_channel);
662 		param.src = rx_reg;
663 		param.a_b_cnt = b << 16 | data_type;
664 		param.dst = t->rx_dma;
665 		param.src_dst_bidx = (t->rx_buf ? data_type : 0) << 16;
666 		param.link_bcntrld = 0xffffffff;
667 		param.src_dst_cidx = (t->rx_buf ? data_type : 0) << 16;
668 		param.ccnt = c;
669 		edma_write_slot(dma->rx_channel, &param);
670 
671 		if (pdata->cshold_bug)
672 			iowrite16(spidat1 >> 16, dspi->base + SPIDAT1 + 2);
673 
674 		edma_start(dma->rx_channel);
675 		edma_start(dma->tx_channel);
676 		set_io_bits(dspi->base + SPIINT, SPIINT_DMA_REQ_EN);
677 	}
678 
679 	/* Wait for the transfer to complete */
680 	if (spicfg->io_type != SPI_IO_TYPE_POLL) {
681 		wait_for_completion_interruptible(&(dspi->done));
682 	} else {
683 		while (dspi->rcount > 0 || dspi->wcount > 0) {
684 			errors = davinci_spi_process_events(dspi);
685 			if (errors)
686 				break;
687 			cpu_relax();
688 		}
689 	}
690 
691 	clear_io_bits(dspi->base + SPIINT, SPIINT_MASKALL);
692 	if (spicfg->io_type == SPI_IO_TYPE_DMA) {
693 
694 		if (t->tx_buf)
695 			dma_unmap_single(&spi->dev, t->tx_dma, t->len,
696 								DMA_TO_DEVICE);
697 
698 		dma_unmap_single(&spi->dev, t->rx_dma, rx_buf_count,
699 							DMA_FROM_DEVICE);
700 
701 		clear_io_bits(dspi->base + SPIINT, SPIINT_DMA_REQ_EN);
702 	}
703 
704 	clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_SPIENA_MASK);
705 	set_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK);
706 
707 	/*
708 	 * Check for bit error, desync error,parity error,timeout error and
709 	 * receive overflow errors
710 	 */
711 	if (errors) {
712 		ret = davinci_spi_check_error(dspi, errors);
713 		WARN(!ret, "%s: error reported but no error found!\n",
714 							dev_name(&spi->dev));
715 		return ret;
716 	}
717 
718 	if (dspi->rcount != 0 || dspi->wcount != 0) {
719 		dev_err(sdev, "SPI data transfer error\n");
720 		return -EIO;
721 	}
722 
723 	return t->len;
724 }
725 
726 /**
727  * davinci_spi_irq - Interrupt handler for SPI Master Controller
728  * @irq: IRQ number for this SPI Master
729  * @context_data: structure for SPI Master controller davinci_spi
730  *
731  * ISR will determine that interrupt arrives either for READ or WRITE command.
732  * According to command it will do the appropriate action. It will check
733  * transfer length and if it is not zero then dispatch transfer command again.
734  * If transfer length is zero then it will indicate the COMPLETION so that
735  * davinci_spi_bufs function can go ahead.
736  */
davinci_spi_irq(s32 irq,void * data)737 static irqreturn_t davinci_spi_irq(s32 irq, void *data)
738 {
739 	struct davinci_spi *dspi = data;
740 	int status;
741 
742 	status = davinci_spi_process_events(dspi);
743 	if (unlikely(status != 0))
744 		clear_io_bits(dspi->base + SPIINT, SPIINT_MASKINT);
745 
746 	if ((!dspi->rcount && !dspi->wcount) || status)
747 		complete(&dspi->done);
748 
749 	return IRQ_HANDLED;
750 }
751 
davinci_spi_request_dma(struct davinci_spi * dspi)752 static int davinci_spi_request_dma(struct davinci_spi *dspi)
753 {
754 	int r;
755 	struct davinci_spi_dma *dma = &dspi->dma;
756 
757 	r = edma_alloc_channel(dma->rx_channel, davinci_spi_dma_callback, dspi,
758 								dma->eventq);
759 	if (r < 0) {
760 		pr_err("Unable to request DMA channel for SPI RX\n");
761 		r = -EAGAIN;
762 		goto rx_dma_failed;
763 	}
764 
765 	r = edma_alloc_channel(dma->tx_channel, davinci_spi_dma_callback, dspi,
766 								dma->eventq);
767 	if (r < 0) {
768 		pr_err("Unable to request DMA channel for SPI TX\n");
769 		r = -EAGAIN;
770 		goto tx_dma_failed;
771 	}
772 
773 	r = edma_alloc_slot(EDMA_CTLR(dma->tx_channel), EDMA_SLOT_ANY);
774 	if (r < 0) {
775 		pr_err("Unable to request SPI TX DMA param slot\n");
776 		r = -EAGAIN;
777 		goto param_failed;
778 	}
779 	dma->dummy_param_slot = r;
780 	edma_link(dma->dummy_param_slot, dma->dummy_param_slot);
781 
782 	return 0;
783 param_failed:
784 	edma_free_channel(dma->tx_channel);
785 tx_dma_failed:
786 	edma_free_channel(dma->rx_channel);
787 rx_dma_failed:
788 	return r;
789 }
790 
791 /**
792  * davinci_spi_probe - probe function for SPI Master Controller
793  * @pdev: platform_device structure which contains plateform specific data
794  *
795  * According to Linux Device Model this function will be invoked by Linux
796  * with platform_device struct which contains the device specific info.
797  * This function will map the SPI controller's memory, register IRQ,
798  * Reset SPI controller and setting its registers to default value.
799  * It will invoke spi_bitbang_start to create work queue so that client driver
800  * can register transfer method to work queue.
801  */
davinci_spi_probe(struct platform_device * pdev)802 static int __devinit davinci_spi_probe(struct platform_device *pdev)
803 {
804 	struct spi_master *master;
805 	struct davinci_spi *dspi;
806 	struct davinci_spi_platform_data *pdata;
807 	struct resource *r, *mem;
808 	resource_size_t dma_rx_chan = SPI_NO_RESOURCE;
809 	resource_size_t	dma_tx_chan = SPI_NO_RESOURCE;
810 	int i = 0, ret = 0;
811 	u32 spipc0;
812 
813 	pdata = pdev->dev.platform_data;
814 	if (pdata == NULL) {
815 		ret = -ENODEV;
816 		goto err;
817 	}
818 
819 	master = spi_alloc_master(&pdev->dev, sizeof(struct davinci_spi));
820 	if (master == NULL) {
821 		ret = -ENOMEM;
822 		goto err;
823 	}
824 
825 	dev_set_drvdata(&pdev->dev, master);
826 
827 	dspi = spi_master_get_devdata(master);
828 	if (dspi == NULL) {
829 		ret = -ENOENT;
830 		goto free_master;
831 	}
832 
833 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
834 	if (r == NULL) {
835 		ret = -ENOENT;
836 		goto free_master;
837 	}
838 
839 	dspi->pbase = r->start;
840 	dspi->pdata = pdata;
841 
842 	mem = request_mem_region(r->start, resource_size(r), pdev->name);
843 	if (mem == NULL) {
844 		ret = -EBUSY;
845 		goto free_master;
846 	}
847 
848 	dspi->base = ioremap(r->start, resource_size(r));
849 	if (dspi->base == NULL) {
850 		ret = -ENOMEM;
851 		goto release_region;
852 	}
853 
854 	dspi->irq = platform_get_irq(pdev, 0);
855 	if (dspi->irq <= 0) {
856 		ret = -EINVAL;
857 		goto unmap_io;
858 	}
859 
860 	ret = request_irq(dspi->irq, davinci_spi_irq, 0, dev_name(&pdev->dev),
861 									dspi);
862 	if (ret)
863 		goto unmap_io;
864 
865 	dspi->bitbang.master = spi_master_get(master);
866 	if (dspi->bitbang.master == NULL) {
867 		ret = -ENODEV;
868 		goto irq_free;
869 	}
870 
871 	dspi->clk = clk_get(&pdev->dev, NULL);
872 	if (IS_ERR(dspi->clk)) {
873 		ret = -ENODEV;
874 		goto put_master;
875 	}
876 	clk_enable(dspi->clk);
877 
878 	master->bus_num = pdev->id;
879 	master->num_chipselect = pdata->num_chipselect;
880 	master->setup = davinci_spi_setup;
881 
882 	dspi->bitbang.chipselect = davinci_spi_chipselect;
883 	dspi->bitbang.setup_transfer = davinci_spi_setup_transfer;
884 
885 	dspi->version = pdata->version;
886 
887 	dspi->bitbang.flags = SPI_NO_CS | SPI_LSB_FIRST | SPI_LOOP;
888 	if (dspi->version == SPI_VERSION_2)
889 		dspi->bitbang.flags |= SPI_READY;
890 
891 	r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
892 	if (r)
893 		dma_rx_chan = r->start;
894 	r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
895 	if (r)
896 		dma_tx_chan = r->start;
897 
898 	dspi->bitbang.txrx_bufs = davinci_spi_bufs;
899 	if (dma_rx_chan != SPI_NO_RESOURCE &&
900 	    dma_tx_chan != SPI_NO_RESOURCE) {
901 		dspi->dma.rx_channel = dma_rx_chan;
902 		dspi->dma.tx_channel = dma_tx_chan;
903 		dspi->dma.eventq = pdata->dma_event_q;
904 
905 		ret = davinci_spi_request_dma(dspi);
906 		if (ret)
907 			goto free_clk;
908 
909 		dev_info(&pdev->dev, "DMA: supported\n");
910 		dev_info(&pdev->dev, "DMA: RX channel: %d, TX channel: %d, "
911 				"event queue: %d\n", dma_rx_chan, dma_tx_chan,
912 				pdata->dma_event_q);
913 	}
914 
915 	dspi->get_rx = davinci_spi_rx_buf_u8;
916 	dspi->get_tx = davinci_spi_tx_buf_u8;
917 
918 	init_completion(&dspi->done);
919 
920 	/* Reset In/OUT SPI module */
921 	iowrite32(0, dspi->base + SPIGCR0);
922 	udelay(100);
923 	iowrite32(1, dspi->base + SPIGCR0);
924 
925 	/* Set up SPIPC0.  CS and ENA init is done in davinci_spi_setup */
926 	spipc0 = SPIPC0_DIFUN_MASK | SPIPC0_DOFUN_MASK | SPIPC0_CLKFUN_MASK;
927 	iowrite32(spipc0, dspi->base + SPIPC0);
928 
929 	/* initialize chip selects */
930 	if (pdata->chip_sel) {
931 		for (i = 0; i < pdata->num_chipselect; i++) {
932 			if (pdata->chip_sel[i] != SPI_INTERN_CS)
933 				gpio_direction_output(pdata->chip_sel[i], 1);
934 		}
935 	}
936 
937 	if (pdata->intr_line)
938 		iowrite32(SPI_INTLVL_1, dspi->base + SPILVL);
939 	else
940 		iowrite32(SPI_INTLVL_0, dspi->base + SPILVL);
941 
942 	iowrite32(CS_DEFAULT, dspi->base + SPIDEF);
943 
944 	/* master mode default */
945 	set_io_bits(dspi->base + SPIGCR1, SPIGCR1_CLKMOD_MASK);
946 	set_io_bits(dspi->base + SPIGCR1, SPIGCR1_MASTER_MASK);
947 	set_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK);
948 
949 	ret = spi_bitbang_start(&dspi->bitbang);
950 	if (ret)
951 		goto free_dma;
952 
953 	dev_info(&pdev->dev, "Controller at 0x%p\n", dspi->base);
954 
955 	return ret;
956 
957 free_dma:
958 	edma_free_channel(dspi->dma.tx_channel);
959 	edma_free_channel(dspi->dma.rx_channel);
960 	edma_free_slot(dspi->dma.dummy_param_slot);
961 free_clk:
962 	clk_disable(dspi->clk);
963 	clk_put(dspi->clk);
964 put_master:
965 	spi_master_put(master);
966 irq_free:
967 	free_irq(dspi->irq, dspi);
968 unmap_io:
969 	iounmap(dspi->base);
970 release_region:
971 	release_mem_region(dspi->pbase, resource_size(r));
972 free_master:
973 	kfree(master);
974 err:
975 	return ret;
976 }
977 
978 /**
979  * davinci_spi_remove - remove function for SPI Master Controller
980  * @pdev: platform_device structure which contains plateform specific data
981  *
982  * This function will do the reverse action of davinci_spi_probe function
983  * It will free the IRQ and SPI controller's memory region.
984  * It will also call spi_bitbang_stop to destroy the work queue which was
985  * created by spi_bitbang_start.
986  */
davinci_spi_remove(struct platform_device * pdev)987 static int __devexit davinci_spi_remove(struct platform_device *pdev)
988 {
989 	struct davinci_spi *dspi;
990 	struct spi_master *master;
991 	struct resource *r;
992 
993 	master = dev_get_drvdata(&pdev->dev);
994 	dspi = spi_master_get_devdata(master);
995 
996 	spi_bitbang_stop(&dspi->bitbang);
997 
998 	clk_disable(dspi->clk);
999 	clk_put(dspi->clk);
1000 	spi_master_put(master);
1001 	free_irq(dspi->irq, dspi);
1002 	iounmap(dspi->base);
1003 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1004 	release_mem_region(dspi->pbase, resource_size(r));
1005 
1006 	return 0;
1007 }
1008 
1009 static struct platform_driver davinci_spi_driver = {
1010 	.driver = {
1011 		.name = "spi_davinci",
1012 		.owner = THIS_MODULE,
1013 	},
1014 	.probe = davinci_spi_probe,
1015 	.remove = __devexit_p(davinci_spi_remove),
1016 };
1017 module_platform_driver(davinci_spi_driver);
1018 
1019 MODULE_DESCRIPTION("TI DaVinci SPI Master Controller Driver");
1020 MODULE_LICENSE("GPL");
1021