1 /*
2 * Copyright (C) 2009 Texas Instruments.
3 * Copyright (C) 2010 EF Johnson Technologies
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/gpio.h>
23 #include <linux/module.h>
24 #include <linux/delay.h>
25 #include <linux/platform_device.h>
26 #include <linux/err.h>
27 #include <linux/clk.h>
28 #include <linux/dma-mapping.h>
29 #include <linux/spi/spi.h>
30 #include <linux/spi/spi_bitbang.h>
31 #include <linux/slab.h>
32
33 #include <mach/spi.h>
34 #include <mach/edma.h>
35
36 #define SPI_NO_RESOURCE ((resource_size_t)-1)
37
38 #define SPI_MAX_CHIPSELECT 2
39
40 #define CS_DEFAULT 0xFF
41
42 #define SPIFMT_PHASE_MASK BIT(16)
43 #define SPIFMT_POLARITY_MASK BIT(17)
44 #define SPIFMT_DISTIMER_MASK BIT(18)
45 #define SPIFMT_SHIFTDIR_MASK BIT(20)
46 #define SPIFMT_WAITENA_MASK BIT(21)
47 #define SPIFMT_PARITYENA_MASK BIT(22)
48 #define SPIFMT_ODD_PARITY_MASK BIT(23)
49 #define SPIFMT_WDELAY_MASK 0x3f000000u
50 #define SPIFMT_WDELAY_SHIFT 24
51 #define SPIFMT_PRESCALE_SHIFT 8
52
53 /* SPIPC0 */
54 #define SPIPC0_DIFUN_MASK BIT(11) /* MISO */
55 #define SPIPC0_DOFUN_MASK BIT(10) /* MOSI */
56 #define SPIPC0_CLKFUN_MASK BIT(9) /* CLK */
57 #define SPIPC0_SPIENA_MASK BIT(8) /* nREADY */
58
59 #define SPIINT_MASKALL 0x0101035F
60 #define SPIINT_MASKINT 0x0000015F
61 #define SPI_INTLVL_1 0x000001FF
62 #define SPI_INTLVL_0 0x00000000
63
64 /* SPIDAT1 (upper 16 bit defines) */
65 #define SPIDAT1_CSHOLD_MASK BIT(12)
66
67 /* SPIGCR1 */
68 #define SPIGCR1_CLKMOD_MASK BIT(1)
69 #define SPIGCR1_MASTER_MASK BIT(0)
70 #define SPIGCR1_POWERDOWN_MASK BIT(8)
71 #define SPIGCR1_LOOPBACK_MASK BIT(16)
72 #define SPIGCR1_SPIENA_MASK BIT(24)
73
74 /* SPIBUF */
75 #define SPIBUF_TXFULL_MASK BIT(29)
76 #define SPIBUF_RXEMPTY_MASK BIT(31)
77
78 /* SPIDELAY */
79 #define SPIDELAY_C2TDELAY_SHIFT 24
80 #define SPIDELAY_C2TDELAY_MASK (0xFF << SPIDELAY_C2TDELAY_SHIFT)
81 #define SPIDELAY_T2CDELAY_SHIFT 16
82 #define SPIDELAY_T2CDELAY_MASK (0xFF << SPIDELAY_T2CDELAY_SHIFT)
83 #define SPIDELAY_T2EDELAY_SHIFT 8
84 #define SPIDELAY_T2EDELAY_MASK (0xFF << SPIDELAY_T2EDELAY_SHIFT)
85 #define SPIDELAY_C2EDELAY_SHIFT 0
86 #define SPIDELAY_C2EDELAY_MASK 0xFF
87
88 /* Error Masks */
89 #define SPIFLG_DLEN_ERR_MASK BIT(0)
90 #define SPIFLG_TIMEOUT_MASK BIT(1)
91 #define SPIFLG_PARERR_MASK BIT(2)
92 #define SPIFLG_DESYNC_MASK BIT(3)
93 #define SPIFLG_BITERR_MASK BIT(4)
94 #define SPIFLG_OVRRUN_MASK BIT(6)
95 #define SPIFLG_BUF_INIT_ACTIVE_MASK BIT(24)
96 #define SPIFLG_ERROR_MASK (SPIFLG_DLEN_ERR_MASK \
97 | SPIFLG_TIMEOUT_MASK | SPIFLG_PARERR_MASK \
98 | SPIFLG_DESYNC_MASK | SPIFLG_BITERR_MASK \
99 | SPIFLG_OVRRUN_MASK)
100
101 #define SPIINT_DMA_REQ_EN BIT(16)
102
103 /* SPI Controller registers */
104 #define SPIGCR0 0x00
105 #define SPIGCR1 0x04
106 #define SPIINT 0x08
107 #define SPILVL 0x0c
108 #define SPIFLG 0x10
109 #define SPIPC0 0x14
110 #define SPIDAT1 0x3c
111 #define SPIBUF 0x40
112 #define SPIDELAY 0x48
113 #define SPIDEF 0x4c
114 #define SPIFMT0 0x50
115
116 /* We have 2 DMA channels per CS, one for RX and one for TX */
117 struct davinci_spi_dma {
118 int tx_channel;
119 int rx_channel;
120 int dummy_param_slot;
121 enum dma_event_q eventq;
122 };
123
124 /* SPI Controller driver's private data. */
125 struct davinci_spi {
126 struct spi_bitbang bitbang;
127 struct clk *clk;
128
129 u8 version;
130 resource_size_t pbase;
131 void __iomem *base;
132 u32 irq;
133 struct completion done;
134
135 const void *tx;
136 void *rx;
137 #define SPI_TMP_BUFSZ (SMP_CACHE_BYTES + 1)
138 u8 rx_tmp_buf[SPI_TMP_BUFSZ];
139 int rcount;
140 int wcount;
141 struct davinci_spi_dma dma;
142 struct davinci_spi_platform_data *pdata;
143
144 void (*get_rx)(u32 rx_data, struct davinci_spi *);
145 u32 (*get_tx)(struct davinci_spi *);
146
147 u8 bytes_per_word[SPI_MAX_CHIPSELECT];
148 };
149
150 static struct davinci_spi_config davinci_spi_default_cfg;
151
davinci_spi_rx_buf_u8(u32 data,struct davinci_spi * dspi)152 static void davinci_spi_rx_buf_u8(u32 data, struct davinci_spi *dspi)
153 {
154 if (dspi->rx) {
155 u8 *rx = dspi->rx;
156 *rx++ = (u8)data;
157 dspi->rx = rx;
158 }
159 }
160
davinci_spi_rx_buf_u16(u32 data,struct davinci_spi * dspi)161 static void davinci_spi_rx_buf_u16(u32 data, struct davinci_spi *dspi)
162 {
163 if (dspi->rx) {
164 u16 *rx = dspi->rx;
165 *rx++ = (u16)data;
166 dspi->rx = rx;
167 }
168 }
169
davinci_spi_tx_buf_u8(struct davinci_spi * dspi)170 static u32 davinci_spi_tx_buf_u8(struct davinci_spi *dspi)
171 {
172 u32 data = 0;
173 if (dspi->tx) {
174 const u8 *tx = dspi->tx;
175 data = *tx++;
176 dspi->tx = tx;
177 }
178 return data;
179 }
180
davinci_spi_tx_buf_u16(struct davinci_spi * dspi)181 static u32 davinci_spi_tx_buf_u16(struct davinci_spi *dspi)
182 {
183 u32 data = 0;
184 if (dspi->tx) {
185 const u16 *tx = dspi->tx;
186 data = *tx++;
187 dspi->tx = tx;
188 }
189 return data;
190 }
191
set_io_bits(void __iomem * addr,u32 bits)192 static inline void set_io_bits(void __iomem *addr, u32 bits)
193 {
194 u32 v = ioread32(addr);
195
196 v |= bits;
197 iowrite32(v, addr);
198 }
199
clear_io_bits(void __iomem * addr,u32 bits)200 static inline void clear_io_bits(void __iomem *addr, u32 bits)
201 {
202 u32 v = ioread32(addr);
203
204 v &= ~bits;
205 iowrite32(v, addr);
206 }
207
208 /*
209 * Interface to control the chip select signal
210 */
davinci_spi_chipselect(struct spi_device * spi,int value)211 static void davinci_spi_chipselect(struct spi_device *spi, int value)
212 {
213 struct davinci_spi *dspi;
214 struct davinci_spi_platform_data *pdata;
215 u8 chip_sel = spi->chip_select;
216 u16 spidat1 = CS_DEFAULT;
217 bool gpio_chipsel = false;
218
219 dspi = spi_master_get_devdata(spi->master);
220 pdata = dspi->pdata;
221
222 if (pdata->chip_sel && chip_sel < pdata->num_chipselect &&
223 pdata->chip_sel[chip_sel] != SPI_INTERN_CS)
224 gpio_chipsel = true;
225
226 /*
227 * Board specific chip select logic decides the polarity and cs
228 * line for the controller
229 */
230 if (gpio_chipsel) {
231 if (value == BITBANG_CS_ACTIVE)
232 gpio_set_value(pdata->chip_sel[chip_sel], 0);
233 else
234 gpio_set_value(pdata->chip_sel[chip_sel], 1);
235 } else {
236 if (value == BITBANG_CS_ACTIVE) {
237 spidat1 |= SPIDAT1_CSHOLD_MASK;
238 spidat1 &= ~(0x1 << chip_sel);
239 }
240
241 iowrite16(spidat1, dspi->base + SPIDAT1 + 2);
242 }
243 }
244
245 /**
246 * davinci_spi_get_prescale - Calculates the correct prescale value
247 * @maxspeed_hz: the maximum rate the SPI clock can run at
248 *
249 * This function calculates the prescale value that generates a clock rate
250 * less than or equal to the specified maximum.
251 *
252 * Returns: calculated prescale - 1 for easy programming into SPI registers
253 * or negative error number if valid prescalar cannot be updated.
254 */
davinci_spi_get_prescale(struct davinci_spi * dspi,u32 max_speed_hz)255 static inline int davinci_spi_get_prescale(struct davinci_spi *dspi,
256 u32 max_speed_hz)
257 {
258 int ret;
259
260 ret = DIV_ROUND_UP(clk_get_rate(dspi->clk), max_speed_hz);
261
262 if (ret < 3 || ret > 256)
263 return -EINVAL;
264
265 return ret - 1;
266 }
267
268 /**
269 * davinci_spi_setup_transfer - This functions will determine transfer method
270 * @spi: spi device on which data transfer to be done
271 * @t: spi transfer in which transfer info is filled
272 *
273 * This function determines data transfer method (8/16/32 bit transfer).
274 * It will also set the SPI Clock Control register according to
275 * SPI slave device freq.
276 */
davinci_spi_setup_transfer(struct spi_device * spi,struct spi_transfer * t)277 static int davinci_spi_setup_transfer(struct spi_device *spi,
278 struct spi_transfer *t)
279 {
280
281 struct davinci_spi *dspi;
282 struct davinci_spi_config *spicfg;
283 u8 bits_per_word = 0;
284 u32 hz = 0, spifmt = 0, prescale = 0;
285
286 dspi = spi_master_get_devdata(spi->master);
287 spicfg = (struct davinci_spi_config *)spi->controller_data;
288 if (!spicfg)
289 spicfg = &davinci_spi_default_cfg;
290
291 if (t) {
292 bits_per_word = t->bits_per_word;
293 hz = t->speed_hz;
294 }
295
296 /* if bits_per_word is not set then set it default */
297 if (!bits_per_word)
298 bits_per_word = spi->bits_per_word;
299
300 /*
301 * Assign function pointer to appropriate transfer method
302 * 8bit, 16bit or 32bit transfer
303 */
304 if (bits_per_word <= 8 && bits_per_word >= 2) {
305 dspi->get_rx = davinci_spi_rx_buf_u8;
306 dspi->get_tx = davinci_spi_tx_buf_u8;
307 dspi->bytes_per_word[spi->chip_select] = 1;
308 } else if (bits_per_word <= 16 && bits_per_word >= 2) {
309 dspi->get_rx = davinci_spi_rx_buf_u16;
310 dspi->get_tx = davinci_spi_tx_buf_u16;
311 dspi->bytes_per_word[spi->chip_select] = 2;
312 } else
313 return -EINVAL;
314
315 if (!hz)
316 hz = spi->max_speed_hz;
317
318 /* Set up SPIFMTn register, unique to this chipselect. */
319
320 prescale = davinci_spi_get_prescale(dspi, hz);
321 if (prescale < 0)
322 return prescale;
323
324 spifmt = (prescale << SPIFMT_PRESCALE_SHIFT) | (bits_per_word & 0x1f);
325
326 if (spi->mode & SPI_LSB_FIRST)
327 spifmt |= SPIFMT_SHIFTDIR_MASK;
328
329 if (spi->mode & SPI_CPOL)
330 spifmt |= SPIFMT_POLARITY_MASK;
331
332 if (!(spi->mode & SPI_CPHA))
333 spifmt |= SPIFMT_PHASE_MASK;
334
335 /*
336 * Version 1 hardware supports two basic SPI modes:
337 * - Standard SPI mode uses 4 pins, with chipselect
338 * - 3 pin SPI is a 4 pin variant without CS (SPI_NO_CS)
339 * (distinct from SPI_3WIRE, with just one data wire;
340 * or similar variants without MOSI or without MISO)
341 *
342 * Version 2 hardware supports an optional handshaking signal,
343 * so it can support two more modes:
344 * - 5 pin SPI variant is standard SPI plus SPI_READY
345 * - 4 pin with enable is (SPI_READY | SPI_NO_CS)
346 */
347
348 if (dspi->version == SPI_VERSION_2) {
349
350 u32 delay = 0;
351
352 spifmt |= ((spicfg->wdelay << SPIFMT_WDELAY_SHIFT)
353 & SPIFMT_WDELAY_MASK);
354
355 if (spicfg->odd_parity)
356 spifmt |= SPIFMT_ODD_PARITY_MASK;
357
358 if (spicfg->parity_enable)
359 spifmt |= SPIFMT_PARITYENA_MASK;
360
361 if (spicfg->timer_disable) {
362 spifmt |= SPIFMT_DISTIMER_MASK;
363 } else {
364 delay |= (spicfg->c2tdelay << SPIDELAY_C2TDELAY_SHIFT)
365 & SPIDELAY_C2TDELAY_MASK;
366 delay |= (spicfg->t2cdelay << SPIDELAY_T2CDELAY_SHIFT)
367 & SPIDELAY_T2CDELAY_MASK;
368 }
369
370 if (spi->mode & SPI_READY) {
371 spifmt |= SPIFMT_WAITENA_MASK;
372 delay |= (spicfg->t2edelay << SPIDELAY_T2EDELAY_SHIFT)
373 & SPIDELAY_T2EDELAY_MASK;
374 delay |= (spicfg->c2edelay << SPIDELAY_C2EDELAY_SHIFT)
375 & SPIDELAY_C2EDELAY_MASK;
376 }
377
378 iowrite32(delay, dspi->base + SPIDELAY);
379 }
380
381 iowrite32(spifmt, dspi->base + SPIFMT0);
382
383 return 0;
384 }
385
386 /**
387 * davinci_spi_setup - This functions will set default transfer method
388 * @spi: spi device on which data transfer to be done
389 *
390 * This functions sets the default transfer method.
391 */
davinci_spi_setup(struct spi_device * spi)392 static int davinci_spi_setup(struct spi_device *spi)
393 {
394 int retval = 0;
395 struct davinci_spi *dspi;
396 struct davinci_spi_platform_data *pdata;
397
398 dspi = spi_master_get_devdata(spi->master);
399 pdata = dspi->pdata;
400
401 /* if bits per word length is zero then set it default 8 */
402 if (!spi->bits_per_word)
403 spi->bits_per_word = 8;
404
405 if (!(spi->mode & SPI_NO_CS)) {
406 if ((pdata->chip_sel == NULL) ||
407 (pdata->chip_sel[spi->chip_select] == SPI_INTERN_CS))
408 set_io_bits(dspi->base + SPIPC0, 1 << spi->chip_select);
409
410 }
411
412 if (spi->mode & SPI_READY)
413 set_io_bits(dspi->base + SPIPC0, SPIPC0_SPIENA_MASK);
414
415 if (spi->mode & SPI_LOOP)
416 set_io_bits(dspi->base + SPIGCR1, SPIGCR1_LOOPBACK_MASK);
417 else
418 clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_LOOPBACK_MASK);
419
420 return retval;
421 }
422
davinci_spi_check_error(struct davinci_spi * dspi,int int_status)423 static int davinci_spi_check_error(struct davinci_spi *dspi, int int_status)
424 {
425 struct device *sdev = dspi->bitbang.master->dev.parent;
426
427 if (int_status & SPIFLG_TIMEOUT_MASK) {
428 dev_dbg(sdev, "SPI Time-out Error\n");
429 return -ETIMEDOUT;
430 }
431 if (int_status & SPIFLG_DESYNC_MASK) {
432 dev_dbg(sdev, "SPI Desynchronization Error\n");
433 return -EIO;
434 }
435 if (int_status & SPIFLG_BITERR_MASK) {
436 dev_dbg(sdev, "SPI Bit error\n");
437 return -EIO;
438 }
439
440 if (dspi->version == SPI_VERSION_2) {
441 if (int_status & SPIFLG_DLEN_ERR_MASK) {
442 dev_dbg(sdev, "SPI Data Length Error\n");
443 return -EIO;
444 }
445 if (int_status & SPIFLG_PARERR_MASK) {
446 dev_dbg(sdev, "SPI Parity Error\n");
447 return -EIO;
448 }
449 if (int_status & SPIFLG_OVRRUN_MASK) {
450 dev_dbg(sdev, "SPI Data Overrun error\n");
451 return -EIO;
452 }
453 if (int_status & SPIFLG_BUF_INIT_ACTIVE_MASK) {
454 dev_dbg(sdev, "SPI Buffer Init Active\n");
455 return -EBUSY;
456 }
457 }
458
459 return 0;
460 }
461
462 /**
463 * davinci_spi_process_events - check for and handle any SPI controller events
464 * @dspi: the controller data
465 *
466 * This function will check the SPIFLG register and handle any events that are
467 * detected there
468 */
davinci_spi_process_events(struct davinci_spi * dspi)469 static int davinci_spi_process_events(struct davinci_spi *dspi)
470 {
471 u32 buf, status, errors = 0, spidat1;
472
473 buf = ioread32(dspi->base + SPIBUF);
474
475 if (dspi->rcount > 0 && !(buf & SPIBUF_RXEMPTY_MASK)) {
476 dspi->get_rx(buf & 0xFFFF, dspi);
477 dspi->rcount--;
478 }
479
480 status = ioread32(dspi->base + SPIFLG);
481
482 if (unlikely(status & SPIFLG_ERROR_MASK)) {
483 errors = status & SPIFLG_ERROR_MASK;
484 goto out;
485 }
486
487 if (dspi->wcount > 0 && !(buf & SPIBUF_TXFULL_MASK)) {
488 spidat1 = ioread32(dspi->base + SPIDAT1);
489 dspi->wcount--;
490 spidat1 &= ~0xFFFF;
491 spidat1 |= 0xFFFF & dspi->get_tx(dspi);
492 iowrite32(spidat1, dspi->base + SPIDAT1);
493 }
494
495 out:
496 return errors;
497 }
498
davinci_spi_dma_callback(unsigned lch,u16 status,void * data)499 static void davinci_spi_dma_callback(unsigned lch, u16 status, void *data)
500 {
501 struct davinci_spi *dspi = data;
502 struct davinci_spi_dma *dma = &dspi->dma;
503
504 edma_stop(lch);
505
506 if (status == DMA_COMPLETE) {
507 if (lch == dma->rx_channel)
508 dspi->rcount = 0;
509 if (lch == dma->tx_channel)
510 dspi->wcount = 0;
511 }
512
513 if ((!dspi->wcount && !dspi->rcount) || (status != DMA_COMPLETE))
514 complete(&dspi->done);
515 }
516
517 /**
518 * davinci_spi_bufs - functions which will handle transfer data
519 * @spi: spi device on which data transfer to be done
520 * @t: spi transfer in which transfer info is filled
521 *
522 * This function will put data to be transferred into data register
523 * of SPI controller and then wait until the completion will be marked
524 * by the IRQ Handler.
525 */
davinci_spi_bufs(struct spi_device * spi,struct spi_transfer * t)526 static int davinci_spi_bufs(struct spi_device *spi, struct spi_transfer *t)
527 {
528 struct davinci_spi *dspi;
529 int data_type, ret;
530 u32 tx_data, spidat1;
531 u32 errors = 0;
532 struct davinci_spi_config *spicfg;
533 struct davinci_spi_platform_data *pdata;
534 unsigned uninitialized_var(rx_buf_count);
535 struct device *sdev;
536
537 dspi = spi_master_get_devdata(spi->master);
538 pdata = dspi->pdata;
539 spicfg = (struct davinci_spi_config *)spi->controller_data;
540 if (!spicfg)
541 spicfg = &davinci_spi_default_cfg;
542 sdev = dspi->bitbang.master->dev.parent;
543
544 /* convert len to words based on bits_per_word */
545 data_type = dspi->bytes_per_word[spi->chip_select];
546
547 dspi->tx = t->tx_buf;
548 dspi->rx = t->rx_buf;
549 dspi->wcount = t->len / data_type;
550 dspi->rcount = dspi->wcount;
551
552 spidat1 = ioread32(dspi->base + SPIDAT1);
553
554 clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK);
555 set_io_bits(dspi->base + SPIGCR1, SPIGCR1_SPIENA_MASK);
556
557 INIT_COMPLETION(dspi->done);
558
559 if (spicfg->io_type == SPI_IO_TYPE_INTR)
560 set_io_bits(dspi->base + SPIINT, SPIINT_MASKINT);
561
562 if (spicfg->io_type != SPI_IO_TYPE_DMA) {
563 /* start the transfer */
564 dspi->wcount--;
565 tx_data = dspi->get_tx(dspi);
566 spidat1 &= 0xFFFF0000;
567 spidat1 |= tx_data & 0xFFFF;
568 iowrite32(spidat1, dspi->base + SPIDAT1);
569 } else {
570 struct davinci_spi_dma *dma;
571 unsigned long tx_reg, rx_reg;
572 struct edmacc_param param;
573 void *rx_buf;
574 int b, c;
575
576 dma = &dspi->dma;
577
578 tx_reg = (unsigned long)dspi->pbase + SPIDAT1;
579 rx_reg = (unsigned long)dspi->pbase + SPIBUF;
580
581 /*
582 * Transmit DMA setup
583 *
584 * If there is transmit data, map the transmit buffer, set it
585 * as the source of data and set the source B index to data
586 * size. If there is no transmit data, set the transmit register
587 * as the source of data, and set the source B index to zero.
588 *
589 * The destination is always the transmit register itself. And
590 * the destination never increments.
591 */
592
593 if (t->tx_buf) {
594 t->tx_dma = dma_map_single(&spi->dev, (void *)t->tx_buf,
595 t->len, DMA_TO_DEVICE);
596 if (dma_mapping_error(&spi->dev, t->tx_dma)) {
597 dev_dbg(sdev, "Unable to DMA map %d bytes"
598 "TX buffer\n", t->len);
599 return -ENOMEM;
600 }
601 }
602
603 /*
604 * If number of words is greater than 65535, then we need
605 * to configure a 3 dimension transfer. Use the BCNTRLD
606 * feature to allow for transfers that aren't even multiples
607 * of 65535 (or any other possible b size) by first transferring
608 * the remainder amount then grabbing the next N blocks of
609 * 65535 words.
610 */
611
612 c = dspi->wcount / (SZ_64K - 1); /* N 65535 Blocks */
613 b = dspi->wcount - c * (SZ_64K - 1); /* Remainder */
614 if (b)
615 c++;
616 else
617 b = SZ_64K - 1;
618
619 param.opt = TCINTEN | EDMA_TCC(dma->tx_channel);
620 param.src = t->tx_buf ? t->tx_dma : tx_reg;
621 param.a_b_cnt = b << 16 | data_type;
622 param.dst = tx_reg;
623 param.src_dst_bidx = t->tx_buf ? data_type : 0;
624 param.link_bcntrld = 0xffffffff;
625 param.src_dst_cidx = t->tx_buf ? data_type : 0;
626 param.ccnt = c;
627 edma_write_slot(dma->tx_channel, ¶m);
628 edma_link(dma->tx_channel, dma->dummy_param_slot);
629
630 /*
631 * Receive DMA setup
632 *
633 * If there is receive buffer, use it to receive data. If there
634 * is none provided, use a temporary receive buffer. Set the
635 * destination B index to 0 so effectively only one byte is used
636 * in the temporary buffer (address does not increment).
637 *
638 * The source of receive data is the receive data register. The
639 * source address never increments.
640 */
641
642 if (t->rx_buf) {
643 rx_buf = t->rx_buf;
644 rx_buf_count = t->len;
645 } else {
646 rx_buf = dspi->rx_tmp_buf;
647 rx_buf_count = sizeof(dspi->rx_tmp_buf);
648 }
649
650 t->rx_dma = dma_map_single(&spi->dev, rx_buf, rx_buf_count,
651 DMA_FROM_DEVICE);
652 if (dma_mapping_error(&spi->dev, t->rx_dma)) {
653 dev_dbg(sdev, "Couldn't DMA map a %d bytes RX buffer\n",
654 rx_buf_count);
655 if (t->tx_buf)
656 dma_unmap_single(&spi->dev, t->tx_dma, t->len,
657 DMA_TO_DEVICE);
658 return -ENOMEM;
659 }
660
661 param.opt = TCINTEN | EDMA_TCC(dma->rx_channel);
662 param.src = rx_reg;
663 param.a_b_cnt = b << 16 | data_type;
664 param.dst = t->rx_dma;
665 param.src_dst_bidx = (t->rx_buf ? data_type : 0) << 16;
666 param.link_bcntrld = 0xffffffff;
667 param.src_dst_cidx = (t->rx_buf ? data_type : 0) << 16;
668 param.ccnt = c;
669 edma_write_slot(dma->rx_channel, ¶m);
670
671 if (pdata->cshold_bug)
672 iowrite16(spidat1 >> 16, dspi->base + SPIDAT1 + 2);
673
674 edma_start(dma->rx_channel);
675 edma_start(dma->tx_channel);
676 set_io_bits(dspi->base + SPIINT, SPIINT_DMA_REQ_EN);
677 }
678
679 /* Wait for the transfer to complete */
680 if (spicfg->io_type != SPI_IO_TYPE_POLL) {
681 wait_for_completion_interruptible(&(dspi->done));
682 } else {
683 while (dspi->rcount > 0 || dspi->wcount > 0) {
684 errors = davinci_spi_process_events(dspi);
685 if (errors)
686 break;
687 cpu_relax();
688 }
689 }
690
691 clear_io_bits(dspi->base + SPIINT, SPIINT_MASKALL);
692 if (spicfg->io_type == SPI_IO_TYPE_DMA) {
693
694 if (t->tx_buf)
695 dma_unmap_single(&spi->dev, t->tx_dma, t->len,
696 DMA_TO_DEVICE);
697
698 dma_unmap_single(&spi->dev, t->rx_dma, rx_buf_count,
699 DMA_FROM_DEVICE);
700
701 clear_io_bits(dspi->base + SPIINT, SPIINT_DMA_REQ_EN);
702 }
703
704 clear_io_bits(dspi->base + SPIGCR1, SPIGCR1_SPIENA_MASK);
705 set_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK);
706
707 /*
708 * Check for bit error, desync error,parity error,timeout error and
709 * receive overflow errors
710 */
711 if (errors) {
712 ret = davinci_spi_check_error(dspi, errors);
713 WARN(!ret, "%s: error reported but no error found!\n",
714 dev_name(&spi->dev));
715 return ret;
716 }
717
718 if (dspi->rcount != 0 || dspi->wcount != 0) {
719 dev_err(sdev, "SPI data transfer error\n");
720 return -EIO;
721 }
722
723 return t->len;
724 }
725
726 /**
727 * davinci_spi_irq - Interrupt handler for SPI Master Controller
728 * @irq: IRQ number for this SPI Master
729 * @context_data: structure for SPI Master controller davinci_spi
730 *
731 * ISR will determine that interrupt arrives either for READ or WRITE command.
732 * According to command it will do the appropriate action. It will check
733 * transfer length and if it is not zero then dispatch transfer command again.
734 * If transfer length is zero then it will indicate the COMPLETION so that
735 * davinci_spi_bufs function can go ahead.
736 */
davinci_spi_irq(s32 irq,void * data)737 static irqreturn_t davinci_spi_irq(s32 irq, void *data)
738 {
739 struct davinci_spi *dspi = data;
740 int status;
741
742 status = davinci_spi_process_events(dspi);
743 if (unlikely(status != 0))
744 clear_io_bits(dspi->base + SPIINT, SPIINT_MASKINT);
745
746 if ((!dspi->rcount && !dspi->wcount) || status)
747 complete(&dspi->done);
748
749 return IRQ_HANDLED;
750 }
751
davinci_spi_request_dma(struct davinci_spi * dspi)752 static int davinci_spi_request_dma(struct davinci_spi *dspi)
753 {
754 int r;
755 struct davinci_spi_dma *dma = &dspi->dma;
756
757 r = edma_alloc_channel(dma->rx_channel, davinci_spi_dma_callback, dspi,
758 dma->eventq);
759 if (r < 0) {
760 pr_err("Unable to request DMA channel for SPI RX\n");
761 r = -EAGAIN;
762 goto rx_dma_failed;
763 }
764
765 r = edma_alloc_channel(dma->tx_channel, davinci_spi_dma_callback, dspi,
766 dma->eventq);
767 if (r < 0) {
768 pr_err("Unable to request DMA channel for SPI TX\n");
769 r = -EAGAIN;
770 goto tx_dma_failed;
771 }
772
773 r = edma_alloc_slot(EDMA_CTLR(dma->tx_channel), EDMA_SLOT_ANY);
774 if (r < 0) {
775 pr_err("Unable to request SPI TX DMA param slot\n");
776 r = -EAGAIN;
777 goto param_failed;
778 }
779 dma->dummy_param_slot = r;
780 edma_link(dma->dummy_param_slot, dma->dummy_param_slot);
781
782 return 0;
783 param_failed:
784 edma_free_channel(dma->tx_channel);
785 tx_dma_failed:
786 edma_free_channel(dma->rx_channel);
787 rx_dma_failed:
788 return r;
789 }
790
791 /**
792 * davinci_spi_probe - probe function for SPI Master Controller
793 * @pdev: platform_device structure which contains plateform specific data
794 *
795 * According to Linux Device Model this function will be invoked by Linux
796 * with platform_device struct which contains the device specific info.
797 * This function will map the SPI controller's memory, register IRQ,
798 * Reset SPI controller and setting its registers to default value.
799 * It will invoke spi_bitbang_start to create work queue so that client driver
800 * can register transfer method to work queue.
801 */
davinci_spi_probe(struct platform_device * pdev)802 static int __devinit davinci_spi_probe(struct platform_device *pdev)
803 {
804 struct spi_master *master;
805 struct davinci_spi *dspi;
806 struct davinci_spi_platform_data *pdata;
807 struct resource *r, *mem;
808 resource_size_t dma_rx_chan = SPI_NO_RESOURCE;
809 resource_size_t dma_tx_chan = SPI_NO_RESOURCE;
810 int i = 0, ret = 0;
811 u32 spipc0;
812
813 pdata = pdev->dev.platform_data;
814 if (pdata == NULL) {
815 ret = -ENODEV;
816 goto err;
817 }
818
819 master = spi_alloc_master(&pdev->dev, sizeof(struct davinci_spi));
820 if (master == NULL) {
821 ret = -ENOMEM;
822 goto err;
823 }
824
825 dev_set_drvdata(&pdev->dev, master);
826
827 dspi = spi_master_get_devdata(master);
828 if (dspi == NULL) {
829 ret = -ENOENT;
830 goto free_master;
831 }
832
833 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
834 if (r == NULL) {
835 ret = -ENOENT;
836 goto free_master;
837 }
838
839 dspi->pbase = r->start;
840 dspi->pdata = pdata;
841
842 mem = request_mem_region(r->start, resource_size(r), pdev->name);
843 if (mem == NULL) {
844 ret = -EBUSY;
845 goto free_master;
846 }
847
848 dspi->base = ioremap(r->start, resource_size(r));
849 if (dspi->base == NULL) {
850 ret = -ENOMEM;
851 goto release_region;
852 }
853
854 dspi->irq = platform_get_irq(pdev, 0);
855 if (dspi->irq <= 0) {
856 ret = -EINVAL;
857 goto unmap_io;
858 }
859
860 ret = request_irq(dspi->irq, davinci_spi_irq, 0, dev_name(&pdev->dev),
861 dspi);
862 if (ret)
863 goto unmap_io;
864
865 dspi->bitbang.master = spi_master_get(master);
866 if (dspi->bitbang.master == NULL) {
867 ret = -ENODEV;
868 goto irq_free;
869 }
870
871 dspi->clk = clk_get(&pdev->dev, NULL);
872 if (IS_ERR(dspi->clk)) {
873 ret = -ENODEV;
874 goto put_master;
875 }
876 clk_enable(dspi->clk);
877
878 master->bus_num = pdev->id;
879 master->num_chipselect = pdata->num_chipselect;
880 master->setup = davinci_spi_setup;
881
882 dspi->bitbang.chipselect = davinci_spi_chipselect;
883 dspi->bitbang.setup_transfer = davinci_spi_setup_transfer;
884
885 dspi->version = pdata->version;
886
887 dspi->bitbang.flags = SPI_NO_CS | SPI_LSB_FIRST | SPI_LOOP;
888 if (dspi->version == SPI_VERSION_2)
889 dspi->bitbang.flags |= SPI_READY;
890
891 r = platform_get_resource(pdev, IORESOURCE_DMA, 0);
892 if (r)
893 dma_rx_chan = r->start;
894 r = platform_get_resource(pdev, IORESOURCE_DMA, 1);
895 if (r)
896 dma_tx_chan = r->start;
897
898 dspi->bitbang.txrx_bufs = davinci_spi_bufs;
899 if (dma_rx_chan != SPI_NO_RESOURCE &&
900 dma_tx_chan != SPI_NO_RESOURCE) {
901 dspi->dma.rx_channel = dma_rx_chan;
902 dspi->dma.tx_channel = dma_tx_chan;
903 dspi->dma.eventq = pdata->dma_event_q;
904
905 ret = davinci_spi_request_dma(dspi);
906 if (ret)
907 goto free_clk;
908
909 dev_info(&pdev->dev, "DMA: supported\n");
910 dev_info(&pdev->dev, "DMA: RX channel: %d, TX channel: %d, "
911 "event queue: %d\n", dma_rx_chan, dma_tx_chan,
912 pdata->dma_event_q);
913 }
914
915 dspi->get_rx = davinci_spi_rx_buf_u8;
916 dspi->get_tx = davinci_spi_tx_buf_u8;
917
918 init_completion(&dspi->done);
919
920 /* Reset In/OUT SPI module */
921 iowrite32(0, dspi->base + SPIGCR0);
922 udelay(100);
923 iowrite32(1, dspi->base + SPIGCR0);
924
925 /* Set up SPIPC0. CS and ENA init is done in davinci_spi_setup */
926 spipc0 = SPIPC0_DIFUN_MASK | SPIPC0_DOFUN_MASK | SPIPC0_CLKFUN_MASK;
927 iowrite32(spipc0, dspi->base + SPIPC0);
928
929 /* initialize chip selects */
930 if (pdata->chip_sel) {
931 for (i = 0; i < pdata->num_chipselect; i++) {
932 if (pdata->chip_sel[i] != SPI_INTERN_CS)
933 gpio_direction_output(pdata->chip_sel[i], 1);
934 }
935 }
936
937 if (pdata->intr_line)
938 iowrite32(SPI_INTLVL_1, dspi->base + SPILVL);
939 else
940 iowrite32(SPI_INTLVL_0, dspi->base + SPILVL);
941
942 iowrite32(CS_DEFAULT, dspi->base + SPIDEF);
943
944 /* master mode default */
945 set_io_bits(dspi->base + SPIGCR1, SPIGCR1_CLKMOD_MASK);
946 set_io_bits(dspi->base + SPIGCR1, SPIGCR1_MASTER_MASK);
947 set_io_bits(dspi->base + SPIGCR1, SPIGCR1_POWERDOWN_MASK);
948
949 ret = spi_bitbang_start(&dspi->bitbang);
950 if (ret)
951 goto free_dma;
952
953 dev_info(&pdev->dev, "Controller at 0x%p\n", dspi->base);
954
955 return ret;
956
957 free_dma:
958 edma_free_channel(dspi->dma.tx_channel);
959 edma_free_channel(dspi->dma.rx_channel);
960 edma_free_slot(dspi->dma.dummy_param_slot);
961 free_clk:
962 clk_disable(dspi->clk);
963 clk_put(dspi->clk);
964 put_master:
965 spi_master_put(master);
966 irq_free:
967 free_irq(dspi->irq, dspi);
968 unmap_io:
969 iounmap(dspi->base);
970 release_region:
971 release_mem_region(dspi->pbase, resource_size(r));
972 free_master:
973 kfree(master);
974 err:
975 return ret;
976 }
977
978 /**
979 * davinci_spi_remove - remove function for SPI Master Controller
980 * @pdev: platform_device structure which contains plateform specific data
981 *
982 * This function will do the reverse action of davinci_spi_probe function
983 * It will free the IRQ and SPI controller's memory region.
984 * It will also call spi_bitbang_stop to destroy the work queue which was
985 * created by spi_bitbang_start.
986 */
davinci_spi_remove(struct platform_device * pdev)987 static int __devexit davinci_spi_remove(struct platform_device *pdev)
988 {
989 struct davinci_spi *dspi;
990 struct spi_master *master;
991 struct resource *r;
992
993 master = dev_get_drvdata(&pdev->dev);
994 dspi = spi_master_get_devdata(master);
995
996 spi_bitbang_stop(&dspi->bitbang);
997
998 clk_disable(dspi->clk);
999 clk_put(dspi->clk);
1000 spi_master_put(master);
1001 free_irq(dspi->irq, dspi);
1002 iounmap(dspi->base);
1003 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1004 release_mem_region(dspi->pbase, resource_size(r));
1005
1006 return 0;
1007 }
1008
1009 static struct platform_driver davinci_spi_driver = {
1010 .driver = {
1011 .name = "spi_davinci",
1012 .owner = THIS_MODULE,
1013 },
1014 .probe = davinci_spi_probe,
1015 .remove = __devexit_p(davinci_spi_remove),
1016 };
1017 module_platform_driver(davinci_spi_driver);
1018
1019 MODULE_DESCRIPTION("TI DaVinci SPI Master Controller Driver");
1020 MODULE_LICENSE("GPL");
1021