• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h>
26 #include <linux/workqueue.h>
27 #include <linux/kthread.h>
28 #include <linux/freezer.h>
29 #include <linux/crc32c.h>
30 #include <linux/slab.h>
31 #include <linux/migrate.h>
32 #include <linux/ratelimit.h>
33 #include <asm/unaligned.h>
34 #include "compat.h"
35 #include "ctree.h"
36 #include "disk-io.h"
37 #include "transaction.h"
38 #include "btrfs_inode.h"
39 #include "volumes.h"
40 #include "print-tree.h"
41 #include "async-thread.h"
42 #include "locking.h"
43 #include "tree-log.h"
44 #include "free-space-cache.h"
45 #include "inode-map.h"
46 #include "check-integrity.h"
47 
48 static struct extent_io_ops btree_extent_io_ops;
49 static void end_workqueue_fn(struct btrfs_work *work);
50 static void free_fs_root(struct btrfs_root *root);
51 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 				    int read_only);
53 static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54 static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
55 static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 				      struct btrfs_root *root);
57 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 					struct extent_io_tree *dirty_pages,
61 					int mark);
62 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 				       struct extent_io_tree *pinned_extents);
64 
65 /*
66  * end_io_wq structs are used to do processing in task context when an IO is
67  * complete.  This is used during reads to verify checksums, and it is used
68  * by writes to insert metadata for new file extents after IO is complete.
69  */
70 struct end_io_wq {
71 	struct bio *bio;
72 	bio_end_io_t *end_io;
73 	void *private;
74 	struct btrfs_fs_info *info;
75 	int error;
76 	int metadata;
77 	struct list_head list;
78 	struct btrfs_work work;
79 };
80 
81 /*
82  * async submit bios are used to offload expensive checksumming
83  * onto the worker threads.  They checksum file and metadata bios
84  * just before they are sent down the IO stack.
85  */
86 struct async_submit_bio {
87 	struct inode *inode;
88 	struct bio *bio;
89 	struct list_head list;
90 	extent_submit_bio_hook_t *submit_bio_start;
91 	extent_submit_bio_hook_t *submit_bio_done;
92 	int rw;
93 	int mirror_num;
94 	unsigned long bio_flags;
95 	/*
96 	 * bio_offset is optional, can be used if the pages in the bio
97 	 * can't tell us where in the file the bio should go
98 	 */
99 	u64 bio_offset;
100 	struct btrfs_work work;
101 	int error;
102 };
103 
104 /*
105  * Lockdep class keys for extent_buffer->lock's in this root.  For a given
106  * eb, the lockdep key is determined by the btrfs_root it belongs to and
107  * the level the eb occupies in the tree.
108  *
109  * Different roots are used for different purposes and may nest inside each
110  * other and they require separate keysets.  As lockdep keys should be
111  * static, assign keysets according to the purpose of the root as indicated
112  * by btrfs_root->objectid.  This ensures that all special purpose roots
113  * have separate keysets.
114  *
115  * Lock-nesting across peer nodes is always done with the immediate parent
116  * node locked thus preventing deadlock.  As lockdep doesn't know this, use
117  * subclass to avoid triggering lockdep warning in such cases.
118  *
119  * The key is set by the readpage_end_io_hook after the buffer has passed
120  * csum validation but before the pages are unlocked.  It is also set by
121  * btrfs_init_new_buffer on freshly allocated blocks.
122  *
123  * We also add a check to make sure the highest level of the tree is the
124  * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
125  * needs update as well.
126  */
127 #ifdef CONFIG_DEBUG_LOCK_ALLOC
128 # if BTRFS_MAX_LEVEL != 8
129 #  error
130 # endif
131 
132 static struct btrfs_lockdep_keyset {
133 	u64			id;		/* root objectid */
134 	const char		*name_stem;	/* lock name stem */
135 	char			names[BTRFS_MAX_LEVEL + 1][20];
136 	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
137 } btrfs_lockdep_keysets[] = {
138 	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
139 	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
140 	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
141 	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
142 	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
143 	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
144 	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
145 	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
146 	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
147 	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
148 	{ .id = 0,				.name_stem = "tree"	},
149 };
150 
btrfs_init_lockdep(void)151 void __init btrfs_init_lockdep(void)
152 {
153 	int i, j;
154 
155 	/* initialize lockdep class names */
156 	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158 
159 		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 			snprintf(ks->names[j], sizeof(ks->names[j]),
161 				 "btrfs-%s-%02d", ks->name_stem, j);
162 	}
163 }
164 
btrfs_set_buffer_lockdep_class(u64 objectid,struct extent_buffer * eb,int level)165 void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 				    int level)
167 {
168 	struct btrfs_lockdep_keyset *ks;
169 
170 	BUG_ON(level >= ARRAY_SIZE(ks->keys));
171 
172 	/* find the matching keyset, id 0 is the default entry */
173 	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 		if (ks->id == objectid)
175 			break;
176 
177 	lockdep_set_class_and_name(&eb->lock,
178 				   &ks->keys[level], ks->names[level]);
179 }
180 
181 #endif
182 
183 /*
184  * extents on the btree inode are pretty simple, there's one extent
185  * that covers the entire device
186  */
btree_get_extent(struct inode * inode,struct page * page,size_t pg_offset,u64 start,u64 len,int create)187 static struct extent_map *btree_get_extent(struct inode *inode,
188 		struct page *page, size_t pg_offset, u64 start, u64 len,
189 		int create)
190 {
191 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 	struct extent_map *em;
193 	int ret;
194 
195 	read_lock(&em_tree->lock);
196 	em = lookup_extent_mapping(em_tree, start, len);
197 	if (em) {
198 		em->bdev =
199 			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
200 		read_unlock(&em_tree->lock);
201 		goto out;
202 	}
203 	read_unlock(&em_tree->lock);
204 
205 	em = alloc_extent_map();
206 	if (!em) {
207 		em = ERR_PTR(-ENOMEM);
208 		goto out;
209 	}
210 	em->start = 0;
211 	em->len = (u64)-1;
212 	em->block_len = (u64)-1;
213 	em->block_start = 0;
214 	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
215 
216 	write_lock(&em_tree->lock);
217 	ret = add_extent_mapping(em_tree, em);
218 	if (ret == -EEXIST) {
219 		u64 failed_start = em->start;
220 		u64 failed_len = em->len;
221 
222 		free_extent_map(em);
223 		em = lookup_extent_mapping(em_tree, start, len);
224 		if (em) {
225 			ret = 0;
226 		} else {
227 			em = lookup_extent_mapping(em_tree, failed_start,
228 						   failed_len);
229 			ret = -EIO;
230 		}
231 	} else if (ret) {
232 		free_extent_map(em);
233 		em = NULL;
234 	}
235 	write_unlock(&em_tree->lock);
236 
237 	if (ret)
238 		em = ERR_PTR(ret);
239 out:
240 	return em;
241 }
242 
btrfs_csum_data(struct btrfs_root * root,char * data,u32 seed,size_t len)243 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244 {
245 	return crc32c(seed, data, len);
246 }
247 
btrfs_csum_final(u32 crc,char * result)248 void btrfs_csum_final(u32 crc, char *result)
249 {
250 	put_unaligned_le32(~crc, result);
251 }
252 
253 /*
254  * compute the csum for a btree block, and either verify it or write it
255  * into the csum field of the block.
256  */
csum_tree_block(struct btrfs_root * root,struct extent_buffer * buf,int verify)257 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 			   int verify)
259 {
260 	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
261 	char *result = NULL;
262 	unsigned long len;
263 	unsigned long cur_len;
264 	unsigned long offset = BTRFS_CSUM_SIZE;
265 	char *kaddr;
266 	unsigned long map_start;
267 	unsigned long map_len;
268 	int err;
269 	u32 crc = ~(u32)0;
270 	unsigned long inline_result;
271 
272 	len = buf->len - offset;
273 	while (len > 0) {
274 		err = map_private_extent_buffer(buf, offset, 32,
275 					&kaddr, &map_start, &map_len);
276 		if (err)
277 			return 1;
278 		cur_len = min(len, map_len - (offset - map_start));
279 		crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 				      crc, cur_len);
281 		len -= cur_len;
282 		offset += cur_len;
283 	}
284 	if (csum_size > sizeof(inline_result)) {
285 		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 		if (!result)
287 			return 1;
288 	} else {
289 		result = (char *)&inline_result;
290 	}
291 
292 	btrfs_csum_final(crc, result);
293 
294 	if (verify) {
295 		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
296 			u32 val;
297 			u32 found = 0;
298 			memcpy(&found, result, csum_size);
299 
300 			read_extent_buffer(buf, &val, 0, csum_size);
301 			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
302 				       "failed on %llu wanted %X found %X "
303 				       "level %d\n",
304 				       root->fs_info->sb->s_id,
305 				       (unsigned long long)buf->start, val, found,
306 				       btrfs_header_level(buf));
307 			if (result != (char *)&inline_result)
308 				kfree(result);
309 			return 1;
310 		}
311 	} else {
312 		write_extent_buffer(buf, result, 0, csum_size);
313 	}
314 	if (result != (char *)&inline_result)
315 		kfree(result);
316 	return 0;
317 }
318 
319 /*
320  * we can't consider a given block up to date unless the transid of the
321  * block matches the transid in the parent node's pointer.  This is how we
322  * detect blocks that either didn't get written at all or got written
323  * in the wrong place.
324  */
verify_parent_transid(struct extent_io_tree * io_tree,struct extent_buffer * eb,u64 parent_transid,int atomic)325 static int verify_parent_transid(struct extent_io_tree *io_tree,
326 				 struct extent_buffer *eb, u64 parent_transid,
327 				 int atomic)
328 {
329 	struct extent_state *cached_state = NULL;
330 	int ret;
331 
332 	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
333 		return 0;
334 
335 	if (atomic)
336 		return -EAGAIN;
337 
338 	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
339 			 0, &cached_state);
340 	if (extent_buffer_uptodate(eb) &&
341 	    btrfs_header_generation(eb) == parent_transid) {
342 		ret = 0;
343 		goto out;
344 	}
345 	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
346 		       "found %llu\n",
347 		       (unsigned long long)eb->start,
348 		       (unsigned long long)parent_transid,
349 		       (unsigned long long)btrfs_header_generation(eb));
350 	ret = 1;
351 	clear_extent_buffer_uptodate(eb);
352 out:
353 	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
354 			     &cached_state, GFP_NOFS);
355 	return ret;
356 }
357 
358 /*
359  * helper to read a given tree block, doing retries as required when
360  * the checksums don't match and we have alternate mirrors to try.
361  */
btree_read_extent_buffer_pages(struct btrfs_root * root,struct extent_buffer * eb,u64 start,u64 parent_transid)362 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
363 					  struct extent_buffer *eb,
364 					  u64 start, u64 parent_transid)
365 {
366 	struct extent_io_tree *io_tree;
367 	int failed = 0;
368 	int ret;
369 	int num_copies = 0;
370 	int mirror_num = 0;
371 	int failed_mirror = 0;
372 
373 	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
374 	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
375 	while (1) {
376 		ret = read_extent_buffer_pages(io_tree, eb, start,
377 					       WAIT_COMPLETE,
378 					       btree_get_extent, mirror_num);
379 		if (!ret && !verify_parent_transid(io_tree, eb,
380 						   parent_transid, 0))
381 			break;
382 
383 		/*
384 		 * This buffer's crc is fine, but its contents are corrupted, so
385 		 * there is no reason to read the other copies, they won't be
386 		 * any less wrong.
387 		 */
388 		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
389 			break;
390 
391 		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
392 					      eb->start, eb->len);
393 		if (num_copies == 1)
394 			break;
395 
396 		if (!failed_mirror) {
397 			failed = 1;
398 			failed_mirror = eb->read_mirror;
399 		}
400 
401 		mirror_num++;
402 		if (mirror_num == failed_mirror)
403 			mirror_num++;
404 
405 		if (mirror_num > num_copies)
406 			break;
407 	}
408 
409 	if (failed && !ret)
410 		repair_eb_io_failure(root, eb, failed_mirror);
411 
412 	return ret;
413 }
414 
415 /*
416  * checksum a dirty tree block before IO.  This has extra checks to make sure
417  * we only fill in the checksum field in the first page of a multi-page block
418  */
419 
csum_dirty_buffer(struct btrfs_root * root,struct page * page)420 static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
421 {
422 	struct extent_io_tree *tree;
423 	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
424 	u64 found_start;
425 	struct extent_buffer *eb;
426 
427 	tree = &BTRFS_I(page->mapping->host)->io_tree;
428 
429 	eb = (struct extent_buffer *)page->private;
430 	if (page != eb->pages[0])
431 		return 0;
432 	found_start = btrfs_header_bytenr(eb);
433 	if (found_start != start) {
434 		WARN_ON(1);
435 		return 0;
436 	}
437 	if (eb->pages[0] != page) {
438 		WARN_ON(1);
439 		return 0;
440 	}
441 	if (!PageUptodate(page)) {
442 		WARN_ON(1);
443 		return 0;
444 	}
445 	csum_tree_block(root, eb, 0);
446 	return 0;
447 }
448 
check_tree_block_fsid(struct btrfs_root * root,struct extent_buffer * eb)449 static int check_tree_block_fsid(struct btrfs_root *root,
450 				 struct extent_buffer *eb)
451 {
452 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
453 	u8 fsid[BTRFS_UUID_SIZE];
454 	int ret = 1;
455 
456 	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
457 			   BTRFS_FSID_SIZE);
458 	while (fs_devices) {
459 		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
460 			ret = 0;
461 			break;
462 		}
463 		fs_devices = fs_devices->seed;
464 	}
465 	return ret;
466 }
467 
468 #define CORRUPT(reason, eb, root, slot)				\
469 	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
470 	       "root=%llu, slot=%d\n", reason,			\
471 	       (unsigned long long)btrfs_header_bytenr(eb),	\
472 	       (unsigned long long)root->objectid, slot)
473 
check_leaf(struct btrfs_root * root,struct extent_buffer * leaf)474 static noinline int check_leaf(struct btrfs_root *root,
475 			       struct extent_buffer *leaf)
476 {
477 	struct btrfs_key key;
478 	struct btrfs_key leaf_key;
479 	u32 nritems = btrfs_header_nritems(leaf);
480 	int slot;
481 
482 	if (nritems == 0)
483 		return 0;
484 
485 	/* Check the 0 item */
486 	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
487 	    BTRFS_LEAF_DATA_SIZE(root)) {
488 		CORRUPT("invalid item offset size pair", leaf, root, 0);
489 		return -EIO;
490 	}
491 
492 	/*
493 	 * Check to make sure each items keys are in the correct order and their
494 	 * offsets make sense.  We only have to loop through nritems-1 because
495 	 * we check the current slot against the next slot, which verifies the
496 	 * next slot's offset+size makes sense and that the current's slot
497 	 * offset is correct.
498 	 */
499 	for (slot = 0; slot < nritems - 1; slot++) {
500 		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
501 		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
502 
503 		/* Make sure the keys are in the right order */
504 		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
505 			CORRUPT("bad key order", leaf, root, slot);
506 			return -EIO;
507 		}
508 
509 		/*
510 		 * Make sure the offset and ends are right, remember that the
511 		 * item data starts at the end of the leaf and grows towards the
512 		 * front.
513 		 */
514 		if (btrfs_item_offset_nr(leaf, slot) !=
515 			btrfs_item_end_nr(leaf, slot + 1)) {
516 			CORRUPT("slot offset bad", leaf, root, slot);
517 			return -EIO;
518 		}
519 
520 		/*
521 		 * Check to make sure that we don't point outside of the leaf,
522 		 * just incase all the items are consistent to eachother, but
523 		 * all point outside of the leaf.
524 		 */
525 		if (btrfs_item_end_nr(leaf, slot) >
526 		    BTRFS_LEAF_DATA_SIZE(root)) {
527 			CORRUPT("slot end outside of leaf", leaf, root, slot);
528 			return -EIO;
529 		}
530 	}
531 
532 	return 0;
533 }
534 
find_eb_for_page(struct extent_io_tree * tree,struct page * page,int max_walk)535 struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
536 				       struct page *page, int max_walk)
537 {
538 	struct extent_buffer *eb;
539 	u64 start = page_offset(page);
540 	u64 target = start;
541 	u64 min_start;
542 
543 	if (start < max_walk)
544 		min_start = 0;
545 	else
546 		min_start = start - max_walk;
547 
548 	while (start >= min_start) {
549 		eb = find_extent_buffer(tree, start, 0);
550 		if (eb) {
551 			/*
552 			 * we found an extent buffer and it contains our page
553 			 * horray!
554 			 */
555 			if (eb->start <= target &&
556 			    eb->start + eb->len > target)
557 				return eb;
558 
559 			/* we found an extent buffer that wasn't for us */
560 			free_extent_buffer(eb);
561 			return NULL;
562 		}
563 		if (start == 0)
564 			break;
565 		start -= PAGE_CACHE_SIZE;
566 	}
567 	return NULL;
568 }
569 
btree_readpage_end_io_hook(struct page * page,u64 start,u64 end,struct extent_state * state,int mirror)570 static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
571 			       struct extent_state *state, int mirror)
572 {
573 	struct extent_io_tree *tree;
574 	u64 found_start;
575 	int found_level;
576 	struct extent_buffer *eb;
577 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
578 	int ret = 0;
579 	int reads_done;
580 
581 	if (!page->private)
582 		goto out;
583 
584 	tree = &BTRFS_I(page->mapping->host)->io_tree;
585 	eb = (struct extent_buffer *)page->private;
586 
587 	/* the pending IO might have been the only thing that kept this buffer
588 	 * in memory.  Make sure we have a ref for all this other checks
589 	 */
590 	extent_buffer_get(eb);
591 
592 	reads_done = atomic_dec_and_test(&eb->io_pages);
593 	if (!reads_done)
594 		goto err;
595 
596 	eb->read_mirror = mirror;
597 	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
598 		ret = -EIO;
599 		goto err;
600 	}
601 
602 	found_start = btrfs_header_bytenr(eb);
603 	if (found_start != eb->start) {
604 		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
605 			       "%llu %llu\n",
606 			       (unsigned long long)found_start,
607 			       (unsigned long long)eb->start);
608 		ret = -EIO;
609 		goto err;
610 	}
611 	if (check_tree_block_fsid(root, eb)) {
612 		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
613 			       (unsigned long long)eb->start);
614 		ret = -EIO;
615 		goto err;
616 	}
617 	found_level = btrfs_header_level(eb);
618 
619 	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
620 				       eb, found_level);
621 
622 	ret = csum_tree_block(root, eb, 1);
623 	if (ret) {
624 		ret = -EIO;
625 		goto err;
626 	}
627 
628 	/*
629 	 * If this is a leaf block and it is corrupt, set the corrupt bit so
630 	 * that we don't try and read the other copies of this block, just
631 	 * return -EIO.
632 	 */
633 	if (found_level == 0 && check_leaf(root, eb)) {
634 		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
635 		ret = -EIO;
636 	}
637 
638 	if (!ret)
639 		set_extent_buffer_uptodate(eb);
640 err:
641 	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
642 		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
643 		btree_readahead_hook(root, eb, eb->start, ret);
644 	}
645 
646 	if (ret)
647 		clear_extent_buffer_uptodate(eb);
648 	free_extent_buffer(eb);
649 out:
650 	return ret;
651 }
652 
btree_io_failed_hook(struct page * page,int failed_mirror)653 static int btree_io_failed_hook(struct page *page, int failed_mirror)
654 {
655 	struct extent_buffer *eb;
656 	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
657 
658 	eb = (struct extent_buffer *)page->private;
659 	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
660 	eb->read_mirror = failed_mirror;
661 	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
662 		btree_readahead_hook(root, eb, eb->start, -EIO);
663 	return -EIO;	/* we fixed nothing */
664 }
665 
end_workqueue_bio(struct bio * bio,int err)666 static void end_workqueue_bio(struct bio *bio, int err)
667 {
668 	struct end_io_wq *end_io_wq = bio->bi_private;
669 	struct btrfs_fs_info *fs_info;
670 
671 	fs_info = end_io_wq->info;
672 	end_io_wq->error = err;
673 	end_io_wq->work.func = end_workqueue_fn;
674 	end_io_wq->work.flags = 0;
675 
676 	if (bio->bi_rw & REQ_WRITE) {
677 		if (end_io_wq->metadata == 1)
678 			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
679 					   &end_io_wq->work);
680 		else if (end_io_wq->metadata == 2)
681 			btrfs_queue_worker(&fs_info->endio_freespace_worker,
682 					   &end_io_wq->work);
683 		else
684 			btrfs_queue_worker(&fs_info->endio_write_workers,
685 					   &end_io_wq->work);
686 	} else {
687 		if (end_io_wq->metadata)
688 			btrfs_queue_worker(&fs_info->endio_meta_workers,
689 					   &end_io_wq->work);
690 		else
691 			btrfs_queue_worker(&fs_info->endio_workers,
692 					   &end_io_wq->work);
693 	}
694 }
695 
696 /*
697  * For the metadata arg you want
698  *
699  * 0 - if data
700  * 1 - if normal metadta
701  * 2 - if writing to the free space cache area
702  */
btrfs_bio_wq_end_io(struct btrfs_fs_info * info,struct bio * bio,int metadata)703 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
704 			int metadata)
705 {
706 	struct end_io_wq *end_io_wq;
707 	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
708 	if (!end_io_wq)
709 		return -ENOMEM;
710 
711 	end_io_wq->private = bio->bi_private;
712 	end_io_wq->end_io = bio->bi_end_io;
713 	end_io_wq->info = info;
714 	end_io_wq->error = 0;
715 	end_io_wq->bio = bio;
716 	end_io_wq->metadata = metadata;
717 
718 	bio->bi_private = end_io_wq;
719 	bio->bi_end_io = end_workqueue_bio;
720 	return 0;
721 }
722 
btrfs_async_submit_limit(struct btrfs_fs_info * info)723 unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
724 {
725 	unsigned long limit = min_t(unsigned long,
726 				    info->workers.max_workers,
727 				    info->fs_devices->open_devices);
728 	return 256 * limit;
729 }
730 
run_one_async_start(struct btrfs_work * work)731 static void run_one_async_start(struct btrfs_work *work)
732 {
733 	struct async_submit_bio *async;
734 	int ret;
735 
736 	async = container_of(work, struct  async_submit_bio, work);
737 	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
738 				      async->mirror_num, async->bio_flags,
739 				      async->bio_offset);
740 	if (ret)
741 		async->error = ret;
742 }
743 
run_one_async_done(struct btrfs_work * work)744 static void run_one_async_done(struct btrfs_work *work)
745 {
746 	struct btrfs_fs_info *fs_info;
747 	struct async_submit_bio *async;
748 	int limit;
749 
750 	async = container_of(work, struct  async_submit_bio, work);
751 	fs_info = BTRFS_I(async->inode)->root->fs_info;
752 
753 	limit = btrfs_async_submit_limit(fs_info);
754 	limit = limit * 2 / 3;
755 
756 	atomic_dec(&fs_info->nr_async_submits);
757 
758 	if (atomic_read(&fs_info->nr_async_submits) < limit &&
759 	    waitqueue_active(&fs_info->async_submit_wait))
760 		wake_up(&fs_info->async_submit_wait);
761 
762 	/* If an error occured we just want to clean up the bio and move on */
763 	if (async->error) {
764 		bio_endio(async->bio, async->error);
765 		return;
766 	}
767 
768 	async->submit_bio_done(async->inode, async->rw, async->bio,
769 			       async->mirror_num, async->bio_flags,
770 			       async->bio_offset);
771 }
772 
run_one_async_free(struct btrfs_work * work)773 static void run_one_async_free(struct btrfs_work *work)
774 {
775 	struct async_submit_bio *async;
776 
777 	async = container_of(work, struct  async_submit_bio, work);
778 	kfree(async);
779 }
780 
btrfs_wq_submit_bio(struct btrfs_fs_info * fs_info,struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset,extent_submit_bio_hook_t * submit_bio_start,extent_submit_bio_hook_t * submit_bio_done)781 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
782 			int rw, struct bio *bio, int mirror_num,
783 			unsigned long bio_flags,
784 			u64 bio_offset,
785 			extent_submit_bio_hook_t *submit_bio_start,
786 			extent_submit_bio_hook_t *submit_bio_done)
787 {
788 	struct async_submit_bio *async;
789 
790 	async = kmalloc(sizeof(*async), GFP_NOFS);
791 	if (!async)
792 		return -ENOMEM;
793 
794 	async->inode = inode;
795 	async->rw = rw;
796 	async->bio = bio;
797 	async->mirror_num = mirror_num;
798 	async->submit_bio_start = submit_bio_start;
799 	async->submit_bio_done = submit_bio_done;
800 
801 	async->work.func = run_one_async_start;
802 	async->work.ordered_func = run_one_async_done;
803 	async->work.ordered_free = run_one_async_free;
804 
805 	async->work.flags = 0;
806 	async->bio_flags = bio_flags;
807 	async->bio_offset = bio_offset;
808 
809 	async->error = 0;
810 
811 	atomic_inc(&fs_info->nr_async_submits);
812 
813 	if (rw & REQ_SYNC)
814 		btrfs_set_work_high_prio(&async->work);
815 
816 	btrfs_queue_worker(&fs_info->workers, &async->work);
817 
818 	while (atomic_read(&fs_info->async_submit_draining) &&
819 	      atomic_read(&fs_info->nr_async_submits)) {
820 		wait_event(fs_info->async_submit_wait,
821 			   (atomic_read(&fs_info->nr_async_submits) == 0));
822 	}
823 
824 	return 0;
825 }
826 
btree_csum_one_bio(struct bio * bio)827 static int btree_csum_one_bio(struct bio *bio)
828 {
829 	struct bio_vec *bvec = bio->bi_io_vec;
830 	int bio_index = 0;
831 	struct btrfs_root *root;
832 	int ret = 0;
833 
834 	WARN_ON(bio->bi_vcnt <= 0);
835 	while (bio_index < bio->bi_vcnt) {
836 		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
837 		ret = csum_dirty_buffer(root, bvec->bv_page);
838 		if (ret)
839 			break;
840 		bio_index++;
841 		bvec++;
842 	}
843 	return ret;
844 }
845 
__btree_submit_bio_start(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)846 static int __btree_submit_bio_start(struct inode *inode, int rw,
847 				    struct bio *bio, int mirror_num,
848 				    unsigned long bio_flags,
849 				    u64 bio_offset)
850 {
851 	/*
852 	 * when we're called for a write, we're already in the async
853 	 * submission context.  Just jump into btrfs_map_bio
854 	 */
855 	return btree_csum_one_bio(bio);
856 }
857 
__btree_submit_bio_done(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)858 static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
859 				 int mirror_num, unsigned long bio_flags,
860 				 u64 bio_offset)
861 {
862 	/*
863 	 * when we're called for a write, we're already in the async
864 	 * submission context.  Just jump into btrfs_map_bio
865 	 */
866 	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
867 }
868 
btree_submit_bio_hook(struct inode * inode,int rw,struct bio * bio,int mirror_num,unsigned long bio_flags,u64 bio_offset)869 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
870 				 int mirror_num, unsigned long bio_flags,
871 				 u64 bio_offset)
872 {
873 	int ret;
874 
875 	if (!(rw & REQ_WRITE)) {
876 
877 		/*
878 		 * called for a read, do the setup so that checksum validation
879 		 * can happen in the async kernel threads
880 		 */
881 		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
882 					  bio, 1);
883 		if (ret)
884 			return ret;
885 		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
886 				     mirror_num, 0);
887 	}
888 
889 	/*
890 	 * kthread helpers are used to submit writes so that checksumming
891 	 * can happen in parallel across all CPUs
892 	 */
893 	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
894 				   inode, rw, bio, mirror_num, 0,
895 				   bio_offset,
896 				   __btree_submit_bio_start,
897 				   __btree_submit_bio_done);
898 }
899 
900 #ifdef CONFIG_MIGRATION
btree_migratepage(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)901 static int btree_migratepage(struct address_space *mapping,
902 			struct page *newpage, struct page *page,
903 			enum migrate_mode mode)
904 {
905 	/*
906 	 * we can't safely write a btree page from here,
907 	 * we haven't done the locking hook
908 	 */
909 	if (PageDirty(page))
910 		return -EAGAIN;
911 	/*
912 	 * Buffers may be managed in a filesystem specific way.
913 	 * We must have no buffers or drop them.
914 	 */
915 	if (page_has_private(page) &&
916 	    !try_to_release_page(page, GFP_KERNEL))
917 		return -EAGAIN;
918 	return migrate_page(mapping, newpage, page, mode);
919 }
920 #endif
921 
922 
btree_writepages(struct address_space * mapping,struct writeback_control * wbc)923 static int btree_writepages(struct address_space *mapping,
924 			    struct writeback_control *wbc)
925 {
926 	struct extent_io_tree *tree;
927 	tree = &BTRFS_I(mapping->host)->io_tree;
928 	if (wbc->sync_mode == WB_SYNC_NONE) {
929 		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
930 		u64 num_dirty;
931 		unsigned long thresh = 32 * 1024 * 1024;
932 
933 		if (wbc->for_kupdate)
934 			return 0;
935 
936 		/* this is a bit racy, but that's ok */
937 		num_dirty = root->fs_info->dirty_metadata_bytes;
938 		if (num_dirty < thresh)
939 			return 0;
940 	}
941 	return btree_write_cache_pages(mapping, wbc);
942 }
943 
btree_readpage(struct file * file,struct page * page)944 static int btree_readpage(struct file *file, struct page *page)
945 {
946 	struct extent_io_tree *tree;
947 	tree = &BTRFS_I(page->mapping->host)->io_tree;
948 	return extent_read_full_page(tree, page, btree_get_extent, 0);
949 }
950 
btree_releasepage(struct page * page,gfp_t gfp_flags)951 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
952 {
953 	if (PageWriteback(page) || PageDirty(page))
954 		return 0;
955 	/*
956 	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
957 	 * slab allocation from alloc_extent_state down the callchain where
958 	 * it'd hit a BUG_ON as those flags are not allowed.
959 	 */
960 	gfp_flags &= ~GFP_SLAB_BUG_MASK;
961 
962 	return try_release_extent_buffer(page, gfp_flags);
963 }
964 
btree_invalidatepage(struct page * page,unsigned long offset)965 static void btree_invalidatepage(struct page *page, unsigned long offset)
966 {
967 	struct extent_io_tree *tree;
968 	tree = &BTRFS_I(page->mapping->host)->io_tree;
969 	extent_invalidatepage(tree, page, offset);
970 	btree_releasepage(page, GFP_NOFS);
971 	if (PagePrivate(page)) {
972 		printk(KERN_WARNING "btrfs warning page private not zero "
973 		       "on page %llu\n", (unsigned long long)page_offset(page));
974 		ClearPagePrivate(page);
975 		set_page_private(page, 0);
976 		page_cache_release(page);
977 	}
978 }
979 
btree_set_page_dirty(struct page * page)980 static int btree_set_page_dirty(struct page *page)
981 {
982 	struct extent_buffer *eb;
983 
984 	BUG_ON(!PagePrivate(page));
985 	eb = (struct extent_buffer *)page->private;
986 	BUG_ON(!eb);
987 	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
988 	BUG_ON(!atomic_read(&eb->refs));
989 	btrfs_assert_tree_locked(eb);
990 	return __set_page_dirty_nobuffers(page);
991 }
992 
993 static const struct address_space_operations btree_aops = {
994 	.readpage	= btree_readpage,
995 	.writepages	= btree_writepages,
996 	.releasepage	= btree_releasepage,
997 	.invalidatepage = btree_invalidatepage,
998 #ifdef CONFIG_MIGRATION
999 	.migratepage	= btree_migratepage,
1000 #endif
1001 	.set_page_dirty = btree_set_page_dirty,
1002 };
1003 
readahead_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize,u64 parent_transid)1004 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1005 			 u64 parent_transid)
1006 {
1007 	struct extent_buffer *buf = NULL;
1008 	struct inode *btree_inode = root->fs_info->btree_inode;
1009 	int ret = 0;
1010 
1011 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1012 	if (!buf)
1013 		return 0;
1014 	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1015 				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1016 	free_extent_buffer(buf);
1017 	return ret;
1018 }
1019 
reada_tree_block_flagged(struct btrfs_root * root,u64 bytenr,u32 blocksize,int mirror_num,struct extent_buffer ** eb)1020 int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1021 			 int mirror_num, struct extent_buffer **eb)
1022 {
1023 	struct extent_buffer *buf = NULL;
1024 	struct inode *btree_inode = root->fs_info->btree_inode;
1025 	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1026 	int ret;
1027 
1028 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1029 	if (!buf)
1030 		return 0;
1031 
1032 	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1033 
1034 	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1035 				       btree_get_extent, mirror_num);
1036 	if (ret) {
1037 		free_extent_buffer(buf);
1038 		return ret;
1039 	}
1040 
1041 	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1042 		free_extent_buffer(buf);
1043 		return -EIO;
1044 	} else if (extent_buffer_uptodate(buf)) {
1045 		*eb = buf;
1046 	} else {
1047 		free_extent_buffer(buf);
1048 	}
1049 	return 0;
1050 }
1051 
btrfs_find_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize)1052 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1053 					    u64 bytenr, u32 blocksize)
1054 {
1055 	struct inode *btree_inode = root->fs_info->btree_inode;
1056 	struct extent_buffer *eb;
1057 	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1058 				bytenr, blocksize);
1059 	return eb;
1060 }
1061 
btrfs_find_create_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize)1062 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1063 						 u64 bytenr, u32 blocksize)
1064 {
1065 	struct inode *btree_inode = root->fs_info->btree_inode;
1066 	struct extent_buffer *eb;
1067 
1068 	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1069 				 bytenr, blocksize);
1070 	return eb;
1071 }
1072 
1073 
btrfs_write_tree_block(struct extent_buffer * buf)1074 int btrfs_write_tree_block(struct extent_buffer *buf)
1075 {
1076 	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1077 					buf->start + buf->len - 1);
1078 }
1079 
btrfs_wait_tree_block_writeback(struct extent_buffer * buf)1080 int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1081 {
1082 	return filemap_fdatawait_range(buf->pages[0]->mapping,
1083 				       buf->start, buf->start + buf->len - 1);
1084 }
1085 
read_tree_block(struct btrfs_root * root,u64 bytenr,u32 blocksize,u64 parent_transid)1086 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1087 				      u32 blocksize, u64 parent_transid)
1088 {
1089 	struct extent_buffer *buf = NULL;
1090 	int ret;
1091 
1092 	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1093 	if (!buf)
1094 		return NULL;
1095 
1096 	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1097 	return buf;
1098 
1099 }
1100 
clean_tree_block(struct btrfs_trans_handle * trans,struct btrfs_root * root,struct extent_buffer * buf)1101 void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1102 		      struct extent_buffer *buf)
1103 {
1104 	if (btrfs_header_generation(buf) ==
1105 	    root->fs_info->running_transaction->transid) {
1106 		btrfs_assert_tree_locked(buf);
1107 
1108 		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1109 			spin_lock(&root->fs_info->delalloc_lock);
1110 			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1111 				root->fs_info->dirty_metadata_bytes -= buf->len;
1112 			else {
1113 				spin_unlock(&root->fs_info->delalloc_lock);
1114 				btrfs_panic(root->fs_info, -EOVERFLOW,
1115 					  "Can't clear %lu bytes from "
1116 					  " dirty_mdatadata_bytes (%lu)",
1117 					  buf->len,
1118 					  root->fs_info->dirty_metadata_bytes);
1119 			}
1120 			spin_unlock(&root->fs_info->delalloc_lock);
1121 		}
1122 
1123 		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1124 		btrfs_set_lock_blocking(buf);
1125 		clear_extent_buffer_dirty(buf);
1126 	}
1127 }
1128 
__setup_root(u32 nodesize,u32 leafsize,u32 sectorsize,u32 stripesize,struct btrfs_root * root,struct btrfs_fs_info * fs_info,u64 objectid)1129 static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1130 			 u32 stripesize, struct btrfs_root *root,
1131 			 struct btrfs_fs_info *fs_info,
1132 			 u64 objectid)
1133 {
1134 	root->node = NULL;
1135 	root->commit_root = NULL;
1136 	root->sectorsize = sectorsize;
1137 	root->nodesize = nodesize;
1138 	root->leafsize = leafsize;
1139 	root->stripesize = stripesize;
1140 	root->ref_cows = 0;
1141 	root->track_dirty = 0;
1142 	root->in_radix = 0;
1143 	root->orphan_item_inserted = 0;
1144 	root->orphan_cleanup_state = 0;
1145 
1146 	root->objectid = objectid;
1147 	root->last_trans = 0;
1148 	root->highest_objectid = 0;
1149 	root->name = NULL;
1150 	root->inode_tree = RB_ROOT;
1151 	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1152 	root->block_rsv = NULL;
1153 	root->orphan_block_rsv = NULL;
1154 
1155 	INIT_LIST_HEAD(&root->dirty_list);
1156 	INIT_LIST_HEAD(&root->orphan_list);
1157 	INIT_LIST_HEAD(&root->root_list);
1158 	spin_lock_init(&root->orphan_lock);
1159 	spin_lock_init(&root->inode_lock);
1160 	spin_lock_init(&root->accounting_lock);
1161 	mutex_init(&root->objectid_mutex);
1162 	mutex_init(&root->log_mutex);
1163 	init_waitqueue_head(&root->log_writer_wait);
1164 	init_waitqueue_head(&root->log_commit_wait[0]);
1165 	init_waitqueue_head(&root->log_commit_wait[1]);
1166 	atomic_set(&root->log_commit[0], 0);
1167 	atomic_set(&root->log_commit[1], 0);
1168 	atomic_set(&root->log_writers, 0);
1169 	root->log_batch = 0;
1170 	root->log_transid = 0;
1171 	root->last_log_commit = 0;
1172 	extent_io_tree_init(&root->dirty_log_pages,
1173 			     fs_info->btree_inode->i_mapping);
1174 
1175 	memset(&root->root_key, 0, sizeof(root->root_key));
1176 	memset(&root->root_item, 0, sizeof(root->root_item));
1177 	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1178 	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1179 	root->defrag_trans_start = fs_info->generation;
1180 	init_completion(&root->kobj_unregister);
1181 	root->defrag_running = 0;
1182 	root->root_key.objectid = objectid;
1183 	root->anon_dev = 0;
1184 }
1185 
find_and_setup_root(struct btrfs_root * tree_root,struct btrfs_fs_info * fs_info,u64 objectid,struct btrfs_root * root)1186 static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1187 					    struct btrfs_fs_info *fs_info,
1188 					    u64 objectid,
1189 					    struct btrfs_root *root)
1190 {
1191 	int ret;
1192 	u32 blocksize;
1193 	u64 generation;
1194 
1195 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1196 		     tree_root->sectorsize, tree_root->stripesize,
1197 		     root, fs_info, objectid);
1198 	ret = btrfs_find_last_root(tree_root, objectid,
1199 				   &root->root_item, &root->root_key);
1200 	if (ret > 0)
1201 		return -ENOENT;
1202 	else if (ret < 0)
1203 		return ret;
1204 
1205 	generation = btrfs_root_generation(&root->root_item);
1206 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1207 	root->commit_root = NULL;
1208 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1209 				     blocksize, generation);
1210 	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1211 		free_extent_buffer(root->node);
1212 		root->node = NULL;
1213 		return -EIO;
1214 	}
1215 	root->commit_root = btrfs_root_node(root);
1216 	return 0;
1217 }
1218 
btrfs_alloc_root(struct btrfs_fs_info * fs_info)1219 static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1220 {
1221 	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1222 	if (root)
1223 		root->fs_info = fs_info;
1224 	return root;
1225 }
1226 
alloc_log_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1227 static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1228 					 struct btrfs_fs_info *fs_info)
1229 {
1230 	struct btrfs_root *root;
1231 	struct btrfs_root *tree_root = fs_info->tree_root;
1232 	struct extent_buffer *leaf;
1233 
1234 	root = btrfs_alloc_root(fs_info);
1235 	if (!root)
1236 		return ERR_PTR(-ENOMEM);
1237 
1238 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1239 		     tree_root->sectorsize, tree_root->stripesize,
1240 		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1241 
1242 	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1243 	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1244 	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1245 	/*
1246 	 * log trees do not get reference counted because they go away
1247 	 * before a real commit is actually done.  They do store pointers
1248 	 * to file data extents, and those reference counts still get
1249 	 * updated (along with back refs to the log tree).
1250 	 */
1251 	root->ref_cows = 0;
1252 
1253 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1254 				      BTRFS_TREE_LOG_OBJECTID, NULL,
1255 				      0, 0, 0, 0);
1256 	if (IS_ERR(leaf)) {
1257 		kfree(root);
1258 		return ERR_CAST(leaf);
1259 	}
1260 
1261 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1262 	btrfs_set_header_bytenr(leaf, leaf->start);
1263 	btrfs_set_header_generation(leaf, trans->transid);
1264 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1265 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1266 	root->node = leaf;
1267 
1268 	write_extent_buffer(root->node, root->fs_info->fsid,
1269 			    (unsigned long)btrfs_header_fsid(root->node),
1270 			    BTRFS_FSID_SIZE);
1271 	btrfs_mark_buffer_dirty(root->node);
1272 	btrfs_tree_unlock(root->node);
1273 	return root;
1274 }
1275 
btrfs_init_log_root_tree(struct btrfs_trans_handle * trans,struct btrfs_fs_info * fs_info)1276 int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1277 			     struct btrfs_fs_info *fs_info)
1278 {
1279 	struct btrfs_root *log_root;
1280 
1281 	log_root = alloc_log_tree(trans, fs_info);
1282 	if (IS_ERR(log_root))
1283 		return PTR_ERR(log_root);
1284 	WARN_ON(fs_info->log_root_tree);
1285 	fs_info->log_root_tree = log_root;
1286 	return 0;
1287 }
1288 
btrfs_add_log_tree(struct btrfs_trans_handle * trans,struct btrfs_root * root)1289 int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1290 		       struct btrfs_root *root)
1291 {
1292 	struct btrfs_root *log_root;
1293 	struct btrfs_inode_item *inode_item;
1294 
1295 	log_root = alloc_log_tree(trans, root->fs_info);
1296 	if (IS_ERR(log_root))
1297 		return PTR_ERR(log_root);
1298 
1299 	log_root->last_trans = trans->transid;
1300 	log_root->root_key.offset = root->root_key.objectid;
1301 
1302 	inode_item = &log_root->root_item.inode;
1303 	inode_item->generation = cpu_to_le64(1);
1304 	inode_item->size = cpu_to_le64(3);
1305 	inode_item->nlink = cpu_to_le32(1);
1306 	inode_item->nbytes = cpu_to_le64(root->leafsize);
1307 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1308 
1309 	btrfs_set_root_node(&log_root->root_item, log_root->node);
1310 
1311 	WARN_ON(root->log_root);
1312 	root->log_root = log_root;
1313 	root->log_transid = 0;
1314 	root->last_log_commit = 0;
1315 	return 0;
1316 }
1317 
btrfs_read_fs_root_no_radix(struct btrfs_root * tree_root,struct btrfs_key * location)1318 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1319 					       struct btrfs_key *location)
1320 {
1321 	struct btrfs_root *root;
1322 	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1323 	struct btrfs_path *path;
1324 	struct extent_buffer *l;
1325 	u64 generation;
1326 	u32 blocksize;
1327 	int ret = 0;
1328 
1329 	root = btrfs_alloc_root(fs_info);
1330 	if (!root)
1331 		return ERR_PTR(-ENOMEM);
1332 	if (location->offset == (u64)-1) {
1333 		ret = find_and_setup_root(tree_root, fs_info,
1334 					  location->objectid, root);
1335 		if (ret) {
1336 			kfree(root);
1337 			return ERR_PTR(ret);
1338 		}
1339 		goto out;
1340 	}
1341 
1342 	__setup_root(tree_root->nodesize, tree_root->leafsize,
1343 		     tree_root->sectorsize, tree_root->stripesize,
1344 		     root, fs_info, location->objectid);
1345 
1346 	path = btrfs_alloc_path();
1347 	if (!path) {
1348 		kfree(root);
1349 		return ERR_PTR(-ENOMEM);
1350 	}
1351 	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1352 	if (ret == 0) {
1353 		l = path->nodes[0];
1354 		read_extent_buffer(l, &root->root_item,
1355 				btrfs_item_ptr_offset(l, path->slots[0]),
1356 				sizeof(root->root_item));
1357 		memcpy(&root->root_key, location, sizeof(*location));
1358 	}
1359 	btrfs_free_path(path);
1360 	if (ret) {
1361 		kfree(root);
1362 		if (ret > 0)
1363 			ret = -ENOENT;
1364 		return ERR_PTR(ret);
1365 	}
1366 
1367 	generation = btrfs_root_generation(&root->root_item);
1368 	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1369 	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1370 				     blocksize, generation);
1371 	root->commit_root = btrfs_root_node(root);
1372 	BUG_ON(!root->node); /* -ENOMEM */
1373 out:
1374 	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1375 		root->ref_cows = 1;
1376 		btrfs_check_and_init_root_item(&root->root_item);
1377 	}
1378 
1379 	return root;
1380 }
1381 
btrfs_read_fs_root_no_name(struct btrfs_fs_info * fs_info,struct btrfs_key * location)1382 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1383 					      struct btrfs_key *location)
1384 {
1385 	struct btrfs_root *root;
1386 	int ret;
1387 
1388 	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1389 		return fs_info->tree_root;
1390 	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1391 		return fs_info->extent_root;
1392 	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1393 		return fs_info->chunk_root;
1394 	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1395 		return fs_info->dev_root;
1396 	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1397 		return fs_info->csum_root;
1398 again:
1399 	spin_lock(&fs_info->fs_roots_radix_lock);
1400 	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1401 				 (unsigned long)location->objectid);
1402 	spin_unlock(&fs_info->fs_roots_radix_lock);
1403 	if (root)
1404 		return root;
1405 
1406 	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1407 	if (IS_ERR(root))
1408 		return root;
1409 
1410 	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1411 	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1412 					GFP_NOFS);
1413 	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1414 		ret = -ENOMEM;
1415 		goto fail;
1416 	}
1417 
1418 	btrfs_init_free_ino_ctl(root);
1419 	mutex_init(&root->fs_commit_mutex);
1420 	spin_lock_init(&root->cache_lock);
1421 	init_waitqueue_head(&root->cache_wait);
1422 
1423 	ret = get_anon_bdev(&root->anon_dev);
1424 	if (ret)
1425 		goto fail;
1426 
1427 	if (btrfs_root_refs(&root->root_item) == 0) {
1428 		ret = -ENOENT;
1429 		goto fail;
1430 	}
1431 
1432 	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1433 	if (ret < 0)
1434 		goto fail;
1435 	if (ret == 0)
1436 		root->orphan_item_inserted = 1;
1437 
1438 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1439 	if (ret)
1440 		goto fail;
1441 
1442 	spin_lock(&fs_info->fs_roots_radix_lock);
1443 	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1444 				(unsigned long)root->root_key.objectid,
1445 				root);
1446 	if (ret == 0)
1447 		root->in_radix = 1;
1448 
1449 	spin_unlock(&fs_info->fs_roots_radix_lock);
1450 	radix_tree_preload_end();
1451 	if (ret) {
1452 		if (ret == -EEXIST) {
1453 			free_fs_root(root);
1454 			goto again;
1455 		}
1456 		goto fail;
1457 	}
1458 
1459 	ret = btrfs_find_dead_roots(fs_info->tree_root,
1460 				    root->root_key.objectid);
1461 	WARN_ON(ret);
1462 	return root;
1463 fail:
1464 	free_fs_root(root);
1465 	return ERR_PTR(ret);
1466 }
1467 
btrfs_congested_fn(void * congested_data,int bdi_bits)1468 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1469 {
1470 	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1471 	int ret = 0;
1472 	struct btrfs_device *device;
1473 	struct backing_dev_info *bdi;
1474 
1475 	rcu_read_lock();
1476 	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1477 		if (!device->bdev)
1478 			continue;
1479 		bdi = blk_get_backing_dev_info(device->bdev);
1480 		if (bdi && bdi_congested(bdi, bdi_bits)) {
1481 			ret = 1;
1482 			break;
1483 		}
1484 	}
1485 	rcu_read_unlock();
1486 	return ret;
1487 }
1488 
1489 /*
1490  * If this fails, caller must call bdi_destroy() to get rid of the
1491  * bdi again.
1492  */
setup_bdi(struct btrfs_fs_info * info,struct backing_dev_info * bdi)1493 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1494 {
1495 	int err;
1496 
1497 	bdi->capabilities = BDI_CAP_MAP_COPY;
1498 	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1499 	if (err)
1500 		return err;
1501 
1502 	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1503 	bdi->congested_fn	= btrfs_congested_fn;
1504 	bdi->congested_data	= info;
1505 	return 0;
1506 }
1507 
1508 /*
1509  * called by the kthread helper functions to finally call the bio end_io
1510  * functions.  This is where read checksum verification actually happens
1511  */
end_workqueue_fn(struct btrfs_work * work)1512 static void end_workqueue_fn(struct btrfs_work *work)
1513 {
1514 	struct bio *bio;
1515 	struct end_io_wq *end_io_wq;
1516 	struct btrfs_fs_info *fs_info;
1517 	int error;
1518 
1519 	end_io_wq = container_of(work, struct end_io_wq, work);
1520 	bio = end_io_wq->bio;
1521 	fs_info = end_io_wq->info;
1522 
1523 	error = end_io_wq->error;
1524 	bio->bi_private = end_io_wq->private;
1525 	bio->bi_end_io = end_io_wq->end_io;
1526 	kfree(end_io_wq);
1527 	bio_endio(bio, error);
1528 }
1529 
cleaner_kthread(void * arg)1530 static int cleaner_kthread(void *arg)
1531 {
1532 	struct btrfs_root *root = arg;
1533 
1534 	do {
1535 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1536 
1537 		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1538 		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1539 			btrfs_run_delayed_iputs(root);
1540 			btrfs_clean_old_snapshots(root);
1541 			mutex_unlock(&root->fs_info->cleaner_mutex);
1542 			btrfs_run_defrag_inodes(root->fs_info);
1543 		}
1544 
1545 		if (!try_to_freeze()) {
1546 			set_current_state(TASK_INTERRUPTIBLE);
1547 			if (!kthread_should_stop())
1548 				schedule();
1549 			__set_current_state(TASK_RUNNING);
1550 		}
1551 	} while (!kthread_should_stop());
1552 	return 0;
1553 }
1554 
transaction_kthread(void * arg)1555 static int transaction_kthread(void *arg)
1556 {
1557 	struct btrfs_root *root = arg;
1558 	struct btrfs_trans_handle *trans;
1559 	struct btrfs_transaction *cur;
1560 	u64 transid;
1561 	unsigned long now;
1562 	unsigned long delay;
1563 	bool cannot_commit;
1564 
1565 	do {
1566 		cannot_commit = false;
1567 		delay = HZ * 30;
1568 		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1569 		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1570 
1571 		spin_lock(&root->fs_info->trans_lock);
1572 		cur = root->fs_info->running_transaction;
1573 		if (!cur) {
1574 			spin_unlock(&root->fs_info->trans_lock);
1575 			goto sleep;
1576 		}
1577 
1578 		now = get_seconds();
1579 		if (!cur->blocked &&
1580 		    (now < cur->start_time || now - cur->start_time < 30)) {
1581 			spin_unlock(&root->fs_info->trans_lock);
1582 			delay = HZ * 5;
1583 			goto sleep;
1584 		}
1585 		transid = cur->transid;
1586 		spin_unlock(&root->fs_info->trans_lock);
1587 
1588 		/* If the file system is aborted, this will always fail. */
1589 		trans = btrfs_join_transaction(root);
1590 		if (IS_ERR(trans)) {
1591 			cannot_commit = true;
1592 			goto sleep;
1593 		}
1594 		if (transid == trans->transid) {
1595 			btrfs_commit_transaction(trans, root);
1596 		} else {
1597 			btrfs_end_transaction(trans, root);
1598 		}
1599 sleep:
1600 		wake_up_process(root->fs_info->cleaner_kthread);
1601 		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1602 
1603 		if (!try_to_freeze()) {
1604 			set_current_state(TASK_INTERRUPTIBLE);
1605 			if (!kthread_should_stop() &&
1606 			    (!btrfs_transaction_blocked(root->fs_info) ||
1607 			     cannot_commit))
1608 				schedule_timeout(delay);
1609 			__set_current_state(TASK_RUNNING);
1610 		}
1611 	} while (!kthread_should_stop());
1612 	return 0;
1613 }
1614 
1615 /*
1616  * this will find the highest generation in the array of
1617  * root backups.  The index of the highest array is returned,
1618  * or -1 if we can't find anything.
1619  *
1620  * We check to make sure the array is valid by comparing the
1621  * generation of the latest  root in the array with the generation
1622  * in the super block.  If they don't match we pitch it.
1623  */
find_newest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1624 static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1625 {
1626 	u64 cur;
1627 	int newest_index = -1;
1628 	struct btrfs_root_backup *root_backup;
1629 	int i;
1630 
1631 	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1632 		root_backup = info->super_copy->super_roots + i;
1633 		cur = btrfs_backup_tree_root_gen(root_backup);
1634 		if (cur == newest_gen)
1635 			newest_index = i;
1636 	}
1637 
1638 	/* check to see if we actually wrapped around */
1639 	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1640 		root_backup = info->super_copy->super_roots;
1641 		cur = btrfs_backup_tree_root_gen(root_backup);
1642 		if (cur == newest_gen)
1643 			newest_index = 0;
1644 	}
1645 	return newest_index;
1646 }
1647 
1648 
1649 /*
1650  * find the oldest backup so we know where to store new entries
1651  * in the backup array.  This will set the backup_root_index
1652  * field in the fs_info struct
1653  */
find_oldest_super_backup(struct btrfs_fs_info * info,u64 newest_gen)1654 static void find_oldest_super_backup(struct btrfs_fs_info *info,
1655 				     u64 newest_gen)
1656 {
1657 	int newest_index = -1;
1658 
1659 	newest_index = find_newest_super_backup(info, newest_gen);
1660 	/* if there was garbage in there, just move along */
1661 	if (newest_index == -1) {
1662 		info->backup_root_index = 0;
1663 	} else {
1664 		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1665 	}
1666 }
1667 
1668 /*
1669  * copy all the root pointers into the super backup array.
1670  * this will bump the backup pointer by one when it is
1671  * done
1672  */
backup_super_roots(struct btrfs_fs_info * info)1673 static void backup_super_roots(struct btrfs_fs_info *info)
1674 {
1675 	int next_backup;
1676 	struct btrfs_root_backup *root_backup;
1677 	int last_backup;
1678 
1679 	next_backup = info->backup_root_index;
1680 	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1681 		BTRFS_NUM_BACKUP_ROOTS;
1682 
1683 	/*
1684 	 * just overwrite the last backup if we're at the same generation
1685 	 * this happens only at umount
1686 	 */
1687 	root_backup = info->super_for_commit->super_roots + last_backup;
1688 	if (btrfs_backup_tree_root_gen(root_backup) ==
1689 	    btrfs_header_generation(info->tree_root->node))
1690 		next_backup = last_backup;
1691 
1692 	root_backup = info->super_for_commit->super_roots + next_backup;
1693 
1694 	/*
1695 	 * make sure all of our padding and empty slots get zero filled
1696 	 * regardless of which ones we use today
1697 	 */
1698 	memset(root_backup, 0, sizeof(*root_backup));
1699 
1700 	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1701 
1702 	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1703 	btrfs_set_backup_tree_root_gen(root_backup,
1704 			       btrfs_header_generation(info->tree_root->node));
1705 
1706 	btrfs_set_backup_tree_root_level(root_backup,
1707 			       btrfs_header_level(info->tree_root->node));
1708 
1709 	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1710 	btrfs_set_backup_chunk_root_gen(root_backup,
1711 			       btrfs_header_generation(info->chunk_root->node));
1712 	btrfs_set_backup_chunk_root_level(root_backup,
1713 			       btrfs_header_level(info->chunk_root->node));
1714 
1715 	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1716 	btrfs_set_backup_extent_root_gen(root_backup,
1717 			       btrfs_header_generation(info->extent_root->node));
1718 	btrfs_set_backup_extent_root_level(root_backup,
1719 			       btrfs_header_level(info->extent_root->node));
1720 
1721 	/*
1722 	 * we might commit during log recovery, which happens before we set
1723 	 * the fs_root.  Make sure it is valid before we fill it in.
1724 	 */
1725 	if (info->fs_root && info->fs_root->node) {
1726 		btrfs_set_backup_fs_root(root_backup,
1727 					 info->fs_root->node->start);
1728 		btrfs_set_backup_fs_root_gen(root_backup,
1729 			       btrfs_header_generation(info->fs_root->node));
1730 		btrfs_set_backup_fs_root_level(root_backup,
1731 			       btrfs_header_level(info->fs_root->node));
1732 	}
1733 
1734 	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1735 	btrfs_set_backup_dev_root_gen(root_backup,
1736 			       btrfs_header_generation(info->dev_root->node));
1737 	btrfs_set_backup_dev_root_level(root_backup,
1738 				       btrfs_header_level(info->dev_root->node));
1739 
1740 	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1741 	btrfs_set_backup_csum_root_gen(root_backup,
1742 			       btrfs_header_generation(info->csum_root->node));
1743 	btrfs_set_backup_csum_root_level(root_backup,
1744 			       btrfs_header_level(info->csum_root->node));
1745 
1746 	btrfs_set_backup_total_bytes(root_backup,
1747 			     btrfs_super_total_bytes(info->super_copy));
1748 	btrfs_set_backup_bytes_used(root_backup,
1749 			     btrfs_super_bytes_used(info->super_copy));
1750 	btrfs_set_backup_num_devices(root_backup,
1751 			     btrfs_super_num_devices(info->super_copy));
1752 
1753 	/*
1754 	 * if we don't copy this out to the super_copy, it won't get remembered
1755 	 * for the next commit
1756 	 */
1757 	memcpy(&info->super_copy->super_roots,
1758 	       &info->super_for_commit->super_roots,
1759 	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1760 }
1761 
1762 /*
1763  * this copies info out of the root backup array and back into
1764  * the in-memory super block.  It is meant to help iterate through
1765  * the array, so you send it the number of backups you've already
1766  * tried and the last backup index you used.
1767  *
1768  * this returns -1 when it has tried all the backups
1769  */
next_root_backup(struct btrfs_fs_info * info,struct btrfs_super_block * super,int * num_backups_tried,int * backup_index)1770 static noinline int next_root_backup(struct btrfs_fs_info *info,
1771 				     struct btrfs_super_block *super,
1772 				     int *num_backups_tried, int *backup_index)
1773 {
1774 	struct btrfs_root_backup *root_backup;
1775 	int newest = *backup_index;
1776 
1777 	if (*num_backups_tried == 0) {
1778 		u64 gen = btrfs_super_generation(super);
1779 
1780 		newest = find_newest_super_backup(info, gen);
1781 		if (newest == -1)
1782 			return -1;
1783 
1784 		*backup_index = newest;
1785 		*num_backups_tried = 1;
1786 	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1787 		/* we've tried all the backups, all done */
1788 		return -1;
1789 	} else {
1790 		/* jump to the next oldest backup */
1791 		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1792 			BTRFS_NUM_BACKUP_ROOTS;
1793 		*backup_index = newest;
1794 		*num_backups_tried += 1;
1795 	}
1796 	root_backup = super->super_roots + newest;
1797 
1798 	btrfs_set_super_generation(super,
1799 				   btrfs_backup_tree_root_gen(root_backup));
1800 	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1801 	btrfs_set_super_root_level(super,
1802 				   btrfs_backup_tree_root_level(root_backup));
1803 	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1804 
1805 	/*
1806 	 * fixme: the total bytes and num_devices need to match or we should
1807 	 * need a fsck
1808 	 */
1809 	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1810 	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1811 	return 0;
1812 }
1813 
1814 /* helper to cleanup tree roots */
free_root_pointers(struct btrfs_fs_info * info,int chunk_root)1815 static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1816 {
1817 	free_extent_buffer(info->tree_root->node);
1818 	free_extent_buffer(info->tree_root->commit_root);
1819 	free_extent_buffer(info->dev_root->node);
1820 	free_extent_buffer(info->dev_root->commit_root);
1821 	free_extent_buffer(info->extent_root->node);
1822 	free_extent_buffer(info->extent_root->commit_root);
1823 	free_extent_buffer(info->csum_root->node);
1824 	free_extent_buffer(info->csum_root->commit_root);
1825 
1826 	info->tree_root->node = NULL;
1827 	info->tree_root->commit_root = NULL;
1828 	info->dev_root->node = NULL;
1829 	info->dev_root->commit_root = NULL;
1830 	info->extent_root->node = NULL;
1831 	info->extent_root->commit_root = NULL;
1832 	info->csum_root->node = NULL;
1833 	info->csum_root->commit_root = NULL;
1834 
1835 	if (chunk_root) {
1836 		free_extent_buffer(info->chunk_root->node);
1837 		free_extent_buffer(info->chunk_root->commit_root);
1838 		info->chunk_root->node = NULL;
1839 		info->chunk_root->commit_root = NULL;
1840 	}
1841 }
1842 
1843 
open_ctree(struct super_block * sb,struct btrfs_fs_devices * fs_devices,char * options)1844 int open_ctree(struct super_block *sb,
1845 	       struct btrfs_fs_devices *fs_devices,
1846 	       char *options)
1847 {
1848 	u32 sectorsize;
1849 	u32 nodesize;
1850 	u32 leafsize;
1851 	u32 blocksize;
1852 	u32 stripesize;
1853 	u64 generation;
1854 	u64 features;
1855 	struct btrfs_key location;
1856 	struct buffer_head *bh;
1857 	struct btrfs_super_block *disk_super;
1858 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1859 	struct btrfs_root *tree_root;
1860 	struct btrfs_root *extent_root;
1861 	struct btrfs_root *csum_root;
1862 	struct btrfs_root *chunk_root;
1863 	struct btrfs_root *dev_root;
1864 	struct btrfs_root *log_tree_root;
1865 	int ret;
1866 	int err = -EINVAL;
1867 	int num_backups_tried = 0;
1868 	int backup_index = 0;
1869 
1870 	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1871 	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1872 	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1873 	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1874 	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
1875 
1876 	if (!tree_root || !extent_root || !csum_root ||
1877 	    !chunk_root || !dev_root) {
1878 		err = -ENOMEM;
1879 		goto fail;
1880 	}
1881 
1882 	ret = init_srcu_struct(&fs_info->subvol_srcu);
1883 	if (ret) {
1884 		err = ret;
1885 		goto fail;
1886 	}
1887 
1888 	ret = setup_bdi(fs_info, &fs_info->bdi);
1889 	if (ret) {
1890 		err = ret;
1891 		goto fail_srcu;
1892 	}
1893 
1894 	fs_info->btree_inode = new_inode(sb);
1895 	if (!fs_info->btree_inode) {
1896 		err = -ENOMEM;
1897 		goto fail_bdi;
1898 	}
1899 
1900 	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1901 
1902 	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1903 	INIT_LIST_HEAD(&fs_info->trans_list);
1904 	INIT_LIST_HEAD(&fs_info->dead_roots);
1905 	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1906 	INIT_LIST_HEAD(&fs_info->hashers);
1907 	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1908 	INIT_LIST_HEAD(&fs_info->ordered_operations);
1909 	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1910 	spin_lock_init(&fs_info->delalloc_lock);
1911 	spin_lock_init(&fs_info->trans_lock);
1912 	spin_lock_init(&fs_info->ref_cache_lock);
1913 	spin_lock_init(&fs_info->fs_roots_radix_lock);
1914 	spin_lock_init(&fs_info->delayed_iput_lock);
1915 	spin_lock_init(&fs_info->defrag_inodes_lock);
1916 	spin_lock_init(&fs_info->free_chunk_lock);
1917 	mutex_init(&fs_info->reloc_mutex);
1918 
1919 	init_completion(&fs_info->kobj_unregister);
1920 	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1921 	INIT_LIST_HEAD(&fs_info->space_info);
1922 	btrfs_mapping_init(&fs_info->mapping_tree);
1923 	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1924 	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1925 	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1926 	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1927 	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1928 	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1929 	atomic_set(&fs_info->nr_async_submits, 0);
1930 	atomic_set(&fs_info->async_delalloc_pages, 0);
1931 	atomic_set(&fs_info->async_submit_draining, 0);
1932 	atomic_set(&fs_info->nr_async_bios, 0);
1933 	atomic_set(&fs_info->defrag_running, 0);
1934 	fs_info->sb = sb;
1935 	fs_info->max_inline = 8192 * 1024;
1936 	fs_info->metadata_ratio = 0;
1937 	fs_info->defrag_inodes = RB_ROOT;
1938 	fs_info->trans_no_join = 0;
1939 	fs_info->free_chunk_space = 0;
1940 
1941 	/* readahead state */
1942 	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1943 	spin_lock_init(&fs_info->reada_lock);
1944 
1945 	fs_info->thread_pool_size = min_t(unsigned long,
1946 					  num_online_cpus() + 2, 8);
1947 
1948 	INIT_LIST_HEAD(&fs_info->ordered_extents);
1949 	spin_lock_init(&fs_info->ordered_extent_lock);
1950 	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1951 					GFP_NOFS);
1952 	if (!fs_info->delayed_root) {
1953 		err = -ENOMEM;
1954 		goto fail_iput;
1955 	}
1956 	btrfs_init_delayed_root(fs_info->delayed_root);
1957 
1958 	mutex_init(&fs_info->scrub_lock);
1959 	atomic_set(&fs_info->scrubs_running, 0);
1960 	atomic_set(&fs_info->scrub_pause_req, 0);
1961 	atomic_set(&fs_info->scrubs_paused, 0);
1962 	atomic_set(&fs_info->scrub_cancel_req, 0);
1963 	init_waitqueue_head(&fs_info->scrub_pause_wait);
1964 	init_rwsem(&fs_info->scrub_super_lock);
1965 	fs_info->scrub_workers_refcnt = 0;
1966 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1967 	fs_info->check_integrity_print_mask = 0;
1968 #endif
1969 
1970 	spin_lock_init(&fs_info->balance_lock);
1971 	mutex_init(&fs_info->balance_mutex);
1972 	atomic_set(&fs_info->balance_running, 0);
1973 	atomic_set(&fs_info->balance_pause_req, 0);
1974 	atomic_set(&fs_info->balance_cancel_req, 0);
1975 	fs_info->balance_ctl = NULL;
1976 	init_waitqueue_head(&fs_info->balance_wait_q);
1977 
1978 	sb->s_blocksize = 4096;
1979 	sb->s_blocksize_bits = blksize_bits(4096);
1980 	sb->s_bdi = &fs_info->bdi;
1981 
1982 	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1983 	set_nlink(fs_info->btree_inode, 1);
1984 	/*
1985 	 * we set the i_size on the btree inode to the max possible int.
1986 	 * the real end of the address space is determined by all of
1987 	 * the devices in the system
1988 	 */
1989 	fs_info->btree_inode->i_size = OFFSET_MAX;
1990 	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1991 	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1992 
1993 	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1994 	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1995 			     fs_info->btree_inode->i_mapping);
1996 	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
1997 	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1998 
1999 	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2000 
2001 	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2002 	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2003 	       sizeof(struct btrfs_key));
2004 	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
2005 	insert_inode_hash(fs_info->btree_inode);
2006 
2007 	spin_lock_init(&fs_info->block_group_cache_lock);
2008 	fs_info->block_group_cache_tree = RB_ROOT;
2009 
2010 	extent_io_tree_init(&fs_info->freed_extents[0],
2011 			     fs_info->btree_inode->i_mapping);
2012 	extent_io_tree_init(&fs_info->freed_extents[1],
2013 			     fs_info->btree_inode->i_mapping);
2014 	fs_info->pinned_extents = &fs_info->freed_extents[0];
2015 	fs_info->do_barriers = 1;
2016 
2017 
2018 	mutex_init(&fs_info->ordered_operations_mutex);
2019 	mutex_init(&fs_info->tree_log_mutex);
2020 	mutex_init(&fs_info->chunk_mutex);
2021 	mutex_init(&fs_info->transaction_kthread_mutex);
2022 	mutex_init(&fs_info->cleaner_mutex);
2023 	mutex_init(&fs_info->volume_mutex);
2024 	init_rwsem(&fs_info->extent_commit_sem);
2025 	init_rwsem(&fs_info->cleanup_work_sem);
2026 	init_rwsem(&fs_info->subvol_sem);
2027 
2028 	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2029 	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2030 
2031 	init_waitqueue_head(&fs_info->transaction_throttle);
2032 	init_waitqueue_head(&fs_info->transaction_wait);
2033 	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2034 	init_waitqueue_head(&fs_info->async_submit_wait);
2035 
2036 	__setup_root(4096, 4096, 4096, 4096, tree_root,
2037 		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2038 
2039 	invalidate_bdev(fs_devices->latest_bdev);
2040 	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2041 	if (!bh) {
2042 		err = -EINVAL;
2043 		goto fail_alloc;
2044 	}
2045 
2046 	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2047 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2048 	       sizeof(*fs_info->super_for_commit));
2049 	brelse(bh);
2050 
2051 	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2052 
2053 	disk_super = fs_info->super_copy;
2054 	if (!btrfs_super_root(disk_super))
2055 		goto fail_alloc;
2056 
2057 	/* check FS state, whether FS is broken. */
2058 	fs_info->fs_state |= btrfs_super_flags(disk_super);
2059 
2060 	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2061 	if (ret) {
2062 		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2063 		err = ret;
2064 		goto fail_alloc;
2065 	}
2066 
2067 	/*
2068 	 * run through our array of backup supers and setup
2069 	 * our ring pointer to the oldest one
2070 	 */
2071 	generation = btrfs_super_generation(disk_super);
2072 	find_oldest_super_backup(fs_info, generation);
2073 
2074 	/*
2075 	 * In the long term, we'll store the compression type in the super
2076 	 * block, and it'll be used for per file compression control.
2077 	 */
2078 	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2079 
2080 	ret = btrfs_parse_options(tree_root, options);
2081 	if (ret) {
2082 		err = ret;
2083 		goto fail_alloc;
2084 	}
2085 
2086 	features = btrfs_super_incompat_flags(disk_super) &
2087 		~BTRFS_FEATURE_INCOMPAT_SUPP;
2088 	if (features) {
2089 		printk(KERN_ERR "BTRFS: couldn't mount because of "
2090 		       "unsupported optional features (%Lx).\n",
2091 		       (unsigned long long)features);
2092 		err = -EINVAL;
2093 		goto fail_alloc;
2094 	}
2095 
2096 	if (btrfs_super_leafsize(disk_super) !=
2097 	    btrfs_super_nodesize(disk_super)) {
2098 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2099 		       "blocksizes don't match.  node %d leaf %d\n",
2100 		       btrfs_super_nodesize(disk_super),
2101 		       btrfs_super_leafsize(disk_super));
2102 		err = -EINVAL;
2103 		goto fail_alloc;
2104 	}
2105 	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2106 		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2107 		       "blocksize (%d) was too large\n",
2108 		       btrfs_super_leafsize(disk_super));
2109 		err = -EINVAL;
2110 		goto fail_alloc;
2111 	}
2112 
2113 	features = btrfs_super_incompat_flags(disk_super);
2114 	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2115 	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2116 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2117 
2118 	/*
2119 	 * flag our filesystem as having big metadata blocks if
2120 	 * they are bigger than the page size
2121 	 */
2122 	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2123 		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2124 			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2125 		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2126 	}
2127 
2128 	nodesize = btrfs_super_nodesize(disk_super);
2129 	leafsize = btrfs_super_leafsize(disk_super);
2130 	sectorsize = btrfs_super_sectorsize(disk_super);
2131 	stripesize = btrfs_super_stripesize(disk_super);
2132 
2133 	/*
2134 	 * mixed block groups end up with duplicate but slightly offset
2135 	 * extent buffers for the same range.  It leads to corruptions
2136 	 */
2137 	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2138 	    (sectorsize != leafsize)) {
2139 		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2140 				"are not allowed for mixed block groups on %s\n",
2141 				sb->s_id);
2142 		goto fail_alloc;
2143 	}
2144 
2145 	btrfs_set_super_incompat_flags(disk_super, features);
2146 
2147 	features = btrfs_super_compat_ro_flags(disk_super) &
2148 		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2149 	if (!(sb->s_flags & MS_RDONLY) && features) {
2150 		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2151 		       "unsupported option features (%Lx).\n",
2152 		       (unsigned long long)features);
2153 		err = -EINVAL;
2154 		goto fail_alloc;
2155 	}
2156 
2157 	btrfs_init_workers(&fs_info->generic_worker,
2158 			   "genwork", 1, NULL);
2159 
2160 	btrfs_init_workers(&fs_info->workers, "worker",
2161 			   fs_info->thread_pool_size,
2162 			   &fs_info->generic_worker);
2163 
2164 	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2165 			   fs_info->thread_pool_size,
2166 			   &fs_info->generic_worker);
2167 
2168 	btrfs_init_workers(&fs_info->submit_workers, "submit",
2169 			   min_t(u64, fs_devices->num_devices,
2170 			   fs_info->thread_pool_size),
2171 			   &fs_info->generic_worker);
2172 
2173 	btrfs_init_workers(&fs_info->caching_workers, "cache",
2174 			   2, &fs_info->generic_worker);
2175 
2176 	/* a higher idle thresh on the submit workers makes it much more
2177 	 * likely that bios will be send down in a sane order to the
2178 	 * devices
2179 	 */
2180 	fs_info->submit_workers.idle_thresh = 64;
2181 
2182 	fs_info->workers.idle_thresh = 16;
2183 	fs_info->workers.ordered = 1;
2184 
2185 	fs_info->delalloc_workers.idle_thresh = 2;
2186 	fs_info->delalloc_workers.ordered = 1;
2187 
2188 	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2189 			   &fs_info->generic_worker);
2190 	btrfs_init_workers(&fs_info->endio_workers, "endio",
2191 			   fs_info->thread_pool_size,
2192 			   &fs_info->generic_worker);
2193 	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2194 			   fs_info->thread_pool_size,
2195 			   &fs_info->generic_worker);
2196 	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2197 			   "endio-meta-write", fs_info->thread_pool_size,
2198 			   &fs_info->generic_worker);
2199 	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2200 			   fs_info->thread_pool_size,
2201 			   &fs_info->generic_worker);
2202 	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2203 			   1, &fs_info->generic_worker);
2204 	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2205 			   fs_info->thread_pool_size,
2206 			   &fs_info->generic_worker);
2207 	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2208 			   fs_info->thread_pool_size,
2209 			   &fs_info->generic_worker);
2210 
2211 	/*
2212 	 * endios are largely parallel and should have a very
2213 	 * low idle thresh
2214 	 */
2215 	fs_info->endio_workers.idle_thresh = 4;
2216 	fs_info->endio_meta_workers.idle_thresh = 4;
2217 
2218 	fs_info->endio_write_workers.idle_thresh = 2;
2219 	fs_info->endio_meta_write_workers.idle_thresh = 2;
2220 	fs_info->readahead_workers.idle_thresh = 2;
2221 
2222 	/*
2223 	 * btrfs_start_workers can really only fail because of ENOMEM so just
2224 	 * return -ENOMEM if any of these fail.
2225 	 */
2226 	ret = btrfs_start_workers(&fs_info->workers);
2227 	ret |= btrfs_start_workers(&fs_info->generic_worker);
2228 	ret |= btrfs_start_workers(&fs_info->submit_workers);
2229 	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2230 	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2231 	ret |= btrfs_start_workers(&fs_info->endio_workers);
2232 	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2233 	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2234 	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2235 	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2236 	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2237 	ret |= btrfs_start_workers(&fs_info->caching_workers);
2238 	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2239 	if (ret) {
2240 		ret = -ENOMEM;
2241 		goto fail_sb_buffer;
2242 	}
2243 
2244 	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2245 	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2246 				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2247 
2248 	tree_root->nodesize = nodesize;
2249 	tree_root->leafsize = leafsize;
2250 	tree_root->sectorsize = sectorsize;
2251 	tree_root->stripesize = stripesize;
2252 
2253 	sb->s_blocksize = sectorsize;
2254 	sb->s_blocksize_bits = blksize_bits(sectorsize);
2255 
2256 	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2257 		    sizeof(disk_super->magic))) {
2258 		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2259 		goto fail_sb_buffer;
2260 	}
2261 
2262 	if (sectorsize != PAGE_SIZE) {
2263 		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2264 		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2265 		goto fail_sb_buffer;
2266 	}
2267 
2268 	mutex_lock(&fs_info->chunk_mutex);
2269 	ret = btrfs_read_sys_array(tree_root);
2270 	mutex_unlock(&fs_info->chunk_mutex);
2271 	if (ret) {
2272 		printk(KERN_WARNING "btrfs: failed to read the system "
2273 		       "array on %s\n", sb->s_id);
2274 		goto fail_sb_buffer;
2275 	}
2276 
2277 	blocksize = btrfs_level_size(tree_root,
2278 				     btrfs_super_chunk_root_level(disk_super));
2279 	generation = btrfs_super_chunk_root_generation(disk_super);
2280 
2281 	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2282 		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2283 
2284 	chunk_root->node = read_tree_block(chunk_root,
2285 					   btrfs_super_chunk_root(disk_super),
2286 					   blocksize, generation);
2287 	BUG_ON(!chunk_root->node); /* -ENOMEM */
2288 	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2289 		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2290 		       sb->s_id);
2291 		goto fail_tree_roots;
2292 	}
2293 	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2294 	chunk_root->commit_root = btrfs_root_node(chunk_root);
2295 
2296 	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2297 	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2298 	   BTRFS_UUID_SIZE);
2299 
2300 	ret = btrfs_read_chunk_tree(chunk_root);
2301 	if (ret) {
2302 		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2303 		       sb->s_id);
2304 		goto fail_tree_roots;
2305 	}
2306 
2307 	btrfs_close_extra_devices(fs_devices);
2308 
2309 	if (!fs_devices->latest_bdev) {
2310 		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2311 		       sb->s_id);
2312 		goto fail_tree_roots;
2313 	}
2314 
2315 retry_root_backup:
2316 	blocksize = btrfs_level_size(tree_root,
2317 				     btrfs_super_root_level(disk_super));
2318 	generation = btrfs_super_generation(disk_super);
2319 
2320 	tree_root->node = read_tree_block(tree_root,
2321 					  btrfs_super_root(disk_super),
2322 					  blocksize, generation);
2323 	if (!tree_root->node ||
2324 	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2325 		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2326 		       sb->s_id);
2327 
2328 		goto recovery_tree_root;
2329 	}
2330 
2331 	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2332 	tree_root->commit_root = btrfs_root_node(tree_root);
2333 
2334 	ret = find_and_setup_root(tree_root, fs_info,
2335 				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2336 	if (ret)
2337 		goto recovery_tree_root;
2338 	extent_root->track_dirty = 1;
2339 
2340 	ret = find_and_setup_root(tree_root, fs_info,
2341 				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2342 	if (ret)
2343 		goto recovery_tree_root;
2344 	dev_root->track_dirty = 1;
2345 
2346 	ret = find_and_setup_root(tree_root, fs_info,
2347 				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2348 	if (ret)
2349 		goto recovery_tree_root;
2350 
2351 	csum_root->track_dirty = 1;
2352 
2353 	fs_info->generation = generation;
2354 	fs_info->last_trans_committed = generation;
2355 
2356 	ret = btrfs_init_space_info(fs_info);
2357 	if (ret) {
2358 		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2359 		goto fail_block_groups;
2360 	}
2361 
2362 	ret = btrfs_read_block_groups(extent_root);
2363 	if (ret) {
2364 		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2365 		goto fail_block_groups;
2366 	}
2367 
2368 	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2369 					       "btrfs-cleaner");
2370 	if (IS_ERR(fs_info->cleaner_kthread))
2371 		goto fail_block_groups;
2372 
2373 	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2374 						   tree_root,
2375 						   "btrfs-transaction");
2376 	if (IS_ERR(fs_info->transaction_kthread))
2377 		goto fail_cleaner;
2378 
2379 	if (!btrfs_test_opt(tree_root, SSD) &&
2380 	    !btrfs_test_opt(tree_root, NOSSD) &&
2381 	    !fs_info->fs_devices->rotating) {
2382 		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2383 		       "mode\n");
2384 		btrfs_set_opt(fs_info->mount_opt, SSD);
2385 	}
2386 
2387 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2388 	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2389 		ret = btrfsic_mount(tree_root, fs_devices,
2390 				    btrfs_test_opt(tree_root,
2391 					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2392 				    1 : 0,
2393 				    fs_info->check_integrity_print_mask);
2394 		if (ret)
2395 			printk(KERN_WARNING "btrfs: failed to initialize"
2396 			       " integrity check module %s\n", sb->s_id);
2397 	}
2398 #endif
2399 
2400 	/* do not make disk changes in broken FS */
2401 	if (btrfs_super_log_root(disk_super) != 0 &&
2402 	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2403 		u64 bytenr = btrfs_super_log_root(disk_super);
2404 
2405 		if (fs_devices->rw_devices == 0) {
2406 			printk(KERN_WARNING "Btrfs log replay required "
2407 			       "on RO media\n");
2408 			err = -EIO;
2409 			goto fail_trans_kthread;
2410 		}
2411 		blocksize =
2412 		     btrfs_level_size(tree_root,
2413 				      btrfs_super_log_root_level(disk_super));
2414 
2415 		log_tree_root = btrfs_alloc_root(fs_info);
2416 		if (!log_tree_root) {
2417 			err = -ENOMEM;
2418 			goto fail_trans_kthread;
2419 		}
2420 
2421 		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2422 			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2423 
2424 		log_tree_root->node = read_tree_block(tree_root, bytenr,
2425 						      blocksize,
2426 						      generation + 1);
2427 		/* returns with log_tree_root freed on success */
2428 		ret = btrfs_recover_log_trees(log_tree_root);
2429 		if (ret) {
2430 			btrfs_error(tree_root->fs_info, ret,
2431 				    "Failed to recover log tree");
2432 			free_extent_buffer(log_tree_root->node);
2433 			kfree(log_tree_root);
2434 			goto fail_trans_kthread;
2435 		}
2436 
2437 		if (sb->s_flags & MS_RDONLY) {
2438 			ret = btrfs_commit_super(tree_root);
2439 			if (ret)
2440 				goto fail_trans_kthread;
2441 		}
2442 	}
2443 
2444 	ret = btrfs_find_orphan_roots(tree_root);
2445 	if (ret)
2446 		goto fail_trans_kthread;
2447 
2448 	if (!(sb->s_flags & MS_RDONLY)) {
2449 		ret = btrfs_cleanup_fs_roots(fs_info);
2450 		if (ret) {
2451 			}
2452 
2453 		ret = btrfs_recover_relocation(tree_root);
2454 		if (ret < 0) {
2455 			printk(KERN_WARNING
2456 			       "btrfs: failed to recover relocation\n");
2457 			err = -EINVAL;
2458 			goto fail_trans_kthread;
2459 		}
2460 	}
2461 
2462 	location.objectid = BTRFS_FS_TREE_OBJECTID;
2463 	location.type = BTRFS_ROOT_ITEM_KEY;
2464 	location.offset = (u64)-1;
2465 
2466 	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2467 	if (!fs_info->fs_root)
2468 		goto fail_trans_kthread;
2469 	if (IS_ERR(fs_info->fs_root)) {
2470 		err = PTR_ERR(fs_info->fs_root);
2471 		goto fail_trans_kthread;
2472 	}
2473 
2474 	if (!(sb->s_flags & MS_RDONLY)) {
2475 		down_read(&fs_info->cleanup_work_sem);
2476 		err = btrfs_orphan_cleanup(fs_info->fs_root);
2477 		if (!err)
2478 			err = btrfs_orphan_cleanup(fs_info->tree_root);
2479 		up_read(&fs_info->cleanup_work_sem);
2480 
2481 		if (!err)
2482 			err = btrfs_recover_balance(fs_info->tree_root);
2483 
2484 		if (err) {
2485 			close_ctree(tree_root);
2486 			return err;
2487 		}
2488 	}
2489 
2490 	return 0;
2491 
2492 fail_trans_kthread:
2493 	kthread_stop(fs_info->transaction_kthread);
2494 fail_cleaner:
2495 	kthread_stop(fs_info->cleaner_kthread);
2496 
2497 	/*
2498 	 * make sure we're done with the btree inode before we stop our
2499 	 * kthreads
2500 	 */
2501 	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2502 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2503 
2504 fail_block_groups:
2505 	btrfs_free_block_groups(fs_info);
2506 
2507 fail_tree_roots:
2508 	free_root_pointers(fs_info, 1);
2509 
2510 fail_sb_buffer:
2511 	btrfs_stop_workers(&fs_info->generic_worker);
2512 	btrfs_stop_workers(&fs_info->readahead_workers);
2513 	btrfs_stop_workers(&fs_info->fixup_workers);
2514 	btrfs_stop_workers(&fs_info->delalloc_workers);
2515 	btrfs_stop_workers(&fs_info->workers);
2516 	btrfs_stop_workers(&fs_info->endio_workers);
2517 	btrfs_stop_workers(&fs_info->endio_meta_workers);
2518 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2519 	btrfs_stop_workers(&fs_info->endio_write_workers);
2520 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2521 	btrfs_stop_workers(&fs_info->submit_workers);
2522 	btrfs_stop_workers(&fs_info->delayed_workers);
2523 	btrfs_stop_workers(&fs_info->caching_workers);
2524 fail_alloc:
2525 fail_iput:
2526 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2527 
2528 	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2529 	iput(fs_info->btree_inode);
2530 fail_bdi:
2531 	bdi_destroy(&fs_info->bdi);
2532 fail_srcu:
2533 	cleanup_srcu_struct(&fs_info->subvol_srcu);
2534 fail:
2535 	btrfs_close_devices(fs_info->fs_devices);
2536 	return err;
2537 
2538 recovery_tree_root:
2539 	if (!btrfs_test_opt(tree_root, RECOVERY))
2540 		goto fail_tree_roots;
2541 
2542 	free_root_pointers(fs_info, 0);
2543 
2544 	/* don't use the log in recovery mode, it won't be valid */
2545 	btrfs_set_super_log_root(disk_super, 0);
2546 
2547 	/* we can't trust the free space cache either */
2548 	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2549 
2550 	ret = next_root_backup(fs_info, fs_info->super_copy,
2551 			       &num_backups_tried, &backup_index);
2552 	if (ret == -1)
2553 		goto fail_block_groups;
2554 	goto retry_root_backup;
2555 }
2556 
btrfs_end_buffer_write_sync(struct buffer_head * bh,int uptodate)2557 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2558 {
2559 	char b[BDEVNAME_SIZE];
2560 
2561 	if (uptodate) {
2562 		set_buffer_uptodate(bh);
2563 	} else {
2564 		printk_ratelimited(KERN_WARNING "lost page write due to "
2565 					"I/O error on %s\n",
2566 				       bdevname(bh->b_bdev, b));
2567 		/* note, we dont' set_buffer_write_io_error because we have
2568 		 * our own ways of dealing with the IO errors
2569 		 */
2570 		clear_buffer_uptodate(bh);
2571 	}
2572 	unlock_buffer(bh);
2573 	put_bh(bh);
2574 }
2575 
btrfs_read_dev_super(struct block_device * bdev)2576 struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2577 {
2578 	struct buffer_head *bh;
2579 	struct buffer_head *latest = NULL;
2580 	struct btrfs_super_block *super;
2581 	int i;
2582 	u64 transid = 0;
2583 	u64 bytenr;
2584 
2585 	/* we would like to check all the supers, but that would make
2586 	 * a btrfs mount succeed after a mkfs from a different FS.
2587 	 * So, we need to add a special mount option to scan for
2588 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2589 	 */
2590 	for (i = 0; i < 1; i++) {
2591 		bytenr = btrfs_sb_offset(i);
2592 		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2593 			break;
2594 		bh = __bread(bdev, bytenr / 4096, 4096);
2595 		if (!bh)
2596 			continue;
2597 
2598 		super = (struct btrfs_super_block *)bh->b_data;
2599 		if (btrfs_super_bytenr(super) != bytenr ||
2600 		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2601 			    sizeof(super->magic))) {
2602 			brelse(bh);
2603 			continue;
2604 		}
2605 
2606 		if (!latest || btrfs_super_generation(super) > transid) {
2607 			brelse(latest);
2608 			latest = bh;
2609 			transid = btrfs_super_generation(super);
2610 		} else {
2611 			brelse(bh);
2612 		}
2613 	}
2614 	return latest;
2615 }
2616 
2617 /*
2618  * this should be called twice, once with wait == 0 and
2619  * once with wait == 1.  When wait == 0 is done, all the buffer heads
2620  * we write are pinned.
2621  *
2622  * They are released when wait == 1 is done.
2623  * max_mirrors must be the same for both runs, and it indicates how
2624  * many supers on this one device should be written.
2625  *
2626  * max_mirrors == 0 means to write them all.
2627  */
write_dev_supers(struct btrfs_device * device,struct btrfs_super_block * sb,int do_barriers,int wait,int max_mirrors)2628 static int write_dev_supers(struct btrfs_device *device,
2629 			    struct btrfs_super_block *sb,
2630 			    int do_barriers, int wait, int max_mirrors)
2631 {
2632 	struct buffer_head *bh;
2633 	int i;
2634 	int ret;
2635 	int errors = 0;
2636 	u32 crc;
2637 	u64 bytenr;
2638 
2639 	if (max_mirrors == 0)
2640 		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2641 
2642 	for (i = 0; i < max_mirrors; i++) {
2643 		bytenr = btrfs_sb_offset(i);
2644 		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2645 			break;
2646 
2647 		if (wait) {
2648 			bh = __find_get_block(device->bdev, bytenr / 4096,
2649 					      BTRFS_SUPER_INFO_SIZE);
2650 			BUG_ON(!bh);
2651 			wait_on_buffer(bh);
2652 			if (!buffer_uptodate(bh))
2653 				errors++;
2654 
2655 			/* drop our reference */
2656 			brelse(bh);
2657 
2658 			/* drop the reference from the wait == 0 run */
2659 			brelse(bh);
2660 			continue;
2661 		} else {
2662 			btrfs_set_super_bytenr(sb, bytenr);
2663 
2664 			crc = ~(u32)0;
2665 			crc = btrfs_csum_data(NULL, (char *)sb +
2666 					      BTRFS_CSUM_SIZE, crc,
2667 					      BTRFS_SUPER_INFO_SIZE -
2668 					      BTRFS_CSUM_SIZE);
2669 			btrfs_csum_final(crc, sb->csum);
2670 
2671 			/*
2672 			 * one reference for us, and we leave it for the
2673 			 * caller
2674 			 */
2675 			bh = __getblk(device->bdev, bytenr / 4096,
2676 				      BTRFS_SUPER_INFO_SIZE);
2677 			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2678 
2679 			/* one reference for submit_bh */
2680 			get_bh(bh);
2681 
2682 			set_buffer_uptodate(bh);
2683 			lock_buffer(bh);
2684 			bh->b_end_io = btrfs_end_buffer_write_sync;
2685 		}
2686 
2687 		/*
2688 		 * we fua the first super.  The others we allow
2689 		 * to go down lazy.
2690 		 */
2691 		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2692 		if (ret)
2693 			errors++;
2694 	}
2695 	return errors < i ? 0 : -1;
2696 }
2697 
2698 /*
2699  * endio for the write_dev_flush, this will wake anyone waiting
2700  * for the barrier when it is done
2701  */
btrfs_end_empty_barrier(struct bio * bio,int err)2702 static void btrfs_end_empty_barrier(struct bio *bio, int err)
2703 {
2704 	if (err) {
2705 		if (err == -EOPNOTSUPP)
2706 			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2707 		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2708 	}
2709 	if (bio->bi_private)
2710 		complete(bio->bi_private);
2711 	bio_put(bio);
2712 }
2713 
2714 /*
2715  * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2716  * sent down.  With wait == 1, it waits for the previous flush.
2717  *
2718  * any device where the flush fails with eopnotsupp are flagged as not-barrier
2719  * capable
2720  */
write_dev_flush(struct btrfs_device * device,int wait)2721 static int write_dev_flush(struct btrfs_device *device, int wait)
2722 {
2723 	struct bio *bio;
2724 	int ret = 0;
2725 
2726 	if (device->nobarriers)
2727 		return 0;
2728 
2729 	if (wait) {
2730 		bio = device->flush_bio;
2731 		if (!bio)
2732 			return 0;
2733 
2734 		wait_for_completion(&device->flush_wait);
2735 
2736 		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2737 			printk("btrfs: disabling barriers on dev %s\n",
2738 			       device->name);
2739 			device->nobarriers = 1;
2740 		}
2741 		if (!bio_flagged(bio, BIO_UPTODATE)) {
2742 			ret = -EIO;
2743 		}
2744 
2745 		/* drop the reference from the wait == 0 run */
2746 		bio_put(bio);
2747 		device->flush_bio = NULL;
2748 
2749 		return ret;
2750 	}
2751 
2752 	/*
2753 	 * one reference for us, and we leave it for the
2754 	 * caller
2755 	 */
2756 	device->flush_bio = NULL;;
2757 	bio = bio_alloc(GFP_NOFS, 0);
2758 	if (!bio)
2759 		return -ENOMEM;
2760 
2761 	bio->bi_end_io = btrfs_end_empty_barrier;
2762 	bio->bi_bdev = device->bdev;
2763 	init_completion(&device->flush_wait);
2764 	bio->bi_private = &device->flush_wait;
2765 	device->flush_bio = bio;
2766 
2767 	bio_get(bio);
2768 	btrfsic_submit_bio(WRITE_FLUSH, bio);
2769 
2770 	return 0;
2771 }
2772 
2773 /*
2774  * send an empty flush down to each device in parallel,
2775  * then wait for them
2776  */
barrier_all_devices(struct btrfs_fs_info * info)2777 static int barrier_all_devices(struct btrfs_fs_info *info)
2778 {
2779 	struct list_head *head;
2780 	struct btrfs_device *dev;
2781 	int errors = 0;
2782 	int ret;
2783 
2784 	/* send down all the barriers */
2785 	head = &info->fs_devices->devices;
2786 	list_for_each_entry_rcu(dev, head, dev_list) {
2787 		if (!dev->bdev) {
2788 			errors++;
2789 			continue;
2790 		}
2791 		if (!dev->in_fs_metadata || !dev->writeable)
2792 			continue;
2793 
2794 		ret = write_dev_flush(dev, 0);
2795 		if (ret)
2796 			errors++;
2797 	}
2798 
2799 	/* wait for all the barriers */
2800 	list_for_each_entry_rcu(dev, head, dev_list) {
2801 		if (!dev->bdev) {
2802 			errors++;
2803 			continue;
2804 		}
2805 		if (!dev->in_fs_metadata || !dev->writeable)
2806 			continue;
2807 
2808 		ret = write_dev_flush(dev, 1);
2809 		if (ret)
2810 			errors++;
2811 	}
2812 	if (errors)
2813 		return -EIO;
2814 	return 0;
2815 }
2816 
write_all_supers(struct btrfs_root * root,int max_mirrors)2817 int write_all_supers(struct btrfs_root *root, int max_mirrors)
2818 {
2819 	struct list_head *head;
2820 	struct btrfs_device *dev;
2821 	struct btrfs_super_block *sb;
2822 	struct btrfs_dev_item *dev_item;
2823 	int ret;
2824 	int do_barriers;
2825 	int max_errors;
2826 	int total_errors = 0;
2827 	u64 flags;
2828 
2829 	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2830 	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2831 	backup_super_roots(root->fs_info);
2832 
2833 	sb = root->fs_info->super_for_commit;
2834 	dev_item = &sb->dev_item;
2835 
2836 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2837 	head = &root->fs_info->fs_devices->devices;
2838 
2839 	if (do_barriers)
2840 		barrier_all_devices(root->fs_info);
2841 
2842 	list_for_each_entry_rcu(dev, head, dev_list) {
2843 		if (!dev->bdev) {
2844 			total_errors++;
2845 			continue;
2846 		}
2847 		if (!dev->in_fs_metadata || !dev->writeable)
2848 			continue;
2849 
2850 		btrfs_set_stack_device_generation(dev_item, 0);
2851 		btrfs_set_stack_device_type(dev_item, dev->type);
2852 		btrfs_set_stack_device_id(dev_item, dev->devid);
2853 		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2854 		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2855 		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2856 		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2857 		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2858 		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2859 		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2860 
2861 		flags = btrfs_super_flags(sb);
2862 		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2863 
2864 		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2865 		if (ret)
2866 			total_errors++;
2867 	}
2868 	if (total_errors > max_errors) {
2869 		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2870 		       total_errors);
2871 
2872 		/* This shouldn't happen. FUA is masked off if unsupported */
2873 		BUG();
2874 	}
2875 
2876 	total_errors = 0;
2877 	list_for_each_entry_rcu(dev, head, dev_list) {
2878 		if (!dev->bdev)
2879 			continue;
2880 		if (!dev->in_fs_metadata || !dev->writeable)
2881 			continue;
2882 
2883 		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2884 		if (ret)
2885 			total_errors++;
2886 	}
2887 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2888 	if (total_errors > max_errors) {
2889 		btrfs_error(root->fs_info, -EIO,
2890 			    "%d errors while writing supers", total_errors);
2891 		return -EIO;
2892 	}
2893 	return 0;
2894 }
2895 
write_ctree_super(struct btrfs_trans_handle * trans,struct btrfs_root * root,int max_mirrors)2896 int write_ctree_super(struct btrfs_trans_handle *trans,
2897 		      struct btrfs_root *root, int max_mirrors)
2898 {
2899 	int ret;
2900 
2901 	ret = write_all_supers(root, max_mirrors);
2902 	return ret;
2903 }
2904 
2905 /* Kill all outstanding I/O */
btrfs_abort_devices(struct btrfs_root * root)2906 void btrfs_abort_devices(struct btrfs_root *root)
2907 {
2908 	struct list_head *head;
2909 	struct btrfs_device *dev;
2910 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2911 	head = &root->fs_info->fs_devices->devices;
2912 	list_for_each_entry_rcu(dev, head, dev_list) {
2913 		blk_abort_queue(dev->bdev->bd_disk->queue);
2914 	}
2915 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916 }
2917 
btrfs_free_fs_root(struct btrfs_fs_info * fs_info,struct btrfs_root * root)2918 void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2919 {
2920 	spin_lock(&fs_info->fs_roots_radix_lock);
2921 	radix_tree_delete(&fs_info->fs_roots_radix,
2922 			  (unsigned long)root->root_key.objectid);
2923 	spin_unlock(&fs_info->fs_roots_radix_lock);
2924 
2925 	if (btrfs_root_refs(&root->root_item) == 0)
2926 		synchronize_srcu(&fs_info->subvol_srcu);
2927 
2928 	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2929 	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2930 	free_fs_root(root);
2931 }
2932 
free_fs_root(struct btrfs_root * root)2933 static void free_fs_root(struct btrfs_root *root)
2934 {
2935 	iput(root->cache_inode);
2936 	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2937 	if (root->anon_dev)
2938 		free_anon_bdev(root->anon_dev);
2939 	free_extent_buffer(root->node);
2940 	free_extent_buffer(root->commit_root);
2941 	kfree(root->free_ino_ctl);
2942 	kfree(root->free_ino_pinned);
2943 	kfree(root->name);
2944 	kfree(root);
2945 }
2946 
del_fs_roots(struct btrfs_fs_info * fs_info)2947 static void del_fs_roots(struct btrfs_fs_info *fs_info)
2948 {
2949 	int ret;
2950 	struct btrfs_root *gang[8];
2951 	int i;
2952 
2953 	while (!list_empty(&fs_info->dead_roots)) {
2954 		gang[0] = list_entry(fs_info->dead_roots.next,
2955 				     struct btrfs_root, root_list);
2956 		list_del(&gang[0]->root_list);
2957 
2958 		if (gang[0]->in_radix) {
2959 			btrfs_free_fs_root(fs_info, gang[0]);
2960 		} else {
2961 			free_extent_buffer(gang[0]->node);
2962 			free_extent_buffer(gang[0]->commit_root);
2963 			kfree(gang[0]);
2964 		}
2965 	}
2966 
2967 	while (1) {
2968 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2969 					     (void **)gang, 0,
2970 					     ARRAY_SIZE(gang));
2971 		if (!ret)
2972 			break;
2973 		for (i = 0; i < ret; i++)
2974 			btrfs_free_fs_root(fs_info, gang[i]);
2975 	}
2976 }
2977 
btrfs_cleanup_fs_roots(struct btrfs_fs_info * fs_info)2978 int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2979 {
2980 	u64 root_objectid = 0;
2981 	struct btrfs_root *gang[8];
2982 	int i;
2983 	int ret;
2984 
2985 	while (1) {
2986 		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2987 					     (void **)gang, root_objectid,
2988 					     ARRAY_SIZE(gang));
2989 		if (!ret)
2990 			break;
2991 
2992 		root_objectid = gang[ret - 1]->root_key.objectid + 1;
2993 		for (i = 0; i < ret; i++) {
2994 			int err;
2995 
2996 			root_objectid = gang[i]->root_key.objectid;
2997 			err = btrfs_orphan_cleanup(gang[i]);
2998 			if (err)
2999 				return err;
3000 		}
3001 		root_objectid++;
3002 	}
3003 	return 0;
3004 }
3005 
btrfs_commit_super(struct btrfs_root * root)3006 int btrfs_commit_super(struct btrfs_root *root)
3007 {
3008 	struct btrfs_trans_handle *trans;
3009 	int ret;
3010 
3011 	mutex_lock(&root->fs_info->cleaner_mutex);
3012 	btrfs_run_delayed_iputs(root);
3013 	btrfs_clean_old_snapshots(root);
3014 	mutex_unlock(&root->fs_info->cleaner_mutex);
3015 
3016 	/* wait until ongoing cleanup work done */
3017 	down_write(&root->fs_info->cleanup_work_sem);
3018 	up_write(&root->fs_info->cleanup_work_sem);
3019 
3020 	trans = btrfs_join_transaction(root);
3021 	if (IS_ERR(trans))
3022 		return PTR_ERR(trans);
3023 	ret = btrfs_commit_transaction(trans, root);
3024 	if (ret)
3025 		return ret;
3026 	/* run commit again to drop the original snapshot */
3027 	trans = btrfs_join_transaction(root);
3028 	if (IS_ERR(trans))
3029 		return PTR_ERR(trans);
3030 	ret = btrfs_commit_transaction(trans, root);
3031 	if (ret)
3032 		return ret;
3033 	ret = btrfs_write_and_wait_transaction(NULL, root);
3034 	if (ret) {
3035 		btrfs_error(root->fs_info, ret,
3036 			    "Failed to sync btree inode to disk.");
3037 		return ret;
3038 	}
3039 
3040 	ret = write_ctree_super(NULL, root, 0);
3041 	return ret;
3042 }
3043 
close_ctree(struct btrfs_root * root)3044 int close_ctree(struct btrfs_root *root)
3045 {
3046 	struct btrfs_fs_info *fs_info = root->fs_info;
3047 	int ret;
3048 
3049 	fs_info->closing = 1;
3050 	smp_mb();
3051 
3052 	/* pause restriper - we want to resume on mount */
3053 	btrfs_pause_balance(root->fs_info);
3054 
3055 	btrfs_scrub_cancel(root);
3056 
3057 	/* wait for any defraggers to finish */
3058 	wait_event(fs_info->transaction_wait,
3059 		   (atomic_read(&fs_info->defrag_running) == 0));
3060 
3061 	/* clear out the rbtree of defraggable inodes */
3062 	btrfs_run_defrag_inodes(fs_info);
3063 
3064 	/*
3065 	 * Here come 2 situations when btrfs is broken to flip readonly:
3066 	 *
3067 	 * 1. when btrfs flips readonly somewhere else before
3068 	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3069 	 * and btrfs will skip to write sb directly to keep
3070 	 * ERROR state on disk.
3071 	 *
3072 	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3073 	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3074 	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3075 	 * btrfs will cleanup all FS resources first and write sb then.
3076 	 */
3077 	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3078 		ret = btrfs_commit_super(root);
3079 		if (ret)
3080 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3081 	}
3082 
3083 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3084 		ret = btrfs_error_commit_super(root);
3085 		if (ret)
3086 			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3087 	}
3088 
3089 	btrfs_put_block_group_cache(fs_info);
3090 
3091 	kthread_stop(fs_info->transaction_kthread);
3092 	kthread_stop(fs_info->cleaner_kthread);
3093 
3094 	fs_info->closing = 2;
3095 	smp_mb();
3096 
3097 	if (fs_info->delalloc_bytes) {
3098 		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3099 		       (unsigned long long)fs_info->delalloc_bytes);
3100 	}
3101 	if (fs_info->total_ref_cache_size) {
3102 		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3103 		       (unsigned long long)fs_info->total_ref_cache_size);
3104 	}
3105 
3106 	free_extent_buffer(fs_info->extent_root->node);
3107 	free_extent_buffer(fs_info->extent_root->commit_root);
3108 	free_extent_buffer(fs_info->tree_root->node);
3109 	free_extent_buffer(fs_info->tree_root->commit_root);
3110 	free_extent_buffer(fs_info->chunk_root->node);
3111 	free_extent_buffer(fs_info->chunk_root->commit_root);
3112 	free_extent_buffer(fs_info->dev_root->node);
3113 	free_extent_buffer(fs_info->dev_root->commit_root);
3114 	free_extent_buffer(fs_info->csum_root->node);
3115 	free_extent_buffer(fs_info->csum_root->commit_root);
3116 
3117 	btrfs_free_block_groups(fs_info);
3118 
3119 	del_fs_roots(fs_info);
3120 
3121 	iput(fs_info->btree_inode);
3122 
3123 	btrfs_stop_workers(&fs_info->generic_worker);
3124 	btrfs_stop_workers(&fs_info->fixup_workers);
3125 	btrfs_stop_workers(&fs_info->delalloc_workers);
3126 	btrfs_stop_workers(&fs_info->workers);
3127 	btrfs_stop_workers(&fs_info->endio_workers);
3128 	btrfs_stop_workers(&fs_info->endio_meta_workers);
3129 	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3130 	btrfs_stop_workers(&fs_info->endio_write_workers);
3131 	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3132 	btrfs_stop_workers(&fs_info->submit_workers);
3133 	btrfs_stop_workers(&fs_info->delayed_workers);
3134 	btrfs_stop_workers(&fs_info->caching_workers);
3135 	btrfs_stop_workers(&fs_info->readahead_workers);
3136 
3137 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3138 	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3139 		btrfsic_unmount(root, fs_info->fs_devices);
3140 #endif
3141 
3142 	btrfs_close_devices(fs_info->fs_devices);
3143 	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3144 
3145 	bdi_destroy(&fs_info->bdi);
3146 	cleanup_srcu_struct(&fs_info->subvol_srcu);
3147 
3148 	return 0;
3149 }
3150 
btrfs_buffer_uptodate(struct extent_buffer * buf,u64 parent_transid,int atomic)3151 int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3152 			  int atomic)
3153 {
3154 	int ret;
3155 	struct inode *btree_inode = buf->pages[0]->mapping->host;
3156 
3157 	ret = extent_buffer_uptodate(buf);
3158 	if (!ret)
3159 		return ret;
3160 
3161 	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3162 				    parent_transid, atomic);
3163 	if (ret == -EAGAIN)
3164 		return ret;
3165 	return !ret;
3166 }
3167 
btrfs_set_buffer_uptodate(struct extent_buffer * buf)3168 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3169 {
3170 	return set_extent_buffer_uptodate(buf);
3171 }
3172 
btrfs_mark_buffer_dirty(struct extent_buffer * buf)3173 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3174 {
3175 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3176 	u64 transid = btrfs_header_generation(buf);
3177 	int was_dirty;
3178 
3179 	btrfs_assert_tree_locked(buf);
3180 	if (transid != root->fs_info->generation) {
3181 		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3182 		       "found %llu running %llu\n",
3183 			(unsigned long long)buf->start,
3184 			(unsigned long long)transid,
3185 			(unsigned long long)root->fs_info->generation);
3186 		WARN_ON(1);
3187 	}
3188 	was_dirty = set_extent_buffer_dirty(buf);
3189 	if (!was_dirty) {
3190 		spin_lock(&root->fs_info->delalloc_lock);
3191 		root->fs_info->dirty_metadata_bytes += buf->len;
3192 		spin_unlock(&root->fs_info->delalloc_lock);
3193 	}
3194 }
3195 
btrfs_btree_balance_dirty(struct btrfs_root * root,unsigned long nr)3196 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3197 {
3198 	/*
3199 	 * looks as though older kernels can get into trouble with
3200 	 * this code, they end up stuck in balance_dirty_pages forever
3201 	 */
3202 	u64 num_dirty;
3203 	unsigned long thresh = 32 * 1024 * 1024;
3204 
3205 	if (current->flags & PF_MEMALLOC)
3206 		return;
3207 
3208 	btrfs_balance_delayed_items(root);
3209 
3210 	num_dirty = root->fs_info->dirty_metadata_bytes;
3211 
3212 	if (num_dirty > thresh) {
3213 		balance_dirty_pages_ratelimited_nr(
3214 				   root->fs_info->btree_inode->i_mapping, 1);
3215 	}
3216 	return;
3217 }
3218 
__btrfs_btree_balance_dirty(struct btrfs_root * root,unsigned long nr)3219 void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3220 {
3221 	/*
3222 	 * looks as though older kernels can get into trouble with
3223 	 * this code, they end up stuck in balance_dirty_pages forever
3224 	 */
3225 	u64 num_dirty;
3226 	unsigned long thresh = 32 * 1024 * 1024;
3227 
3228 	if (current->flags & PF_MEMALLOC)
3229 		return;
3230 
3231 	num_dirty = root->fs_info->dirty_metadata_bytes;
3232 
3233 	if (num_dirty > thresh) {
3234 		balance_dirty_pages_ratelimited_nr(
3235 				   root->fs_info->btree_inode->i_mapping, 1);
3236 	}
3237 	return;
3238 }
3239 
btrfs_read_buffer(struct extent_buffer * buf,u64 parent_transid)3240 int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3241 {
3242 	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3243 	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3244 }
3245 
btree_lock_page_hook(struct page * page,void * data,void (* flush_fn)(void *))3246 static int btree_lock_page_hook(struct page *page, void *data,
3247 				void (*flush_fn)(void *))
3248 {
3249 	struct inode *inode = page->mapping->host;
3250 	struct btrfs_root *root = BTRFS_I(inode)->root;
3251 	struct extent_buffer *eb;
3252 
3253 	/*
3254 	 * We culled this eb but the page is still hanging out on the mapping,
3255 	 * carry on.
3256 	 */
3257 	if (!PagePrivate(page))
3258 		goto out;
3259 
3260 	eb = (struct extent_buffer *)page->private;
3261 	if (!eb) {
3262 		WARN_ON(1);
3263 		goto out;
3264 	}
3265 	if (page != eb->pages[0])
3266 		goto out;
3267 
3268 	if (!btrfs_try_tree_write_lock(eb)) {
3269 		flush_fn(data);
3270 		btrfs_tree_lock(eb);
3271 	}
3272 	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3273 
3274 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3275 		spin_lock(&root->fs_info->delalloc_lock);
3276 		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3277 			root->fs_info->dirty_metadata_bytes -= eb->len;
3278 		else
3279 			WARN_ON(1);
3280 		spin_unlock(&root->fs_info->delalloc_lock);
3281 	}
3282 
3283 	btrfs_tree_unlock(eb);
3284 out:
3285 	if (!trylock_page(page)) {
3286 		flush_fn(data);
3287 		lock_page(page);
3288 	}
3289 	return 0;
3290 }
3291 
btrfs_check_super_valid(struct btrfs_fs_info * fs_info,int read_only)3292 static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3293 			      int read_only)
3294 {
3295 	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3296 		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3297 		return -EINVAL;
3298 	}
3299 
3300 	if (read_only)
3301 		return 0;
3302 
3303 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3304 		printk(KERN_WARNING "warning: mount fs with errors, "
3305 		       "running btrfsck is recommended\n");
3306 	}
3307 
3308 	return 0;
3309 }
3310 
btrfs_error_commit_super(struct btrfs_root * root)3311 int btrfs_error_commit_super(struct btrfs_root *root)
3312 {
3313 	int ret;
3314 
3315 	mutex_lock(&root->fs_info->cleaner_mutex);
3316 	btrfs_run_delayed_iputs(root);
3317 	mutex_unlock(&root->fs_info->cleaner_mutex);
3318 
3319 	down_write(&root->fs_info->cleanup_work_sem);
3320 	up_write(&root->fs_info->cleanup_work_sem);
3321 
3322 	/* cleanup FS via transaction */
3323 	btrfs_cleanup_transaction(root);
3324 
3325 	ret = write_ctree_super(NULL, root, 0);
3326 
3327 	return ret;
3328 }
3329 
btrfs_destroy_ordered_operations(struct btrfs_root * root)3330 static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3331 {
3332 	struct btrfs_inode *btrfs_inode;
3333 	struct list_head splice;
3334 
3335 	INIT_LIST_HEAD(&splice);
3336 
3337 	mutex_lock(&root->fs_info->ordered_operations_mutex);
3338 	spin_lock(&root->fs_info->ordered_extent_lock);
3339 
3340 	list_splice_init(&root->fs_info->ordered_operations, &splice);
3341 	while (!list_empty(&splice)) {
3342 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3343 					 ordered_operations);
3344 
3345 		list_del_init(&btrfs_inode->ordered_operations);
3346 
3347 		btrfs_invalidate_inodes(btrfs_inode->root);
3348 	}
3349 
3350 	spin_unlock(&root->fs_info->ordered_extent_lock);
3351 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3352 }
3353 
btrfs_destroy_ordered_extents(struct btrfs_root * root)3354 static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3355 {
3356 	struct list_head splice;
3357 	struct btrfs_ordered_extent *ordered;
3358 	struct inode *inode;
3359 
3360 	INIT_LIST_HEAD(&splice);
3361 
3362 	spin_lock(&root->fs_info->ordered_extent_lock);
3363 
3364 	list_splice_init(&root->fs_info->ordered_extents, &splice);
3365 	while (!list_empty(&splice)) {
3366 		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3367 				     root_extent_list);
3368 
3369 		list_del_init(&ordered->root_extent_list);
3370 		atomic_inc(&ordered->refs);
3371 
3372 		/* the inode may be getting freed (in sys_unlink path). */
3373 		inode = igrab(ordered->inode);
3374 
3375 		spin_unlock(&root->fs_info->ordered_extent_lock);
3376 		if (inode)
3377 			iput(inode);
3378 
3379 		atomic_set(&ordered->refs, 1);
3380 		btrfs_put_ordered_extent(ordered);
3381 
3382 		spin_lock(&root->fs_info->ordered_extent_lock);
3383 	}
3384 
3385 	spin_unlock(&root->fs_info->ordered_extent_lock);
3386 }
3387 
btrfs_destroy_delayed_refs(struct btrfs_transaction * trans,struct btrfs_root * root)3388 int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3389 			       struct btrfs_root *root)
3390 {
3391 	struct rb_node *node;
3392 	struct btrfs_delayed_ref_root *delayed_refs;
3393 	struct btrfs_delayed_ref_node *ref;
3394 	int ret = 0;
3395 
3396 	delayed_refs = &trans->delayed_refs;
3397 
3398 again:
3399 	spin_lock(&delayed_refs->lock);
3400 	if (delayed_refs->num_entries == 0) {
3401 		spin_unlock(&delayed_refs->lock);
3402 		printk(KERN_INFO "delayed_refs has NO entry\n");
3403 		return ret;
3404 	}
3405 
3406 	node = rb_first(&delayed_refs->root);
3407 	while (node) {
3408 		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3409 		node = rb_next(node);
3410 
3411 		ref->in_tree = 0;
3412 		rb_erase(&ref->rb_node, &delayed_refs->root);
3413 		delayed_refs->num_entries--;
3414 
3415 		atomic_set(&ref->refs, 1);
3416 		if (btrfs_delayed_ref_is_head(ref)) {
3417 			struct btrfs_delayed_ref_head *head;
3418 
3419 			head = btrfs_delayed_node_to_head(ref);
3420 			spin_unlock(&delayed_refs->lock);
3421 			mutex_lock(&head->mutex);
3422 			kfree(head->extent_op);
3423 			delayed_refs->num_heads--;
3424 			if (list_empty(&head->cluster))
3425 				delayed_refs->num_heads_ready--;
3426 			list_del_init(&head->cluster);
3427 			mutex_unlock(&head->mutex);
3428 			btrfs_put_delayed_ref(ref);
3429 			goto again;
3430 		}
3431 		spin_unlock(&delayed_refs->lock);
3432 		btrfs_put_delayed_ref(ref);
3433 
3434 		cond_resched();
3435 		spin_lock(&delayed_refs->lock);
3436 	}
3437 
3438 	spin_unlock(&delayed_refs->lock);
3439 
3440 	return ret;
3441 }
3442 
btrfs_destroy_pending_snapshots(struct btrfs_transaction * t)3443 static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3444 {
3445 	struct btrfs_pending_snapshot *snapshot;
3446 	struct list_head splice;
3447 
3448 	INIT_LIST_HEAD(&splice);
3449 
3450 	list_splice_init(&t->pending_snapshots, &splice);
3451 
3452 	while (!list_empty(&splice)) {
3453 		snapshot = list_entry(splice.next,
3454 				      struct btrfs_pending_snapshot,
3455 				      list);
3456 
3457 		list_del_init(&snapshot->list);
3458 
3459 		kfree(snapshot);
3460 	}
3461 }
3462 
btrfs_destroy_delalloc_inodes(struct btrfs_root * root)3463 static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3464 {
3465 	struct btrfs_inode *btrfs_inode;
3466 	struct list_head splice;
3467 
3468 	INIT_LIST_HEAD(&splice);
3469 
3470 	spin_lock(&root->fs_info->delalloc_lock);
3471 	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3472 
3473 	while (!list_empty(&splice)) {
3474 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3475 				    delalloc_inodes);
3476 
3477 		list_del_init(&btrfs_inode->delalloc_inodes);
3478 
3479 		btrfs_invalidate_inodes(btrfs_inode->root);
3480 	}
3481 
3482 	spin_unlock(&root->fs_info->delalloc_lock);
3483 }
3484 
btrfs_destroy_marked_extents(struct btrfs_root * root,struct extent_io_tree * dirty_pages,int mark)3485 static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3486 					struct extent_io_tree *dirty_pages,
3487 					int mark)
3488 {
3489 	int ret;
3490 	struct page *page;
3491 	struct inode *btree_inode = root->fs_info->btree_inode;
3492 	struct extent_buffer *eb;
3493 	u64 start = 0;
3494 	u64 end;
3495 	u64 offset;
3496 	unsigned long index;
3497 
3498 	while (1) {
3499 		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3500 					    mark);
3501 		if (ret)
3502 			break;
3503 
3504 		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3505 		while (start <= end) {
3506 			index = start >> PAGE_CACHE_SHIFT;
3507 			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3508 			page = find_get_page(btree_inode->i_mapping, index);
3509 			if (!page)
3510 				continue;
3511 			offset = page_offset(page);
3512 
3513 			spin_lock(&dirty_pages->buffer_lock);
3514 			eb = radix_tree_lookup(
3515 			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3516 					       offset >> PAGE_CACHE_SHIFT);
3517 			spin_unlock(&dirty_pages->buffer_lock);
3518 			if (eb) {
3519 				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3520 							 &eb->bflags);
3521 				atomic_set(&eb->refs, 1);
3522 			}
3523 			if (PageWriteback(page))
3524 				end_page_writeback(page);
3525 
3526 			lock_page(page);
3527 			if (PageDirty(page)) {
3528 				clear_page_dirty_for_io(page);
3529 				spin_lock_irq(&page->mapping->tree_lock);
3530 				radix_tree_tag_clear(&page->mapping->page_tree,
3531 							page_index(page),
3532 							PAGECACHE_TAG_DIRTY);
3533 				spin_unlock_irq(&page->mapping->tree_lock);
3534 			}
3535 
3536 			page->mapping->a_ops->invalidatepage(page, 0);
3537 			unlock_page(page);
3538 		}
3539 	}
3540 
3541 	return ret;
3542 }
3543 
btrfs_destroy_pinned_extent(struct btrfs_root * root,struct extent_io_tree * pinned_extents)3544 static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3545 				       struct extent_io_tree *pinned_extents)
3546 {
3547 	struct extent_io_tree *unpin;
3548 	u64 start;
3549 	u64 end;
3550 	int ret;
3551 
3552 	unpin = pinned_extents;
3553 	while (1) {
3554 		ret = find_first_extent_bit(unpin, 0, &start, &end,
3555 					    EXTENT_DIRTY);
3556 		if (ret)
3557 			break;
3558 
3559 		/* opt_discard */
3560 		if (btrfs_test_opt(root, DISCARD))
3561 			ret = btrfs_error_discard_extent(root, start,
3562 							 end + 1 - start,
3563 							 NULL);
3564 
3565 		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3566 		btrfs_error_unpin_extent_range(root, start, end);
3567 		cond_resched();
3568 	}
3569 
3570 	return 0;
3571 }
3572 
btrfs_cleanup_one_transaction(struct btrfs_transaction * cur_trans,struct btrfs_root * root)3573 void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3574 				   struct btrfs_root *root)
3575 {
3576 	btrfs_destroy_delayed_refs(cur_trans, root);
3577 	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3578 				cur_trans->dirty_pages.dirty_bytes);
3579 
3580 	/* FIXME: cleanup wait for commit */
3581 	cur_trans->in_commit = 1;
3582 	cur_trans->blocked = 1;
3583 	if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3584 		wake_up(&root->fs_info->transaction_blocked_wait);
3585 
3586 	cur_trans->blocked = 0;
3587 	if (waitqueue_active(&root->fs_info->transaction_wait))
3588 		wake_up(&root->fs_info->transaction_wait);
3589 
3590 	cur_trans->commit_done = 1;
3591 	if (waitqueue_active(&cur_trans->commit_wait))
3592 		wake_up(&cur_trans->commit_wait);
3593 
3594 	btrfs_destroy_pending_snapshots(cur_trans);
3595 
3596 	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3597 				     EXTENT_DIRTY);
3598 
3599 	/*
3600 	memset(cur_trans, 0, sizeof(*cur_trans));
3601 	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3602 	*/
3603 }
3604 
btrfs_cleanup_transaction(struct btrfs_root * root)3605 int btrfs_cleanup_transaction(struct btrfs_root *root)
3606 {
3607 	struct btrfs_transaction *t;
3608 	LIST_HEAD(list);
3609 
3610 	mutex_lock(&root->fs_info->transaction_kthread_mutex);
3611 
3612 	spin_lock(&root->fs_info->trans_lock);
3613 	list_splice_init(&root->fs_info->trans_list, &list);
3614 	root->fs_info->trans_no_join = 1;
3615 	spin_unlock(&root->fs_info->trans_lock);
3616 
3617 	while (!list_empty(&list)) {
3618 		t = list_entry(list.next, struct btrfs_transaction, list);
3619 		if (!t)
3620 			break;
3621 
3622 		btrfs_destroy_ordered_operations(root);
3623 
3624 		btrfs_destroy_ordered_extents(root);
3625 
3626 		btrfs_destroy_delayed_refs(t, root);
3627 
3628 		btrfs_block_rsv_release(root,
3629 					&root->fs_info->trans_block_rsv,
3630 					t->dirty_pages.dirty_bytes);
3631 
3632 		/* FIXME: cleanup wait for commit */
3633 		t->in_commit = 1;
3634 		t->blocked = 1;
3635 		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3636 			wake_up(&root->fs_info->transaction_blocked_wait);
3637 
3638 		t->blocked = 0;
3639 		if (waitqueue_active(&root->fs_info->transaction_wait))
3640 			wake_up(&root->fs_info->transaction_wait);
3641 
3642 		t->commit_done = 1;
3643 		if (waitqueue_active(&t->commit_wait))
3644 			wake_up(&t->commit_wait);
3645 
3646 		btrfs_destroy_pending_snapshots(t);
3647 
3648 		btrfs_destroy_delalloc_inodes(root);
3649 
3650 		spin_lock(&root->fs_info->trans_lock);
3651 		root->fs_info->running_transaction = NULL;
3652 		spin_unlock(&root->fs_info->trans_lock);
3653 
3654 		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3655 					     EXTENT_DIRTY);
3656 
3657 		btrfs_destroy_pinned_extent(root,
3658 					    root->fs_info->pinned_extents);
3659 
3660 		atomic_set(&t->use_count, 0);
3661 		list_del_init(&t->list);
3662 		memset(t, 0, sizeof(*t));
3663 		kmem_cache_free(btrfs_transaction_cachep, t);
3664 	}
3665 
3666 	spin_lock(&root->fs_info->trans_lock);
3667 	root->fs_info->trans_no_join = 0;
3668 	spin_unlock(&root->fs_info->trans_lock);
3669 	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3670 
3671 	return 0;
3672 }
3673 
btree_writepage_io_failed_hook(struct bio * bio,struct page * page,u64 start,u64 end,struct extent_state * state)3674 static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
3675 					  u64 start, u64 end,
3676 					  struct extent_state *state)
3677 {
3678 	struct super_block *sb = page->mapping->host->i_sb;
3679 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3680 	btrfs_error(fs_info, -EIO,
3681 		    "Error occured while writing out btree at %llu", start);
3682 	return -EIO;
3683 }
3684 
3685 static struct extent_io_ops btree_extent_io_ops = {
3686 	.write_cache_pages_lock_hook = btree_lock_page_hook,
3687 	.readpage_end_io_hook = btree_readpage_end_io_hook,
3688 	.readpage_io_failed_hook = btree_io_failed_hook,
3689 	.submit_bio_hook = btree_submit_bio_hook,
3690 	/* note we're sharing with inode.c for the merge bio hook */
3691 	.merge_bio_hook = btrfs_merge_bio_hook,
3692 	.writepage_io_failed_hook = btree_writepage_io_failed_hook,
3693 };
3694