• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 STRATO.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/ratelimit.h>
21 #include "ctree.h"
22 #include "volumes.h"
23 #include "disk-io.h"
24 #include "ordered-data.h"
25 #include "transaction.h"
26 #include "backref.h"
27 #include "extent_io.h"
28 #include "check-integrity.h"
29 
30 /*
31  * This is only the first step towards a full-features scrub. It reads all
32  * extent and super block and verifies the checksums. In case a bad checksum
33  * is found or the extent cannot be read, good data will be written back if
34  * any can be found.
35  *
36  * Future enhancements:
37  *  - In case an unrepairable extent is encountered, track which files are
38  *    affected and report them
39  *  - track and record media errors, throw out bad devices
40  *  - add a mode to also read unallocated space
41  */
42 
43 struct scrub_block;
44 struct scrub_dev;
45 
46 #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */
47 #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */
48 #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */
49 
50 struct scrub_page {
51 	struct scrub_block	*sblock;
52 	struct page		*page;
53 	struct block_device	*bdev;
54 	u64			flags;  /* extent flags */
55 	u64			generation;
56 	u64			logical;
57 	u64			physical;
58 	struct {
59 		unsigned int	mirror_num:8;
60 		unsigned int	have_csum:1;
61 		unsigned int	io_error:1;
62 	};
63 	u8			csum[BTRFS_CSUM_SIZE];
64 };
65 
66 struct scrub_bio {
67 	int			index;
68 	struct scrub_dev	*sdev;
69 	struct bio		*bio;
70 	int			err;
71 	u64			logical;
72 	u64			physical;
73 	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO];
74 	int			page_count;
75 	int			next_free;
76 	struct btrfs_work	work;
77 };
78 
79 struct scrub_block {
80 	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK];
81 	int			page_count;
82 	atomic_t		outstanding_pages;
83 	atomic_t		ref_count; /* free mem on transition to zero */
84 	struct scrub_dev	*sdev;
85 	struct {
86 		unsigned int	header_error:1;
87 		unsigned int	checksum_error:1;
88 		unsigned int	no_io_error_seen:1;
89 	};
90 };
91 
92 struct scrub_dev {
93 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV];
94 	struct btrfs_device	*dev;
95 	int			first_free;
96 	int			curr;
97 	atomic_t		in_flight;
98 	atomic_t		fixup_cnt;
99 	spinlock_t		list_lock;
100 	wait_queue_head_t	list_wait;
101 	u16			csum_size;
102 	struct list_head	csum_list;
103 	atomic_t		cancel_req;
104 	int			readonly;
105 	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */
106 	u32			sectorsize;
107 	u32			nodesize;
108 	u32			leafsize;
109 	/*
110 	 * statistics
111 	 */
112 	struct btrfs_scrub_progress stat;
113 	spinlock_t		stat_lock;
114 };
115 
116 struct scrub_fixup_nodatasum {
117 	struct scrub_dev	*sdev;
118 	u64			logical;
119 	struct btrfs_root	*root;
120 	struct btrfs_work	work;
121 	int			mirror_num;
122 };
123 
124 struct scrub_warning {
125 	struct btrfs_path	*path;
126 	u64			extent_item_size;
127 	char			*scratch_buf;
128 	char			*msg_buf;
129 	const char		*errstr;
130 	sector_t		sector;
131 	u64			logical;
132 	struct btrfs_device	*dev;
133 	int			msg_bufsize;
134 	int			scratch_bufsize;
135 };
136 
137 
138 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
139 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
140 				     struct btrfs_mapping_tree *map_tree,
141 				     u64 length, u64 logical,
142 				     struct scrub_block *sblock);
143 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
144 			       struct scrub_block *sblock, int is_metadata,
145 			       int have_csum, u8 *csum, u64 generation,
146 			       u16 csum_size);
147 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
148 					 struct scrub_block *sblock,
149 					 int is_metadata, int have_csum,
150 					 const u8 *csum, u64 generation,
151 					 u16 csum_size);
152 static void scrub_complete_bio_end_io(struct bio *bio, int err);
153 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
154 					     struct scrub_block *sblock_good,
155 					     int force_write);
156 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
157 					    struct scrub_block *sblock_good,
158 					    int page_num, int force_write);
159 static int scrub_checksum_data(struct scrub_block *sblock);
160 static int scrub_checksum_tree_block(struct scrub_block *sblock);
161 static int scrub_checksum_super(struct scrub_block *sblock);
162 static void scrub_block_get(struct scrub_block *sblock);
163 static void scrub_block_put(struct scrub_block *sblock);
164 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
165 				 struct scrub_page *spage);
166 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
167 		       u64 physical, u64 flags, u64 gen, int mirror_num,
168 		       u8 *csum, int force);
169 static void scrub_bio_end_io(struct bio *bio, int err);
170 static void scrub_bio_end_io_worker(struct btrfs_work *work);
171 static void scrub_block_complete(struct scrub_block *sblock);
172 
173 
scrub_free_csums(struct scrub_dev * sdev)174 static void scrub_free_csums(struct scrub_dev *sdev)
175 {
176 	while (!list_empty(&sdev->csum_list)) {
177 		struct btrfs_ordered_sum *sum;
178 		sum = list_first_entry(&sdev->csum_list,
179 				       struct btrfs_ordered_sum, list);
180 		list_del(&sum->list);
181 		kfree(sum);
182 	}
183 }
184 
scrub_free_dev(struct scrub_dev * sdev)185 static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev)
186 {
187 	int i;
188 
189 	if (!sdev)
190 		return;
191 
192 	/* this can happen when scrub is cancelled */
193 	if (sdev->curr != -1) {
194 		struct scrub_bio *sbio = sdev->bios[sdev->curr];
195 
196 		for (i = 0; i < sbio->page_count; i++) {
197 			BUG_ON(!sbio->pagev[i]);
198 			BUG_ON(!sbio->pagev[i]->page);
199 			scrub_block_put(sbio->pagev[i]->sblock);
200 		}
201 		bio_put(sbio->bio);
202 	}
203 
204 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
205 		struct scrub_bio *sbio = sdev->bios[i];
206 
207 		if (!sbio)
208 			break;
209 		kfree(sbio);
210 	}
211 
212 	scrub_free_csums(sdev);
213 	kfree(sdev);
214 }
215 
216 static noinline_for_stack
scrub_setup_dev(struct btrfs_device * dev)217 struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev)
218 {
219 	struct scrub_dev *sdev;
220 	int		i;
221 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
222 	int pages_per_bio;
223 
224 	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO,
225 			      bio_get_nr_vecs(dev->bdev));
226 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS);
227 	if (!sdev)
228 		goto nomem;
229 	sdev->dev = dev;
230 	sdev->pages_per_bio = pages_per_bio;
231 	sdev->curr = -1;
232 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) {
233 		struct scrub_bio *sbio;
234 
235 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
236 		if (!sbio)
237 			goto nomem;
238 		sdev->bios[i] = sbio;
239 
240 		sbio->index = i;
241 		sbio->sdev = sdev;
242 		sbio->page_count = 0;
243 		sbio->work.func = scrub_bio_end_io_worker;
244 
245 		if (i != SCRUB_BIOS_PER_DEV-1)
246 			sdev->bios[i]->next_free = i + 1;
247 		else
248 			sdev->bios[i]->next_free = -1;
249 	}
250 	sdev->first_free = 0;
251 	sdev->nodesize = dev->dev_root->nodesize;
252 	sdev->leafsize = dev->dev_root->leafsize;
253 	sdev->sectorsize = dev->dev_root->sectorsize;
254 	atomic_set(&sdev->in_flight, 0);
255 	atomic_set(&sdev->fixup_cnt, 0);
256 	atomic_set(&sdev->cancel_req, 0);
257 	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy);
258 	INIT_LIST_HEAD(&sdev->csum_list);
259 
260 	spin_lock_init(&sdev->list_lock);
261 	spin_lock_init(&sdev->stat_lock);
262 	init_waitqueue_head(&sdev->list_wait);
263 	return sdev;
264 
265 nomem:
266 	scrub_free_dev(sdev);
267 	return ERR_PTR(-ENOMEM);
268 }
269 
scrub_print_warning_inode(u64 inum,u64 offset,u64 root,void * ctx)270 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx)
271 {
272 	u64 isize;
273 	u32 nlink;
274 	int ret;
275 	int i;
276 	struct extent_buffer *eb;
277 	struct btrfs_inode_item *inode_item;
278 	struct scrub_warning *swarn = ctx;
279 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
280 	struct inode_fs_paths *ipath = NULL;
281 	struct btrfs_root *local_root;
282 	struct btrfs_key root_key;
283 
284 	root_key.objectid = root;
285 	root_key.type = BTRFS_ROOT_ITEM_KEY;
286 	root_key.offset = (u64)-1;
287 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
288 	if (IS_ERR(local_root)) {
289 		ret = PTR_ERR(local_root);
290 		goto err;
291 	}
292 
293 	ret = inode_item_info(inum, 0, local_root, swarn->path);
294 	if (ret) {
295 		btrfs_release_path(swarn->path);
296 		goto err;
297 	}
298 
299 	eb = swarn->path->nodes[0];
300 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
301 					struct btrfs_inode_item);
302 	isize = btrfs_inode_size(eb, inode_item);
303 	nlink = btrfs_inode_nlink(eb, inode_item);
304 	btrfs_release_path(swarn->path);
305 
306 	ipath = init_ipath(4096, local_root, swarn->path);
307 	if (IS_ERR(ipath)) {
308 		ret = PTR_ERR(ipath);
309 		ipath = NULL;
310 		goto err;
311 	}
312 	ret = paths_from_inode(inum, ipath);
313 
314 	if (ret < 0)
315 		goto err;
316 
317 	/*
318 	 * we deliberately ignore the bit ipath might have been too small to
319 	 * hold all of the paths here
320 	 */
321 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
322 		printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
323 			"%s, sector %llu, root %llu, inode %llu, offset %llu, "
324 			"length %llu, links %u (path: %s)\n", swarn->errstr,
325 			swarn->logical, swarn->dev->name,
326 			(unsigned long long)swarn->sector, root, inum, offset,
327 			min(isize - offset, (u64)PAGE_SIZE), nlink,
328 			(char *)(unsigned long)ipath->fspath->val[i]);
329 
330 	free_ipath(ipath);
331 	return 0;
332 
333 err:
334 	printk(KERN_WARNING "btrfs: %s at logical %llu on dev "
335 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path "
336 		"resolving failed with ret=%d\n", swarn->errstr,
337 		swarn->logical, swarn->dev->name,
338 		(unsigned long long)swarn->sector, root, inum, offset, ret);
339 
340 	free_ipath(ipath);
341 	return 0;
342 }
343 
scrub_print_warning(const char * errstr,struct scrub_block * sblock)344 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
345 {
346 	struct btrfs_device *dev = sblock->sdev->dev;
347 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
348 	struct btrfs_path *path;
349 	struct btrfs_key found_key;
350 	struct extent_buffer *eb;
351 	struct btrfs_extent_item *ei;
352 	struct scrub_warning swarn;
353 	u32 item_size;
354 	int ret;
355 	u64 ref_root;
356 	u8 ref_level;
357 	unsigned long ptr = 0;
358 	const int bufsize = 4096;
359 	u64 extent_item_pos;
360 
361 	path = btrfs_alloc_path();
362 
363 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
364 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
365 	BUG_ON(sblock->page_count < 1);
366 	swarn.sector = (sblock->pagev[0].physical) >> 9;
367 	swarn.logical = sblock->pagev[0].logical;
368 	swarn.errstr = errstr;
369 	swarn.dev = dev;
370 	swarn.msg_bufsize = bufsize;
371 	swarn.scratch_bufsize = bufsize;
372 
373 	if (!path || !swarn.scratch_buf || !swarn.msg_buf)
374 		goto out;
375 
376 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key);
377 	if (ret < 0)
378 		goto out;
379 
380 	extent_item_pos = swarn.logical - found_key.objectid;
381 	swarn.extent_item_size = found_key.offset;
382 
383 	eb = path->nodes[0];
384 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
385 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
386 
387 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
388 		do {
389 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
390 							&ref_root, &ref_level);
391 			printk(KERN_WARNING
392 				"btrfs: %s at logical %llu on dev %s, "
393 				"sector %llu: metadata %s (level %d) in tree "
394 				"%llu\n", errstr, swarn.logical, dev->name,
395 				(unsigned long long)swarn.sector,
396 				ref_level ? "node" : "leaf",
397 				ret < 0 ? -1 : ref_level,
398 				ret < 0 ? -1 : ref_root);
399 		} while (ret != 1);
400 		btrfs_release_path(path);
401 	} else {
402 		btrfs_release_path(path);
403 		swarn.path = path;
404 		iterate_extent_inodes(fs_info, found_key.objectid,
405 					extent_item_pos, 1,
406 					scrub_print_warning_inode, &swarn);
407 	}
408 
409 out:
410 	btrfs_free_path(path);
411 	kfree(swarn.scratch_buf);
412 	kfree(swarn.msg_buf);
413 }
414 
scrub_fixup_readpage(u64 inum,u64 offset,u64 root,void * ctx)415 static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx)
416 {
417 	struct page *page = NULL;
418 	unsigned long index;
419 	struct scrub_fixup_nodatasum *fixup = ctx;
420 	int ret;
421 	int corrected = 0;
422 	struct btrfs_key key;
423 	struct inode *inode = NULL;
424 	u64 end = offset + PAGE_SIZE - 1;
425 	struct btrfs_root *local_root;
426 
427 	key.objectid = root;
428 	key.type = BTRFS_ROOT_ITEM_KEY;
429 	key.offset = (u64)-1;
430 	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key);
431 	if (IS_ERR(local_root))
432 		return PTR_ERR(local_root);
433 
434 	key.type = BTRFS_INODE_ITEM_KEY;
435 	key.objectid = inum;
436 	key.offset = 0;
437 	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL);
438 	if (IS_ERR(inode))
439 		return PTR_ERR(inode);
440 
441 	index = offset >> PAGE_CACHE_SHIFT;
442 
443 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
444 	if (!page) {
445 		ret = -ENOMEM;
446 		goto out;
447 	}
448 
449 	if (PageUptodate(page)) {
450 		struct btrfs_mapping_tree *map_tree;
451 		if (PageDirty(page)) {
452 			/*
453 			 * we need to write the data to the defect sector. the
454 			 * data that was in that sector is not in memory,
455 			 * because the page was modified. we must not write the
456 			 * modified page to that sector.
457 			 *
458 			 * TODO: what could be done here: wait for the delalloc
459 			 *       runner to write out that page (might involve
460 			 *       COW) and see whether the sector is still
461 			 *       referenced afterwards.
462 			 *
463 			 * For the meantime, we'll treat this error
464 			 * incorrectable, although there is a chance that a
465 			 * later scrub will find the bad sector again and that
466 			 * there's no dirty page in memory, then.
467 			 */
468 			ret = -EIO;
469 			goto out;
470 		}
471 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
472 		ret = repair_io_failure(map_tree, offset, PAGE_SIZE,
473 					fixup->logical, page,
474 					fixup->mirror_num);
475 		unlock_page(page);
476 		corrected = !ret;
477 	} else {
478 		/*
479 		 * we need to get good data first. the general readpage path
480 		 * will call repair_io_failure for us, we just have to make
481 		 * sure we read the bad mirror.
482 		 */
483 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
484 					EXTENT_DAMAGED, GFP_NOFS);
485 		if (ret) {
486 			/* set_extent_bits should give proper error */
487 			WARN_ON(ret > 0);
488 			if (ret > 0)
489 				ret = -EFAULT;
490 			goto out;
491 		}
492 
493 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
494 						btrfs_get_extent,
495 						fixup->mirror_num);
496 		wait_on_page_locked(page);
497 
498 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
499 						end, EXTENT_DAMAGED, 0, NULL);
500 		if (!corrected)
501 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
502 						EXTENT_DAMAGED, GFP_NOFS);
503 	}
504 
505 out:
506 	if (page)
507 		put_page(page);
508 	if (inode)
509 		iput(inode);
510 
511 	if (ret < 0)
512 		return ret;
513 
514 	if (ret == 0 && corrected) {
515 		/*
516 		 * we only need to call readpage for one of the inodes belonging
517 		 * to this extent. so make iterate_extent_inodes stop
518 		 */
519 		return 1;
520 	}
521 
522 	return -EIO;
523 }
524 
scrub_fixup_nodatasum(struct btrfs_work * work)525 static void scrub_fixup_nodatasum(struct btrfs_work *work)
526 {
527 	int ret;
528 	struct scrub_fixup_nodatasum *fixup;
529 	struct scrub_dev *sdev;
530 	struct btrfs_trans_handle *trans = NULL;
531 	struct btrfs_fs_info *fs_info;
532 	struct btrfs_path *path;
533 	int uncorrectable = 0;
534 
535 	fixup = container_of(work, struct scrub_fixup_nodatasum, work);
536 	sdev = fixup->sdev;
537 	fs_info = fixup->root->fs_info;
538 
539 	path = btrfs_alloc_path();
540 	if (!path) {
541 		spin_lock(&sdev->stat_lock);
542 		++sdev->stat.malloc_errors;
543 		spin_unlock(&sdev->stat_lock);
544 		uncorrectable = 1;
545 		goto out;
546 	}
547 
548 	trans = btrfs_join_transaction(fixup->root);
549 	if (IS_ERR(trans)) {
550 		uncorrectable = 1;
551 		goto out;
552 	}
553 
554 	/*
555 	 * the idea is to trigger a regular read through the standard path. we
556 	 * read a page from the (failed) logical address by specifying the
557 	 * corresponding copynum of the failed sector. thus, that readpage is
558 	 * expected to fail.
559 	 * that is the point where on-the-fly error correction will kick in
560 	 * (once it's finished) and rewrite the failed sector if a good copy
561 	 * can be found.
562 	 */
563 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
564 						path, scrub_fixup_readpage,
565 						fixup);
566 	if (ret < 0) {
567 		uncorrectable = 1;
568 		goto out;
569 	}
570 	WARN_ON(ret != 1);
571 
572 	spin_lock(&sdev->stat_lock);
573 	++sdev->stat.corrected_errors;
574 	spin_unlock(&sdev->stat_lock);
575 
576 out:
577 	if (trans && !IS_ERR(trans))
578 		btrfs_end_transaction(trans, fixup->root);
579 	if (uncorrectable) {
580 		spin_lock(&sdev->stat_lock);
581 		++sdev->stat.uncorrectable_errors;
582 		spin_unlock(&sdev->stat_lock);
583 		printk_ratelimited(KERN_ERR
584 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
585 			(unsigned long long)fixup->logical, sdev->dev->name);
586 	}
587 
588 	btrfs_free_path(path);
589 	kfree(fixup);
590 
591 	/* see caller why we're pretending to be paused in the scrub counters */
592 	mutex_lock(&fs_info->scrub_lock);
593 	atomic_dec(&fs_info->scrubs_running);
594 	atomic_dec(&fs_info->scrubs_paused);
595 	mutex_unlock(&fs_info->scrub_lock);
596 	atomic_dec(&sdev->fixup_cnt);
597 	wake_up(&fs_info->scrub_pause_wait);
598 	wake_up(&sdev->list_wait);
599 }
600 
601 /*
602  * scrub_handle_errored_block gets called when either verification of the
603  * pages failed or the bio failed to read, e.g. with EIO. In the latter
604  * case, this function handles all pages in the bio, even though only one
605  * may be bad.
606  * The goal of this function is to repair the errored block by using the
607  * contents of one of the mirrors.
608  */
scrub_handle_errored_block(struct scrub_block * sblock_to_check)609 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
610 {
611 	struct scrub_dev *sdev = sblock_to_check->sdev;
612 	struct btrfs_fs_info *fs_info;
613 	u64 length;
614 	u64 logical;
615 	u64 generation;
616 	unsigned int failed_mirror_index;
617 	unsigned int is_metadata;
618 	unsigned int have_csum;
619 	u8 *csum;
620 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
621 	struct scrub_block *sblock_bad;
622 	int ret;
623 	int mirror_index;
624 	int page_num;
625 	int success;
626 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
627 				      DEFAULT_RATELIMIT_BURST);
628 
629 	BUG_ON(sblock_to_check->page_count < 1);
630 	fs_info = sdev->dev->dev_root->fs_info;
631 	length = sblock_to_check->page_count * PAGE_SIZE;
632 	logical = sblock_to_check->pagev[0].logical;
633 	generation = sblock_to_check->pagev[0].generation;
634 	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1);
635 	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1;
636 	is_metadata = !(sblock_to_check->pagev[0].flags &
637 			BTRFS_EXTENT_FLAG_DATA);
638 	have_csum = sblock_to_check->pagev[0].have_csum;
639 	csum = sblock_to_check->pagev[0].csum;
640 
641 	/*
642 	 * read all mirrors one after the other. This includes to
643 	 * re-read the extent or metadata block that failed (that was
644 	 * the cause that this fixup code is called) another time,
645 	 * page by page this time in order to know which pages
646 	 * caused I/O errors and which ones are good (for all mirrors).
647 	 * It is the goal to handle the situation when more than one
648 	 * mirror contains I/O errors, but the errors do not
649 	 * overlap, i.e. the data can be repaired by selecting the
650 	 * pages from those mirrors without I/O error on the
651 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
652 	 * would be that mirror #1 has an I/O error on the first page,
653 	 * the second page is good, and mirror #2 has an I/O error on
654 	 * the second page, but the first page is good.
655 	 * Then the first page of the first mirror can be repaired by
656 	 * taking the first page of the second mirror, and the
657 	 * second page of the second mirror can be repaired by
658 	 * copying the contents of the 2nd page of the 1st mirror.
659 	 * One more note: if the pages of one mirror contain I/O
660 	 * errors, the checksum cannot be verified. In order to get
661 	 * the best data for repairing, the first attempt is to find
662 	 * a mirror without I/O errors and with a validated checksum.
663 	 * Only if this is not possible, the pages are picked from
664 	 * mirrors with I/O errors without considering the checksum.
665 	 * If the latter is the case, at the end, the checksum of the
666 	 * repaired area is verified in order to correctly maintain
667 	 * the statistics.
668 	 */
669 
670 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
671 				     sizeof(*sblocks_for_recheck),
672 				     GFP_NOFS);
673 	if (!sblocks_for_recheck) {
674 		spin_lock(&sdev->stat_lock);
675 		sdev->stat.malloc_errors++;
676 		sdev->stat.read_errors++;
677 		sdev->stat.uncorrectable_errors++;
678 		spin_unlock(&sdev->stat_lock);
679 		goto out;
680 	}
681 
682 	/* setup the context, map the logical blocks and alloc the pages */
683 	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length,
684 					logical, sblocks_for_recheck);
685 	if (ret) {
686 		spin_lock(&sdev->stat_lock);
687 		sdev->stat.read_errors++;
688 		sdev->stat.uncorrectable_errors++;
689 		spin_unlock(&sdev->stat_lock);
690 		goto out;
691 	}
692 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
693 	sblock_bad = sblocks_for_recheck + failed_mirror_index;
694 
695 	/* build and submit the bios for the failed mirror, check checksums */
696 	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
697 				  csum, generation, sdev->csum_size);
698 	if (ret) {
699 		spin_lock(&sdev->stat_lock);
700 		sdev->stat.read_errors++;
701 		sdev->stat.uncorrectable_errors++;
702 		spin_unlock(&sdev->stat_lock);
703 		goto out;
704 	}
705 
706 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
707 	    sblock_bad->no_io_error_seen) {
708 		/*
709 		 * the error disappeared after reading page by page, or
710 		 * the area was part of a huge bio and other parts of the
711 		 * bio caused I/O errors, or the block layer merged several
712 		 * read requests into one and the error is caused by a
713 		 * different bio (usually one of the two latter cases is
714 		 * the cause)
715 		 */
716 		spin_lock(&sdev->stat_lock);
717 		sdev->stat.unverified_errors++;
718 		spin_unlock(&sdev->stat_lock);
719 
720 		goto out;
721 	}
722 
723 	if (!sblock_bad->no_io_error_seen) {
724 		spin_lock(&sdev->stat_lock);
725 		sdev->stat.read_errors++;
726 		spin_unlock(&sdev->stat_lock);
727 		if (__ratelimit(&_rs))
728 			scrub_print_warning("i/o error", sblock_to_check);
729 	} else if (sblock_bad->checksum_error) {
730 		spin_lock(&sdev->stat_lock);
731 		sdev->stat.csum_errors++;
732 		spin_unlock(&sdev->stat_lock);
733 		if (__ratelimit(&_rs))
734 			scrub_print_warning("checksum error", sblock_to_check);
735 	} else if (sblock_bad->header_error) {
736 		spin_lock(&sdev->stat_lock);
737 		sdev->stat.verify_errors++;
738 		spin_unlock(&sdev->stat_lock);
739 		if (__ratelimit(&_rs))
740 			scrub_print_warning("checksum/header error",
741 					    sblock_to_check);
742 	}
743 
744 	if (sdev->readonly)
745 		goto did_not_correct_error;
746 
747 	if (!is_metadata && !have_csum) {
748 		struct scrub_fixup_nodatasum *fixup_nodatasum;
749 
750 		/*
751 		 * !is_metadata and !have_csum, this means that the data
752 		 * might not be COW'ed, that it might be modified
753 		 * concurrently. The general strategy to work on the
754 		 * commit root does not help in the case when COW is not
755 		 * used.
756 		 */
757 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
758 		if (!fixup_nodatasum)
759 			goto did_not_correct_error;
760 		fixup_nodatasum->sdev = sdev;
761 		fixup_nodatasum->logical = logical;
762 		fixup_nodatasum->root = fs_info->extent_root;
763 		fixup_nodatasum->mirror_num = failed_mirror_index + 1;
764 		/*
765 		 * increment scrubs_running to prevent cancel requests from
766 		 * completing as long as a fixup worker is running. we must also
767 		 * increment scrubs_paused to prevent deadlocking on pause
768 		 * requests used for transactions commits (as the worker uses a
769 		 * transaction context). it is safe to regard the fixup worker
770 		 * as paused for all matters practical. effectively, we only
771 		 * avoid cancellation requests from completing.
772 		 */
773 		mutex_lock(&fs_info->scrub_lock);
774 		atomic_inc(&fs_info->scrubs_running);
775 		atomic_inc(&fs_info->scrubs_paused);
776 		mutex_unlock(&fs_info->scrub_lock);
777 		atomic_inc(&sdev->fixup_cnt);
778 		fixup_nodatasum->work.func = scrub_fixup_nodatasum;
779 		btrfs_queue_worker(&fs_info->scrub_workers,
780 				   &fixup_nodatasum->work);
781 		goto out;
782 	}
783 
784 	/*
785 	 * now build and submit the bios for the other mirrors, check
786 	 * checksums
787 	 */
788 	for (mirror_index = 0;
789 	     mirror_index < BTRFS_MAX_MIRRORS &&
790 	     sblocks_for_recheck[mirror_index].page_count > 0;
791 	     mirror_index++) {
792 		if (mirror_index == failed_mirror_index)
793 			continue;
794 
795 		/* build and submit the bios, check checksums */
796 		ret = scrub_recheck_block(fs_info,
797 					  sblocks_for_recheck + mirror_index,
798 					  is_metadata, have_csum, csum,
799 					  generation, sdev->csum_size);
800 		if (ret)
801 			goto did_not_correct_error;
802 	}
803 
804 	/*
805 	 * first try to pick the mirror which is completely without I/O
806 	 * errors and also does not have a checksum error.
807 	 * If one is found, and if a checksum is present, the full block
808 	 * that is known to contain an error is rewritten. Afterwards
809 	 * the block is known to be corrected.
810 	 * If a mirror is found which is completely correct, and no
811 	 * checksum is present, only those pages are rewritten that had
812 	 * an I/O error in the block to be repaired, since it cannot be
813 	 * determined, which copy of the other pages is better (and it
814 	 * could happen otherwise that a correct page would be
815 	 * overwritten by a bad one).
816 	 */
817 	for (mirror_index = 0;
818 	     mirror_index < BTRFS_MAX_MIRRORS &&
819 	     sblocks_for_recheck[mirror_index].page_count > 0;
820 	     mirror_index++) {
821 		struct scrub_block *sblock_other = sblocks_for_recheck +
822 						   mirror_index;
823 
824 		if (!sblock_other->header_error &&
825 		    !sblock_other->checksum_error &&
826 		    sblock_other->no_io_error_seen) {
827 			int force_write = is_metadata || have_csum;
828 
829 			ret = scrub_repair_block_from_good_copy(sblock_bad,
830 								sblock_other,
831 								force_write);
832 			if (0 == ret)
833 				goto corrected_error;
834 		}
835 	}
836 
837 	/*
838 	 * in case of I/O errors in the area that is supposed to be
839 	 * repaired, continue by picking good copies of those pages.
840 	 * Select the good pages from mirrors to rewrite bad pages from
841 	 * the area to fix. Afterwards verify the checksum of the block
842 	 * that is supposed to be repaired. This verification step is
843 	 * only done for the purpose of statistic counting and for the
844 	 * final scrub report, whether errors remain.
845 	 * A perfect algorithm could make use of the checksum and try
846 	 * all possible combinations of pages from the different mirrors
847 	 * until the checksum verification succeeds. For example, when
848 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
849 	 * of mirror #2 is readable but the final checksum test fails,
850 	 * then the 2nd page of mirror #3 could be tried, whether now
851 	 * the final checksum succeedes. But this would be a rare
852 	 * exception and is therefore not implemented. At least it is
853 	 * avoided that the good copy is overwritten.
854 	 * A more useful improvement would be to pick the sectors
855 	 * without I/O error based on sector sizes (512 bytes on legacy
856 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
857 	 * mirror could be repaired by taking 512 byte of a different
858 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
859 	 * area are unreadable.
860 	 */
861 
862 	/* can only fix I/O errors from here on */
863 	if (sblock_bad->no_io_error_seen)
864 		goto did_not_correct_error;
865 
866 	success = 1;
867 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
868 		struct scrub_page *page_bad = sblock_bad->pagev + page_num;
869 
870 		if (!page_bad->io_error)
871 			continue;
872 
873 		for (mirror_index = 0;
874 		     mirror_index < BTRFS_MAX_MIRRORS &&
875 		     sblocks_for_recheck[mirror_index].page_count > 0;
876 		     mirror_index++) {
877 			struct scrub_block *sblock_other = sblocks_for_recheck +
878 							   mirror_index;
879 			struct scrub_page *page_other = sblock_other->pagev +
880 							page_num;
881 
882 			if (!page_other->io_error) {
883 				ret = scrub_repair_page_from_good_copy(
884 					sblock_bad, sblock_other, page_num, 0);
885 				if (0 == ret) {
886 					page_bad->io_error = 0;
887 					break; /* succeeded for this page */
888 				}
889 			}
890 		}
891 
892 		if (page_bad->io_error) {
893 			/* did not find a mirror to copy the page from */
894 			success = 0;
895 		}
896 	}
897 
898 	if (success) {
899 		if (is_metadata || have_csum) {
900 			/*
901 			 * need to verify the checksum now that all
902 			 * sectors on disk are repaired (the write
903 			 * request for data to be repaired is on its way).
904 			 * Just be lazy and use scrub_recheck_block()
905 			 * which re-reads the data before the checksum
906 			 * is verified, but most likely the data comes out
907 			 * of the page cache.
908 			 */
909 			ret = scrub_recheck_block(fs_info, sblock_bad,
910 						  is_metadata, have_csum, csum,
911 						  generation, sdev->csum_size);
912 			if (!ret && !sblock_bad->header_error &&
913 			    !sblock_bad->checksum_error &&
914 			    sblock_bad->no_io_error_seen)
915 				goto corrected_error;
916 			else
917 				goto did_not_correct_error;
918 		} else {
919 corrected_error:
920 			spin_lock(&sdev->stat_lock);
921 			sdev->stat.corrected_errors++;
922 			spin_unlock(&sdev->stat_lock);
923 			printk_ratelimited(KERN_ERR
924 				"btrfs: fixed up error at logical %llu on dev %s\n",
925 				(unsigned long long)logical, sdev->dev->name);
926 		}
927 	} else {
928 did_not_correct_error:
929 		spin_lock(&sdev->stat_lock);
930 		sdev->stat.uncorrectable_errors++;
931 		spin_unlock(&sdev->stat_lock);
932 		printk_ratelimited(KERN_ERR
933 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
934 			(unsigned long long)logical, sdev->dev->name);
935 	}
936 
937 out:
938 	if (sblocks_for_recheck) {
939 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
940 		     mirror_index++) {
941 			struct scrub_block *sblock = sblocks_for_recheck +
942 						     mirror_index;
943 			int page_index;
944 
945 			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO;
946 			     page_index++)
947 				if (sblock->pagev[page_index].page)
948 					__free_page(
949 						sblock->pagev[page_index].page);
950 		}
951 		kfree(sblocks_for_recheck);
952 	}
953 
954 	return 0;
955 }
956 
scrub_setup_recheck_block(struct scrub_dev * sdev,struct btrfs_mapping_tree * map_tree,u64 length,u64 logical,struct scrub_block * sblocks_for_recheck)957 static int scrub_setup_recheck_block(struct scrub_dev *sdev,
958 				     struct btrfs_mapping_tree *map_tree,
959 				     u64 length, u64 logical,
960 				     struct scrub_block *sblocks_for_recheck)
961 {
962 	int page_index;
963 	int mirror_index;
964 	int ret;
965 
966 	/*
967 	 * note: the three members sdev, ref_count and outstanding_pages
968 	 * are not used (and not set) in the blocks that are used for
969 	 * the recheck procedure
970 	 */
971 
972 	page_index = 0;
973 	while (length > 0) {
974 		u64 sublen = min_t(u64, length, PAGE_SIZE);
975 		u64 mapped_length = sublen;
976 		struct btrfs_bio *bbio = NULL;
977 
978 		/*
979 		 * with a length of PAGE_SIZE, each returned stripe
980 		 * represents one mirror
981 		 */
982 		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length,
983 				      &bbio, 0);
984 		if (ret || !bbio || mapped_length < sublen) {
985 			kfree(bbio);
986 			return -EIO;
987 		}
988 
989 		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO);
990 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
991 		     mirror_index++) {
992 			struct scrub_block *sblock;
993 			struct scrub_page *page;
994 
995 			if (mirror_index >= BTRFS_MAX_MIRRORS)
996 				continue;
997 
998 			sblock = sblocks_for_recheck + mirror_index;
999 			page = sblock->pagev + page_index;
1000 			page->logical = logical;
1001 			page->physical = bbio->stripes[mirror_index].physical;
1002 			/* for missing devices, bdev is NULL */
1003 			page->bdev = bbio->stripes[mirror_index].dev->bdev;
1004 			page->mirror_num = mirror_index + 1;
1005 			page->page = alloc_page(GFP_NOFS);
1006 			if (!page->page) {
1007 				spin_lock(&sdev->stat_lock);
1008 				sdev->stat.malloc_errors++;
1009 				spin_unlock(&sdev->stat_lock);
1010 				return -ENOMEM;
1011 			}
1012 			sblock->page_count++;
1013 		}
1014 		kfree(bbio);
1015 		length -= sublen;
1016 		logical += sublen;
1017 		page_index++;
1018 	}
1019 
1020 	return 0;
1021 }
1022 
1023 /*
1024  * this function will check the on disk data for checksum errors, header
1025  * errors and read I/O errors. If any I/O errors happen, the exact pages
1026  * which are errored are marked as being bad. The goal is to enable scrub
1027  * to take those pages that are not errored from all the mirrors so that
1028  * the pages that are errored in the just handled mirror can be repaired.
1029  */
scrub_recheck_block(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int is_metadata,int have_csum,u8 * csum,u64 generation,u16 csum_size)1030 static int scrub_recheck_block(struct btrfs_fs_info *fs_info,
1031 			       struct scrub_block *sblock, int is_metadata,
1032 			       int have_csum, u8 *csum, u64 generation,
1033 			       u16 csum_size)
1034 {
1035 	int page_num;
1036 
1037 	sblock->no_io_error_seen = 1;
1038 	sblock->header_error = 0;
1039 	sblock->checksum_error = 0;
1040 
1041 	for (page_num = 0; page_num < sblock->page_count; page_num++) {
1042 		struct bio *bio;
1043 		int ret;
1044 		struct scrub_page *page = sblock->pagev + page_num;
1045 		DECLARE_COMPLETION_ONSTACK(complete);
1046 
1047 		if (page->bdev == NULL) {
1048 			page->io_error = 1;
1049 			sblock->no_io_error_seen = 0;
1050 			continue;
1051 		}
1052 
1053 		BUG_ON(!page->page);
1054 		bio = bio_alloc(GFP_NOFS, 1);
1055 		if (!bio)
1056 			return -EIO;
1057 		bio->bi_bdev = page->bdev;
1058 		bio->bi_sector = page->physical >> 9;
1059 		bio->bi_end_io = scrub_complete_bio_end_io;
1060 		bio->bi_private = &complete;
1061 
1062 		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0);
1063 		if (PAGE_SIZE != ret) {
1064 			bio_put(bio);
1065 			return -EIO;
1066 		}
1067 		btrfsic_submit_bio(READ, bio);
1068 
1069 		/* this will also unplug the queue */
1070 		wait_for_completion(&complete);
1071 
1072 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1073 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1074 			sblock->no_io_error_seen = 0;
1075 		bio_put(bio);
1076 	}
1077 
1078 	if (sblock->no_io_error_seen)
1079 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1080 					     have_csum, csum, generation,
1081 					     csum_size);
1082 
1083 	return 0;
1084 }
1085 
scrub_recheck_block_checksum(struct btrfs_fs_info * fs_info,struct scrub_block * sblock,int is_metadata,int have_csum,const u8 * csum,u64 generation,u16 csum_size)1086 static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1087 					 struct scrub_block *sblock,
1088 					 int is_metadata, int have_csum,
1089 					 const u8 *csum, u64 generation,
1090 					 u16 csum_size)
1091 {
1092 	int page_num;
1093 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1094 	u32 crc = ~(u32)0;
1095 	struct btrfs_root *root = fs_info->extent_root;
1096 	void *mapped_buffer;
1097 
1098 	BUG_ON(!sblock->pagev[0].page);
1099 	if (is_metadata) {
1100 		struct btrfs_header *h;
1101 
1102 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1103 		h = (struct btrfs_header *)mapped_buffer;
1104 
1105 		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) ||
1106 		    generation != le64_to_cpu(h->generation) ||
1107 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1108 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1109 			   BTRFS_UUID_SIZE))
1110 			sblock->header_error = 1;
1111 		csum = h->csum;
1112 	} else {
1113 		if (!have_csum)
1114 			return;
1115 
1116 		mapped_buffer = kmap_atomic(sblock->pagev[0].page);
1117 	}
1118 
1119 	for (page_num = 0;;) {
1120 		if (page_num == 0 && is_metadata)
1121 			crc = btrfs_csum_data(root,
1122 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1123 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1124 		else
1125 			crc = btrfs_csum_data(root, mapped_buffer, crc,
1126 					      PAGE_SIZE);
1127 
1128 		kunmap_atomic(mapped_buffer);
1129 		page_num++;
1130 		if (page_num >= sblock->page_count)
1131 			break;
1132 		BUG_ON(!sblock->pagev[page_num].page);
1133 
1134 		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page);
1135 	}
1136 
1137 	btrfs_csum_final(crc, calculated_csum);
1138 	if (memcmp(calculated_csum, csum, csum_size))
1139 		sblock->checksum_error = 1;
1140 }
1141 
scrub_complete_bio_end_io(struct bio * bio,int err)1142 static void scrub_complete_bio_end_io(struct bio *bio, int err)
1143 {
1144 	complete((struct completion *)bio->bi_private);
1145 }
1146 
scrub_repair_block_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int force_write)1147 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1148 					     struct scrub_block *sblock_good,
1149 					     int force_write)
1150 {
1151 	int page_num;
1152 	int ret = 0;
1153 
1154 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1155 		int ret_sub;
1156 
1157 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1158 							   sblock_good,
1159 							   page_num,
1160 							   force_write);
1161 		if (ret_sub)
1162 			ret = ret_sub;
1163 	}
1164 
1165 	return ret;
1166 }
1167 
scrub_repair_page_from_good_copy(struct scrub_block * sblock_bad,struct scrub_block * sblock_good,int page_num,int force_write)1168 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1169 					    struct scrub_block *sblock_good,
1170 					    int page_num, int force_write)
1171 {
1172 	struct scrub_page *page_bad = sblock_bad->pagev + page_num;
1173 	struct scrub_page *page_good = sblock_good->pagev + page_num;
1174 
1175 	BUG_ON(sblock_bad->pagev[page_num].page == NULL);
1176 	BUG_ON(sblock_good->pagev[page_num].page == NULL);
1177 	if (force_write || sblock_bad->header_error ||
1178 	    sblock_bad->checksum_error || page_bad->io_error) {
1179 		struct bio *bio;
1180 		int ret;
1181 		DECLARE_COMPLETION_ONSTACK(complete);
1182 
1183 		bio = bio_alloc(GFP_NOFS, 1);
1184 		if (!bio)
1185 			return -EIO;
1186 		bio->bi_bdev = page_bad->bdev;
1187 		bio->bi_sector = page_bad->physical >> 9;
1188 		bio->bi_end_io = scrub_complete_bio_end_io;
1189 		bio->bi_private = &complete;
1190 
1191 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1192 		if (PAGE_SIZE != ret) {
1193 			bio_put(bio);
1194 			return -EIO;
1195 		}
1196 		btrfsic_submit_bio(WRITE, bio);
1197 
1198 		/* this will also unplug the queue */
1199 		wait_for_completion(&complete);
1200 		bio_put(bio);
1201 	}
1202 
1203 	return 0;
1204 }
1205 
scrub_checksum(struct scrub_block * sblock)1206 static void scrub_checksum(struct scrub_block *sblock)
1207 {
1208 	u64 flags;
1209 	int ret;
1210 
1211 	BUG_ON(sblock->page_count < 1);
1212 	flags = sblock->pagev[0].flags;
1213 	ret = 0;
1214 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1215 		ret = scrub_checksum_data(sblock);
1216 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1217 		ret = scrub_checksum_tree_block(sblock);
1218 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1219 		(void)scrub_checksum_super(sblock);
1220 	else
1221 		WARN_ON(1);
1222 	if (ret)
1223 		scrub_handle_errored_block(sblock);
1224 }
1225 
scrub_checksum_data(struct scrub_block * sblock)1226 static int scrub_checksum_data(struct scrub_block *sblock)
1227 {
1228 	struct scrub_dev *sdev = sblock->sdev;
1229 	u8 csum[BTRFS_CSUM_SIZE];
1230 	u8 *on_disk_csum;
1231 	struct page *page;
1232 	void *buffer;
1233 	u32 crc = ~(u32)0;
1234 	int fail = 0;
1235 	struct btrfs_root *root = sdev->dev->dev_root;
1236 	u64 len;
1237 	int index;
1238 
1239 	BUG_ON(sblock->page_count < 1);
1240 	if (!sblock->pagev[0].have_csum)
1241 		return 0;
1242 
1243 	on_disk_csum = sblock->pagev[0].csum;
1244 	page = sblock->pagev[0].page;
1245 	buffer = kmap_atomic(page);
1246 
1247 	len = sdev->sectorsize;
1248 	index = 0;
1249 	for (;;) {
1250 		u64 l = min_t(u64, len, PAGE_SIZE);
1251 
1252 		crc = btrfs_csum_data(root, buffer, crc, l);
1253 		kunmap_atomic(buffer);
1254 		len -= l;
1255 		if (len == 0)
1256 			break;
1257 		index++;
1258 		BUG_ON(index >= sblock->page_count);
1259 		BUG_ON(!sblock->pagev[index].page);
1260 		page = sblock->pagev[index].page;
1261 		buffer = kmap_atomic(page);
1262 	}
1263 
1264 	btrfs_csum_final(crc, csum);
1265 	if (memcmp(csum, on_disk_csum, sdev->csum_size))
1266 		fail = 1;
1267 
1268 	return fail;
1269 }
1270 
scrub_checksum_tree_block(struct scrub_block * sblock)1271 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1272 {
1273 	struct scrub_dev *sdev = sblock->sdev;
1274 	struct btrfs_header *h;
1275 	struct btrfs_root *root = sdev->dev->dev_root;
1276 	struct btrfs_fs_info *fs_info = root->fs_info;
1277 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1278 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1279 	struct page *page;
1280 	void *mapped_buffer;
1281 	u64 mapped_size;
1282 	void *p;
1283 	u32 crc = ~(u32)0;
1284 	int fail = 0;
1285 	int crc_fail = 0;
1286 	u64 len;
1287 	int index;
1288 
1289 	BUG_ON(sblock->page_count < 1);
1290 	page = sblock->pagev[0].page;
1291 	mapped_buffer = kmap_atomic(page);
1292 	h = (struct btrfs_header *)mapped_buffer;
1293 	memcpy(on_disk_csum, h->csum, sdev->csum_size);
1294 
1295 	/*
1296 	 * we don't use the getter functions here, as we
1297 	 * a) don't have an extent buffer and
1298 	 * b) the page is already kmapped
1299 	 */
1300 
1301 	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr))
1302 		++fail;
1303 
1304 	if (sblock->pagev[0].generation != le64_to_cpu(h->generation))
1305 		++fail;
1306 
1307 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1308 		++fail;
1309 
1310 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1311 		   BTRFS_UUID_SIZE))
1312 		++fail;
1313 
1314 	BUG_ON(sdev->nodesize != sdev->leafsize);
1315 	len = sdev->nodesize - BTRFS_CSUM_SIZE;
1316 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1317 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1318 	index = 0;
1319 	for (;;) {
1320 		u64 l = min_t(u64, len, mapped_size);
1321 
1322 		crc = btrfs_csum_data(root, p, crc, l);
1323 		kunmap_atomic(mapped_buffer);
1324 		len -= l;
1325 		if (len == 0)
1326 			break;
1327 		index++;
1328 		BUG_ON(index >= sblock->page_count);
1329 		BUG_ON(!sblock->pagev[index].page);
1330 		page = sblock->pagev[index].page;
1331 		mapped_buffer = kmap_atomic(page);
1332 		mapped_size = PAGE_SIZE;
1333 		p = mapped_buffer;
1334 	}
1335 
1336 	btrfs_csum_final(crc, calculated_csum);
1337 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1338 		++crc_fail;
1339 
1340 	return fail || crc_fail;
1341 }
1342 
scrub_checksum_super(struct scrub_block * sblock)1343 static int scrub_checksum_super(struct scrub_block *sblock)
1344 {
1345 	struct btrfs_super_block *s;
1346 	struct scrub_dev *sdev = sblock->sdev;
1347 	struct btrfs_root *root = sdev->dev->dev_root;
1348 	struct btrfs_fs_info *fs_info = root->fs_info;
1349 	u8 calculated_csum[BTRFS_CSUM_SIZE];
1350 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
1351 	struct page *page;
1352 	void *mapped_buffer;
1353 	u64 mapped_size;
1354 	void *p;
1355 	u32 crc = ~(u32)0;
1356 	int fail = 0;
1357 	u64 len;
1358 	int index;
1359 
1360 	BUG_ON(sblock->page_count < 1);
1361 	page = sblock->pagev[0].page;
1362 	mapped_buffer = kmap_atomic(page);
1363 	s = (struct btrfs_super_block *)mapped_buffer;
1364 	memcpy(on_disk_csum, s->csum, sdev->csum_size);
1365 
1366 	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr))
1367 		++fail;
1368 
1369 	if (sblock->pagev[0].generation != le64_to_cpu(s->generation))
1370 		++fail;
1371 
1372 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1373 		++fail;
1374 
1375 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1376 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1377 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1378 	index = 0;
1379 	for (;;) {
1380 		u64 l = min_t(u64, len, mapped_size);
1381 
1382 		crc = btrfs_csum_data(root, p, crc, l);
1383 		kunmap_atomic(mapped_buffer);
1384 		len -= l;
1385 		if (len == 0)
1386 			break;
1387 		index++;
1388 		BUG_ON(index >= sblock->page_count);
1389 		BUG_ON(!sblock->pagev[index].page);
1390 		page = sblock->pagev[index].page;
1391 		mapped_buffer = kmap_atomic(page);
1392 		mapped_size = PAGE_SIZE;
1393 		p = mapped_buffer;
1394 	}
1395 
1396 	btrfs_csum_final(crc, calculated_csum);
1397 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size))
1398 		++fail;
1399 
1400 	if (fail) {
1401 		/*
1402 		 * if we find an error in a super block, we just report it.
1403 		 * They will get written with the next transaction commit
1404 		 * anyway
1405 		 */
1406 		spin_lock(&sdev->stat_lock);
1407 		++sdev->stat.super_errors;
1408 		spin_unlock(&sdev->stat_lock);
1409 	}
1410 
1411 	return fail;
1412 }
1413 
scrub_block_get(struct scrub_block * sblock)1414 static void scrub_block_get(struct scrub_block *sblock)
1415 {
1416 	atomic_inc(&sblock->ref_count);
1417 }
1418 
scrub_block_put(struct scrub_block * sblock)1419 static void scrub_block_put(struct scrub_block *sblock)
1420 {
1421 	if (atomic_dec_and_test(&sblock->ref_count)) {
1422 		int i;
1423 
1424 		for (i = 0; i < sblock->page_count; i++)
1425 			if (sblock->pagev[i].page)
1426 				__free_page(sblock->pagev[i].page);
1427 		kfree(sblock);
1428 	}
1429 }
1430 
scrub_submit(struct scrub_dev * sdev)1431 static void scrub_submit(struct scrub_dev *sdev)
1432 {
1433 	struct scrub_bio *sbio;
1434 
1435 	if (sdev->curr == -1)
1436 		return;
1437 
1438 	sbio = sdev->bios[sdev->curr];
1439 	sdev->curr = -1;
1440 	atomic_inc(&sdev->in_flight);
1441 
1442 	btrfsic_submit_bio(READ, sbio->bio);
1443 }
1444 
scrub_add_page_to_bio(struct scrub_dev * sdev,struct scrub_page * spage)1445 static int scrub_add_page_to_bio(struct scrub_dev *sdev,
1446 				 struct scrub_page *spage)
1447 {
1448 	struct scrub_block *sblock = spage->sblock;
1449 	struct scrub_bio *sbio;
1450 	int ret;
1451 
1452 again:
1453 	/*
1454 	 * grab a fresh bio or wait for one to become available
1455 	 */
1456 	while (sdev->curr == -1) {
1457 		spin_lock(&sdev->list_lock);
1458 		sdev->curr = sdev->first_free;
1459 		if (sdev->curr != -1) {
1460 			sdev->first_free = sdev->bios[sdev->curr]->next_free;
1461 			sdev->bios[sdev->curr]->next_free = -1;
1462 			sdev->bios[sdev->curr]->page_count = 0;
1463 			spin_unlock(&sdev->list_lock);
1464 		} else {
1465 			spin_unlock(&sdev->list_lock);
1466 			wait_event(sdev->list_wait, sdev->first_free != -1);
1467 		}
1468 	}
1469 	sbio = sdev->bios[sdev->curr];
1470 	if (sbio->page_count == 0) {
1471 		struct bio *bio;
1472 
1473 		sbio->physical = spage->physical;
1474 		sbio->logical = spage->logical;
1475 		bio = sbio->bio;
1476 		if (!bio) {
1477 			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio);
1478 			if (!bio)
1479 				return -ENOMEM;
1480 			sbio->bio = bio;
1481 		}
1482 
1483 		bio->bi_private = sbio;
1484 		bio->bi_end_io = scrub_bio_end_io;
1485 		bio->bi_bdev = sdev->dev->bdev;
1486 		bio->bi_sector = spage->physical >> 9;
1487 		sbio->err = 0;
1488 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1489 		   spage->physical ||
1490 		   sbio->logical + sbio->page_count * PAGE_SIZE !=
1491 		   spage->logical) {
1492 		scrub_submit(sdev);
1493 		goto again;
1494 	}
1495 
1496 	sbio->pagev[sbio->page_count] = spage;
1497 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1498 	if (ret != PAGE_SIZE) {
1499 		if (sbio->page_count < 1) {
1500 			bio_put(sbio->bio);
1501 			sbio->bio = NULL;
1502 			return -EIO;
1503 		}
1504 		scrub_submit(sdev);
1505 		goto again;
1506 	}
1507 
1508 	scrub_block_get(sblock); /* one for the added page */
1509 	atomic_inc(&sblock->outstanding_pages);
1510 	sbio->page_count++;
1511 	if (sbio->page_count == sdev->pages_per_bio)
1512 		scrub_submit(sdev);
1513 
1514 	return 0;
1515 }
1516 
scrub_pages(struct scrub_dev * sdev,u64 logical,u64 len,u64 physical,u64 flags,u64 gen,int mirror_num,u8 * csum,int force)1517 static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len,
1518 		       u64 physical, u64 flags, u64 gen, int mirror_num,
1519 		       u8 *csum, int force)
1520 {
1521 	struct scrub_block *sblock;
1522 	int index;
1523 
1524 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1525 	if (!sblock) {
1526 		spin_lock(&sdev->stat_lock);
1527 		sdev->stat.malloc_errors++;
1528 		spin_unlock(&sdev->stat_lock);
1529 		return -ENOMEM;
1530 	}
1531 
1532 	/* one ref inside this function, plus one for each page later on */
1533 	atomic_set(&sblock->ref_count, 1);
1534 	sblock->sdev = sdev;
1535 	sblock->no_io_error_seen = 1;
1536 
1537 	for (index = 0; len > 0; index++) {
1538 		struct scrub_page *spage = sblock->pagev + index;
1539 		u64 l = min_t(u64, len, PAGE_SIZE);
1540 
1541 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
1542 		spage->page = alloc_page(GFP_NOFS);
1543 		if (!spage->page) {
1544 			spin_lock(&sdev->stat_lock);
1545 			sdev->stat.malloc_errors++;
1546 			spin_unlock(&sdev->stat_lock);
1547 			while (index > 0) {
1548 				index--;
1549 				__free_page(sblock->pagev[index].page);
1550 			}
1551 			kfree(sblock);
1552 			return -ENOMEM;
1553 		}
1554 		spage->sblock = sblock;
1555 		spage->bdev = sdev->dev->bdev;
1556 		spage->flags = flags;
1557 		spage->generation = gen;
1558 		spage->logical = logical;
1559 		spage->physical = physical;
1560 		spage->mirror_num = mirror_num;
1561 		if (csum) {
1562 			spage->have_csum = 1;
1563 			memcpy(spage->csum, csum, sdev->csum_size);
1564 		} else {
1565 			spage->have_csum = 0;
1566 		}
1567 		sblock->page_count++;
1568 		len -= l;
1569 		logical += l;
1570 		physical += l;
1571 	}
1572 
1573 	BUG_ON(sblock->page_count == 0);
1574 	for (index = 0; index < sblock->page_count; index++) {
1575 		struct scrub_page *spage = sblock->pagev + index;
1576 		int ret;
1577 
1578 		ret = scrub_add_page_to_bio(sdev, spage);
1579 		if (ret) {
1580 			scrub_block_put(sblock);
1581 			return ret;
1582 		}
1583 	}
1584 
1585 	if (force)
1586 		scrub_submit(sdev);
1587 
1588 	/* last one frees, either here or in bio completion for last page */
1589 	scrub_block_put(sblock);
1590 	return 0;
1591 }
1592 
scrub_bio_end_io(struct bio * bio,int err)1593 static void scrub_bio_end_io(struct bio *bio, int err)
1594 {
1595 	struct scrub_bio *sbio = bio->bi_private;
1596 	struct scrub_dev *sdev = sbio->sdev;
1597 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1598 
1599 	sbio->err = err;
1600 	sbio->bio = bio;
1601 
1602 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
1603 }
1604 
scrub_bio_end_io_worker(struct btrfs_work * work)1605 static void scrub_bio_end_io_worker(struct btrfs_work *work)
1606 {
1607 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1608 	struct scrub_dev *sdev = sbio->sdev;
1609 	int i;
1610 
1611 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO);
1612 	if (sbio->err) {
1613 		for (i = 0; i < sbio->page_count; i++) {
1614 			struct scrub_page *spage = sbio->pagev[i];
1615 
1616 			spage->io_error = 1;
1617 			spage->sblock->no_io_error_seen = 0;
1618 		}
1619 	}
1620 
1621 	/* now complete the scrub_block items that have all pages completed */
1622 	for (i = 0; i < sbio->page_count; i++) {
1623 		struct scrub_page *spage = sbio->pagev[i];
1624 		struct scrub_block *sblock = spage->sblock;
1625 
1626 		if (atomic_dec_and_test(&sblock->outstanding_pages))
1627 			scrub_block_complete(sblock);
1628 		scrub_block_put(sblock);
1629 	}
1630 
1631 	if (sbio->err) {
1632 		/* what is this good for??? */
1633 		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1634 		sbio->bio->bi_flags |= 1 << BIO_UPTODATE;
1635 		sbio->bio->bi_phys_segments = 0;
1636 		sbio->bio->bi_idx = 0;
1637 
1638 		for (i = 0; i < sbio->page_count; i++) {
1639 			struct bio_vec *bi;
1640 			bi = &sbio->bio->bi_io_vec[i];
1641 			bi->bv_offset = 0;
1642 			bi->bv_len = PAGE_SIZE;
1643 		}
1644 	}
1645 
1646 	bio_put(sbio->bio);
1647 	sbio->bio = NULL;
1648 	spin_lock(&sdev->list_lock);
1649 	sbio->next_free = sdev->first_free;
1650 	sdev->first_free = sbio->index;
1651 	spin_unlock(&sdev->list_lock);
1652 	atomic_dec(&sdev->in_flight);
1653 	wake_up(&sdev->list_wait);
1654 }
1655 
scrub_block_complete(struct scrub_block * sblock)1656 static void scrub_block_complete(struct scrub_block *sblock)
1657 {
1658 	if (!sblock->no_io_error_seen)
1659 		scrub_handle_errored_block(sblock);
1660 	else
1661 		scrub_checksum(sblock);
1662 }
1663 
scrub_find_csum(struct scrub_dev * sdev,u64 logical,u64 len,u8 * csum)1664 static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len,
1665 			   u8 *csum)
1666 {
1667 	struct btrfs_ordered_sum *sum = NULL;
1668 	int ret = 0;
1669 	unsigned long i;
1670 	unsigned long num_sectors;
1671 
1672 	while (!list_empty(&sdev->csum_list)) {
1673 		sum = list_first_entry(&sdev->csum_list,
1674 				       struct btrfs_ordered_sum, list);
1675 		if (sum->bytenr > logical)
1676 			return 0;
1677 		if (sum->bytenr + sum->len > logical)
1678 			break;
1679 
1680 		++sdev->stat.csum_discards;
1681 		list_del(&sum->list);
1682 		kfree(sum);
1683 		sum = NULL;
1684 	}
1685 	if (!sum)
1686 		return 0;
1687 
1688 	num_sectors = sum->len / sdev->sectorsize;
1689 	for (i = 0; i < num_sectors; ++i) {
1690 		if (sum->sums[i].bytenr == logical) {
1691 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size);
1692 			ret = 1;
1693 			break;
1694 		}
1695 	}
1696 	if (ret && i == num_sectors - 1) {
1697 		list_del(&sum->list);
1698 		kfree(sum);
1699 	}
1700 	return ret;
1701 }
1702 
1703 /* scrub extent tries to collect up to 64 kB for each bio */
scrub_extent(struct scrub_dev * sdev,u64 logical,u64 len,u64 physical,u64 flags,u64 gen,int mirror_num)1704 static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len,
1705 			u64 physical, u64 flags, u64 gen, int mirror_num)
1706 {
1707 	int ret;
1708 	u8 csum[BTRFS_CSUM_SIZE];
1709 	u32 blocksize;
1710 
1711 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
1712 		blocksize = sdev->sectorsize;
1713 		spin_lock(&sdev->stat_lock);
1714 		sdev->stat.data_extents_scrubbed++;
1715 		sdev->stat.data_bytes_scrubbed += len;
1716 		spin_unlock(&sdev->stat_lock);
1717 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1718 		BUG_ON(sdev->nodesize != sdev->leafsize);
1719 		blocksize = sdev->nodesize;
1720 		spin_lock(&sdev->stat_lock);
1721 		sdev->stat.tree_extents_scrubbed++;
1722 		sdev->stat.tree_bytes_scrubbed += len;
1723 		spin_unlock(&sdev->stat_lock);
1724 	} else {
1725 		blocksize = sdev->sectorsize;
1726 		BUG_ON(1);
1727 	}
1728 
1729 	while (len) {
1730 		u64 l = min_t(u64, len, blocksize);
1731 		int have_csum = 0;
1732 
1733 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
1734 			/* push csums to sbio */
1735 			have_csum = scrub_find_csum(sdev, logical, l, csum);
1736 			if (have_csum == 0)
1737 				++sdev->stat.no_csum;
1738 		}
1739 		ret = scrub_pages(sdev, logical, l, physical, flags, gen,
1740 				  mirror_num, have_csum ? csum : NULL, 0);
1741 		if (ret)
1742 			return ret;
1743 		len -= l;
1744 		logical += l;
1745 		physical += l;
1746 	}
1747 	return 0;
1748 }
1749 
scrub_stripe(struct scrub_dev * sdev,struct map_lookup * map,int num,u64 base,u64 length)1750 static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev,
1751 	struct map_lookup *map, int num, u64 base, u64 length)
1752 {
1753 	struct btrfs_path *path;
1754 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info;
1755 	struct btrfs_root *root = fs_info->extent_root;
1756 	struct btrfs_root *csum_root = fs_info->csum_root;
1757 	struct btrfs_extent_item *extent;
1758 	struct blk_plug plug;
1759 	u64 flags;
1760 	int ret;
1761 	int slot;
1762 	int i;
1763 	u64 nstripes;
1764 	struct extent_buffer *l;
1765 	struct btrfs_key key;
1766 	u64 physical;
1767 	u64 logical;
1768 	u64 generation;
1769 	int mirror_num;
1770 	struct reada_control *reada1;
1771 	struct reada_control *reada2;
1772 	struct btrfs_key key_start;
1773 	struct btrfs_key key_end;
1774 
1775 	u64 increment = map->stripe_len;
1776 	u64 offset;
1777 
1778 	nstripes = length;
1779 	offset = 0;
1780 	do_div(nstripes, map->stripe_len);
1781 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1782 		offset = map->stripe_len * num;
1783 		increment = map->stripe_len * map->num_stripes;
1784 		mirror_num = 1;
1785 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1786 		int factor = map->num_stripes / map->sub_stripes;
1787 		offset = map->stripe_len * (num / map->sub_stripes);
1788 		increment = map->stripe_len * factor;
1789 		mirror_num = num % map->sub_stripes + 1;
1790 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
1791 		increment = map->stripe_len;
1792 		mirror_num = num % map->num_stripes + 1;
1793 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
1794 		increment = map->stripe_len;
1795 		mirror_num = num % map->num_stripes + 1;
1796 	} else {
1797 		increment = map->stripe_len;
1798 		mirror_num = 1;
1799 	}
1800 
1801 	path = btrfs_alloc_path();
1802 	if (!path)
1803 		return -ENOMEM;
1804 
1805 	/*
1806 	 * work on commit root. The related disk blocks are static as
1807 	 * long as COW is applied. This means, it is save to rewrite
1808 	 * them to repair disk errors without any race conditions
1809 	 */
1810 	path->search_commit_root = 1;
1811 	path->skip_locking = 1;
1812 
1813 	/*
1814 	 * trigger the readahead for extent tree csum tree and wait for
1815 	 * completion. During readahead, the scrub is officially paused
1816 	 * to not hold off transaction commits
1817 	 */
1818 	logical = base + offset;
1819 
1820 	wait_event(sdev->list_wait,
1821 		   atomic_read(&sdev->in_flight) == 0);
1822 	atomic_inc(&fs_info->scrubs_paused);
1823 	wake_up(&fs_info->scrub_pause_wait);
1824 
1825 	/* FIXME it might be better to start readahead at commit root */
1826 	key_start.objectid = logical;
1827 	key_start.type = BTRFS_EXTENT_ITEM_KEY;
1828 	key_start.offset = (u64)0;
1829 	key_end.objectid = base + offset + nstripes * increment;
1830 	key_end.type = BTRFS_EXTENT_ITEM_KEY;
1831 	key_end.offset = (u64)0;
1832 	reada1 = btrfs_reada_add(root, &key_start, &key_end);
1833 
1834 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1835 	key_start.type = BTRFS_EXTENT_CSUM_KEY;
1836 	key_start.offset = logical;
1837 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
1838 	key_end.type = BTRFS_EXTENT_CSUM_KEY;
1839 	key_end.offset = base + offset + nstripes * increment;
1840 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
1841 
1842 	if (!IS_ERR(reada1))
1843 		btrfs_reada_wait(reada1);
1844 	if (!IS_ERR(reada2))
1845 		btrfs_reada_wait(reada2);
1846 
1847 	mutex_lock(&fs_info->scrub_lock);
1848 	while (atomic_read(&fs_info->scrub_pause_req)) {
1849 		mutex_unlock(&fs_info->scrub_lock);
1850 		wait_event(fs_info->scrub_pause_wait,
1851 		   atomic_read(&fs_info->scrub_pause_req) == 0);
1852 		mutex_lock(&fs_info->scrub_lock);
1853 	}
1854 	atomic_dec(&fs_info->scrubs_paused);
1855 	mutex_unlock(&fs_info->scrub_lock);
1856 	wake_up(&fs_info->scrub_pause_wait);
1857 
1858 	/*
1859 	 * collect all data csums for the stripe to avoid seeking during
1860 	 * the scrub. This might currently (crc32) end up to be about 1MB
1861 	 */
1862 	blk_start_plug(&plug);
1863 
1864 	/*
1865 	 * now find all extents for each stripe and scrub them
1866 	 */
1867 	logical = base + offset;
1868 	physical = map->stripes[num].physical;
1869 	ret = 0;
1870 	for (i = 0; i < nstripes; ++i) {
1871 		/*
1872 		 * canceled?
1873 		 */
1874 		if (atomic_read(&fs_info->scrub_cancel_req) ||
1875 		    atomic_read(&sdev->cancel_req)) {
1876 			ret = -ECANCELED;
1877 			goto out;
1878 		}
1879 		/*
1880 		 * check to see if we have to pause
1881 		 */
1882 		if (atomic_read(&fs_info->scrub_pause_req)) {
1883 			/* push queued extents */
1884 			scrub_submit(sdev);
1885 			wait_event(sdev->list_wait,
1886 				   atomic_read(&sdev->in_flight) == 0);
1887 			atomic_inc(&fs_info->scrubs_paused);
1888 			wake_up(&fs_info->scrub_pause_wait);
1889 			mutex_lock(&fs_info->scrub_lock);
1890 			while (atomic_read(&fs_info->scrub_pause_req)) {
1891 				mutex_unlock(&fs_info->scrub_lock);
1892 				wait_event(fs_info->scrub_pause_wait,
1893 				   atomic_read(&fs_info->scrub_pause_req) == 0);
1894 				mutex_lock(&fs_info->scrub_lock);
1895 			}
1896 			atomic_dec(&fs_info->scrubs_paused);
1897 			mutex_unlock(&fs_info->scrub_lock);
1898 			wake_up(&fs_info->scrub_pause_wait);
1899 		}
1900 
1901 		ret = btrfs_lookup_csums_range(csum_root, logical,
1902 					       logical + map->stripe_len - 1,
1903 					       &sdev->csum_list, 1);
1904 		if (ret)
1905 			goto out;
1906 
1907 		key.objectid = logical;
1908 		key.type = BTRFS_EXTENT_ITEM_KEY;
1909 		key.offset = (u64)0;
1910 
1911 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1912 		if (ret < 0)
1913 			goto out;
1914 		if (ret > 0) {
1915 			ret = btrfs_previous_item(root, path, 0,
1916 						  BTRFS_EXTENT_ITEM_KEY);
1917 			if (ret < 0)
1918 				goto out;
1919 			if (ret > 0) {
1920 				/* there's no smaller item, so stick with the
1921 				 * larger one */
1922 				btrfs_release_path(path);
1923 				ret = btrfs_search_slot(NULL, root, &key,
1924 							path, 0, 0);
1925 				if (ret < 0)
1926 					goto out;
1927 			}
1928 		}
1929 
1930 		while (1) {
1931 			l = path->nodes[0];
1932 			slot = path->slots[0];
1933 			if (slot >= btrfs_header_nritems(l)) {
1934 				ret = btrfs_next_leaf(root, path);
1935 				if (ret == 0)
1936 					continue;
1937 				if (ret < 0)
1938 					goto out;
1939 
1940 				break;
1941 			}
1942 			btrfs_item_key_to_cpu(l, &key, slot);
1943 
1944 			if (key.objectid + key.offset <= logical)
1945 				goto next;
1946 
1947 			if (key.objectid >= logical + map->stripe_len)
1948 				break;
1949 
1950 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY)
1951 				goto next;
1952 
1953 			extent = btrfs_item_ptr(l, slot,
1954 						struct btrfs_extent_item);
1955 			flags = btrfs_extent_flags(l, extent);
1956 			generation = btrfs_extent_generation(l, extent);
1957 
1958 			if (key.objectid < logical &&
1959 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
1960 				printk(KERN_ERR
1961 				       "btrfs scrub: tree block %llu spanning "
1962 				       "stripes, ignored. logical=%llu\n",
1963 				       (unsigned long long)key.objectid,
1964 				       (unsigned long long)logical);
1965 				goto next;
1966 			}
1967 
1968 			/*
1969 			 * trim extent to this stripe
1970 			 */
1971 			if (key.objectid < logical) {
1972 				key.offset -= logical - key.objectid;
1973 				key.objectid = logical;
1974 			}
1975 			if (key.objectid + key.offset >
1976 			    logical + map->stripe_len) {
1977 				key.offset = logical + map->stripe_len -
1978 					     key.objectid;
1979 			}
1980 
1981 			ret = scrub_extent(sdev, key.objectid, key.offset,
1982 					   key.objectid - logical + physical,
1983 					   flags, generation, mirror_num);
1984 			if (ret)
1985 				goto out;
1986 
1987 next:
1988 			path->slots[0]++;
1989 		}
1990 		btrfs_release_path(path);
1991 		logical += increment;
1992 		physical += map->stripe_len;
1993 		spin_lock(&sdev->stat_lock);
1994 		sdev->stat.last_physical = physical;
1995 		spin_unlock(&sdev->stat_lock);
1996 	}
1997 	/* push queued extents */
1998 	scrub_submit(sdev);
1999 
2000 out:
2001 	blk_finish_plug(&plug);
2002 	btrfs_free_path(path);
2003 	return ret < 0 ? ret : 0;
2004 }
2005 
scrub_chunk(struct scrub_dev * sdev,u64 chunk_tree,u64 chunk_objectid,u64 chunk_offset,u64 length,u64 dev_offset)2006 static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev,
2007 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length,
2008 	u64 dev_offset)
2009 {
2010 	struct btrfs_mapping_tree *map_tree =
2011 		&sdev->dev->dev_root->fs_info->mapping_tree;
2012 	struct map_lookup *map;
2013 	struct extent_map *em;
2014 	int i;
2015 	int ret = -EINVAL;
2016 
2017 	read_lock(&map_tree->map_tree.lock);
2018 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2019 	read_unlock(&map_tree->map_tree.lock);
2020 
2021 	if (!em)
2022 		return -EINVAL;
2023 
2024 	map = (struct map_lookup *)em->bdev;
2025 	if (em->start != chunk_offset)
2026 		goto out;
2027 
2028 	if (em->len < length)
2029 		goto out;
2030 
2031 	for (i = 0; i < map->num_stripes; ++i) {
2032 		if (map->stripes[i].dev == sdev->dev &&
2033 		    map->stripes[i].physical == dev_offset) {
2034 			ret = scrub_stripe(sdev, map, i, chunk_offset, length);
2035 			if (ret)
2036 				goto out;
2037 		}
2038 	}
2039 out:
2040 	free_extent_map(em);
2041 
2042 	return ret;
2043 }
2044 
2045 static noinline_for_stack
scrub_enumerate_chunks(struct scrub_dev * sdev,u64 start,u64 end)2046 int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end)
2047 {
2048 	struct btrfs_dev_extent *dev_extent = NULL;
2049 	struct btrfs_path *path;
2050 	struct btrfs_root *root = sdev->dev->dev_root;
2051 	struct btrfs_fs_info *fs_info = root->fs_info;
2052 	u64 length;
2053 	u64 chunk_tree;
2054 	u64 chunk_objectid;
2055 	u64 chunk_offset;
2056 	int ret;
2057 	int slot;
2058 	struct extent_buffer *l;
2059 	struct btrfs_key key;
2060 	struct btrfs_key found_key;
2061 	struct btrfs_block_group_cache *cache;
2062 
2063 	path = btrfs_alloc_path();
2064 	if (!path)
2065 		return -ENOMEM;
2066 
2067 	path->reada = 2;
2068 	path->search_commit_root = 1;
2069 	path->skip_locking = 1;
2070 
2071 	key.objectid = sdev->dev->devid;
2072 	key.offset = 0ull;
2073 	key.type = BTRFS_DEV_EXTENT_KEY;
2074 
2075 
2076 	while (1) {
2077 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2078 		if (ret < 0)
2079 			break;
2080 		if (ret > 0) {
2081 			if (path->slots[0] >=
2082 			    btrfs_header_nritems(path->nodes[0])) {
2083 				ret = btrfs_next_leaf(root, path);
2084 				if (ret)
2085 					break;
2086 			}
2087 		}
2088 
2089 		l = path->nodes[0];
2090 		slot = path->slots[0];
2091 
2092 		btrfs_item_key_to_cpu(l, &found_key, slot);
2093 
2094 		if (found_key.objectid != sdev->dev->devid)
2095 			break;
2096 
2097 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2098 			break;
2099 
2100 		if (found_key.offset >= end)
2101 			break;
2102 
2103 		if (found_key.offset < key.offset)
2104 			break;
2105 
2106 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2107 		length = btrfs_dev_extent_length(l, dev_extent);
2108 
2109 		if (found_key.offset + length <= start) {
2110 			key.offset = found_key.offset + length;
2111 			btrfs_release_path(path);
2112 			continue;
2113 		}
2114 
2115 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2116 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2117 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2118 
2119 		/*
2120 		 * get a reference on the corresponding block group to prevent
2121 		 * the chunk from going away while we scrub it
2122 		 */
2123 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2124 		if (!cache) {
2125 			ret = -ENOENT;
2126 			break;
2127 		}
2128 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid,
2129 				  chunk_offset, length, found_key.offset);
2130 		btrfs_put_block_group(cache);
2131 		if (ret)
2132 			break;
2133 
2134 		key.offset = found_key.offset + length;
2135 		btrfs_release_path(path);
2136 	}
2137 
2138 	btrfs_free_path(path);
2139 
2140 	/*
2141 	 * ret can still be 1 from search_slot or next_leaf,
2142 	 * that's not an error
2143 	 */
2144 	return ret < 0 ? ret : 0;
2145 }
2146 
scrub_supers(struct scrub_dev * sdev)2147 static noinline_for_stack int scrub_supers(struct scrub_dev *sdev)
2148 {
2149 	int	i;
2150 	u64	bytenr;
2151 	u64	gen;
2152 	int	ret;
2153 	struct btrfs_device *device = sdev->dev;
2154 	struct btrfs_root *root = device->dev_root;
2155 
2156 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2157 		return -EIO;
2158 
2159 	gen = root->fs_info->last_trans_committed;
2160 
2161 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2162 		bytenr = btrfs_sb_offset(i);
2163 		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes)
2164 			break;
2165 
2166 		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2167 				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1);
2168 		if (ret)
2169 			return ret;
2170 	}
2171 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2172 
2173 	return 0;
2174 }
2175 
2176 /*
2177  * get a reference count on fs_info->scrub_workers. start worker if necessary
2178  */
scrub_workers_get(struct btrfs_root * root)2179 static noinline_for_stack int scrub_workers_get(struct btrfs_root *root)
2180 {
2181 	struct btrfs_fs_info *fs_info = root->fs_info;
2182 	int ret = 0;
2183 
2184 	mutex_lock(&fs_info->scrub_lock);
2185 	if (fs_info->scrub_workers_refcnt == 0) {
2186 		btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2187 			   fs_info->thread_pool_size, &fs_info->generic_worker);
2188 		fs_info->scrub_workers.idle_thresh = 4;
2189 		ret = btrfs_start_workers(&fs_info->scrub_workers);
2190 		if (ret)
2191 			goto out;
2192 	}
2193 	++fs_info->scrub_workers_refcnt;
2194 out:
2195 	mutex_unlock(&fs_info->scrub_lock);
2196 
2197 	return ret;
2198 }
2199 
scrub_workers_put(struct btrfs_root * root)2200 static noinline_for_stack void scrub_workers_put(struct btrfs_root *root)
2201 {
2202 	struct btrfs_fs_info *fs_info = root->fs_info;
2203 
2204 	mutex_lock(&fs_info->scrub_lock);
2205 	if (--fs_info->scrub_workers_refcnt == 0)
2206 		btrfs_stop_workers(&fs_info->scrub_workers);
2207 	WARN_ON(fs_info->scrub_workers_refcnt < 0);
2208 	mutex_unlock(&fs_info->scrub_lock);
2209 }
2210 
2211 
btrfs_scrub_dev(struct btrfs_root * root,u64 devid,u64 start,u64 end,struct btrfs_scrub_progress * progress,int readonly)2212 int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
2213 		    struct btrfs_scrub_progress *progress, int readonly)
2214 {
2215 	struct scrub_dev *sdev;
2216 	struct btrfs_fs_info *fs_info = root->fs_info;
2217 	int ret;
2218 	struct btrfs_device *dev;
2219 
2220 	if (btrfs_fs_closing(root->fs_info))
2221 		return -EINVAL;
2222 
2223 	/*
2224 	 * check some assumptions
2225 	 */
2226 	if (root->nodesize != root->leafsize) {
2227 		printk(KERN_ERR
2228 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2229 		       root->nodesize, root->leafsize);
2230 		return -EINVAL;
2231 	}
2232 
2233 	if (root->nodesize > BTRFS_STRIPE_LEN) {
2234 		/*
2235 		 * in this case scrub is unable to calculate the checksum
2236 		 * the way scrub is implemented. Do not handle this
2237 		 * situation at all because it won't ever happen.
2238 		 */
2239 		printk(KERN_ERR
2240 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2241 		       root->nodesize, BTRFS_STRIPE_LEN);
2242 		return -EINVAL;
2243 	}
2244 
2245 	if (root->sectorsize != PAGE_SIZE) {
2246 		/* not supported for data w/o checksums */
2247 		printk(KERN_ERR
2248 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2249 		       root->sectorsize, (unsigned long long)PAGE_SIZE);
2250 		return -EINVAL;
2251 	}
2252 
2253 	ret = scrub_workers_get(root);
2254 	if (ret)
2255 		return ret;
2256 
2257 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2258 	dev = btrfs_find_device(root, devid, NULL, NULL);
2259 	if (!dev || dev->missing) {
2260 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2261 		scrub_workers_put(root);
2262 		return -ENODEV;
2263 	}
2264 	mutex_lock(&fs_info->scrub_lock);
2265 
2266 	if (!dev->in_fs_metadata) {
2267 		mutex_unlock(&fs_info->scrub_lock);
2268 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2269 		scrub_workers_put(root);
2270 		return -ENODEV;
2271 	}
2272 
2273 	if (dev->scrub_device) {
2274 		mutex_unlock(&fs_info->scrub_lock);
2275 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2276 		scrub_workers_put(root);
2277 		return -EINPROGRESS;
2278 	}
2279 	sdev = scrub_setup_dev(dev);
2280 	if (IS_ERR(sdev)) {
2281 		mutex_unlock(&fs_info->scrub_lock);
2282 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2283 		scrub_workers_put(root);
2284 		return PTR_ERR(sdev);
2285 	}
2286 	sdev->readonly = readonly;
2287 	dev->scrub_device = sdev;
2288 
2289 	atomic_inc(&fs_info->scrubs_running);
2290 	mutex_unlock(&fs_info->scrub_lock);
2291 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2292 
2293 	down_read(&fs_info->scrub_super_lock);
2294 	ret = scrub_supers(sdev);
2295 	up_read(&fs_info->scrub_super_lock);
2296 
2297 	if (!ret)
2298 		ret = scrub_enumerate_chunks(sdev, start, end);
2299 
2300 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0);
2301 	atomic_dec(&fs_info->scrubs_running);
2302 	wake_up(&fs_info->scrub_pause_wait);
2303 
2304 	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0);
2305 
2306 	if (progress)
2307 		memcpy(progress, &sdev->stat, sizeof(*progress));
2308 
2309 	mutex_lock(&fs_info->scrub_lock);
2310 	dev->scrub_device = NULL;
2311 	mutex_unlock(&fs_info->scrub_lock);
2312 
2313 	scrub_free_dev(sdev);
2314 	scrub_workers_put(root);
2315 
2316 	return ret;
2317 }
2318 
btrfs_scrub_pause(struct btrfs_root * root)2319 void btrfs_scrub_pause(struct btrfs_root *root)
2320 {
2321 	struct btrfs_fs_info *fs_info = root->fs_info;
2322 
2323 	mutex_lock(&fs_info->scrub_lock);
2324 	atomic_inc(&fs_info->scrub_pause_req);
2325 	while (atomic_read(&fs_info->scrubs_paused) !=
2326 	       atomic_read(&fs_info->scrubs_running)) {
2327 		mutex_unlock(&fs_info->scrub_lock);
2328 		wait_event(fs_info->scrub_pause_wait,
2329 			   atomic_read(&fs_info->scrubs_paused) ==
2330 			   atomic_read(&fs_info->scrubs_running));
2331 		mutex_lock(&fs_info->scrub_lock);
2332 	}
2333 	mutex_unlock(&fs_info->scrub_lock);
2334 }
2335 
btrfs_scrub_continue(struct btrfs_root * root)2336 void btrfs_scrub_continue(struct btrfs_root *root)
2337 {
2338 	struct btrfs_fs_info *fs_info = root->fs_info;
2339 
2340 	atomic_dec(&fs_info->scrub_pause_req);
2341 	wake_up(&fs_info->scrub_pause_wait);
2342 }
2343 
btrfs_scrub_pause_super(struct btrfs_root * root)2344 void btrfs_scrub_pause_super(struct btrfs_root *root)
2345 {
2346 	down_write(&root->fs_info->scrub_super_lock);
2347 }
2348 
btrfs_scrub_continue_super(struct btrfs_root * root)2349 void btrfs_scrub_continue_super(struct btrfs_root *root)
2350 {
2351 	up_write(&root->fs_info->scrub_super_lock);
2352 }
2353 
__btrfs_scrub_cancel(struct btrfs_fs_info * fs_info)2354 int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
2355 {
2356 
2357 	mutex_lock(&fs_info->scrub_lock);
2358 	if (!atomic_read(&fs_info->scrubs_running)) {
2359 		mutex_unlock(&fs_info->scrub_lock);
2360 		return -ENOTCONN;
2361 	}
2362 
2363 	atomic_inc(&fs_info->scrub_cancel_req);
2364 	while (atomic_read(&fs_info->scrubs_running)) {
2365 		mutex_unlock(&fs_info->scrub_lock);
2366 		wait_event(fs_info->scrub_pause_wait,
2367 			   atomic_read(&fs_info->scrubs_running) == 0);
2368 		mutex_lock(&fs_info->scrub_lock);
2369 	}
2370 	atomic_dec(&fs_info->scrub_cancel_req);
2371 	mutex_unlock(&fs_info->scrub_lock);
2372 
2373 	return 0;
2374 }
2375 
btrfs_scrub_cancel(struct btrfs_root * root)2376 int btrfs_scrub_cancel(struct btrfs_root *root)
2377 {
2378 	return __btrfs_scrub_cancel(root->fs_info);
2379 }
2380 
btrfs_scrub_cancel_dev(struct btrfs_root * root,struct btrfs_device * dev)2381 int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev)
2382 {
2383 	struct btrfs_fs_info *fs_info = root->fs_info;
2384 	struct scrub_dev *sdev;
2385 
2386 	mutex_lock(&fs_info->scrub_lock);
2387 	sdev = dev->scrub_device;
2388 	if (!sdev) {
2389 		mutex_unlock(&fs_info->scrub_lock);
2390 		return -ENOTCONN;
2391 	}
2392 	atomic_inc(&sdev->cancel_req);
2393 	while (dev->scrub_device) {
2394 		mutex_unlock(&fs_info->scrub_lock);
2395 		wait_event(fs_info->scrub_pause_wait,
2396 			   dev->scrub_device == NULL);
2397 		mutex_lock(&fs_info->scrub_lock);
2398 	}
2399 	mutex_unlock(&fs_info->scrub_lock);
2400 
2401 	return 0;
2402 }
2403 
btrfs_scrub_cancel_devid(struct btrfs_root * root,u64 devid)2404 int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid)
2405 {
2406 	struct btrfs_fs_info *fs_info = root->fs_info;
2407 	struct btrfs_device *dev;
2408 	int ret;
2409 
2410 	/*
2411 	 * we have to hold the device_list_mutex here so the device
2412 	 * does not go away in cancel_dev. FIXME: find a better solution
2413 	 */
2414 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2415 	dev = btrfs_find_device(root, devid, NULL, NULL);
2416 	if (!dev) {
2417 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2418 		return -ENODEV;
2419 	}
2420 	ret = btrfs_scrub_cancel_dev(root, dev);
2421 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2422 
2423 	return ret;
2424 }
2425 
btrfs_scrub_progress(struct btrfs_root * root,u64 devid,struct btrfs_scrub_progress * progress)2426 int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
2427 			 struct btrfs_scrub_progress *progress)
2428 {
2429 	struct btrfs_device *dev;
2430 	struct scrub_dev *sdev = NULL;
2431 
2432 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2433 	dev = btrfs_find_device(root, devid, NULL, NULL);
2434 	if (dev)
2435 		sdev = dev->scrub_device;
2436 	if (sdev)
2437 		memcpy(progress, &sdev->stat, sizeof(*progress));
2438 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2439 
2440 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV;
2441 }
2442