1 /*
2 * Copyright (c) 2003-2006, Cluster File Systems, Inc, info@clusterfs.com
3 * Written by Alex Tomas <alex@clusterfs.com>
4 *
5 * Architecture independence:
6 * Copyright (c) 2005, Bull S.A.
7 * Written by Pierre Peiffer <pierre.peiffer@bull.net>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public Licens
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
21 */
22
23 /*
24 * Extents support for EXT4
25 *
26 * TODO:
27 * - ext4*_error() should be used in some situations
28 * - analyze all BUG()/BUG_ON(), use -EIO where appropriate
29 * - smart tree reduction
30 */
31
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/jbd2.h>
35 #include <linux/highuid.h>
36 #include <linux/pagemap.h>
37 #include <linux/quotaops.h>
38 #include <linux/string.h>
39 #include <linux/slab.h>
40 #include <linux/falloc.h>
41 #include <asm/uaccess.h>
42 #include <linux/fiemap.h>
43 #include "ext4_jbd2.h"
44
45 #include <trace/events/ext4.h>
46
47 /*
48 * used by extent splitting.
49 */
50 #define EXT4_EXT_MAY_ZEROOUT 0x1 /* safe to zeroout if split fails \
51 due to ENOSPC */
52 #define EXT4_EXT_MARK_UNINIT1 0x2 /* mark first half uninitialized */
53 #define EXT4_EXT_MARK_UNINIT2 0x4 /* mark second half uninitialized */
54
55 #define EXT4_EXT_DATA_VALID1 0x8 /* first half contains valid data */
56 #define EXT4_EXT_DATA_VALID2 0x10 /* second half contains valid data */
57
58 static int ext4_split_extent(handle_t *handle,
59 struct inode *inode,
60 struct ext4_ext_path *path,
61 struct ext4_map_blocks *map,
62 int split_flag,
63 int flags);
64
65 static int ext4_split_extent_at(handle_t *handle,
66 struct inode *inode,
67 struct ext4_ext_path *path,
68 ext4_lblk_t split,
69 int split_flag,
70 int flags);
71
ext4_ext_truncate_extend_restart(handle_t * handle,struct inode * inode,int needed)72 static int ext4_ext_truncate_extend_restart(handle_t *handle,
73 struct inode *inode,
74 int needed)
75 {
76 int err;
77
78 if (!ext4_handle_valid(handle))
79 return 0;
80 if (handle->h_buffer_credits > needed)
81 return 0;
82 err = ext4_journal_extend(handle, needed);
83 if (err <= 0)
84 return err;
85 err = ext4_truncate_restart_trans(handle, inode, needed);
86 if (err == 0)
87 err = -EAGAIN;
88
89 return err;
90 }
91
92 /*
93 * could return:
94 * - EROFS
95 * - ENOMEM
96 */
ext4_ext_get_access(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)97 static int ext4_ext_get_access(handle_t *handle, struct inode *inode,
98 struct ext4_ext_path *path)
99 {
100 if (path->p_bh) {
101 /* path points to block */
102 return ext4_journal_get_write_access(handle, path->p_bh);
103 }
104 /* path points to leaf/index in inode body */
105 /* we use in-core data, no need to protect them */
106 return 0;
107 }
108
109 /*
110 * could return:
111 * - EROFS
112 * - ENOMEM
113 * - EIO
114 */
115 #define ext4_ext_dirty(handle, inode, path) \
116 __ext4_ext_dirty(__func__, __LINE__, (handle), (inode), (path))
__ext4_ext_dirty(const char * where,unsigned int line,handle_t * handle,struct inode * inode,struct ext4_ext_path * path)117 static int __ext4_ext_dirty(const char *where, unsigned int line,
118 handle_t *handle, struct inode *inode,
119 struct ext4_ext_path *path)
120 {
121 int err;
122 if (path->p_bh) {
123 /* path points to block */
124 err = __ext4_handle_dirty_metadata(where, line, handle,
125 inode, path->p_bh);
126 } else {
127 /* path points to leaf/index in inode body */
128 err = ext4_mark_inode_dirty(handle, inode);
129 }
130 return err;
131 }
132
ext4_ext_find_goal(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)133 static ext4_fsblk_t ext4_ext_find_goal(struct inode *inode,
134 struct ext4_ext_path *path,
135 ext4_lblk_t block)
136 {
137 if (path) {
138 int depth = path->p_depth;
139 struct ext4_extent *ex;
140
141 /*
142 * Try to predict block placement assuming that we are
143 * filling in a file which will eventually be
144 * non-sparse --- i.e., in the case of libbfd writing
145 * an ELF object sections out-of-order but in a way
146 * the eventually results in a contiguous object or
147 * executable file, or some database extending a table
148 * space file. However, this is actually somewhat
149 * non-ideal if we are writing a sparse file such as
150 * qemu or KVM writing a raw image file that is going
151 * to stay fairly sparse, since it will end up
152 * fragmenting the file system's free space. Maybe we
153 * should have some hueristics or some way to allow
154 * userspace to pass a hint to file system,
155 * especially if the latter case turns out to be
156 * common.
157 */
158 ex = path[depth].p_ext;
159 if (ex) {
160 ext4_fsblk_t ext_pblk = ext4_ext_pblock(ex);
161 ext4_lblk_t ext_block = le32_to_cpu(ex->ee_block);
162
163 if (block > ext_block)
164 return ext_pblk + (block - ext_block);
165 else
166 return ext_pblk - (ext_block - block);
167 }
168
169 /* it looks like index is empty;
170 * try to find starting block from index itself */
171 if (path[depth].p_bh)
172 return path[depth].p_bh->b_blocknr;
173 }
174
175 /* OK. use inode's group */
176 return ext4_inode_to_goal_block(inode);
177 }
178
179 /*
180 * Allocation for a meta data block
181 */
182 static ext4_fsblk_t
ext4_ext_new_meta_block(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex,int * err,unsigned int flags)183 ext4_ext_new_meta_block(handle_t *handle, struct inode *inode,
184 struct ext4_ext_path *path,
185 struct ext4_extent *ex, int *err, unsigned int flags)
186 {
187 ext4_fsblk_t goal, newblock;
188
189 goal = ext4_ext_find_goal(inode, path, le32_to_cpu(ex->ee_block));
190 newblock = ext4_new_meta_blocks(handle, inode, goal, flags,
191 NULL, err);
192 return newblock;
193 }
194
ext4_ext_space_block(struct inode * inode,int check)195 static inline int ext4_ext_space_block(struct inode *inode, int check)
196 {
197 int size;
198
199 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
200 / sizeof(struct ext4_extent);
201 #ifdef AGGRESSIVE_TEST
202 if (!check && size > 6)
203 size = 6;
204 #endif
205 return size;
206 }
207
ext4_ext_space_block_idx(struct inode * inode,int check)208 static inline int ext4_ext_space_block_idx(struct inode *inode, int check)
209 {
210 int size;
211
212 size = (inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
213 / sizeof(struct ext4_extent_idx);
214 #ifdef AGGRESSIVE_TEST
215 if (!check && size > 5)
216 size = 5;
217 #endif
218 return size;
219 }
220
ext4_ext_space_root(struct inode * inode,int check)221 static inline int ext4_ext_space_root(struct inode *inode, int check)
222 {
223 int size;
224
225 size = sizeof(EXT4_I(inode)->i_data);
226 size -= sizeof(struct ext4_extent_header);
227 size /= sizeof(struct ext4_extent);
228 #ifdef AGGRESSIVE_TEST
229 if (!check && size > 3)
230 size = 3;
231 #endif
232 return size;
233 }
234
ext4_ext_space_root_idx(struct inode * inode,int check)235 static inline int ext4_ext_space_root_idx(struct inode *inode, int check)
236 {
237 int size;
238
239 size = sizeof(EXT4_I(inode)->i_data);
240 size -= sizeof(struct ext4_extent_header);
241 size /= sizeof(struct ext4_extent_idx);
242 #ifdef AGGRESSIVE_TEST
243 if (!check && size > 4)
244 size = 4;
245 #endif
246 return size;
247 }
248
249 /*
250 * Calculate the number of metadata blocks needed
251 * to allocate @blocks
252 * Worse case is one block per extent
253 */
ext4_ext_calc_metadata_amount(struct inode * inode,ext4_lblk_t lblock)254 int ext4_ext_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
255 {
256 struct ext4_inode_info *ei = EXT4_I(inode);
257 int idxs;
258
259 idxs = ((inode->i_sb->s_blocksize - sizeof(struct ext4_extent_header))
260 / sizeof(struct ext4_extent_idx));
261
262 /*
263 * If the new delayed allocation block is contiguous with the
264 * previous da block, it can share index blocks with the
265 * previous block, so we only need to allocate a new index
266 * block every idxs leaf blocks. At ldxs**2 blocks, we need
267 * an additional index block, and at ldxs**3 blocks, yet
268 * another index blocks.
269 */
270 if (ei->i_da_metadata_calc_len &&
271 ei->i_da_metadata_calc_last_lblock+1 == lblock) {
272 int num = 0;
273
274 if ((ei->i_da_metadata_calc_len % idxs) == 0)
275 num++;
276 if ((ei->i_da_metadata_calc_len % (idxs*idxs)) == 0)
277 num++;
278 if ((ei->i_da_metadata_calc_len % (idxs*idxs*idxs)) == 0) {
279 num++;
280 ei->i_da_metadata_calc_len = 0;
281 } else
282 ei->i_da_metadata_calc_len++;
283 ei->i_da_metadata_calc_last_lblock++;
284 return num;
285 }
286
287 /*
288 * In the worst case we need a new set of index blocks at
289 * every level of the inode's extent tree.
290 */
291 ei->i_da_metadata_calc_len = 1;
292 ei->i_da_metadata_calc_last_lblock = lblock;
293 return ext_depth(inode) + 1;
294 }
295
296 static int
ext4_ext_max_entries(struct inode * inode,int depth)297 ext4_ext_max_entries(struct inode *inode, int depth)
298 {
299 int max;
300
301 if (depth == ext_depth(inode)) {
302 if (depth == 0)
303 max = ext4_ext_space_root(inode, 1);
304 else
305 max = ext4_ext_space_root_idx(inode, 1);
306 } else {
307 if (depth == 0)
308 max = ext4_ext_space_block(inode, 1);
309 else
310 max = ext4_ext_space_block_idx(inode, 1);
311 }
312
313 return max;
314 }
315
ext4_valid_extent(struct inode * inode,struct ext4_extent * ext)316 static int ext4_valid_extent(struct inode *inode, struct ext4_extent *ext)
317 {
318 ext4_fsblk_t block = ext4_ext_pblock(ext);
319 int len = ext4_ext_get_actual_len(ext);
320
321 if (len == 0)
322 return 0;
323 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, len);
324 }
325
ext4_valid_extent_idx(struct inode * inode,struct ext4_extent_idx * ext_idx)326 static int ext4_valid_extent_idx(struct inode *inode,
327 struct ext4_extent_idx *ext_idx)
328 {
329 ext4_fsblk_t block = ext4_idx_pblock(ext_idx);
330
331 return ext4_data_block_valid(EXT4_SB(inode->i_sb), block, 1);
332 }
333
ext4_valid_extent_entries(struct inode * inode,struct ext4_extent_header * eh,int depth)334 static int ext4_valid_extent_entries(struct inode *inode,
335 struct ext4_extent_header *eh,
336 int depth)
337 {
338 unsigned short entries;
339 if (eh->eh_entries == 0)
340 return 1;
341
342 entries = le16_to_cpu(eh->eh_entries);
343
344 if (depth == 0) {
345 /* leaf entries */
346 struct ext4_extent *ext = EXT_FIRST_EXTENT(eh);
347 while (entries) {
348 if (!ext4_valid_extent(inode, ext))
349 return 0;
350 ext++;
351 entries--;
352 }
353 } else {
354 struct ext4_extent_idx *ext_idx = EXT_FIRST_INDEX(eh);
355 while (entries) {
356 if (!ext4_valid_extent_idx(inode, ext_idx))
357 return 0;
358 ext_idx++;
359 entries--;
360 }
361 }
362 return 1;
363 }
364
__ext4_ext_check(const char * function,unsigned int line,struct inode * inode,struct ext4_extent_header * eh,int depth)365 static int __ext4_ext_check(const char *function, unsigned int line,
366 struct inode *inode, struct ext4_extent_header *eh,
367 int depth)
368 {
369 const char *error_msg;
370 int max = 0;
371
372 if (unlikely(eh->eh_magic != EXT4_EXT_MAGIC)) {
373 error_msg = "invalid magic";
374 goto corrupted;
375 }
376 if (unlikely(le16_to_cpu(eh->eh_depth) != depth)) {
377 error_msg = "unexpected eh_depth";
378 goto corrupted;
379 }
380 if (unlikely(eh->eh_max == 0)) {
381 error_msg = "invalid eh_max";
382 goto corrupted;
383 }
384 max = ext4_ext_max_entries(inode, depth);
385 if (unlikely(le16_to_cpu(eh->eh_max) > max)) {
386 error_msg = "too large eh_max";
387 goto corrupted;
388 }
389 if (unlikely(le16_to_cpu(eh->eh_entries) > le16_to_cpu(eh->eh_max))) {
390 error_msg = "invalid eh_entries";
391 goto corrupted;
392 }
393 if (!ext4_valid_extent_entries(inode, eh, depth)) {
394 error_msg = "invalid extent entries";
395 goto corrupted;
396 }
397 return 0;
398
399 corrupted:
400 ext4_error_inode(inode, function, line, 0,
401 "bad header/extent: %s - magic %x, "
402 "entries %u, max %u(%u), depth %u(%u)",
403 error_msg, le16_to_cpu(eh->eh_magic),
404 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max),
405 max, le16_to_cpu(eh->eh_depth), depth);
406
407 return -EIO;
408 }
409
410 #define ext4_ext_check(inode, eh, depth) \
411 __ext4_ext_check(__func__, __LINE__, inode, eh, depth)
412
ext4_ext_check_inode(struct inode * inode)413 int ext4_ext_check_inode(struct inode *inode)
414 {
415 return ext4_ext_check(inode, ext_inode_hdr(inode), ext_depth(inode));
416 }
417
418 #ifdef EXT_DEBUG
ext4_ext_show_path(struct inode * inode,struct ext4_ext_path * path)419 static void ext4_ext_show_path(struct inode *inode, struct ext4_ext_path *path)
420 {
421 int k, l = path->p_depth;
422
423 ext_debug("path:");
424 for (k = 0; k <= l; k++, path++) {
425 if (path->p_idx) {
426 ext_debug(" %d->%llu", le32_to_cpu(path->p_idx->ei_block),
427 ext4_idx_pblock(path->p_idx));
428 } else if (path->p_ext) {
429 ext_debug(" %d:[%d]%d:%llu ",
430 le32_to_cpu(path->p_ext->ee_block),
431 ext4_ext_is_uninitialized(path->p_ext),
432 ext4_ext_get_actual_len(path->p_ext),
433 ext4_ext_pblock(path->p_ext));
434 } else
435 ext_debug(" []");
436 }
437 ext_debug("\n");
438 }
439
ext4_ext_show_leaf(struct inode * inode,struct ext4_ext_path * path)440 static void ext4_ext_show_leaf(struct inode *inode, struct ext4_ext_path *path)
441 {
442 int depth = ext_depth(inode);
443 struct ext4_extent_header *eh;
444 struct ext4_extent *ex;
445 int i;
446
447 if (!path)
448 return;
449
450 eh = path[depth].p_hdr;
451 ex = EXT_FIRST_EXTENT(eh);
452
453 ext_debug("Displaying leaf extents for inode %lu\n", inode->i_ino);
454
455 for (i = 0; i < le16_to_cpu(eh->eh_entries); i++, ex++) {
456 ext_debug("%d:[%d]%d:%llu ", le32_to_cpu(ex->ee_block),
457 ext4_ext_is_uninitialized(ex),
458 ext4_ext_get_actual_len(ex), ext4_ext_pblock(ex));
459 }
460 ext_debug("\n");
461 }
462
ext4_ext_show_move(struct inode * inode,struct ext4_ext_path * path,ext4_fsblk_t newblock,int level)463 static void ext4_ext_show_move(struct inode *inode, struct ext4_ext_path *path,
464 ext4_fsblk_t newblock, int level)
465 {
466 int depth = ext_depth(inode);
467 struct ext4_extent *ex;
468
469 if (depth != level) {
470 struct ext4_extent_idx *idx;
471 idx = path[level].p_idx;
472 while (idx <= EXT_MAX_INDEX(path[level].p_hdr)) {
473 ext_debug("%d: move %d:%llu in new index %llu\n", level,
474 le32_to_cpu(idx->ei_block),
475 ext4_idx_pblock(idx),
476 newblock);
477 idx++;
478 }
479
480 return;
481 }
482
483 ex = path[depth].p_ext;
484 while (ex <= EXT_MAX_EXTENT(path[depth].p_hdr)) {
485 ext_debug("move %d:%llu:[%d]%d in new leaf %llu\n",
486 le32_to_cpu(ex->ee_block),
487 ext4_ext_pblock(ex),
488 ext4_ext_is_uninitialized(ex),
489 ext4_ext_get_actual_len(ex),
490 newblock);
491 ex++;
492 }
493 }
494
495 #else
496 #define ext4_ext_show_path(inode, path)
497 #define ext4_ext_show_leaf(inode, path)
498 #define ext4_ext_show_move(inode, path, newblock, level)
499 #endif
500
ext4_ext_drop_refs(struct ext4_ext_path * path)501 void ext4_ext_drop_refs(struct ext4_ext_path *path)
502 {
503 int depth = path->p_depth;
504 int i;
505
506 for (i = 0; i <= depth; i++, path++)
507 if (path->p_bh) {
508 brelse(path->p_bh);
509 path->p_bh = NULL;
510 }
511 }
512
513 /*
514 * ext4_ext_binsearch_idx:
515 * binary search for the closest index of the given block
516 * the header must be checked before calling this
517 */
518 static void
ext4_ext_binsearch_idx(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)519 ext4_ext_binsearch_idx(struct inode *inode,
520 struct ext4_ext_path *path, ext4_lblk_t block)
521 {
522 struct ext4_extent_header *eh = path->p_hdr;
523 struct ext4_extent_idx *r, *l, *m;
524
525
526 ext_debug("binsearch for %u(idx): ", block);
527
528 l = EXT_FIRST_INDEX(eh) + 1;
529 r = EXT_LAST_INDEX(eh);
530 while (l <= r) {
531 m = l + (r - l) / 2;
532 if (block < le32_to_cpu(m->ei_block))
533 r = m - 1;
534 else
535 l = m + 1;
536 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ei_block),
537 m, le32_to_cpu(m->ei_block),
538 r, le32_to_cpu(r->ei_block));
539 }
540
541 path->p_idx = l - 1;
542 ext_debug(" -> %d->%lld ", le32_to_cpu(path->p_idx->ei_block),
543 ext4_idx_pblock(path->p_idx));
544
545 #ifdef CHECK_BINSEARCH
546 {
547 struct ext4_extent_idx *chix, *ix;
548 int k;
549
550 chix = ix = EXT_FIRST_INDEX(eh);
551 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ix++) {
552 if (k != 0 &&
553 le32_to_cpu(ix->ei_block) <= le32_to_cpu(ix[-1].ei_block)) {
554 printk(KERN_DEBUG "k=%d, ix=0x%p, "
555 "first=0x%p\n", k,
556 ix, EXT_FIRST_INDEX(eh));
557 printk(KERN_DEBUG "%u <= %u\n",
558 le32_to_cpu(ix->ei_block),
559 le32_to_cpu(ix[-1].ei_block));
560 }
561 BUG_ON(k && le32_to_cpu(ix->ei_block)
562 <= le32_to_cpu(ix[-1].ei_block));
563 if (block < le32_to_cpu(ix->ei_block))
564 break;
565 chix = ix;
566 }
567 BUG_ON(chix != path->p_idx);
568 }
569 #endif
570
571 }
572
573 /*
574 * ext4_ext_binsearch:
575 * binary search for closest extent of the given block
576 * the header must be checked before calling this
577 */
578 static void
ext4_ext_binsearch(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)579 ext4_ext_binsearch(struct inode *inode,
580 struct ext4_ext_path *path, ext4_lblk_t block)
581 {
582 struct ext4_extent_header *eh = path->p_hdr;
583 struct ext4_extent *r, *l, *m;
584
585 if (eh->eh_entries == 0) {
586 /*
587 * this leaf is empty:
588 * we get such a leaf in split/add case
589 */
590 return;
591 }
592
593 ext_debug("binsearch for %u: ", block);
594
595 l = EXT_FIRST_EXTENT(eh) + 1;
596 r = EXT_LAST_EXTENT(eh);
597
598 while (l <= r) {
599 m = l + (r - l) / 2;
600 if (block < le32_to_cpu(m->ee_block))
601 r = m - 1;
602 else
603 l = m + 1;
604 ext_debug("%p(%u):%p(%u):%p(%u) ", l, le32_to_cpu(l->ee_block),
605 m, le32_to_cpu(m->ee_block),
606 r, le32_to_cpu(r->ee_block));
607 }
608
609 path->p_ext = l - 1;
610 ext_debug(" -> %d:%llu:[%d]%d ",
611 le32_to_cpu(path->p_ext->ee_block),
612 ext4_ext_pblock(path->p_ext),
613 ext4_ext_is_uninitialized(path->p_ext),
614 ext4_ext_get_actual_len(path->p_ext));
615
616 #ifdef CHECK_BINSEARCH
617 {
618 struct ext4_extent *chex, *ex;
619 int k;
620
621 chex = ex = EXT_FIRST_EXTENT(eh);
622 for (k = 0; k < le16_to_cpu(eh->eh_entries); k++, ex++) {
623 BUG_ON(k && le32_to_cpu(ex->ee_block)
624 <= le32_to_cpu(ex[-1].ee_block));
625 if (block < le32_to_cpu(ex->ee_block))
626 break;
627 chex = ex;
628 }
629 BUG_ON(chex != path->p_ext);
630 }
631 #endif
632
633 }
634
ext4_ext_tree_init(handle_t * handle,struct inode * inode)635 int ext4_ext_tree_init(handle_t *handle, struct inode *inode)
636 {
637 struct ext4_extent_header *eh;
638
639 eh = ext_inode_hdr(inode);
640 eh->eh_depth = 0;
641 eh->eh_entries = 0;
642 eh->eh_magic = EXT4_EXT_MAGIC;
643 eh->eh_max = cpu_to_le16(ext4_ext_space_root(inode, 0));
644 ext4_mark_inode_dirty(handle, inode);
645 ext4_ext_invalidate_cache(inode);
646 return 0;
647 }
648
649 struct ext4_ext_path *
ext4_ext_find_extent(struct inode * inode,ext4_lblk_t block,struct ext4_ext_path * path)650 ext4_ext_find_extent(struct inode *inode, ext4_lblk_t block,
651 struct ext4_ext_path *path)
652 {
653 struct ext4_extent_header *eh;
654 struct buffer_head *bh;
655 short int depth, i, ppos = 0, alloc = 0;
656
657 eh = ext_inode_hdr(inode);
658 depth = ext_depth(inode);
659
660 /* account possible depth increase */
661 if (!path) {
662 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 2),
663 GFP_NOFS);
664 if (!path)
665 return ERR_PTR(-ENOMEM);
666 alloc = 1;
667 }
668 path[0].p_hdr = eh;
669 path[0].p_bh = NULL;
670
671 i = depth;
672 /* walk through the tree */
673 while (i) {
674 int need_to_validate = 0;
675
676 ext_debug("depth %d: num %d, max %d\n",
677 ppos, le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
678
679 ext4_ext_binsearch_idx(inode, path + ppos, block);
680 path[ppos].p_block = ext4_idx_pblock(path[ppos].p_idx);
681 path[ppos].p_depth = i;
682 path[ppos].p_ext = NULL;
683
684 bh = sb_getblk(inode->i_sb, path[ppos].p_block);
685 if (unlikely(!bh))
686 goto err;
687 if (!bh_uptodate_or_lock(bh)) {
688 trace_ext4_ext_load_extent(inode, block,
689 path[ppos].p_block);
690 if (bh_submit_read(bh) < 0) {
691 put_bh(bh);
692 goto err;
693 }
694 /* validate the extent entries */
695 need_to_validate = 1;
696 }
697 eh = ext_block_hdr(bh);
698 ppos++;
699 if (unlikely(ppos > depth)) {
700 put_bh(bh);
701 EXT4_ERROR_INODE(inode,
702 "ppos %d > depth %d", ppos, depth);
703 goto err;
704 }
705 path[ppos].p_bh = bh;
706 path[ppos].p_hdr = eh;
707 i--;
708
709 if (need_to_validate && ext4_ext_check(inode, eh, i))
710 goto err;
711 }
712
713 path[ppos].p_depth = i;
714 path[ppos].p_ext = NULL;
715 path[ppos].p_idx = NULL;
716
717 /* find extent */
718 ext4_ext_binsearch(inode, path + ppos, block);
719 /* if not an empty leaf */
720 if (path[ppos].p_ext)
721 path[ppos].p_block = ext4_ext_pblock(path[ppos].p_ext);
722
723 ext4_ext_show_path(inode, path);
724
725 return path;
726
727 err:
728 ext4_ext_drop_refs(path);
729 if (alloc)
730 kfree(path);
731 return ERR_PTR(-EIO);
732 }
733
734 /*
735 * ext4_ext_insert_index:
736 * insert new index [@logical;@ptr] into the block at @curp;
737 * check where to insert: before @curp or after @curp
738 */
ext4_ext_insert_index(handle_t * handle,struct inode * inode,struct ext4_ext_path * curp,int logical,ext4_fsblk_t ptr)739 static int ext4_ext_insert_index(handle_t *handle, struct inode *inode,
740 struct ext4_ext_path *curp,
741 int logical, ext4_fsblk_t ptr)
742 {
743 struct ext4_extent_idx *ix;
744 int len, err;
745
746 err = ext4_ext_get_access(handle, inode, curp);
747 if (err)
748 return err;
749
750 if (unlikely(logical == le32_to_cpu(curp->p_idx->ei_block))) {
751 EXT4_ERROR_INODE(inode,
752 "logical %d == ei_block %d!",
753 logical, le32_to_cpu(curp->p_idx->ei_block));
754 return -EIO;
755 }
756
757 if (unlikely(le16_to_cpu(curp->p_hdr->eh_entries)
758 >= le16_to_cpu(curp->p_hdr->eh_max))) {
759 EXT4_ERROR_INODE(inode,
760 "eh_entries %d >= eh_max %d!",
761 le16_to_cpu(curp->p_hdr->eh_entries),
762 le16_to_cpu(curp->p_hdr->eh_max));
763 return -EIO;
764 }
765
766 if (logical > le32_to_cpu(curp->p_idx->ei_block)) {
767 /* insert after */
768 ext_debug("insert new index %d after: %llu\n", logical, ptr);
769 ix = curp->p_idx + 1;
770 } else {
771 /* insert before */
772 ext_debug("insert new index %d before: %llu\n", logical, ptr);
773 ix = curp->p_idx;
774 }
775
776 len = EXT_LAST_INDEX(curp->p_hdr) - ix + 1;
777 BUG_ON(len < 0);
778 if (len > 0) {
779 ext_debug("insert new index %d: "
780 "move %d indices from 0x%p to 0x%p\n",
781 logical, len, ix, ix + 1);
782 memmove(ix + 1, ix, len * sizeof(struct ext4_extent_idx));
783 }
784
785 if (unlikely(ix > EXT_MAX_INDEX(curp->p_hdr))) {
786 EXT4_ERROR_INODE(inode, "ix > EXT_MAX_INDEX!");
787 return -EIO;
788 }
789
790 ix->ei_block = cpu_to_le32(logical);
791 ext4_idx_store_pblock(ix, ptr);
792 le16_add_cpu(&curp->p_hdr->eh_entries, 1);
793
794 if (unlikely(ix > EXT_LAST_INDEX(curp->p_hdr))) {
795 EXT4_ERROR_INODE(inode, "ix > EXT_LAST_INDEX!");
796 return -EIO;
797 }
798
799 err = ext4_ext_dirty(handle, inode, curp);
800 ext4_std_error(inode->i_sb, err);
801
802 return err;
803 }
804
805 /*
806 * ext4_ext_split:
807 * inserts new subtree into the path, using free index entry
808 * at depth @at:
809 * - allocates all needed blocks (new leaf and all intermediate index blocks)
810 * - makes decision where to split
811 * - moves remaining extents and index entries (right to the split point)
812 * into the newly allocated blocks
813 * - initializes subtree
814 */
ext4_ext_split(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_ext_path * path,struct ext4_extent * newext,int at)815 static int ext4_ext_split(handle_t *handle, struct inode *inode,
816 unsigned int flags,
817 struct ext4_ext_path *path,
818 struct ext4_extent *newext, int at)
819 {
820 struct buffer_head *bh = NULL;
821 int depth = ext_depth(inode);
822 struct ext4_extent_header *neh;
823 struct ext4_extent_idx *fidx;
824 int i = at, k, m, a;
825 ext4_fsblk_t newblock, oldblock;
826 __le32 border;
827 ext4_fsblk_t *ablocks = NULL; /* array of allocated blocks */
828 int err = 0;
829
830 /* make decision: where to split? */
831 /* FIXME: now decision is simplest: at current extent */
832
833 /* if current leaf will be split, then we should use
834 * border from split point */
835 if (unlikely(path[depth].p_ext > EXT_MAX_EXTENT(path[depth].p_hdr))) {
836 EXT4_ERROR_INODE(inode, "p_ext > EXT_MAX_EXTENT!");
837 return -EIO;
838 }
839 if (path[depth].p_ext != EXT_MAX_EXTENT(path[depth].p_hdr)) {
840 border = path[depth].p_ext[1].ee_block;
841 ext_debug("leaf will be split."
842 " next leaf starts at %d\n",
843 le32_to_cpu(border));
844 } else {
845 border = newext->ee_block;
846 ext_debug("leaf will be added."
847 " next leaf starts at %d\n",
848 le32_to_cpu(border));
849 }
850
851 /*
852 * If error occurs, then we break processing
853 * and mark filesystem read-only. index won't
854 * be inserted and tree will be in consistent
855 * state. Next mount will repair buffers too.
856 */
857
858 /*
859 * Get array to track all allocated blocks.
860 * We need this to handle errors and free blocks
861 * upon them.
862 */
863 ablocks = kzalloc(sizeof(ext4_fsblk_t) * depth, GFP_NOFS);
864 if (!ablocks)
865 return -ENOMEM;
866
867 /* allocate all needed blocks */
868 ext_debug("allocate %d blocks for indexes/leaf\n", depth - at);
869 for (a = 0; a < depth - at; a++) {
870 newblock = ext4_ext_new_meta_block(handle, inode, path,
871 newext, &err, flags);
872 if (newblock == 0)
873 goto cleanup;
874 ablocks[a] = newblock;
875 }
876
877 /* initialize new leaf */
878 newblock = ablocks[--a];
879 if (unlikely(newblock == 0)) {
880 EXT4_ERROR_INODE(inode, "newblock == 0!");
881 err = -EIO;
882 goto cleanup;
883 }
884 bh = sb_getblk(inode->i_sb, newblock);
885 if (!bh) {
886 err = -EIO;
887 goto cleanup;
888 }
889 lock_buffer(bh);
890
891 err = ext4_journal_get_create_access(handle, bh);
892 if (err)
893 goto cleanup;
894
895 neh = ext_block_hdr(bh);
896 neh->eh_entries = 0;
897 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
898 neh->eh_magic = EXT4_EXT_MAGIC;
899 neh->eh_depth = 0;
900
901 /* move remainder of path[depth] to the new leaf */
902 if (unlikely(path[depth].p_hdr->eh_entries !=
903 path[depth].p_hdr->eh_max)) {
904 EXT4_ERROR_INODE(inode, "eh_entries %d != eh_max %d!",
905 path[depth].p_hdr->eh_entries,
906 path[depth].p_hdr->eh_max);
907 err = -EIO;
908 goto cleanup;
909 }
910 /* start copy from next extent */
911 m = EXT_MAX_EXTENT(path[depth].p_hdr) - path[depth].p_ext++;
912 ext4_ext_show_move(inode, path, newblock, depth);
913 if (m) {
914 struct ext4_extent *ex;
915 ex = EXT_FIRST_EXTENT(neh);
916 memmove(ex, path[depth].p_ext, sizeof(struct ext4_extent) * m);
917 le16_add_cpu(&neh->eh_entries, m);
918 }
919
920 set_buffer_uptodate(bh);
921 unlock_buffer(bh);
922
923 err = ext4_handle_dirty_metadata(handle, inode, bh);
924 if (err)
925 goto cleanup;
926 brelse(bh);
927 bh = NULL;
928
929 /* correct old leaf */
930 if (m) {
931 err = ext4_ext_get_access(handle, inode, path + depth);
932 if (err)
933 goto cleanup;
934 le16_add_cpu(&path[depth].p_hdr->eh_entries, -m);
935 err = ext4_ext_dirty(handle, inode, path + depth);
936 if (err)
937 goto cleanup;
938
939 }
940
941 /* create intermediate indexes */
942 k = depth - at - 1;
943 if (unlikely(k < 0)) {
944 EXT4_ERROR_INODE(inode, "k %d < 0!", k);
945 err = -EIO;
946 goto cleanup;
947 }
948 if (k)
949 ext_debug("create %d intermediate indices\n", k);
950 /* insert new index into current index block */
951 /* current depth stored in i var */
952 i = depth - 1;
953 while (k--) {
954 oldblock = newblock;
955 newblock = ablocks[--a];
956 bh = sb_getblk(inode->i_sb, newblock);
957 if (!bh) {
958 err = -EIO;
959 goto cleanup;
960 }
961 lock_buffer(bh);
962
963 err = ext4_journal_get_create_access(handle, bh);
964 if (err)
965 goto cleanup;
966
967 neh = ext_block_hdr(bh);
968 neh->eh_entries = cpu_to_le16(1);
969 neh->eh_magic = EXT4_EXT_MAGIC;
970 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
971 neh->eh_depth = cpu_to_le16(depth - i);
972 fidx = EXT_FIRST_INDEX(neh);
973 fidx->ei_block = border;
974 ext4_idx_store_pblock(fidx, oldblock);
975
976 ext_debug("int.index at %d (block %llu): %u -> %llu\n",
977 i, newblock, le32_to_cpu(border), oldblock);
978
979 /* move remainder of path[i] to the new index block */
980 if (unlikely(EXT_MAX_INDEX(path[i].p_hdr) !=
981 EXT_LAST_INDEX(path[i].p_hdr))) {
982 EXT4_ERROR_INODE(inode,
983 "EXT_MAX_INDEX != EXT_LAST_INDEX ee_block %d!",
984 le32_to_cpu(path[i].p_ext->ee_block));
985 err = -EIO;
986 goto cleanup;
987 }
988 /* start copy indexes */
989 m = EXT_MAX_INDEX(path[i].p_hdr) - path[i].p_idx++;
990 ext_debug("cur 0x%p, last 0x%p\n", path[i].p_idx,
991 EXT_MAX_INDEX(path[i].p_hdr));
992 ext4_ext_show_move(inode, path, newblock, i);
993 if (m) {
994 memmove(++fidx, path[i].p_idx,
995 sizeof(struct ext4_extent_idx) * m);
996 le16_add_cpu(&neh->eh_entries, m);
997 }
998 set_buffer_uptodate(bh);
999 unlock_buffer(bh);
1000
1001 err = ext4_handle_dirty_metadata(handle, inode, bh);
1002 if (err)
1003 goto cleanup;
1004 brelse(bh);
1005 bh = NULL;
1006
1007 /* correct old index */
1008 if (m) {
1009 err = ext4_ext_get_access(handle, inode, path + i);
1010 if (err)
1011 goto cleanup;
1012 le16_add_cpu(&path[i].p_hdr->eh_entries, -m);
1013 err = ext4_ext_dirty(handle, inode, path + i);
1014 if (err)
1015 goto cleanup;
1016 }
1017
1018 i--;
1019 }
1020
1021 /* insert new index */
1022 err = ext4_ext_insert_index(handle, inode, path + at,
1023 le32_to_cpu(border), newblock);
1024
1025 cleanup:
1026 if (bh) {
1027 if (buffer_locked(bh))
1028 unlock_buffer(bh);
1029 brelse(bh);
1030 }
1031
1032 if (err) {
1033 /* free all allocated blocks in error case */
1034 for (i = 0; i < depth; i++) {
1035 if (!ablocks[i])
1036 continue;
1037 ext4_free_blocks(handle, inode, NULL, ablocks[i], 1,
1038 EXT4_FREE_BLOCKS_METADATA);
1039 }
1040 }
1041 kfree(ablocks);
1042
1043 return err;
1044 }
1045
1046 /*
1047 * ext4_ext_grow_indepth:
1048 * implements tree growing procedure:
1049 * - allocates new block
1050 * - moves top-level data (index block or leaf) into the new block
1051 * - initializes new top-level, creating index that points to the
1052 * just created block
1053 */
ext4_ext_grow_indepth(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_extent * newext)1054 static int ext4_ext_grow_indepth(handle_t *handle, struct inode *inode,
1055 unsigned int flags,
1056 struct ext4_extent *newext)
1057 {
1058 struct ext4_extent_header *neh;
1059 struct buffer_head *bh;
1060 ext4_fsblk_t newblock;
1061 int err = 0;
1062
1063 newblock = ext4_ext_new_meta_block(handle, inode, NULL,
1064 newext, &err, flags);
1065 if (newblock == 0)
1066 return err;
1067
1068 bh = sb_getblk(inode->i_sb, newblock);
1069 if (!bh) {
1070 err = -EIO;
1071 ext4_std_error(inode->i_sb, err);
1072 return err;
1073 }
1074 lock_buffer(bh);
1075
1076 err = ext4_journal_get_create_access(handle, bh);
1077 if (err) {
1078 unlock_buffer(bh);
1079 goto out;
1080 }
1081
1082 /* move top-level index/leaf into new block */
1083 memmove(bh->b_data, EXT4_I(inode)->i_data,
1084 sizeof(EXT4_I(inode)->i_data));
1085
1086 /* set size of new block */
1087 neh = ext_block_hdr(bh);
1088 /* old root could have indexes or leaves
1089 * so calculate e_max right way */
1090 if (ext_depth(inode))
1091 neh->eh_max = cpu_to_le16(ext4_ext_space_block_idx(inode, 0));
1092 else
1093 neh->eh_max = cpu_to_le16(ext4_ext_space_block(inode, 0));
1094 neh->eh_magic = EXT4_EXT_MAGIC;
1095 set_buffer_uptodate(bh);
1096 unlock_buffer(bh);
1097
1098 err = ext4_handle_dirty_metadata(handle, inode, bh);
1099 if (err)
1100 goto out;
1101
1102 /* Update top-level index: num,max,pointer */
1103 neh = ext_inode_hdr(inode);
1104 neh->eh_entries = cpu_to_le16(1);
1105 ext4_idx_store_pblock(EXT_FIRST_INDEX(neh), newblock);
1106 if (neh->eh_depth == 0) {
1107 /* Root extent block becomes index block */
1108 neh->eh_max = cpu_to_le16(ext4_ext_space_root_idx(inode, 0));
1109 EXT_FIRST_INDEX(neh)->ei_block =
1110 EXT_FIRST_EXTENT(neh)->ee_block;
1111 }
1112 ext_debug("new root: num %d(%d), lblock %d, ptr %llu\n",
1113 le16_to_cpu(neh->eh_entries), le16_to_cpu(neh->eh_max),
1114 le32_to_cpu(EXT_FIRST_INDEX(neh)->ei_block),
1115 ext4_idx_pblock(EXT_FIRST_INDEX(neh)));
1116
1117 neh->eh_depth = cpu_to_le16(le16_to_cpu(neh->eh_depth) + 1);
1118 ext4_mark_inode_dirty(handle, inode);
1119 out:
1120 brelse(bh);
1121
1122 return err;
1123 }
1124
1125 /*
1126 * ext4_ext_create_new_leaf:
1127 * finds empty index and adds new leaf.
1128 * if no free index is found, then it requests in-depth growing.
1129 */
ext4_ext_create_new_leaf(handle_t * handle,struct inode * inode,unsigned int flags,struct ext4_ext_path * path,struct ext4_extent * newext)1130 static int ext4_ext_create_new_leaf(handle_t *handle, struct inode *inode,
1131 unsigned int flags,
1132 struct ext4_ext_path *path,
1133 struct ext4_extent *newext)
1134 {
1135 struct ext4_ext_path *curp;
1136 int depth, i, err = 0;
1137
1138 repeat:
1139 i = depth = ext_depth(inode);
1140
1141 /* walk up to the tree and look for free index entry */
1142 curp = path + depth;
1143 while (i > 0 && !EXT_HAS_FREE_INDEX(curp)) {
1144 i--;
1145 curp--;
1146 }
1147
1148 /* we use already allocated block for index block,
1149 * so subsequent data blocks should be contiguous */
1150 if (EXT_HAS_FREE_INDEX(curp)) {
1151 /* if we found index with free entry, then use that
1152 * entry: create all needed subtree and add new leaf */
1153 err = ext4_ext_split(handle, inode, flags, path, newext, i);
1154 if (err)
1155 goto out;
1156
1157 /* refill path */
1158 ext4_ext_drop_refs(path);
1159 path = ext4_ext_find_extent(inode,
1160 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1161 path);
1162 if (IS_ERR(path))
1163 err = PTR_ERR(path);
1164 } else {
1165 /* tree is full, time to grow in depth */
1166 err = ext4_ext_grow_indepth(handle, inode, flags, newext);
1167 if (err)
1168 goto out;
1169
1170 /* refill path */
1171 ext4_ext_drop_refs(path);
1172 path = ext4_ext_find_extent(inode,
1173 (ext4_lblk_t)le32_to_cpu(newext->ee_block),
1174 path);
1175 if (IS_ERR(path)) {
1176 err = PTR_ERR(path);
1177 goto out;
1178 }
1179
1180 /*
1181 * only first (depth 0 -> 1) produces free space;
1182 * in all other cases we have to split the grown tree
1183 */
1184 depth = ext_depth(inode);
1185 if (path[depth].p_hdr->eh_entries == path[depth].p_hdr->eh_max) {
1186 /* now we need to split */
1187 goto repeat;
1188 }
1189 }
1190
1191 out:
1192 return err;
1193 }
1194
1195 /*
1196 * search the closest allocated block to the left for *logical
1197 * and returns it at @logical + it's physical address at @phys
1198 * if *logical is the smallest allocated block, the function
1199 * returns 0 at @phys
1200 * return value contains 0 (success) or error code
1201 */
ext4_ext_search_left(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys)1202 static int ext4_ext_search_left(struct inode *inode,
1203 struct ext4_ext_path *path,
1204 ext4_lblk_t *logical, ext4_fsblk_t *phys)
1205 {
1206 struct ext4_extent_idx *ix;
1207 struct ext4_extent *ex;
1208 int depth, ee_len;
1209
1210 if (unlikely(path == NULL)) {
1211 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1212 return -EIO;
1213 }
1214 depth = path->p_depth;
1215 *phys = 0;
1216
1217 if (depth == 0 && path->p_ext == NULL)
1218 return 0;
1219
1220 /* usually extent in the path covers blocks smaller
1221 * then *logical, but it can be that extent is the
1222 * first one in the file */
1223
1224 ex = path[depth].p_ext;
1225 ee_len = ext4_ext_get_actual_len(ex);
1226 if (*logical < le32_to_cpu(ex->ee_block)) {
1227 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1228 EXT4_ERROR_INODE(inode,
1229 "EXT_FIRST_EXTENT != ex *logical %d ee_block %d!",
1230 *logical, le32_to_cpu(ex->ee_block));
1231 return -EIO;
1232 }
1233 while (--depth >= 0) {
1234 ix = path[depth].p_idx;
1235 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1236 EXT4_ERROR_INODE(inode,
1237 "ix (%d) != EXT_FIRST_INDEX (%d) (depth %d)!",
1238 ix != NULL ? le32_to_cpu(ix->ei_block) : 0,
1239 EXT_FIRST_INDEX(path[depth].p_hdr) != NULL ?
1240 le32_to_cpu(EXT_FIRST_INDEX(path[depth].p_hdr)->ei_block) : 0,
1241 depth);
1242 return -EIO;
1243 }
1244 }
1245 return 0;
1246 }
1247
1248 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1249 EXT4_ERROR_INODE(inode,
1250 "logical %d < ee_block %d + ee_len %d!",
1251 *logical, le32_to_cpu(ex->ee_block), ee_len);
1252 return -EIO;
1253 }
1254
1255 *logical = le32_to_cpu(ex->ee_block) + ee_len - 1;
1256 *phys = ext4_ext_pblock(ex) + ee_len - 1;
1257 return 0;
1258 }
1259
1260 /*
1261 * search the closest allocated block to the right for *logical
1262 * and returns it at @logical + it's physical address at @phys
1263 * if *logical is the largest allocated block, the function
1264 * returns 0 at @phys
1265 * return value contains 0 (success) or error code
1266 */
ext4_ext_search_right(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t * logical,ext4_fsblk_t * phys,struct ext4_extent ** ret_ex)1267 static int ext4_ext_search_right(struct inode *inode,
1268 struct ext4_ext_path *path,
1269 ext4_lblk_t *logical, ext4_fsblk_t *phys,
1270 struct ext4_extent **ret_ex)
1271 {
1272 struct buffer_head *bh = NULL;
1273 struct ext4_extent_header *eh;
1274 struct ext4_extent_idx *ix;
1275 struct ext4_extent *ex;
1276 ext4_fsblk_t block;
1277 int depth; /* Note, NOT eh_depth; depth from top of tree */
1278 int ee_len;
1279
1280 if (unlikely(path == NULL)) {
1281 EXT4_ERROR_INODE(inode, "path == NULL *logical %d!", *logical);
1282 return -EIO;
1283 }
1284 depth = path->p_depth;
1285 *phys = 0;
1286
1287 if (depth == 0 && path->p_ext == NULL)
1288 return 0;
1289
1290 /* usually extent in the path covers blocks smaller
1291 * then *logical, but it can be that extent is the
1292 * first one in the file */
1293
1294 ex = path[depth].p_ext;
1295 ee_len = ext4_ext_get_actual_len(ex);
1296 if (*logical < le32_to_cpu(ex->ee_block)) {
1297 if (unlikely(EXT_FIRST_EXTENT(path[depth].p_hdr) != ex)) {
1298 EXT4_ERROR_INODE(inode,
1299 "first_extent(path[%d].p_hdr) != ex",
1300 depth);
1301 return -EIO;
1302 }
1303 while (--depth >= 0) {
1304 ix = path[depth].p_idx;
1305 if (unlikely(ix != EXT_FIRST_INDEX(path[depth].p_hdr))) {
1306 EXT4_ERROR_INODE(inode,
1307 "ix != EXT_FIRST_INDEX *logical %d!",
1308 *logical);
1309 return -EIO;
1310 }
1311 }
1312 goto found_extent;
1313 }
1314
1315 if (unlikely(*logical < (le32_to_cpu(ex->ee_block) + ee_len))) {
1316 EXT4_ERROR_INODE(inode,
1317 "logical %d < ee_block %d + ee_len %d!",
1318 *logical, le32_to_cpu(ex->ee_block), ee_len);
1319 return -EIO;
1320 }
1321
1322 if (ex != EXT_LAST_EXTENT(path[depth].p_hdr)) {
1323 /* next allocated block in this leaf */
1324 ex++;
1325 goto found_extent;
1326 }
1327
1328 /* go up and search for index to the right */
1329 while (--depth >= 0) {
1330 ix = path[depth].p_idx;
1331 if (ix != EXT_LAST_INDEX(path[depth].p_hdr))
1332 goto got_index;
1333 }
1334
1335 /* we've gone up to the root and found no index to the right */
1336 return 0;
1337
1338 got_index:
1339 /* we've found index to the right, let's
1340 * follow it and find the closest allocated
1341 * block to the right */
1342 ix++;
1343 block = ext4_idx_pblock(ix);
1344 while (++depth < path->p_depth) {
1345 bh = sb_bread(inode->i_sb, block);
1346 if (bh == NULL)
1347 return -EIO;
1348 eh = ext_block_hdr(bh);
1349 /* subtract from p_depth to get proper eh_depth */
1350 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1351 put_bh(bh);
1352 return -EIO;
1353 }
1354 ix = EXT_FIRST_INDEX(eh);
1355 block = ext4_idx_pblock(ix);
1356 put_bh(bh);
1357 }
1358
1359 bh = sb_bread(inode->i_sb, block);
1360 if (bh == NULL)
1361 return -EIO;
1362 eh = ext_block_hdr(bh);
1363 if (ext4_ext_check(inode, eh, path->p_depth - depth)) {
1364 put_bh(bh);
1365 return -EIO;
1366 }
1367 ex = EXT_FIRST_EXTENT(eh);
1368 found_extent:
1369 *logical = le32_to_cpu(ex->ee_block);
1370 *phys = ext4_ext_pblock(ex);
1371 *ret_ex = ex;
1372 if (bh)
1373 put_bh(bh);
1374 return 0;
1375 }
1376
1377 /*
1378 * ext4_ext_next_allocated_block:
1379 * returns allocated block in subsequent extent or EXT_MAX_BLOCKS.
1380 * NOTE: it considers block number from index entry as
1381 * allocated block. Thus, index entries have to be consistent
1382 * with leaves.
1383 */
1384 static ext4_lblk_t
ext4_ext_next_allocated_block(struct ext4_ext_path * path)1385 ext4_ext_next_allocated_block(struct ext4_ext_path *path)
1386 {
1387 int depth;
1388
1389 BUG_ON(path == NULL);
1390 depth = path->p_depth;
1391
1392 if (depth == 0 && path->p_ext == NULL)
1393 return EXT_MAX_BLOCKS;
1394
1395 while (depth >= 0) {
1396 if (depth == path->p_depth) {
1397 /* leaf */
1398 if (path[depth].p_ext &&
1399 path[depth].p_ext !=
1400 EXT_LAST_EXTENT(path[depth].p_hdr))
1401 return le32_to_cpu(path[depth].p_ext[1].ee_block);
1402 } else {
1403 /* index */
1404 if (path[depth].p_idx !=
1405 EXT_LAST_INDEX(path[depth].p_hdr))
1406 return le32_to_cpu(path[depth].p_idx[1].ei_block);
1407 }
1408 depth--;
1409 }
1410
1411 return EXT_MAX_BLOCKS;
1412 }
1413
1414 /*
1415 * ext4_ext_next_leaf_block:
1416 * returns first allocated block from next leaf or EXT_MAX_BLOCKS
1417 */
ext4_ext_next_leaf_block(struct ext4_ext_path * path)1418 static ext4_lblk_t ext4_ext_next_leaf_block(struct ext4_ext_path *path)
1419 {
1420 int depth;
1421
1422 BUG_ON(path == NULL);
1423 depth = path->p_depth;
1424
1425 /* zero-tree has no leaf blocks at all */
1426 if (depth == 0)
1427 return EXT_MAX_BLOCKS;
1428
1429 /* go to index block */
1430 depth--;
1431
1432 while (depth >= 0) {
1433 if (path[depth].p_idx !=
1434 EXT_LAST_INDEX(path[depth].p_hdr))
1435 return (ext4_lblk_t)
1436 le32_to_cpu(path[depth].p_idx[1].ei_block);
1437 depth--;
1438 }
1439
1440 return EXT_MAX_BLOCKS;
1441 }
1442
1443 /*
1444 * ext4_ext_correct_indexes:
1445 * if leaf gets modified and modified extent is first in the leaf,
1446 * then we have to correct all indexes above.
1447 * TODO: do we need to correct tree in all cases?
1448 */
ext4_ext_correct_indexes(handle_t * handle,struct inode * inode,struct ext4_ext_path * path)1449 static int ext4_ext_correct_indexes(handle_t *handle, struct inode *inode,
1450 struct ext4_ext_path *path)
1451 {
1452 struct ext4_extent_header *eh;
1453 int depth = ext_depth(inode);
1454 struct ext4_extent *ex;
1455 __le32 border;
1456 int k, err = 0;
1457
1458 eh = path[depth].p_hdr;
1459 ex = path[depth].p_ext;
1460
1461 if (unlikely(ex == NULL || eh == NULL)) {
1462 EXT4_ERROR_INODE(inode,
1463 "ex %p == NULL or eh %p == NULL", ex, eh);
1464 return -EIO;
1465 }
1466
1467 if (depth == 0) {
1468 /* there is no tree at all */
1469 return 0;
1470 }
1471
1472 if (ex != EXT_FIRST_EXTENT(eh)) {
1473 /* we correct tree if first leaf got modified only */
1474 return 0;
1475 }
1476
1477 /*
1478 * TODO: we need correction if border is smaller than current one
1479 */
1480 k = depth - 1;
1481 border = path[depth].p_ext->ee_block;
1482 err = ext4_ext_get_access(handle, inode, path + k);
1483 if (err)
1484 return err;
1485 path[k].p_idx->ei_block = border;
1486 err = ext4_ext_dirty(handle, inode, path + k);
1487 if (err)
1488 return err;
1489
1490 while (k--) {
1491 /* change all left-side indexes */
1492 if (path[k+1].p_idx != EXT_FIRST_INDEX(path[k+1].p_hdr))
1493 break;
1494 err = ext4_ext_get_access(handle, inode, path + k);
1495 if (err)
1496 break;
1497 path[k].p_idx->ei_block = border;
1498 err = ext4_ext_dirty(handle, inode, path + k);
1499 if (err)
1500 break;
1501 }
1502
1503 return err;
1504 }
1505
1506 int
ext4_can_extents_be_merged(struct inode * inode,struct ext4_extent * ex1,struct ext4_extent * ex2)1507 ext4_can_extents_be_merged(struct inode *inode, struct ext4_extent *ex1,
1508 struct ext4_extent *ex2)
1509 {
1510 unsigned short ext1_ee_len, ext2_ee_len, max_len;
1511
1512 /*
1513 * Make sure that either both extents are uninitialized, or
1514 * both are _not_.
1515 */
1516 if (ext4_ext_is_uninitialized(ex1) ^ ext4_ext_is_uninitialized(ex2))
1517 return 0;
1518
1519 if (ext4_ext_is_uninitialized(ex1))
1520 max_len = EXT_UNINIT_MAX_LEN;
1521 else
1522 max_len = EXT_INIT_MAX_LEN;
1523
1524 ext1_ee_len = ext4_ext_get_actual_len(ex1);
1525 ext2_ee_len = ext4_ext_get_actual_len(ex2);
1526
1527 if (le32_to_cpu(ex1->ee_block) + ext1_ee_len !=
1528 le32_to_cpu(ex2->ee_block))
1529 return 0;
1530
1531 /*
1532 * To allow future support for preallocated extents to be added
1533 * as an RO_COMPAT feature, refuse to merge to extents if
1534 * this can result in the top bit of ee_len being set.
1535 */
1536 if (ext1_ee_len + ext2_ee_len > max_len)
1537 return 0;
1538 #ifdef AGGRESSIVE_TEST
1539 if (ext1_ee_len >= 4)
1540 return 0;
1541 #endif
1542
1543 if (ext4_ext_pblock(ex1) + ext1_ee_len == ext4_ext_pblock(ex2))
1544 return 1;
1545 return 0;
1546 }
1547
1548 /*
1549 * This function tries to merge the "ex" extent to the next extent in the tree.
1550 * It always tries to merge towards right. If you want to merge towards
1551 * left, pass "ex - 1" as argument instead of "ex".
1552 * Returns 0 if the extents (ex and ex+1) were _not_ merged and returns
1553 * 1 if they got merged.
1554 */
ext4_ext_try_to_merge_right(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1555 static int ext4_ext_try_to_merge_right(struct inode *inode,
1556 struct ext4_ext_path *path,
1557 struct ext4_extent *ex)
1558 {
1559 struct ext4_extent_header *eh;
1560 unsigned int depth, len;
1561 int merge_done = 0;
1562 int uninitialized = 0;
1563
1564 depth = ext_depth(inode);
1565 BUG_ON(path[depth].p_hdr == NULL);
1566 eh = path[depth].p_hdr;
1567
1568 while (ex < EXT_LAST_EXTENT(eh)) {
1569 if (!ext4_can_extents_be_merged(inode, ex, ex + 1))
1570 break;
1571 /* merge with next extent! */
1572 if (ext4_ext_is_uninitialized(ex))
1573 uninitialized = 1;
1574 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1575 + ext4_ext_get_actual_len(ex + 1));
1576 if (uninitialized)
1577 ext4_ext_mark_uninitialized(ex);
1578
1579 if (ex + 1 < EXT_LAST_EXTENT(eh)) {
1580 len = (EXT_LAST_EXTENT(eh) - ex - 1)
1581 * sizeof(struct ext4_extent);
1582 memmove(ex + 1, ex + 2, len);
1583 }
1584 le16_add_cpu(&eh->eh_entries, -1);
1585 merge_done = 1;
1586 WARN_ON(eh->eh_entries == 0);
1587 if (!eh->eh_entries)
1588 EXT4_ERROR_INODE(inode, "eh->eh_entries = 0!");
1589 }
1590
1591 return merge_done;
1592 }
1593
1594 /*
1595 * This function tries to merge the @ex extent to neighbours in the tree.
1596 * return 1 if merge left else 0.
1597 */
ext4_ext_try_to_merge(struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * ex)1598 static int ext4_ext_try_to_merge(struct inode *inode,
1599 struct ext4_ext_path *path,
1600 struct ext4_extent *ex) {
1601 struct ext4_extent_header *eh;
1602 unsigned int depth;
1603 int merge_done = 0;
1604 int ret = 0;
1605
1606 depth = ext_depth(inode);
1607 BUG_ON(path[depth].p_hdr == NULL);
1608 eh = path[depth].p_hdr;
1609
1610 if (ex > EXT_FIRST_EXTENT(eh))
1611 merge_done = ext4_ext_try_to_merge_right(inode, path, ex - 1);
1612
1613 if (!merge_done)
1614 ret = ext4_ext_try_to_merge_right(inode, path, ex);
1615
1616 return ret;
1617 }
1618
1619 /*
1620 * check if a portion of the "newext" extent overlaps with an
1621 * existing extent.
1622 *
1623 * If there is an overlap discovered, it updates the length of the newext
1624 * such that there will be no overlap, and then returns 1.
1625 * If there is no overlap found, it returns 0.
1626 */
ext4_ext_check_overlap(struct ext4_sb_info * sbi,struct inode * inode,struct ext4_extent * newext,struct ext4_ext_path * path)1627 static unsigned int ext4_ext_check_overlap(struct ext4_sb_info *sbi,
1628 struct inode *inode,
1629 struct ext4_extent *newext,
1630 struct ext4_ext_path *path)
1631 {
1632 ext4_lblk_t b1, b2;
1633 unsigned int depth, len1;
1634 unsigned int ret = 0;
1635
1636 b1 = le32_to_cpu(newext->ee_block);
1637 len1 = ext4_ext_get_actual_len(newext);
1638 depth = ext_depth(inode);
1639 if (!path[depth].p_ext)
1640 goto out;
1641 b2 = le32_to_cpu(path[depth].p_ext->ee_block);
1642 b2 &= ~(sbi->s_cluster_ratio - 1);
1643
1644 /*
1645 * get the next allocated block if the extent in the path
1646 * is before the requested block(s)
1647 */
1648 if (b2 < b1) {
1649 b2 = ext4_ext_next_allocated_block(path);
1650 if (b2 == EXT_MAX_BLOCKS)
1651 goto out;
1652 b2 &= ~(sbi->s_cluster_ratio - 1);
1653 }
1654
1655 /* check for wrap through zero on extent logical start block*/
1656 if (b1 + len1 < b1) {
1657 len1 = EXT_MAX_BLOCKS - b1;
1658 newext->ee_len = cpu_to_le16(len1);
1659 ret = 1;
1660 }
1661
1662 /* check for overlap */
1663 if (b1 + len1 > b2) {
1664 newext->ee_len = cpu_to_le16(b2 - b1);
1665 ret = 1;
1666 }
1667 out:
1668 return ret;
1669 }
1670
1671 /*
1672 * ext4_ext_insert_extent:
1673 * tries to merge requsted extent into the existing extent or
1674 * inserts requested extent as new one into the tree,
1675 * creating new leaf in the no-space case.
1676 */
ext4_ext_insert_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_extent * newext,int flag)1677 int ext4_ext_insert_extent(handle_t *handle, struct inode *inode,
1678 struct ext4_ext_path *path,
1679 struct ext4_extent *newext, int flag)
1680 {
1681 struct ext4_extent_header *eh;
1682 struct ext4_extent *ex, *fex;
1683 struct ext4_extent *nearex; /* nearest extent */
1684 struct ext4_ext_path *npath = NULL;
1685 int depth, len, err;
1686 ext4_lblk_t next;
1687 unsigned uninitialized = 0;
1688 int flags = 0;
1689
1690 if (unlikely(ext4_ext_get_actual_len(newext) == 0)) {
1691 EXT4_ERROR_INODE(inode, "ext4_ext_get_actual_len(newext) == 0");
1692 return -EIO;
1693 }
1694 depth = ext_depth(inode);
1695 ex = path[depth].p_ext;
1696 if (unlikely(path[depth].p_hdr == NULL)) {
1697 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1698 return -EIO;
1699 }
1700
1701 /* try to insert block into found extent and return */
1702 if (ex && !(flag & EXT4_GET_BLOCKS_PRE_IO)
1703 && ext4_can_extents_be_merged(inode, ex, newext)) {
1704 ext_debug("append [%d]%d block to %u:[%d]%d (from %llu)\n",
1705 ext4_ext_is_uninitialized(newext),
1706 ext4_ext_get_actual_len(newext),
1707 le32_to_cpu(ex->ee_block),
1708 ext4_ext_is_uninitialized(ex),
1709 ext4_ext_get_actual_len(ex),
1710 ext4_ext_pblock(ex));
1711 err = ext4_ext_get_access(handle, inode, path + depth);
1712 if (err)
1713 return err;
1714
1715 /*
1716 * ext4_can_extents_be_merged should have checked that either
1717 * both extents are uninitialized, or both aren't. Thus we
1718 * need to check only one of them here.
1719 */
1720 if (ext4_ext_is_uninitialized(ex))
1721 uninitialized = 1;
1722 ex->ee_len = cpu_to_le16(ext4_ext_get_actual_len(ex)
1723 + ext4_ext_get_actual_len(newext));
1724 if (uninitialized)
1725 ext4_ext_mark_uninitialized(ex);
1726 eh = path[depth].p_hdr;
1727 nearex = ex;
1728 goto merge;
1729 }
1730
1731 depth = ext_depth(inode);
1732 eh = path[depth].p_hdr;
1733 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max))
1734 goto has_space;
1735
1736 /* probably next leaf has space for us? */
1737 fex = EXT_LAST_EXTENT(eh);
1738 next = EXT_MAX_BLOCKS;
1739 if (le32_to_cpu(newext->ee_block) > le32_to_cpu(fex->ee_block))
1740 next = ext4_ext_next_leaf_block(path);
1741 if (next != EXT_MAX_BLOCKS) {
1742 ext_debug("next leaf block - %u\n", next);
1743 BUG_ON(npath != NULL);
1744 npath = ext4_ext_find_extent(inode, next, NULL);
1745 if (IS_ERR(npath))
1746 return PTR_ERR(npath);
1747 BUG_ON(npath->p_depth != path->p_depth);
1748 eh = npath[depth].p_hdr;
1749 if (le16_to_cpu(eh->eh_entries) < le16_to_cpu(eh->eh_max)) {
1750 ext_debug("next leaf isn't full(%d)\n",
1751 le16_to_cpu(eh->eh_entries));
1752 path = npath;
1753 goto has_space;
1754 }
1755 ext_debug("next leaf has no free space(%d,%d)\n",
1756 le16_to_cpu(eh->eh_entries), le16_to_cpu(eh->eh_max));
1757 }
1758
1759 /*
1760 * There is no free space in the found leaf.
1761 * We're gonna add a new leaf in the tree.
1762 */
1763 if (flag & EXT4_GET_BLOCKS_PUNCH_OUT_EXT)
1764 flags = EXT4_MB_USE_ROOT_BLOCKS;
1765 err = ext4_ext_create_new_leaf(handle, inode, flags, path, newext);
1766 if (err)
1767 goto cleanup;
1768 depth = ext_depth(inode);
1769 eh = path[depth].p_hdr;
1770
1771 has_space:
1772 nearex = path[depth].p_ext;
1773
1774 err = ext4_ext_get_access(handle, inode, path + depth);
1775 if (err)
1776 goto cleanup;
1777
1778 if (!nearex) {
1779 /* there is no extent in this leaf, create first one */
1780 ext_debug("first extent in the leaf: %u:%llu:[%d]%d\n",
1781 le32_to_cpu(newext->ee_block),
1782 ext4_ext_pblock(newext),
1783 ext4_ext_is_uninitialized(newext),
1784 ext4_ext_get_actual_len(newext));
1785 nearex = EXT_FIRST_EXTENT(eh);
1786 } else {
1787 if (le32_to_cpu(newext->ee_block)
1788 > le32_to_cpu(nearex->ee_block)) {
1789 /* Insert after */
1790 ext_debug("insert %u:%llu:[%d]%d before: "
1791 "nearest %p\n",
1792 le32_to_cpu(newext->ee_block),
1793 ext4_ext_pblock(newext),
1794 ext4_ext_is_uninitialized(newext),
1795 ext4_ext_get_actual_len(newext),
1796 nearex);
1797 nearex++;
1798 } else {
1799 /* Insert before */
1800 BUG_ON(newext->ee_block == nearex->ee_block);
1801 ext_debug("insert %u:%llu:[%d]%d after: "
1802 "nearest %p\n",
1803 le32_to_cpu(newext->ee_block),
1804 ext4_ext_pblock(newext),
1805 ext4_ext_is_uninitialized(newext),
1806 ext4_ext_get_actual_len(newext),
1807 nearex);
1808 }
1809 len = EXT_LAST_EXTENT(eh) - nearex + 1;
1810 if (len > 0) {
1811 ext_debug("insert %u:%llu:[%d]%d: "
1812 "move %d extents from 0x%p to 0x%p\n",
1813 le32_to_cpu(newext->ee_block),
1814 ext4_ext_pblock(newext),
1815 ext4_ext_is_uninitialized(newext),
1816 ext4_ext_get_actual_len(newext),
1817 len, nearex, nearex + 1);
1818 memmove(nearex + 1, nearex,
1819 len * sizeof(struct ext4_extent));
1820 }
1821 }
1822
1823 le16_add_cpu(&eh->eh_entries, 1);
1824 path[depth].p_ext = nearex;
1825 nearex->ee_block = newext->ee_block;
1826 ext4_ext_store_pblock(nearex, ext4_ext_pblock(newext));
1827 nearex->ee_len = newext->ee_len;
1828
1829 merge:
1830 /* try to merge extents to the right */
1831 if (!(flag & EXT4_GET_BLOCKS_PRE_IO))
1832 ext4_ext_try_to_merge(inode, path, nearex);
1833
1834 /* try to merge extents to the left */
1835
1836 /* time to correct all indexes above */
1837 err = ext4_ext_correct_indexes(handle, inode, path);
1838 if (err)
1839 goto cleanup;
1840
1841 err = ext4_ext_dirty(handle, inode, path + depth);
1842
1843 cleanup:
1844 if (npath) {
1845 ext4_ext_drop_refs(npath);
1846 kfree(npath);
1847 }
1848 ext4_ext_invalidate_cache(inode);
1849 return err;
1850 }
1851
ext4_ext_walk_space(struct inode * inode,ext4_lblk_t block,ext4_lblk_t num,ext_prepare_callback func,void * cbdata)1852 static int ext4_ext_walk_space(struct inode *inode, ext4_lblk_t block,
1853 ext4_lblk_t num, ext_prepare_callback func,
1854 void *cbdata)
1855 {
1856 struct ext4_ext_path *path = NULL;
1857 struct ext4_ext_cache cbex;
1858 struct ext4_extent *ex;
1859 ext4_lblk_t next, start = 0, end = 0;
1860 ext4_lblk_t last = block + num;
1861 int depth, exists, err = 0;
1862
1863 BUG_ON(func == NULL);
1864 BUG_ON(inode == NULL);
1865
1866 while (block < last && block != EXT_MAX_BLOCKS) {
1867 num = last - block;
1868 /* find extent for this block */
1869 down_read(&EXT4_I(inode)->i_data_sem);
1870 path = ext4_ext_find_extent(inode, block, path);
1871 up_read(&EXT4_I(inode)->i_data_sem);
1872 if (IS_ERR(path)) {
1873 err = PTR_ERR(path);
1874 path = NULL;
1875 break;
1876 }
1877
1878 depth = ext_depth(inode);
1879 if (unlikely(path[depth].p_hdr == NULL)) {
1880 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
1881 err = -EIO;
1882 break;
1883 }
1884 ex = path[depth].p_ext;
1885 next = ext4_ext_next_allocated_block(path);
1886
1887 exists = 0;
1888 if (!ex) {
1889 /* there is no extent yet, so try to allocate
1890 * all requested space */
1891 start = block;
1892 end = block + num;
1893 } else if (le32_to_cpu(ex->ee_block) > block) {
1894 /* need to allocate space before found extent */
1895 start = block;
1896 end = le32_to_cpu(ex->ee_block);
1897 if (block + num < end)
1898 end = block + num;
1899 } else if (block >= le32_to_cpu(ex->ee_block)
1900 + ext4_ext_get_actual_len(ex)) {
1901 /* need to allocate space after found extent */
1902 start = block;
1903 end = block + num;
1904 if (end >= next)
1905 end = next;
1906 } else if (block >= le32_to_cpu(ex->ee_block)) {
1907 /*
1908 * some part of requested space is covered
1909 * by found extent
1910 */
1911 start = block;
1912 end = le32_to_cpu(ex->ee_block)
1913 + ext4_ext_get_actual_len(ex);
1914 if (block + num < end)
1915 end = block + num;
1916 exists = 1;
1917 } else {
1918 BUG();
1919 }
1920 BUG_ON(end <= start);
1921
1922 if (!exists) {
1923 cbex.ec_block = start;
1924 cbex.ec_len = end - start;
1925 cbex.ec_start = 0;
1926 } else {
1927 cbex.ec_block = le32_to_cpu(ex->ee_block);
1928 cbex.ec_len = ext4_ext_get_actual_len(ex);
1929 cbex.ec_start = ext4_ext_pblock(ex);
1930 }
1931
1932 if (unlikely(cbex.ec_len == 0)) {
1933 EXT4_ERROR_INODE(inode, "cbex.ec_len == 0");
1934 err = -EIO;
1935 break;
1936 }
1937 err = func(inode, next, &cbex, ex, cbdata);
1938 ext4_ext_drop_refs(path);
1939
1940 if (err < 0)
1941 break;
1942
1943 if (err == EXT_REPEAT)
1944 continue;
1945 else if (err == EXT_BREAK) {
1946 err = 0;
1947 break;
1948 }
1949
1950 if (ext_depth(inode) != depth) {
1951 /* depth was changed. we have to realloc path */
1952 kfree(path);
1953 path = NULL;
1954 }
1955
1956 block = cbex.ec_block + cbex.ec_len;
1957 }
1958
1959 if (path) {
1960 ext4_ext_drop_refs(path);
1961 kfree(path);
1962 }
1963
1964 return err;
1965 }
1966
1967 static void
ext4_ext_put_in_cache(struct inode * inode,ext4_lblk_t block,__u32 len,ext4_fsblk_t start)1968 ext4_ext_put_in_cache(struct inode *inode, ext4_lblk_t block,
1969 __u32 len, ext4_fsblk_t start)
1970 {
1971 struct ext4_ext_cache *cex;
1972 BUG_ON(len == 0);
1973 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1974 trace_ext4_ext_put_in_cache(inode, block, len, start);
1975 cex = &EXT4_I(inode)->i_cached_extent;
1976 cex->ec_block = block;
1977 cex->ec_len = len;
1978 cex->ec_start = start;
1979 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1980 }
1981
1982 /*
1983 * ext4_ext_put_gap_in_cache:
1984 * calculate boundaries of the gap that the requested block fits into
1985 * and cache this gap
1986 */
1987 static void
ext4_ext_put_gap_in_cache(struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t block)1988 ext4_ext_put_gap_in_cache(struct inode *inode, struct ext4_ext_path *path,
1989 ext4_lblk_t block)
1990 {
1991 int depth = ext_depth(inode);
1992 unsigned long len;
1993 ext4_lblk_t lblock;
1994 struct ext4_extent *ex;
1995
1996 ex = path[depth].p_ext;
1997 if (ex == NULL) {
1998 /* there is no extent yet, so gap is [0;-] */
1999 lblock = 0;
2000 len = EXT_MAX_BLOCKS;
2001 ext_debug("cache gap(whole file):");
2002 } else if (block < le32_to_cpu(ex->ee_block)) {
2003 lblock = block;
2004 len = le32_to_cpu(ex->ee_block) - block;
2005 ext_debug("cache gap(before): %u [%u:%u]",
2006 block,
2007 le32_to_cpu(ex->ee_block),
2008 ext4_ext_get_actual_len(ex));
2009 } else if (block >= le32_to_cpu(ex->ee_block)
2010 + ext4_ext_get_actual_len(ex)) {
2011 ext4_lblk_t next;
2012 lblock = le32_to_cpu(ex->ee_block)
2013 + ext4_ext_get_actual_len(ex);
2014
2015 next = ext4_ext_next_allocated_block(path);
2016 ext_debug("cache gap(after): [%u:%u] %u",
2017 le32_to_cpu(ex->ee_block),
2018 ext4_ext_get_actual_len(ex),
2019 block);
2020 BUG_ON(next == lblock);
2021 len = next - lblock;
2022 } else {
2023 lblock = len = 0;
2024 BUG();
2025 }
2026
2027 ext_debug(" -> %u:%lu\n", lblock, len);
2028 ext4_ext_put_in_cache(inode, lblock, len, 0);
2029 }
2030
2031 /*
2032 * ext4_ext_check_cache()
2033 * Checks to see if the given block is in the cache.
2034 * If it is, the cached extent is stored in the given
2035 * cache extent pointer. If the cached extent is a hole,
2036 * this routine should be used instead of
2037 * ext4_ext_in_cache if the calling function needs to
2038 * know the size of the hole.
2039 *
2040 * @inode: The files inode
2041 * @block: The block to look for in the cache
2042 * @ex: Pointer where the cached extent will be stored
2043 * if it contains block
2044 *
2045 * Return 0 if cache is invalid; 1 if the cache is valid
2046 */
ext4_ext_check_cache(struct inode * inode,ext4_lblk_t block,struct ext4_ext_cache * ex)2047 static int ext4_ext_check_cache(struct inode *inode, ext4_lblk_t block,
2048 struct ext4_ext_cache *ex){
2049 struct ext4_ext_cache *cex;
2050 struct ext4_sb_info *sbi;
2051 int ret = 0;
2052
2053 /*
2054 * We borrow i_block_reservation_lock to protect i_cached_extent
2055 */
2056 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
2057 cex = &EXT4_I(inode)->i_cached_extent;
2058 sbi = EXT4_SB(inode->i_sb);
2059
2060 /* has cache valid data? */
2061 if (cex->ec_len == 0)
2062 goto errout;
2063
2064 if (in_range(block, cex->ec_block, cex->ec_len)) {
2065 memcpy(ex, cex, sizeof(struct ext4_ext_cache));
2066 ext_debug("%u cached by %u:%u:%llu\n",
2067 block,
2068 cex->ec_block, cex->ec_len, cex->ec_start);
2069 ret = 1;
2070 }
2071 errout:
2072 trace_ext4_ext_in_cache(inode, block, ret);
2073 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
2074 return ret;
2075 }
2076
2077 /*
2078 * ext4_ext_in_cache()
2079 * Checks to see if the given block is in the cache.
2080 * If it is, the cached extent is stored in the given
2081 * extent pointer.
2082 *
2083 * @inode: The files inode
2084 * @block: The block to look for in the cache
2085 * @ex: Pointer where the cached extent will be stored
2086 * if it contains block
2087 *
2088 * Return 0 if cache is invalid; 1 if the cache is valid
2089 */
2090 static int
ext4_ext_in_cache(struct inode * inode,ext4_lblk_t block,struct ext4_extent * ex)2091 ext4_ext_in_cache(struct inode *inode, ext4_lblk_t block,
2092 struct ext4_extent *ex)
2093 {
2094 struct ext4_ext_cache cex;
2095 int ret = 0;
2096
2097 if (ext4_ext_check_cache(inode, block, &cex)) {
2098 ex->ee_block = cpu_to_le32(cex.ec_block);
2099 ext4_ext_store_pblock(ex, cex.ec_start);
2100 ex->ee_len = cpu_to_le16(cex.ec_len);
2101 ret = 1;
2102 }
2103
2104 return ret;
2105 }
2106
2107
2108 /*
2109 * ext4_ext_rm_idx:
2110 * removes index from the index block.
2111 */
ext4_ext_rm_idx(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,int depth)2112 static int ext4_ext_rm_idx(handle_t *handle, struct inode *inode,
2113 struct ext4_ext_path *path, int depth)
2114 {
2115 int err;
2116 ext4_fsblk_t leaf;
2117
2118 /* free index block */
2119 depth--;
2120 path = path + depth;
2121 leaf = ext4_idx_pblock(path->p_idx);
2122 if (unlikely(path->p_hdr->eh_entries == 0)) {
2123 EXT4_ERROR_INODE(inode, "path->p_hdr->eh_entries == 0");
2124 return -EIO;
2125 }
2126 err = ext4_ext_get_access(handle, inode, path);
2127 if (err)
2128 return err;
2129
2130 if (path->p_idx != EXT_LAST_INDEX(path->p_hdr)) {
2131 int len = EXT_LAST_INDEX(path->p_hdr) - path->p_idx;
2132 len *= sizeof(struct ext4_extent_idx);
2133 memmove(path->p_idx, path->p_idx + 1, len);
2134 }
2135
2136 le16_add_cpu(&path->p_hdr->eh_entries, -1);
2137 err = ext4_ext_dirty(handle, inode, path);
2138 if (err)
2139 return err;
2140 ext_debug("index is empty, remove it, free block %llu\n", leaf);
2141 trace_ext4_ext_rm_idx(inode, leaf);
2142
2143 ext4_free_blocks(handle, inode, NULL, leaf, 1,
2144 EXT4_FREE_BLOCKS_METADATA | EXT4_FREE_BLOCKS_FORGET);
2145
2146 while (--depth >= 0) {
2147 if (path->p_idx != EXT_FIRST_INDEX(path->p_hdr))
2148 break;
2149 path--;
2150 err = ext4_ext_get_access(handle, inode, path);
2151 if (err)
2152 break;
2153 path->p_idx->ei_block = (path+1)->p_idx->ei_block;
2154 err = ext4_ext_dirty(handle, inode, path);
2155 if (err)
2156 break;
2157 }
2158 return err;
2159 }
2160
2161 /*
2162 * ext4_ext_calc_credits_for_single_extent:
2163 * This routine returns max. credits that needed to insert an extent
2164 * to the extent tree.
2165 * When pass the actual path, the caller should calculate credits
2166 * under i_data_sem.
2167 */
ext4_ext_calc_credits_for_single_extent(struct inode * inode,int nrblocks,struct ext4_ext_path * path)2168 int ext4_ext_calc_credits_for_single_extent(struct inode *inode, int nrblocks,
2169 struct ext4_ext_path *path)
2170 {
2171 if (path) {
2172 int depth = ext_depth(inode);
2173 int ret = 0;
2174
2175 /* probably there is space in leaf? */
2176 if (le16_to_cpu(path[depth].p_hdr->eh_entries)
2177 < le16_to_cpu(path[depth].p_hdr->eh_max)) {
2178
2179 /*
2180 * There are some space in the leaf tree, no
2181 * need to account for leaf block credit
2182 *
2183 * bitmaps and block group descriptor blocks
2184 * and other metadata blocks still need to be
2185 * accounted.
2186 */
2187 /* 1 bitmap, 1 block group descriptor */
2188 ret = 2 + EXT4_META_TRANS_BLOCKS(inode->i_sb);
2189 return ret;
2190 }
2191 }
2192
2193 return ext4_chunk_trans_blocks(inode, nrblocks);
2194 }
2195
2196 /*
2197 * How many index/leaf blocks need to change/allocate to modify nrblocks?
2198 *
2199 * if nrblocks are fit in a single extent (chunk flag is 1), then
2200 * in the worse case, each tree level index/leaf need to be changed
2201 * if the tree split due to insert a new extent, then the old tree
2202 * index/leaf need to be updated too
2203 *
2204 * If the nrblocks are discontiguous, they could cause
2205 * the whole tree split more than once, but this is really rare.
2206 */
ext4_ext_index_trans_blocks(struct inode * inode,int nrblocks,int chunk)2207 int ext4_ext_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
2208 {
2209 int index;
2210 int depth = ext_depth(inode);
2211
2212 if (chunk)
2213 index = depth * 2;
2214 else
2215 index = depth * 3;
2216
2217 return index;
2218 }
2219
ext4_remove_blocks(handle_t * handle,struct inode * inode,struct ext4_extent * ex,ext4_fsblk_t * partial_cluster,ext4_lblk_t from,ext4_lblk_t to)2220 static int ext4_remove_blocks(handle_t *handle, struct inode *inode,
2221 struct ext4_extent *ex,
2222 ext4_fsblk_t *partial_cluster,
2223 ext4_lblk_t from, ext4_lblk_t to)
2224 {
2225 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2226 unsigned short ee_len = ext4_ext_get_actual_len(ex);
2227 ext4_fsblk_t pblk;
2228 int flags = EXT4_FREE_BLOCKS_FORGET;
2229
2230 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2231 flags |= EXT4_FREE_BLOCKS_METADATA;
2232 /*
2233 * For bigalloc file systems, we never free a partial cluster
2234 * at the beginning of the extent. Instead, we make a note
2235 * that we tried freeing the cluster, and check to see if we
2236 * need to free it on a subsequent call to ext4_remove_blocks,
2237 * or at the end of the ext4_truncate() operation.
2238 */
2239 flags |= EXT4_FREE_BLOCKS_NOFREE_FIRST_CLUSTER;
2240
2241 trace_ext4_remove_blocks(inode, ex, from, to, *partial_cluster);
2242 /*
2243 * If we have a partial cluster, and it's different from the
2244 * cluster of the last block, we need to explicitly free the
2245 * partial cluster here.
2246 */
2247 pblk = ext4_ext_pblock(ex) + ee_len - 1;
2248 if (*partial_cluster && (EXT4_B2C(sbi, pblk) != *partial_cluster)) {
2249 ext4_free_blocks(handle, inode, NULL,
2250 EXT4_C2B(sbi, *partial_cluster),
2251 sbi->s_cluster_ratio, flags);
2252 *partial_cluster = 0;
2253 }
2254
2255 #ifdef EXTENTS_STATS
2256 {
2257 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2258 spin_lock(&sbi->s_ext_stats_lock);
2259 sbi->s_ext_blocks += ee_len;
2260 sbi->s_ext_extents++;
2261 if (ee_len < sbi->s_ext_min)
2262 sbi->s_ext_min = ee_len;
2263 if (ee_len > sbi->s_ext_max)
2264 sbi->s_ext_max = ee_len;
2265 if (ext_depth(inode) > sbi->s_depth_max)
2266 sbi->s_depth_max = ext_depth(inode);
2267 spin_unlock(&sbi->s_ext_stats_lock);
2268 }
2269 #endif
2270 if (from >= le32_to_cpu(ex->ee_block)
2271 && to == le32_to_cpu(ex->ee_block) + ee_len - 1) {
2272 /* tail removal */
2273 ext4_lblk_t num;
2274
2275 num = le32_to_cpu(ex->ee_block) + ee_len - from;
2276 pblk = ext4_ext_pblock(ex) + ee_len - num;
2277 ext_debug("free last %u blocks starting %llu\n", num, pblk);
2278 ext4_free_blocks(handle, inode, NULL, pblk, num, flags);
2279 /*
2280 * If the block range to be freed didn't start at the
2281 * beginning of a cluster, and we removed the entire
2282 * extent, save the partial cluster here, since we
2283 * might need to delete if we determine that the
2284 * truncate operation has removed all of the blocks in
2285 * the cluster.
2286 */
2287 if (pblk & (sbi->s_cluster_ratio - 1) &&
2288 (ee_len == num))
2289 *partial_cluster = EXT4_B2C(sbi, pblk);
2290 else
2291 *partial_cluster = 0;
2292 } else if (from == le32_to_cpu(ex->ee_block)
2293 && to <= le32_to_cpu(ex->ee_block) + ee_len - 1) {
2294 /* head removal */
2295 ext4_lblk_t num;
2296 ext4_fsblk_t start;
2297
2298 num = to - from;
2299 start = ext4_ext_pblock(ex);
2300
2301 ext_debug("free first %u blocks starting %llu\n", num, start);
2302 ext4_free_blocks(handle, inode, NULL, start, num, flags);
2303
2304 } else {
2305 printk(KERN_INFO "strange request: removal(2) "
2306 "%u-%u from %u:%u\n",
2307 from, to, le32_to_cpu(ex->ee_block), ee_len);
2308 }
2309 return 0;
2310 }
2311
2312
2313 /*
2314 * ext4_ext_rm_leaf() Removes the extents associated with the
2315 * blocks appearing between "start" and "end", and splits the extents
2316 * if "start" and "end" appear in the same extent
2317 *
2318 * @handle: The journal handle
2319 * @inode: The files inode
2320 * @path: The path to the leaf
2321 * @start: The first block to remove
2322 * @end: The last block to remove
2323 */
2324 static int
ext4_ext_rm_leaf(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_fsblk_t * partial_cluster,ext4_lblk_t start,ext4_lblk_t end)2325 ext4_ext_rm_leaf(handle_t *handle, struct inode *inode,
2326 struct ext4_ext_path *path, ext4_fsblk_t *partial_cluster,
2327 ext4_lblk_t start, ext4_lblk_t end)
2328 {
2329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2330 int err = 0, correct_index = 0;
2331 int depth = ext_depth(inode), credits;
2332 struct ext4_extent_header *eh;
2333 ext4_lblk_t a, b;
2334 unsigned num;
2335 ext4_lblk_t ex_ee_block;
2336 unsigned short ex_ee_len;
2337 unsigned uninitialized = 0;
2338 struct ext4_extent *ex;
2339
2340 /* the header must be checked already in ext4_ext_remove_space() */
2341 ext_debug("truncate since %u in leaf to %u\n", start, end);
2342 if (!path[depth].p_hdr)
2343 path[depth].p_hdr = ext_block_hdr(path[depth].p_bh);
2344 eh = path[depth].p_hdr;
2345 if (unlikely(path[depth].p_hdr == NULL)) {
2346 EXT4_ERROR_INODE(inode, "path[%d].p_hdr == NULL", depth);
2347 return -EIO;
2348 }
2349 /* find where to start removing */
2350 ex = EXT_LAST_EXTENT(eh);
2351
2352 ex_ee_block = le32_to_cpu(ex->ee_block);
2353 ex_ee_len = ext4_ext_get_actual_len(ex);
2354
2355 trace_ext4_ext_rm_leaf(inode, start, ex, *partial_cluster);
2356
2357 while (ex >= EXT_FIRST_EXTENT(eh) &&
2358 ex_ee_block + ex_ee_len > start) {
2359
2360 if (ext4_ext_is_uninitialized(ex))
2361 uninitialized = 1;
2362 else
2363 uninitialized = 0;
2364
2365 ext_debug("remove ext %u:[%d]%d\n", ex_ee_block,
2366 uninitialized, ex_ee_len);
2367 path[depth].p_ext = ex;
2368
2369 a = ex_ee_block > start ? ex_ee_block : start;
2370 b = ex_ee_block+ex_ee_len - 1 < end ?
2371 ex_ee_block+ex_ee_len - 1 : end;
2372
2373 ext_debug(" border %u:%u\n", a, b);
2374
2375 /* If this extent is beyond the end of the hole, skip it */
2376 if (end < ex_ee_block) {
2377 ex--;
2378 ex_ee_block = le32_to_cpu(ex->ee_block);
2379 ex_ee_len = ext4_ext_get_actual_len(ex);
2380 continue;
2381 } else if (b != ex_ee_block + ex_ee_len - 1) {
2382 EXT4_ERROR_INODE(inode,
2383 "can not handle truncate %u:%u "
2384 "on extent %u:%u",
2385 start, end, ex_ee_block,
2386 ex_ee_block + ex_ee_len - 1);
2387 err = -EIO;
2388 goto out;
2389 } else if (a != ex_ee_block) {
2390 /* remove tail of the extent */
2391 num = a - ex_ee_block;
2392 } else {
2393 /* remove whole extent: excellent! */
2394 num = 0;
2395 }
2396 /*
2397 * 3 for leaf, sb, and inode plus 2 (bmap and group
2398 * descriptor) for each block group; assume two block
2399 * groups plus ex_ee_len/blocks_per_block_group for
2400 * the worst case
2401 */
2402 credits = 7 + 2*(ex_ee_len/EXT4_BLOCKS_PER_GROUP(inode->i_sb));
2403 if (ex == EXT_FIRST_EXTENT(eh)) {
2404 correct_index = 1;
2405 credits += (ext_depth(inode)) + 1;
2406 }
2407 credits += EXT4_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
2408
2409 err = ext4_ext_truncate_extend_restart(handle, inode, credits);
2410 if (err)
2411 goto out;
2412
2413 err = ext4_ext_get_access(handle, inode, path + depth);
2414 if (err)
2415 goto out;
2416
2417 err = ext4_remove_blocks(handle, inode, ex, partial_cluster,
2418 a, b);
2419 if (err)
2420 goto out;
2421
2422 if (num == 0)
2423 /* this extent is removed; mark slot entirely unused */
2424 ext4_ext_store_pblock(ex, 0);
2425
2426 ex->ee_len = cpu_to_le16(num);
2427 /*
2428 * Do not mark uninitialized if all the blocks in the
2429 * extent have been removed.
2430 */
2431 if (uninitialized && num)
2432 ext4_ext_mark_uninitialized(ex);
2433 /*
2434 * If the extent was completely released,
2435 * we need to remove it from the leaf
2436 */
2437 if (num == 0) {
2438 if (end != EXT_MAX_BLOCKS - 1) {
2439 /*
2440 * For hole punching, we need to scoot all the
2441 * extents up when an extent is removed so that
2442 * we dont have blank extents in the middle
2443 */
2444 memmove(ex, ex+1, (EXT_LAST_EXTENT(eh) - ex) *
2445 sizeof(struct ext4_extent));
2446
2447 /* Now get rid of the one at the end */
2448 memset(EXT_LAST_EXTENT(eh), 0,
2449 sizeof(struct ext4_extent));
2450 }
2451 le16_add_cpu(&eh->eh_entries, -1);
2452 } else
2453 *partial_cluster = 0;
2454
2455 err = ext4_ext_dirty(handle, inode, path + depth);
2456 if (err)
2457 goto out;
2458
2459 ext_debug("new extent: %u:%u:%llu\n", ex_ee_block, num,
2460 ext4_ext_pblock(ex));
2461 ex--;
2462 ex_ee_block = le32_to_cpu(ex->ee_block);
2463 ex_ee_len = ext4_ext_get_actual_len(ex);
2464 }
2465
2466 if (correct_index && eh->eh_entries)
2467 err = ext4_ext_correct_indexes(handle, inode, path);
2468
2469 /*
2470 * If there is still a entry in the leaf node, check to see if
2471 * it references the partial cluster. This is the only place
2472 * where it could; if it doesn't, we can free the cluster.
2473 */
2474 if (*partial_cluster && ex >= EXT_FIRST_EXTENT(eh) &&
2475 (EXT4_B2C(sbi, ext4_ext_pblock(ex) + ex_ee_len - 1) !=
2476 *partial_cluster)) {
2477 int flags = EXT4_FREE_BLOCKS_FORGET;
2478
2479 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2480 flags |= EXT4_FREE_BLOCKS_METADATA;
2481
2482 ext4_free_blocks(handle, inode, NULL,
2483 EXT4_C2B(sbi, *partial_cluster),
2484 sbi->s_cluster_ratio, flags);
2485 *partial_cluster = 0;
2486 }
2487
2488 /* if this leaf is free, then we should
2489 * remove it from index block above */
2490 if (err == 0 && eh->eh_entries == 0 && path[depth].p_bh != NULL)
2491 err = ext4_ext_rm_idx(handle, inode, path, depth);
2492
2493 out:
2494 return err;
2495 }
2496
2497 /*
2498 * ext4_ext_more_to_rm:
2499 * returns 1 if current index has to be freed (even partial)
2500 */
2501 static int
ext4_ext_more_to_rm(struct ext4_ext_path * path)2502 ext4_ext_more_to_rm(struct ext4_ext_path *path)
2503 {
2504 BUG_ON(path->p_idx == NULL);
2505
2506 if (path->p_idx < EXT_FIRST_INDEX(path->p_hdr))
2507 return 0;
2508
2509 /*
2510 * if truncate on deeper level happened, it wasn't partial,
2511 * so we have to consider current index for truncation
2512 */
2513 if (le16_to_cpu(path->p_hdr->eh_entries) == path->p_block)
2514 return 0;
2515 return 1;
2516 }
2517
ext4_ext_remove_space(struct inode * inode,ext4_lblk_t start,ext4_lblk_t end)2518 static int ext4_ext_remove_space(struct inode *inode, ext4_lblk_t start,
2519 ext4_lblk_t end)
2520 {
2521 struct super_block *sb = inode->i_sb;
2522 int depth = ext_depth(inode);
2523 struct ext4_ext_path *path = NULL;
2524 ext4_fsblk_t partial_cluster = 0;
2525 handle_t *handle;
2526 int i = 0, err;
2527
2528 ext_debug("truncate since %u to %u\n", start, end);
2529
2530 /* probably first extent we're gonna free will be last in block */
2531 handle = ext4_journal_start(inode, depth + 1);
2532 if (IS_ERR(handle))
2533 return PTR_ERR(handle);
2534
2535 again:
2536 ext4_ext_invalidate_cache(inode);
2537
2538 trace_ext4_ext_remove_space(inode, start, depth);
2539
2540 /*
2541 * Check if we are removing extents inside the extent tree. If that
2542 * is the case, we are going to punch a hole inside the extent tree
2543 * so we have to check whether we need to split the extent covering
2544 * the last block to remove so we can easily remove the part of it
2545 * in ext4_ext_rm_leaf().
2546 */
2547 if (end < EXT_MAX_BLOCKS - 1) {
2548 struct ext4_extent *ex;
2549 ext4_lblk_t ee_block;
2550
2551 /* find extent for this block */
2552 path = ext4_ext_find_extent(inode, end, NULL);
2553 if (IS_ERR(path)) {
2554 ext4_journal_stop(handle);
2555 return PTR_ERR(path);
2556 }
2557 depth = ext_depth(inode);
2558 ex = path[depth].p_ext;
2559 if (!ex) {
2560 ext4_ext_drop_refs(path);
2561 kfree(path);
2562 path = NULL;
2563 goto cont;
2564 }
2565
2566 ee_block = le32_to_cpu(ex->ee_block);
2567
2568 /*
2569 * See if the last block is inside the extent, if so split
2570 * the extent at 'end' block so we can easily remove the
2571 * tail of the first part of the split extent in
2572 * ext4_ext_rm_leaf().
2573 */
2574 if (end >= ee_block &&
2575 end < ee_block + ext4_ext_get_actual_len(ex) - 1) {
2576 int split_flag = 0;
2577
2578 if (ext4_ext_is_uninitialized(ex))
2579 split_flag = EXT4_EXT_MARK_UNINIT1 |
2580 EXT4_EXT_MARK_UNINIT2;
2581
2582 /*
2583 * Split the extent in two so that 'end' is the last
2584 * block in the first new extent
2585 */
2586 err = ext4_split_extent_at(handle, inode, path,
2587 end + 1, split_flag,
2588 EXT4_GET_BLOCKS_PRE_IO |
2589 EXT4_GET_BLOCKS_PUNCH_OUT_EXT);
2590
2591 if (err < 0)
2592 goto out;
2593 }
2594 }
2595 cont:
2596
2597 /*
2598 * We start scanning from right side, freeing all the blocks
2599 * after i_size and walking into the tree depth-wise.
2600 */
2601 depth = ext_depth(inode);
2602 if (path) {
2603 int k = i = depth;
2604 while (--k > 0)
2605 path[k].p_block =
2606 le16_to_cpu(path[k].p_hdr->eh_entries)+1;
2607 } else {
2608 path = kzalloc(sizeof(struct ext4_ext_path) * (depth + 1),
2609 GFP_NOFS);
2610 if (path == NULL) {
2611 ext4_journal_stop(handle);
2612 return -ENOMEM;
2613 }
2614 path[0].p_depth = depth;
2615 path[0].p_hdr = ext_inode_hdr(inode);
2616 i = 0;
2617
2618 if (ext4_ext_check(inode, path[0].p_hdr, depth)) {
2619 err = -EIO;
2620 goto out;
2621 }
2622 }
2623 err = 0;
2624
2625 while (i >= 0 && err == 0) {
2626 if (i == depth) {
2627 /* this is leaf block */
2628 err = ext4_ext_rm_leaf(handle, inode, path,
2629 &partial_cluster, start,
2630 end);
2631 /* root level has p_bh == NULL, brelse() eats this */
2632 brelse(path[i].p_bh);
2633 path[i].p_bh = NULL;
2634 i--;
2635 continue;
2636 }
2637
2638 /* this is index block */
2639 if (!path[i].p_hdr) {
2640 ext_debug("initialize header\n");
2641 path[i].p_hdr = ext_block_hdr(path[i].p_bh);
2642 }
2643
2644 if (!path[i].p_idx) {
2645 /* this level hasn't been touched yet */
2646 path[i].p_idx = EXT_LAST_INDEX(path[i].p_hdr);
2647 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries)+1;
2648 ext_debug("init index ptr: hdr 0x%p, num %d\n",
2649 path[i].p_hdr,
2650 le16_to_cpu(path[i].p_hdr->eh_entries));
2651 } else {
2652 /* we were already here, see at next index */
2653 path[i].p_idx--;
2654 }
2655
2656 ext_debug("level %d - index, first 0x%p, cur 0x%p\n",
2657 i, EXT_FIRST_INDEX(path[i].p_hdr),
2658 path[i].p_idx);
2659 if (ext4_ext_more_to_rm(path + i)) {
2660 struct buffer_head *bh;
2661 /* go to the next level */
2662 ext_debug("move to level %d (block %llu)\n",
2663 i + 1, ext4_idx_pblock(path[i].p_idx));
2664 memset(path + i + 1, 0, sizeof(*path));
2665 bh = sb_bread(sb, ext4_idx_pblock(path[i].p_idx));
2666 if (!bh) {
2667 /* should we reset i_size? */
2668 err = -EIO;
2669 break;
2670 }
2671 if (WARN_ON(i + 1 > depth)) {
2672 err = -EIO;
2673 break;
2674 }
2675 if (ext4_ext_check(inode, ext_block_hdr(bh),
2676 depth - i - 1)) {
2677 err = -EIO;
2678 break;
2679 }
2680 path[i + 1].p_bh = bh;
2681
2682 /* save actual number of indexes since this
2683 * number is changed at the next iteration */
2684 path[i].p_block = le16_to_cpu(path[i].p_hdr->eh_entries);
2685 i++;
2686 } else {
2687 /* we finished processing this index, go up */
2688 if (path[i].p_hdr->eh_entries == 0 && i > 0) {
2689 /* index is empty, remove it;
2690 * handle must be already prepared by the
2691 * truncatei_leaf() */
2692 err = ext4_ext_rm_idx(handle, inode, path, i);
2693 }
2694 /* root level has p_bh == NULL, brelse() eats this */
2695 brelse(path[i].p_bh);
2696 path[i].p_bh = NULL;
2697 i--;
2698 ext_debug("return to level %d\n", i);
2699 }
2700 }
2701
2702 trace_ext4_ext_remove_space_done(inode, start, depth, partial_cluster,
2703 path->p_hdr->eh_entries);
2704
2705 /* If we still have something in the partial cluster and we have removed
2706 * even the first extent, then we should free the blocks in the partial
2707 * cluster as well. */
2708 if (partial_cluster && path->p_hdr->eh_entries == 0) {
2709 int flags = EXT4_FREE_BLOCKS_FORGET;
2710
2711 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
2712 flags |= EXT4_FREE_BLOCKS_METADATA;
2713
2714 ext4_free_blocks(handle, inode, NULL,
2715 EXT4_C2B(EXT4_SB(sb), partial_cluster),
2716 EXT4_SB(sb)->s_cluster_ratio, flags);
2717 partial_cluster = 0;
2718 }
2719
2720 /* TODO: flexible tree reduction should be here */
2721 if (path->p_hdr->eh_entries == 0) {
2722 /*
2723 * truncate to zero freed all the tree,
2724 * so we need to correct eh_depth
2725 */
2726 err = ext4_ext_get_access(handle, inode, path);
2727 if (err == 0) {
2728 ext_inode_hdr(inode)->eh_depth = 0;
2729 ext_inode_hdr(inode)->eh_max =
2730 cpu_to_le16(ext4_ext_space_root(inode, 0));
2731 err = ext4_ext_dirty(handle, inode, path);
2732 }
2733 }
2734 out:
2735 ext4_ext_drop_refs(path);
2736 kfree(path);
2737 if (err == -EAGAIN) {
2738 path = NULL;
2739 goto again;
2740 }
2741 ext4_journal_stop(handle);
2742
2743 return err;
2744 }
2745
2746 /*
2747 * called at mount time
2748 */
ext4_ext_init(struct super_block * sb)2749 void ext4_ext_init(struct super_block *sb)
2750 {
2751 /*
2752 * possible initialization would be here
2753 */
2754
2755 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS)) {
2756 #if defined(AGGRESSIVE_TEST) || defined(CHECK_BINSEARCH) || defined(EXTENTS_STATS)
2757 printk(KERN_INFO "EXT4-fs: file extents enabled"
2758 #ifdef AGGRESSIVE_TEST
2759 ", aggressive tests"
2760 #endif
2761 #ifdef CHECK_BINSEARCH
2762 ", check binsearch"
2763 #endif
2764 #ifdef EXTENTS_STATS
2765 ", stats"
2766 #endif
2767 "\n");
2768 #endif
2769 #ifdef EXTENTS_STATS
2770 spin_lock_init(&EXT4_SB(sb)->s_ext_stats_lock);
2771 EXT4_SB(sb)->s_ext_min = 1 << 30;
2772 EXT4_SB(sb)->s_ext_max = 0;
2773 #endif
2774 }
2775 }
2776
2777 /*
2778 * called at umount time
2779 */
ext4_ext_release(struct super_block * sb)2780 void ext4_ext_release(struct super_block *sb)
2781 {
2782 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_EXTENTS))
2783 return;
2784
2785 #ifdef EXTENTS_STATS
2786 if (EXT4_SB(sb)->s_ext_blocks && EXT4_SB(sb)->s_ext_extents) {
2787 struct ext4_sb_info *sbi = EXT4_SB(sb);
2788 printk(KERN_ERR "EXT4-fs: %lu blocks in %lu extents (%lu ave)\n",
2789 sbi->s_ext_blocks, sbi->s_ext_extents,
2790 sbi->s_ext_blocks / sbi->s_ext_extents);
2791 printk(KERN_ERR "EXT4-fs: extents: %lu min, %lu max, max depth %lu\n",
2792 sbi->s_ext_min, sbi->s_ext_max, sbi->s_depth_max);
2793 }
2794 #endif
2795 }
2796
2797 /* FIXME!! we need to try to merge to left or right after zero-out */
ext4_ext_zeroout(struct inode * inode,struct ext4_extent * ex)2798 static int ext4_ext_zeroout(struct inode *inode, struct ext4_extent *ex)
2799 {
2800 ext4_fsblk_t ee_pblock;
2801 unsigned int ee_len;
2802 int ret;
2803
2804 ee_len = ext4_ext_get_actual_len(ex);
2805 ee_pblock = ext4_ext_pblock(ex);
2806
2807 ret = sb_issue_zeroout(inode->i_sb, ee_pblock, ee_len, GFP_NOFS);
2808 if (ret > 0)
2809 ret = 0;
2810
2811 return ret;
2812 }
2813
2814 /*
2815 * ext4_split_extent_at() splits an extent at given block.
2816 *
2817 * @handle: the journal handle
2818 * @inode: the file inode
2819 * @path: the path to the extent
2820 * @split: the logical block where the extent is splitted.
2821 * @split_flags: indicates if the extent could be zeroout if split fails, and
2822 * the states(init or uninit) of new extents.
2823 * @flags: flags used to insert new extent to extent tree.
2824 *
2825 *
2826 * Splits extent [a, b] into two extents [a, @split) and [@split, b], states
2827 * of which are deterimined by split_flag.
2828 *
2829 * There are two cases:
2830 * a> the extent are splitted into two extent.
2831 * b> split is not needed, and just mark the extent.
2832 *
2833 * return 0 on success.
2834 */
ext4_split_extent_at(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,ext4_lblk_t split,int split_flag,int flags)2835 static int ext4_split_extent_at(handle_t *handle,
2836 struct inode *inode,
2837 struct ext4_ext_path *path,
2838 ext4_lblk_t split,
2839 int split_flag,
2840 int flags)
2841 {
2842 ext4_fsblk_t newblock;
2843 ext4_lblk_t ee_block;
2844 struct ext4_extent *ex, newex, orig_ex;
2845 struct ext4_extent *ex2 = NULL;
2846 unsigned int ee_len, depth;
2847 int err = 0;
2848
2849 BUG_ON((split_flag & (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2)) ==
2850 (EXT4_EXT_DATA_VALID1 | EXT4_EXT_DATA_VALID2));
2851
2852 ext_debug("ext4_split_extents_at: inode %lu, logical"
2853 "block %llu\n", inode->i_ino, (unsigned long long)split);
2854
2855 ext4_ext_show_leaf(inode, path);
2856
2857 depth = ext_depth(inode);
2858 ex = path[depth].p_ext;
2859 ee_block = le32_to_cpu(ex->ee_block);
2860 ee_len = ext4_ext_get_actual_len(ex);
2861 newblock = split - ee_block + ext4_ext_pblock(ex);
2862
2863 BUG_ON(split < ee_block || split >= (ee_block + ee_len));
2864
2865 err = ext4_ext_get_access(handle, inode, path + depth);
2866 if (err)
2867 goto out;
2868
2869 if (split == ee_block) {
2870 /*
2871 * case b: block @split is the block that the extent begins with
2872 * then we just change the state of the extent, and splitting
2873 * is not needed.
2874 */
2875 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2876 ext4_ext_mark_uninitialized(ex);
2877 else
2878 ext4_ext_mark_initialized(ex);
2879
2880 if (!(flags & EXT4_GET_BLOCKS_PRE_IO))
2881 ext4_ext_try_to_merge(inode, path, ex);
2882
2883 err = ext4_ext_dirty(handle, inode, path + depth);
2884 goto out;
2885 }
2886
2887 /* case a */
2888 memcpy(&orig_ex, ex, sizeof(orig_ex));
2889 ex->ee_len = cpu_to_le16(split - ee_block);
2890 if (split_flag & EXT4_EXT_MARK_UNINIT1)
2891 ext4_ext_mark_uninitialized(ex);
2892
2893 /*
2894 * path may lead to new leaf, not to original leaf any more
2895 * after ext4_ext_insert_extent() returns,
2896 */
2897 err = ext4_ext_dirty(handle, inode, path + depth);
2898 if (err)
2899 goto fix_extent_len;
2900
2901 ex2 = &newex;
2902 ex2->ee_block = cpu_to_le32(split);
2903 ex2->ee_len = cpu_to_le16(ee_len - (split - ee_block));
2904 ext4_ext_store_pblock(ex2, newblock);
2905 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2906 ext4_ext_mark_uninitialized(ex2);
2907
2908 err = ext4_ext_insert_extent(handle, inode, path, &newex, flags);
2909 if (err == -ENOSPC && (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
2910 if (split_flag & (EXT4_EXT_DATA_VALID1|EXT4_EXT_DATA_VALID2)) {
2911 if (split_flag & EXT4_EXT_DATA_VALID1)
2912 err = ext4_ext_zeroout(inode, ex2);
2913 else
2914 err = ext4_ext_zeroout(inode, ex);
2915 } else
2916 err = ext4_ext_zeroout(inode, &orig_ex);
2917
2918 if (err)
2919 goto fix_extent_len;
2920 /* update the extent length and mark as initialized */
2921 ex->ee_len = cpu_to_le16(ee_len);
2922 ext4_ext_try_to_merge(inode, path, ex);
2923 err = ext4_ext_dirty(handle, inode, path + depth);
2924 goto out;
2925 } else if (err)
2926 goto fix_extent_len;
2927
2928 out:
2929 ext4_ext_show_leaf(inode, path);
2930 return err;
2931
2932 fix_extent_len:
2933 ex->ee_len = orig_ex.ee_len;
2934 ext4_ext_dirty(handle, inode, path + depth);
2935 return err;
2936 }
2937
2938 /*
2939 * ext4_split_extents() splits an extent and mark extent which is covered
2940 * by @map as split_flags indicates
2941 *
2942 * It may result in splitting the extent into multiple extents (upto three)
2943 * There are three possibilities:
2944 * a> There is no split required
2945 * b> Splits in two extents: Split is happening at either end of the extent
2946 * c> Splits in three extents: Somone is splitting in middle of the extent
2947 *
2948 */
ext4_split_extent(handle_t * handle,struct inode * inode,struct ext4_ext_path * path,struct ext4_map_blocks * map,int split_flag,int flags)2949 static int ext4_split_extent(handle_t *handle,
2950 struct inode *inode,
2951 struct ext4_ext_path *path,
2952 struct ext4_map_blocks *map,
2953 int split_flag,
2954 int flags)
2955 {
2956 ext4_lblk_t ee_block;
2957 struct ext4_extent *ex;
2958 unsigned int ee_len, depth;
2959 int err = 0;
2960 int uninitialized;
2961 int split_flag1, flags1;
2962 int allocated = map->m_len;
2963
2964 depth = ext_depth(inode);
2965 ex = path[depth].p_ext;
2966 ee_block = le32_to_cpu(ex->ee_block);
2967 ee_len = ext4_ext_get_actual_len(ex);
2968 uninitialized = ext4_ext_is_uninitialized(ex);
2969
2970 if (map->m_lblk + map->m_len < ee_block + ee_len) {
2971 split_flag1 = split_flag & EXT4_EXT_MAY_ZEROOUT;
2972 flags1 = flags | EXT4_GET_BLOCKS_PRE_IO;
2973 if (uninitialized)
2974 split_flag1 |= EXT4_EXT_MARK_UNINIT1 |
2975 EXT4_EXT_MARK_UNINIT2;
2976 if (split_flag & EXT4_EXT_DATA_VALID2)
2977 split_flag1 |= EXT4_EXT_DATA_VALID1;
2978 err = ext4_split_extent_at(handle, inode, path,
2979 map->m_lblk + map->m_len, split_flag1, flags1);
2980 if (err)
2981 goto out;
2982 } else {
2983 allocated = ee_len - (map->m_lblk - ee_block);
2984 }
2985
2986 ext4_ext_drop_refs(path);
2987 path = ext4_ext_find_extent(inode, map->m_lblk, path);
2988 if (IS_ERR(path))
2989 return PTR_ERR(path);
2990
2991 if (map->m_lblk >= ee_block) {
2992 split_flag1 = split_flag & (EXT4_EXT_MAY_ZEROOUT |
2993 EXT4_EXT_DATA_VALID2);
2994 if (uninitialized)
2995 split_flag1 |= EXT4_EXT_MARK_UNINIT1;
2996 if (split_flag & EXT4_EXT_MARK_UNINIT2)
2997 split_flag1 |= EXT4_EXT_MARK_UNINIT2;
2998 err = ext4_split_extent_at(handle, inode, path,
2999 map->m_lblk, split_flag1, flags);
3000 if (err)
3001 goto out;
3002 }
3003
3004 ext4_ext_show_leaf(inode, path);
3005 out:
3006 return err ? err : allocated;
3007 }
3008
3009 #define EXT4_EXT_ZERO_LEN 7
3010 /*
3011 * This function is called by ext4_ext_map_blocks() if someone tries to write
3012 * to an uninitialized extent. It may result in splitting the uninitialized
3013 * extent into multiple extents (up to three - one initialized and two
3014 * uninitialized).
3015 * There are three possibilities:
3016 * a> There is no split required: Entire extent should be initialized
3017 * b> Splits in two extents: Write is happening at either end of the extent
3018 * c> Splits in three extents: Somone is writing in middle of the extent
3019 *
3020 * Pre-conditions:
3021 * - The extent pointed to by 'path' is uninitialized.
3022 * - The extent pointed to by 'path' contains a superset
3023 * of the logical span [map->m_lblk, map->m_lblk + map->m_len).
3024 *
3025 * Post-conditions on success:
3026 * - the returned value is the number of blocks beyond map->l_lblk
3027 * that are allocated and initialized.
3028 * It is guaranteed to be >= map->m_len.
3029 */
ext4_ext_convert_to_initialized(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path)3030 static int ext4_ext_convert_to_initialized(handle_t *handle,
3031 struct inode *inode,
3032 struct ext4_map_blocks *map,
3033 struct ext4_ext_path *path)
3034 {
3035 struct ext4_extent_header *eh;
3036 struct ext4_map_blocks split_map;
3037 struct ext4_extent zero_ex;
3038 struct ext4_extent *ex;
3039 ext4_lblk_t ee_block, eof_block;
3040 unsigned int ee_len, depth;
3041 int allocated;
3042 int err = 0;
3043 int split_flag = 0;
3044
3045 ext_debug("ext4_ext_convert_to_initialized: inode %lu, logical"
3046 "block %llu, max_blocks %u\n", inode->i_ino,
3047 (unsigned long long)map->m_lblk, map->m_len);
3048
3049 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3050 inode->i_sb->s_blocksize_bits;
3051 if (eof_block < map->m_lblk + map->m_len)
3052 eof_block = map->m_lblk + map->m_len;
3053
3054 depth = ext_depth(inode);
3055 eh = path[depth].p_hdr;
3056 ex = path[depth].p_ext;
3057 ee_block = le32_to_cpu(ex->ee_block);
3058 ee_len = ext4_ext_get_actual_len(ex);
3059 allocated = ee_len - (map->m_lblk - ee_block);
3060
3061 trace_ext4_ext_convert_to_initialized_enter(inode, map, ex);
3062
3063 /* Pre-conditions */
3064 BUG_ON(!ext4_ext_is_uninitialized(ex));
3065 BUG_ON(!in_range(map->m_lblk, ee_block, ee_len));
3066
3067 /*
3068 * Attempt to transfer newly initialized blocks from the currently
3069 * uninitialized extent to its left neighbor. This is much cheaper
3070 * than an insertion followed by a merge as those involve costly
3071 * memmove() calls. This is the common case in steady state for
3072 * workloads doing fallocate(FALLOC_FL_KEEP_SIZE) followed by append
3073 * writes.
3074 *
3075 * Limitations of the current logic:
3076 * - L1: we only deal with writes at the start of the extent.
3077 * The approach could be extended to writes at the end
3078 * of the extent but this scenario was deemed less common.
3079 * - L2: we do not deal with writes covering the whole extent.
3080 * This would require removing the extent if the transfer
3081 * is possible.
3082 * - L3: we only attempt to merge with an extent stored in the
3083 * same extent tree node.
3084 */
3085 if ((map->m_lblk == ee_block) && /*L1*/
3086 (map->m_len < ee_len) && /*L2*/
3087 (ex > EXT_FIRST_EXTENT(eh))) { /*L3*/
3088 struct ext4_extent *prev_ex;
3089 ext4_lblk_t prev_lblk;
3090 ext4_fsblk_t prev_pblk, ee_pblk;
3091 unsigned int prev_len, write_len;
3092
3093 prev_ex = ex - 1;
3094 prev_lblk = le32_to_cpu(prev_ex->ee_block);
3095 prev_len = ext4_ext_get_actual_len(prev_ex);
3096 prev_pblk = ext4_ext_pblock(prev_ex);
3097 ee_pblk = ext4_ext_pblock(ex);
3098 write_len = map->m_len;
3099
3100 /*
3101 * A transfer of blocks from 'ex' to 'prev_ex' is allowed
3102 * upon those conditions:
3103 * - C1: prev_ex is initialized,
3104 * - C2: prev_ex is logically abutting ex,
3105 * - C3: prev_ex is physically abutting ex,
3106 * - C4: prev_ex can receive the additional blocks without
3107 * overflowing the (initialized) length limit.
3108 */
3109 if ((!ext4_ext_is_uninitialized(prev_ex)) && /*C1*/
3110 ((prev_lblk + prev_len) == ee_block) && /*C2*/
3111 ((prev_pblk + prev_len) == ee_pblk) && /*C3*/
3112 (prev_len < (EXT_INIT_MAX_LEN - write_len))) { /*C4*/
3113 err = ext4_ext_get_access(handle, inode, path + depth);
3114 if (err)
3115 goto out;
3116
3117 trace_ext4_ext_convert_to_initialized_fastpath(inode,
3118 map, ex, prev_ex);
3119
3120 /* Shift the start of ex by 'write_len' blocks */
3121 ex->ee_block = cpu_to_le32(ee_block + write_len);
3122 ext4_ext_store_pblock(ex, ee_pblk + write_len);
3123 ex->ee_len = cpu_to_le16(ee_len - write_len);
3124 ext4_ext_mark_uninitialized(ex); /* Restore the flag */
3125
3126 /* Extend prev_ex by 'write_len' blocks */
3127 prev_ex->ee_len = cpu_to_le16(prev_len + write_len);
3128
3129 /* Mark the block containing both extents as dirty */
3130 ext4_ext_dirty(handle, inode, path + depth);
3131
3132 /* Update path to point to the right extent */
3133 path[depth].p_ext = prev_ex;
3134
3135 /* Result: number of initialized blocks past m_lblk */
3136 allocated = write_len;
3137 goto out;
3138 }
3139 }
3140
3141 WARN_ON(map->m_lblk < ee_block);
3142 /*
3143 * It is safe to convert extent to initialized via explicit
3144 * zeroout only if extent is fully insde i_size or new_size.
3145 */
3146 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3147
3148 /* If extent has less than 2*EXT4_EXT_ZERO_LEN zerout directly */
3149 if (ee_len <= 2*EXT4_EXT_ZERO_LEN &&
3150 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3151 err = ext4_ext_zeroout(inode, ex);
3152 if (err)
3153 goto out;
3154
3155 err = ext4_ext_get_access(handle, inode, path + depth);
3156 if (err)
3157 goto out;
3158 ext4_ext_mark_initialized(ex);
3159 ext4_ext_try_to_merge(inode, path, ex);
3160 err = ext4_ext_dirty(handle, inode, path + depth);
3161 goto out;
3162 }
3163
3164 /*
3165 * four cases:
3166 * 1. split the extent into three extents.
3167 * 2. split the extent into two extents, zeroout the first half.
3168 * 3. split the extent into two extents, zeroout the second half.
3169 * 4. split the extent into two extents with out zeroout.
3170 */
3171 split_map.m_lblk = map->m_lblk;
3172 split_map.m_len = map->m_len;
3173
3174 if (allocated > map->m_len) {
3175 if (allocated <= EXT4_EXT_ZERO_LEN &&
3176 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3177 /* case 3 */
3178 zero_ex.ee_block =
3179 cpu_to_le32(map->m_lblk);
3180 zero_ex.ee_len = cpu_to_le16(allocated);
3181 ext4_ext_store_pblock(&zero_ex,
3182 ext4_ext_pblock(ex) + map->m_lblk - ee_block);
3183 err = ext4_ext_zeroout(inode, &zero_ex);
3184 if (err)
3185 goto out;
3186 split_map.m_lblk = map->m_lblk;
3187 split_map.m_len = allocated;
3188 } else if ((map->m_lblk - ee_block + map->m_len <
3189 EXT4_EXT_ZERO_LEN) &&
3190 (EXT4_EXT_MAY_ZEROOUT & split_flag)) {
3191 /* case 2 */
3192 if (map->m_lblk != ee_block) {
3193 zero_ex.ee_block = ex->ee_block;
3194 zero_ex.ee_len = cpu_to_le16(map->m_lblk -
3195 ee_block);
3196 ext4_ext_store_pblock(&zero_ex,
3197 ext4_ext_pblock(ex));
3198 err = ext4_ext_zeroout(inode, &zero_ex);
3199 if (err)
3200 goto out;
3201 }
3202
3203 split_map.m_lblk = ee_block;
3204 split_map.m_len = map->m_lblk - ee_block + map->m_len;
3205 allocated = map->m_len;
3206 }
3207 }
3208
3209 allocated = ext4_split_extent(handle, inode, path,
3210 &split_map, split_flag, 0);
3211 if (allocated < 0)
3212 err = allocated;
3213
3214 out:
3215 return err ? err : allocated;
3216 }
3217
3218 /*
3219 * This function is called by ext4_ext_map_blocks() from
3220 * ext4_get_blocks_dio_write() when DIO to write
3221 * to an uninitialized extent.
3222 *
3223 * Writing to an uninitialized extent may result in splitting the uninitialized
3224 * extent into multiple /initialized uninitialized extents (up to three)
3225 * There are three possibilities:
3226 * a> There is no split required: Entire extent should be uninitialized
3227 * b> Splits in two extents: Write is happening at either end of the extent
3228 * c> Splits in three extents: Somone is writing in middle of the extent
3229 *
3230 * One of more index blocks maybe needed if the extent tree grow after
3231 * the uninitialized extent split. To prevent ENOSPC occur at the IO
3232 * complete, we need to split the uninitialized extent before DIO submit
3233 * the IO. The uninitialized extent called at this time will be split
3234 * into three uninitialized extent(at most). After IO complete, the part
3235 * being filled will be convert to initialized by the end_io callback function
3236 * via ext4_convert_unwritten_extents().
3237 *
3238 * Returns the size of uninitialized extent to be written on success.
3239 */
ext4_split_unwritten_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path,int flags)3240 static int ext4_split_unwritten_extents(handle_t *handle,
3241 struct inode *inode,
3242 struct ext4_map_blocks *map,
3243 struct ext4_ext_path *path,
3244 int flags)
3245 {
3246 ext4_lblk_t eof_block;
3247 ext4_lblk_t ee_block;
3248 struct ext4_extent *ex;
3249 unsigned int ee_len;
3250 int split_flag = 0, depth;
3251
3252 ext_debug("ext4_split_unwritten_extents: inode %lu, logical"
3253 "block %llu, max_blocks %u\n", inode->i_ino,
3254 (unsigned long long)map->m_lblk, map->m_len);
3255
3256 eof_block = (inode->i_size + inode->i_sb->s_blocksize - 1) >>
3257 inode->i_sb->s_blocksize_bits;
3258 if (eof_block < map->m_lblk + map->m_len)
3259 eof_block = map->m_lblk + map->m_len;
3260 /*
3261 * It is safe to convert extent to initialized via explicit
3262 * zeroout only if extent is fully insde i_size or new_size.
3263 */
3264 depth = ext_depth(inode);
3265 ex = path[depth].p_ext;
3266 ee_block = le32_to_cpu(ex->ee_block);
3267 ee_len = ext4_ext_get_actual_len(ex);
3268
3269 split_flag |= ee_block + ee_len <= eof_block ? EXT4_EXT_MAY_ZEROOUT : 0;
3270 split_flag |= EXT4_EXT_MARK_UNINIT2;
3271 if (flags & EXT4_GET_BLOCKS_CONVERT)
3272 split_flag |= EXT4_EXT_DATA_VALID2;
3273 flags |= EXT4_GET_BLOCKS_PRE_IO;
3274 return ext4_split_extent(handle, inode, path, map, split_flag, flags);
3275 }
3276
ext4_convert_unwritten_extents_endio(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path)3277 static int ext4_convert_unwritten_extents_endio(handle_t *handle,
3278 struct inode *inode,
3279 struct ext4_map_blocks *map,
3280 struct ext4_ext_path *path)
3281 {
3282 struct ext4_extent *ex;
3283 ext4_lblk_t ee_block;
3284 unsigned int ee_len;
3285 int depth;
3286 int err = 0;
3287
3288 depth = ext_depth(inode);
3289 ex = path[depth].p_ext;
3290 ee_block = le32_to_cpu(ex->ee_block);
3291 ee_len = ext4_ext_get_actual_len(ex);
3292
3293 ext_debug("ext4_convert_unwritten_extents_endio: inode %lu, logical"
3294 "block %llu, max_blocks %u\n", inode->i_ino,
3295 (unsigned long long)ee_block, ee_len);
3296
3297 /* If extent is larger than requested then split is required */
3298 if (ee_block != map->m_lblk || ee_len > map->m_len) {
3299 err = ext4_split_unwritten_extents(handle, inode, map, path,
3300 EXT4_GET_BLOCKS_CONVERT);
3301 if (err < 0)
3302 goto out;
3303 ext4_ext_drop_refs(path);
3304 path = ext4_ext_find_extent(inode, map->m_lblk, path);
3305 if (IS_ERR(path)) {
3306 err = PTR_ERR(path);
3307 goto out;
3308 }
3309 depth = ext_depth(inode);
3310 ex = path[depth].p_ext;
3311 }
3312
3313 err = ext4_ext_get_access(handle, inode, path + depth);
3314 if (err)
3315 goto out;
3316 /* first mark the extent as initialized */
3317 ext4_ext_mark_initialized(ex);
3318
3319 /* note: ext4_ext_correct_indexes() isn't needed here because
3320 * borders are not changed
3321 */
3322 ext4_ext_try_to_merge(inode, path, ex);
3323
3324 /* Mark modified extent as dirty */
3325 err = ext4_ext_dirty(handle, inode, path + depth);
3326 out:
3327 ext4_ext_show_leaf(inode, path);
3328 return err;
3329 }
3330
unmap_underlying_metadata_blocks(struct block_device * bdev,sector_t block,int count)3331 static void unmap_underlying_metadata_blocks(struct block_device *bdev,
3332 sector_t block, int count)
3333 {
3334 int i;
3335 for (i = 0; i < count; i++)
3336 unmap_underlying_metadata(bdev, block + i);
3337 }
3338
3339 /*
3340 * Handle EOFBLOCKS_FL flag, clearing it if necessary
3341 */
check_eofblocks_fl(handle_t * handle,struct inode * inode,ext4_lblk_t lblk,struct ext4_ext_path * path,unsigned int len)3342 static int check_eofblocks_fl(handle_t *handle, struct inode *inode,
3343 ext4_lblk_t lblk,
3344 struct ext4_ext_path *path,
3345 unsigned int len)
3346 {
3347 int i, depth;
3348 struct ext4_extent_header *eh;
3349 struct ext4_extent *last_ex;
3350
3351 if (!ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
3352 return 0;
3353
3354 depth = ext_depth(inode);
3355 eh = path[depth].p_hdr;
3356
3357 /*
3358 * We're going to remove EOFBLOCKS_FL entirely in future so we
3359 * do not care for this case anymore. Simply remove the flag
3360 * if there are no extents.
3361 */
3362 if (unlikely(!eh->eh_entries))
3363 goto out;
3364 last_ex = EXT_LAST_EXTENT(eh);
3365 /*
3366 * We should clear the EOFBLOCKS_FL flag if we are writing the
3367 * last block in the last extent in the file. We test this by
3368 * first checking to see if the caller to
3369 * ext4_ext_get_blocks() was interested in the last block (or
3370 * a block beyond the last block) in the current extent. If
3371 * this turns out to be false, we can bail out from this
3372 * function immediately.
3373 */
3374 if (lblk + len < le32_to_cpu(last_ex->ee_block) +
3375 ext4_ext_get_actual_len(last_ex))
3376 return 0;
3377 /*
3378 * If the caller does appear to be planning to write at or
3379 * beyond the end of the current extent, we then test to see
3380 * if the current extent is the last extent in the file, by
3381 * checking to make sure it was reached via the rightmost node
3382 * at each level of the tree.
3383 */
3384 for (i = depth-1; i >= 0; i--)
3385 if (path[i].p_idx != EXT_LAST_INDEX(path[i].p_hdr))
3386 return 0;
3387 out:
3388 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3389 return ext4_mark_inode_dirty(handle, inode);
3390 }
3391
3392 /**
3393 * ext4_find_delalloc_range: find delayed allocated block in the given range.
3394 *
3395 * Goes through the buffer heads in the range [lblk_start, lblk_end] and returns
3396 * whether there are any buffers marked for delayed allocation. It returns '1'
3397 * on the first delalloc'ed buffer head found. If no buffer head in the given
3398 * range is marked for delalloc, it returns 0.
3399 * lblk_start should always be <= lblk_end.
3400 * search_hint_reverse is to indicate that searching in reverse from lblk_end to
3401 * lblk_start might be more efficient (i.e., we will likely hit the delalloc'ed
3402 * block sooner). This is useful when blocks are truncated sequentially from
3403 * lblk_start towards lblk_end.
3404 */
ext4_find_delalloc_range(struct inode * inode,ext4_lblk_t lblk_start,ext4_lblk_t lblk_end,int search_hint_reverse)3405 static int ext4_find_delalloc_range(struct inode *inode,
3406 ext4_lblk_t lblk_start,
3407 ext4_lblk_t lblk_end,
3408 int search_hint_reverse)
3409 {
3410 struct address_space *mapping = inode->i_mapping;
3411 struct buffer_head *head, *bh = NULL;
3412 struct page *page;
3413 ext4_lblk_t i, pg_lblk;
3414 pgoff_t index;
3415
3416 if (!test_opt(inode->i_sb, DELALLOC))
3417 return 0;
3418
3419 /* reverse search wont work if fs block size is less than page size */
3420 if (inode->i_blkbits < PAGE_CACHE_SHIFT)
3421 search_hint_reverse = 0;
3422
3423 if (search_hint_reverse)
3424 i = lblk_end;
3425 else
3426 i = lblk_start;
3427
3428 index = i >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
3429
3430 while ((i >= lblk_start) && (i <= lblk_end)) {
3431 page = find_get_page(mapping, index);
3432 if (!page)
3433 goto nextpage;
3434
3435 if (!page_has_buffers(page))
3436 goto nextpage;
3437
3438 head = page_buffers(page);
3439 if (!head)
3440 goto nextpage;
3441
3442 bh = head;
3443 pg_lblk = index << (PAGE_CACHE_SHIFT -
3444 inode->i_blkbits);
3445 do {
3446 if (unlikely(pg_lblk < lblk_start)) {
3447 /*
3448 * This is possible when fs block size is less
3449 * than page size and our cluster starts/ends in
3450 * middle of the page. So we need to skip the
3451 * initial few blocks till we reach the 'lblk'
3452 */
3453 pg_lblk++;
3454 continue;
3455 }
3456
3457 /* Check if the buffer is delayed allocated and that it
3458 * is not yet mapped. (when da-buffers are mapped during
3459 * their writeout, their da_mapped bit is set.)
3460 */
3461 if (buffer_delay(bh) && !buffer_da_mapped(bh)) {
3462 page_cache_release(page);
3463 trace_ext4_find_delalloc_range(inode,
3464 lblk_start, lblk_end,
3465 search_hint_reverse,
3466 1, i);
3467 return 1;
3468 }
3469 if (search_hint_reverse)
3470 i--;
3471 else
3472 i++;
3473 } while ((i >= lblk_start) && (i <= lblk_end) &&
3474 ((bh = bh->b_this_page) != head));
3475 nextpage:
3476 if (page)
3477 page_cache_release(page);
3478 /*
3479 * Move to next page. 'i' will be the first lblk in the next
3480 * page.
3481 */
3482 if (search_hint_reverse)
3483 index--;
3484 else
3485 index++;
3486 i = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
3487 }
3488
3489 trace_ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3490 search_hint_reverse, 0, 0);
3491 return 0;
3492 }
3493
ext4_find_delalloc_cluster(struct inode * inode,ext4_lblk_t lblk,int search_hint_reverse)3494 int ext4_find_delalloc_cluster(struct inode *inode, ext4_lblk_t lblk,
3495 int search_hint_reverse)
3496 {
3497 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3498 ext4_lblk_t lblk_start, lblk_end;
3499 lblk_start = lblk & (~(sbi->s_cluster_ratio - 1));
3500 lblk_end = lblk_start + sbi->s_cluster_ratio - 1;
3501
3502 return ext4_find_delalloc_range(inode, lblk_start, lblk_end,
3503 search_hint_reverse);
3504 }
3505
3506 /**
3507 * Determines how many complete clusters (out of those specified by the 'map')
3508 * are under delalloc and were reserved quota for.
3509 * This function is called when we are writing out the blocks that were
3510 * originally written with their allocation delayed, but then the space was
3511 * allocated using fallocate() before the delayed allocation could be resolved.
3512 * The cases to look for are:
3513 * ('=' indicated delayed allocated blocks
3514 * '-' indicates non-delayed allocated blocks)
3515 * (a) partial clusters towards beginning and/or end outside of allocated range
3516 * are not delalloc'ed.
3517 * Ex:
3518 * |----c---=|====c====|====c====|===-c----|
3519 * |++++++ allocated ++++++|
3520 * ==> 4 complete clusters in above example
3521 *
3522 * (b) partial cluster (outside of allocated range) towards either end is
3523 * marked for delayed allocation. In this case, we will exclude that
3524 * cluster.
3525 * Ex:
3526 * |----====c========|========c========|
3527 * |++++++ allocated ++++++|
3528 * ==> 1 complete clusters in above example
3529 *
3530 * Ex:
3531 * |================c================|
3532 * |++++++ allocated ++++++|
3533 * ==> 0 complete clusters in above example
3534 *
3535 * The ext4_da_update_reserve_space will be called only if we
3536 * determine here that there were some "entire" clusters that span
3537 * this 'allocated' range.
3538 * In the non-bigalloc case, this function will just end up returning num_blks
3539 * without ever calling ext4_find_delalloc_range.
3540 */
3541 static unsigned int
get_reserved_cluster_alloc(struct inode * inode,ext4_lblk_t lblk_start,unsigned int num_blks)3542 get_reserved_cluster_alloc(struct inode *inode, ext4_lblk_t lblk_start,
3543 unsigned int num_blks)
3544 {
3545 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3546 ext4_lblk_t alloc_cluster_start, alloc_cluster_end;
3547 ext4_lblk_t lblk_from, lblk_to, c_offset;
3548 unsigned int allocated_clusters = 0;
3549
3550 alloc_cluster_start = EXT4_B2C(sbi, lblk_start);
3551 alloc_cluster_end = EXT4_B2C(sbi, lblk_start + num_blks - 1);
3552
3553 /* max possible clusters for this allocation */
3554 allocated_clusters = alloc_cluster_end - alloc_cluster_start + 1;
3555
3556 trace_ext4_get_reserved_cluster_alloc(inode, lblk_start, num_blks);
3557
3558 /* Check towards left side */
3559 c_offset = lblk_start & (sbi->s_cluster_ratio - 1);
3560 if (c_offset) {
3561 lblk_from = lblk_start & (~(sbi->s_cluster_ratio - 1));
3562 lblk_to = lblk_from + c_offset - 1;
3563
3564 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3565 allocated_clusters--;
3566 }
3567
3568 /* Now check towards right. */
3569 c_offset = (lblk_start + num_blks) & (sbi->s_cluster_ratio - 1);
3570 if (allocated_clusters && c_offset) {
3571 lblk_from = lblk_start + num_blks;
3572 lblk_to = lblk_from + (sbi->s_cluster_ratio - c_offset) - 1;
3573
3574 if (ext4_find_delalloc_range(inode, lblk_from, lblk_to, 0))
3575 allocated_clusters--;
3576 }
3577
3578 return allocated_clusters;
3579 }
3580
3581 static int
ext4_ext_handle_uninitialized_extents(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,struct ext4_ext_path * path,int flags,unsigned int allocated,ext4_fsblk_t newblock)3582 ext4_ext_handle_uninitialized_extents(handle_t *handle, struct inode *inode,
3583 struct ext4_map_blocks *map,
3584 struct ext4_ext_path *path, int flags,
3585 unsigned int allocated, ext4_fsblk_t newblock)
3586 {
3587 int ret = 0;
3588 int err = 0;
3589 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3590
3591 ext_debug("ext4_ext_handle_uninitialized_extents: inode %lu, logical "
3592 "block %llu, max_blocks %u, flags %x, allocated %u\n",
3593 inode->i_ino, (unsigned long long)map->m_lblk, map->m_len,
3594 flags, allocated);
3595 ext4_ext_show_leaf(inode, path);
3596
3597 trace_ext4_ext_handle_uninitialized_extents(inode, map, allocated,
3598 newblock);
3599
3600 /* get_block() before submit the IO, split the extent */
3601 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
3602 ret = ext4_split_unwritten_extents(handle, inode, map,
3603 path, flags);
3604 /*
3605 * Flag the inode(non aio case) or end_io struct (aio case)
3606 * that this IO needs to conversion to written when IO is
3607 * completed
3608 */
3609 if (io)
3610 ext4_set_io_unwritten_flag(inode, io);
3611 else
3612 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3613 if (ext4_should_dioread_nolock(inode))
3614 map->m_flags |= EXT4_MAP_UNINIT;
3615 goto out;
3616 }
3617 /* IO end_io complete, convert the filled extent to written */
3618 if ((flags & EXT4_GET_BLOCKS_CONVERT)) {
3619 ret = ext4_convert_unwritten_extents_endio(handle, inode, map,
3620 path);
3621 if (ret >= 0) {
3622 ext4_update_inode_fsync_trans(handle, inode, 1);
3623 err = check_eofblocks_fl(handle, inode, map->m_lblk,
3624 path, map->m_len);
3625 } else
3626 err = ret;
3627 goto out2;
3628 }
3629 /* buffered IO case */
3630 /*
3631 * repeat fallocate creation request
3632 * we already have an unwritten extent
3633 */
3634 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT)
3635 goto map_out;
3636
3637 /* buffered READ or buffered write_begin() lookup */
3638 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3639 /*
3640 * We have blocks reserved already. We
3641 * return allocated blocks so that delalloc
3642 * won't do block reservation for us. But
3643 * the buffer head will be unmapped so that
3644 * a read from the block returns 0s.
3645 */
3646 map->m_flags |= EXT4_MAP_UNWRITTEN;
3647 goto out1;
3648 }
3649
3650 /* buffered write, writepage time, convert*/
3651 ret = ext4_ext_convert_to_initialized(handle, inode, map, path);
3652 if (ret >= 0)
3653 ext4_update_inode_fsync_trans(handle, inode, 1);
3654 out:
3655 if (ret <= 0) {
3656 err = ret;
3657 goto out2;
3658 } else
3659 allocated = ret;
3660 map->m_flags |= EXT4_MAP_NEW;
3661 /*
3662 * if we allocated more blocks than requested
3663 * we need to make sure we unmap the extra block
3664 * allocated. The actual needed block will get
3665 * unmapped later when we find the buffer_head marked
3666 * new.
3667 */
3668 if (allocated > map->m_len) {
3669 unmap_underlying_metadata_blocks(inode->i_sb->s_bdev,
3670 newblock + map->m_len,
3671 allocated - map->m_len);
3672 allocated = map->m_len;
3673 }
3674 map->m_len = allocated;
3675
3676 /*
3677 * If we have done fallocate with the offset that is already
3678 * delayed allocated, we would have block reservation
3679 * and quota reservation done in the delayed write path.
3680 * But fallocate would have already updated quota and block
3681 * count for this offset. So cancel these reservation
3682 */
3683 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
3684 unsigned int reserved_clusters;
3685 reserved_clusters = get_reserved_cluster_alloc(inode,
3686 map->m_lblk, map->m_len);
3687 if (reserved_clusters)
3688 ext4_da_update_reserve_space(inode,
3689 reserved_clusters,
3690 0);
3691 }
3692
3693 map_out:
3694 map->m_flags |= EXT4_MAP_MAPPED;
3695 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0) {
3696 err = check_eofblocks_fl(handle, inode, map->m_lblk, path,
3697 map->m_len);
3698 if (err < 0)
3699 goto out2;
3700 }
3701 out1:
3702 if (allocated > map->m_len)
3703 allocated = map->m_len;
3704 ext4_ext_show_leaf(inode, path);
3705 map->m_pblk = newblock;
3706 map->m_len = allocated;
3707 out2:
3708 if (path) {
3709 ext4_ext_drop_refs(path);
3710 kfree(path);
3711 }
3712 return err ? err : allocated;
3713 }
3714
3715 /*
3716 * get_implied_cluster_alloc - check to see if the requested
3717 * allocation (in the map structure) overlaps with a cluster already
3718 * allocated in an extent.
3719 * @sb The filesystem superblock structure
3720 * @map The requested lblk->pblk mapping
3721 * @ex The extent structure which might contain an implied
3722 * cluster allocation
3723 *
3724 * This function is called by ext4_ext_map_blocks() after we failed to
3725 * find blocks that were already in the inode's extent tree. Hence,
3726 * we know that the beginning of the requested region cannot overlap
3727 * the extent from the inode's extent tree. There are three cases we
3728 * want to catch. The first is this case:
3729 *
3730 * |--- cluster # N--|
3731 * |--- extent ---| |---- requested region ---|
3732 * |==========|
3733 *
3734 * The second case that we need to test for is this one:
3735 *
3736 * |--------- cluster # N ----------------|
3737 * |--- requested region --| |------- extent ----|
3738 * |=======================|
3739 *
3740 * The third case is when the requested region lies between two extents
3741 * within the same cluster:
3742 * |------------- cluster # N-------------|
3743 * |----- ex -----| |---- ex_right ----|
3744 * |------ requested region ------|
3745 * |================|
3746 *
3747 * In each of the above cases, we need to set the map->m_pblk and
3748 * map->m_len so it corresponds to the return the extent labelled as
3749 * "|====|" from cluster #N, since it is already in use for data in
3750 * cluster EXT4_B2C(sbi, map->m_lblk). We will then return 1 to
3751 * signal to ext4_ext_map_blocks() that map->m_pblk should be treated
3752 * as a new "allocated" block region. Otherwise, we will return 0 and
3753 * ext4_ext_map_blocks() will then allocate one or more new clusters
3754 * by calling ext4_mb_new_blocks().
3755 */
get_implied_cluster_alloc(struct super_block * sb,struct ext4_map_blocks * map,struct ext4_extent * ex,struct ext4_ext_path * path)3756 static int get_implied_cluster_alloc(struct super_block *sb,
3757 struct ext4_map_blocks *map,
3758 struct ext4_extent *ex,
3759 struct ext4_ext_path *path)
3760 {
3761 struct ext4_sb_info *sbi = EXT4_SB(sb);
3762 ext4_lblk_t c_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3763 ext4_lblk_t ex_cluster_start, ex_cluster_end;
3764 ext4_lblk_t rr_cluster_start;
3765 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3766 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3767 unsigned short ee_len = ext4_ext_get_actual_len(ex);
3768
3769 /* The extent passed in that we are trying to match */
3770 ex_cluster_start = EXT4_B2C(sbi, ee_block);
3771 ex_cluster_end = EXT4_B2C(sbi, ee_block + ee_len - 1);
3772
3773 /* The requested region passed into ext4_map_blocks() */
3774 rr_cluster_start = EXT4_B2C(sbi, map->m_lblk);
3775
3776 if ((rr_cluster_start == ex_cluster_end) ||
3777 (rr_cluster_start == ex_cluster_start)) {
3778 if (rr_cluster_start == ex_cluster_end)
3779 ee_start += ee_len - 1;
3780 map->m_pblk = (ee_start & ~(sbi->s_cluster_ratio - 1)) +
3781 c_offset;
3782 map->m_len = min(map->m_len,
3783 (unsigned) sbi->s_cluster_ratio - c_offset);
3784 /*
3785 * Check for and handle this case:
3786 *
3787 * |--------- cluster # N-------------|
3788 * |------- extent ----|
3789 * |--- requested region ---|
3790 * |===========|
3791 */
3792
3793 if (map->m_lblk < ee_block)
3794 map->m_len = min(map->m_len, ee_block - map->m_lblk);
3795
3796 /*
3797 * Check for the case where there is already another allocated
3798 * block to the right of 'ex' but before the end of the cluster.
3799 *
3800 * |------------- cluster # N-------------|
3801 * |----- ex -----| |---- ex_right ----|
3802 * |------ requested region ------|
3803 * |================|
3804 */
3805 if (map->m_lblk > ee_block) {
3806 ext4_lblk_t next = ext4_ext_next_allocated_block(path);
3807 map->m_len = min(map->m_len, next - map->m_lblk);
3808 }
3809
3810 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 1);
3811 return 1;
3812 }
3813
3814 trace_ext4_get_implied_cluster_alloc_exit(sb, map, 0);
3815 return 0;
3816 }
3817
3818
3819 /*
3820 * Block allocation/map/preallocation routine for extents based files
3821 *
3822 *
3823 * Need to be called with
3824 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system block
3825 * (ie, create is zero). Otherwise down_write(&EXT4_I(inode)->i_data_sem)
3826 *
3827 * return > 0, number of of blocks already mapped/allocated
3828 * if create == 0 and these are pre-allocated blocks
3829 * buffer head is unmapped
3830 * otherwise blocks are mapped
3831 *
3832 * return = 0, if plain look up failed (blocks have not been allocated)
3833 * buffer head is unmapped
3834 *
3835 * return < 0, error case.
3836 */
ext4_ext_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)3837 int ext4_ext_map_blocks(handle_t *handle, struct inode *inode,
3838 struct ext4_map_blocks *map, int flags)
3839 {
3840 struct ext4_ext_path *path = NULL;
3841 struct ext4_extent newex, *ex, *ex2;
3842 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3843 ext4_fsblk_t newblock = 0;
3844 int free_on_err = 0, err = 0, depth, ret;
3845 unsigned int allocated = 0, offset = 0;
3846 unsigned int allocated_clusters = 0;
3847 struct ext4_allocation_request ar;
3848 ext4_io_end_t *io = EXT4_I(inode)->cur_aio_dio;
3849 ext4_lblk_t cluster_offset;
3850
3851 ext_debug("blocks %u/%u requested for inode %lu\n",
3852 map->m_lblk, map->m_len, inode->i_ino);
3853 trace_ext4_ext_map_blocks_enter(inode, map->m_lblk, map->m_len, flags);
3854
3855 /* check in cache */
3856 if (ext4_ext_in_cache(inode, map->m_lblk, &newex)) {
3857 if (!newex.ee_start_lo && !newex.ee_start_hi) {
3858 if ((sbi->s_cluster_ratio > 1) &&
3859 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3860 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3861
3862 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3863 /*
3864 * block isn't allocated yet and
3865 * user doesn't want to allocate it
3866 */
3867 goto out2;
3868 }
3869 /* we should allocate requested block */
3870 } else {
3871 /* block is already allocated */
3872 if (sbi->s_cluster_ratio > 1)
3873 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3874 newblock = map->m_lblk
3875 - le32_to_cpu(newex.ee_block)
3876 + ext4_ext_pblock(&newex);
3877 /* number of remaining blocks in the extent */
3878 allocated = ext4_ext_get_actual_len(&newex) -
3879 (map->m_lblk - le32_to_cpu(newex.ee_block));
3880 goto out;
3881 }
3882 }
3883
3884 /* find extent for this block */
3885 path = ext4_ext_find_extent(inode, map->m_lblk, NULL);
3886 if (IS_ERR(path)) {
3887 err = PTR_ERR(path);
3888 path = NULL;
3889 goto out2;
3890 }
3891
3892 depth = ext_depth(inode);
3893
3894 /*
3895 * consistent leaf must not be empty;
3896 * this situation is possible, though, _during_ tree modification;
3897 * this is why assert can't be put in ext4_ext_find_extent()
3898 */
3899 if (unlikely(path[depth].p_ext == NULL && depth != 0)) {
3900 EXT4_ERROR_INODE(inode, "bad extent address "
3901 "lblock: %lu, depth: %d pblock %lld",
3902 (unsigned long) map->m_lblk, depth,
3903 path[depth].p_block);
3904 err = -EIO;
3905 goto out2;
3906 }
3907
3908 ex = path[depth].p_ext;
3909 if (ex) {
3910 ext4_lblk_t ee_block = le32_to_cpu(ex->ee_block);
3911 ext4_fsblk_t ee_start = ext4_ext_pblock(ex);
3912 unsigned short ee_len;
3913
3914 /*
3915 * Uninitialized extents are treated as holes, except that
3916 * we split out initialized portions during a write.
3917 */
3918 ee_len = ext4_ext_get_actual_len(ex);
3919
3920 trace_ext4_ext_show_extent(inode, ee_block, ee_start, ee_len);
3921
3922 /* if found extent covers block, simply return it */
3923 if (in_range(map->m_lblk, ee_block, ee_len)) {
3924 newblock = map->m_lblk - ee_block + ee_start;
3925 /* number of remaining blocks in the extent */
3926 allocated = ee_len - (map->m_lblk - ee_block);
3927 ext_debug("%u fit into %u:%d -> %llu\n", map->m_lblk,
3928 ee_block, ee_len, newblock);
3929
3930 /*
3931 * Do not put uninitialized extent
3932 * in the cache
3933 */
3934 if (!ext4_ext_is_uninitialized(ex)) {
3935 ext4_ext_put_in_cache(inode, ee_block,
3936 ee_len, ee_start);
3937 goto out;
3938 }
3939 ret = ext4_ext_handle_uninitialized_extents(
3940 handle, inode, map, path, flags,
3941 allocated, newblock);
3942 return ret;
3943 }
3944 }
3945
3946 if ((sbi->s_cluster_ratio > 1) &&
3947 ext4_find_delalloc_cluster(inode, map->m_lblk, 0))
3948 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3949
3950 /*
3951 * requested block isn't allocated yet;
3952 * we couldn't try to create block if create flag is zero
3953 */
3954 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) {
3955 /*
3956 * put just found gap into cache to speed up
3957 * subsequent requests
3958 */
3959 ext4_ext_put_gap_in_cache(inode, path, map->m_lblk);
3960 goto out2;
3961 }
3962
3963 /*
3964 * Okay, we need to do block allocation.
3965 */
3966 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
3967 newex.ee_block = cpu_to_le32(map->m_lblk);
3968 cluster_offset = map->m_lblk & (sbi->s_cluster_ratio-1);
3969
3970 /*
3971 * If we are doing bigalloc, check to see if the extent returned
3972 * by ext4_ext_find_extent() implies a cluster we can use.
3973 */
3974 if (cluster_offset && ex &&
3975 get_implied_cluster_alloc(inode->i_sb, map, ex, path)) {
3976 ar.len = allocated = map->m_len;
3977 newblock = map->m_pblk;
3978 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
3979 goto got_allocated_blocks;
3980 }
3981
3982 /* find neighbour allocated blocks */
3983 ar.lleft = map->m_lblk;
3984 err = ext4_ext_search_left(inode, path, &ar.lleft, &ar.pleft);
3985 if (err)
3986 goto out2;
3987 ar.lright = map->m_lblk;
3988 ex2 = NULL;
3989 err = ext4_ext_search_right(inode, path, &ar.lright, &ar.pright, &ex2);
3990 if (err)
3991 goto out2;
3992
3993 /* Check if the extent after searching to the right implies a
3994 * cluster we can use. */
3995 if ((sbi->s_cluster_ratio > 1) && ex2 &&
3996 get_implied_cluster_alloc(inode->i_sb, map, ex2, path)) {
3997 ar.len = allocated = map->m_len;
3998 newblock = map->m_pblk;
3999 map->m_flags |= EXT4_MAP_FROM_CLUSTER;
4000 goto got_allocated_blocks;
4001 }
4002
4003 /*
4004 * See if request is beyond maximum number of blocks we can have in
4005 * a single extent. For an initialized extent this limit is
4006 * EXT_INIT_MAX_LEN and for an uninitialized extent this limit is
4007 * EXT_UNINIT_MAX_LEN.
4008 */
4009 if (map->m_len > EXT_INIT_MAX_LEN &&
4010 !(flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4011 map->m_len = EXT_INIT_MAX_LEN;
4012 else if (map->m_len > EXT_UNINIT_MAX_LEN &&
4013 (flags & EXT4_GET_BLOCKS_UNINIT_EXT))
4014 map->m_len = EXT_UNINIT_MAX_LEN;
4015
4016 /* Check if we can really insert (m_lblk)::(m_lblk + m_len) extent */
4017 newex.ee_len = cpu_to_le16(map->m_len);
4018 err = ext4_ext_check_overlap(sbi, inode, &newex, path);
4019 if (err)
4020 allocated = ext4_ext_get_actual_len(&newex);
4021 else
4022 allocated = map->m_len;
4023
4024 /* allocate new block */
4025 ar.inode = inode;
4026 ar.goal = ext4_ext_find_goal(inode, path, map->m_lblk);
4027 ar.logical = map->m_lblk;
4028 /*
4029 * We calculate the offset from the beginning of the cluster
4030 * for the logical block number, since when we allocate a
4031 * physical cluster, the physical block should start at the
4032 * same offset from the beginning of the cluster. This is
4033 * needed so that future calls to get_implied_cluster_alloc()
4034 * work correctly.
4035 */
4036 offset = map->m_lblk & (sbi->s_cluster_ratio - 1);
4037 ar.len = EXT4_NUM_B2C(sbi, offset+allocated);
4038 ar.goal -= offset;
4039 ar.logical -= offset;
4040 if (S_ISREG(inode->i_mode))
4041 ar.flags = EXT4_MB_HINT_DATA;
4042 else
4043 /* disable in-core preallocation for non-regular files */
4044 ar.flags = 0;
4045 if (flags & EXT4_GET_BLOCKS_NO_NORMALIZE)
4046 ar.flags |= EXT4_MB_HINT_NOPREALLOC;
4047 newblock = ext4_mb_new_blocks(handle, &ar, &err);
4048 if (!newblock)
4049 goto out2;
4050 ext_debug("allocate new block: goal %llu, found %llu/%u\n",
4051 ar.goal, newblock, allocated);
4052 free_on_err = 1;
4053 allocated_clusters = ar.len;
4054 ar.len = EXT4_C2B(sbi, ar.len) - offset;
4055 if (ar.len > allocated)
4056 ar.len = allocated;
4057
4058 got_allocated_blocks:
4059 /* try to insert new extent into found leaf and return */
4060 ext4_ext_store_pblock(&newex, newblock + offset);
4061 newex.ee_len = cpu_to_le16(ar.len);
4062 /* Mark uninitialized */
4063 if (flags & EXT4_GET_BLOCKS_UNINIT_EXT){
4064 ext4_ext_mark_uninitialized(&newex);
4065 /*
4066 * io_end structure was created for every IO write to an
4067 * uninitialized extent. To avoid unnecessary conversion,
4068 * here we flag the IO that really needs the conversion.
4069 * For non asycn direct IO case, flag the inode state
4070 * that we need to perform conversion when IO is done.
4071 */
4072 if ((flags & EXT4_GET_BLOCKS_PRE_IO)) {
4073 if (io)
4074 ext4_set_io_unwritten_flag(inode, io);
4075 else
4076 ext4_set_inode_state(inode,
4077 EXT4_STATE_DIO_UNWRITTEN);
4078 }
4079 if (ext4_should_dioread_nolock(inode))
4080 map->m_flags |= EXT4_MAP_UNINIT;
4081 }
4082
4083 err = 0;
4084 if ((flags & EXT4_GET_BLOCKS_KEEP_SIZE) == 0)
4085 err = check_eofblocks_fl(handle, inode, map->m_lblk,
4086 path, ar.len);
4087 if (!err)
4088 err = ext4_ext_insert_extent(handle, inode, path,
4089 &newex, flags);
4090 if (err && free_on_err) {
4091 int fb_flags = flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE ?
4092 EXT4_FREE_BLOCKS_NO_QUOT_UPDATE : 0;
4093 /* free data blocks we just allocated */
4094 /* not a good idea to call discard here directly,
4095 * but otherwise we'd need to call it every free() */
4096 ext4_discard_preallocations(inode);
4097 ext4_free_blocks(handle, inode, NULL, ext4_ext_pblock(&newex),
4098 ext4_ext_get_actual_len(&newex), fb_flags);
4099 goto out2;
4100 }
4101
4102 /* previous routine could use block we allocated */
4103 newblock = ext4_ext_pblock(&newex);
4104 allocated = ext4_ext_get_actual_len(&newex);
4105 if (allocated > map->m_len)
4106 allocated = map->m_len;
4107 map->m_flags |= EXT4_MAP_NEW;
4108
4109 /*
4110 * Update reserved blocks/metadata blocks after successful
4111 * block allocation which had been deferred till now.
4112 */
4113 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
4114 unsigned int reserved_clusters;
4115 /*
4116 * Check how many clusters we had reserved this allocated range
4117 */
4118 reserved_clusters = get_reserved_cluster_alloc(inode,
4119 map->m_lblk, allocated);
4120 if (map->m_flags & EXT4_MAP_FROM_CLUSTER) {
4121 if (reserved_clusters) {
4122 /*
4123 * We have clusters reserved for this range.
4124 * But since we are not doing actual allocation
4125 * and are simply using blocks from previously
4126 * allocated cluster, we should release the
4127 * reservation and not claim quota.
4128 */
4129 ext4_da_update_reserve_space(inode,
4130 reserved_clusters, 0);
4131 }
4132 } else {
4133 BUG_ON(allocated_clusters < reserved_clusters);
4134 /* We will claim quota for all newly allocated blocks.*/
4135 ext4_da_update_reserve_space(inode, allocated_clusters,
4136 1);
4137 if (reserved_clusters < allocated_clusters) {
4138 struct ext4_inode_info *ei = EXT4_I(inode);
4139 int reservation = allocated_clusters -
4140 reserved_clusters;
4141 /*
4142 * It seems we claimed few clusters outside of
4143 * the range of this allocation. We should give
4144 * it back to the reservation pool. This can
4145 * happen in the following case:
4146 *
4147 * * Suppose s_cluster_ratio is 4 (i.e., each
4148 * cluster has 4 blocks. Thus, the clusters
4149 * are [0-3],[4-7],[8-11]...
4150 * * First comes delayed allocation write for
4151 * logical blocks 10 & 11. Since there were no
4152 * previous delayed allocated blocks in the
4153 * range [8-11], we would reserve 1 cluster
4154 * for this write.
4155 * * Next comes write for logical blocks 3 to 8.
4156 * In this case, we will reserve 2 clusters
4157 * (for [0-3] and [4-7]; and not for [8-11] as
4158 * that range has a delayed allocated blocks.
4159 * Thus total reserved clusters now becomes 3.
4160 * * Now, during the delayed allocation writeout
4161 * time, we will first write blocks [3-8] and
4162 * allocate 3 clusters for writing these
4163 * blocks. Also, we would claim all these
4164 * three clusters above.
4165 * * Now when we come here to writeout the
4166 * blocks [10-11], we would expect to claim
4167 * the reservation of 1 cluster we had made
4168 * (and we would claim it since there are no
4169 * more delayed allocated blocks in the range
4170 * [8-11]. But our reserved cluster count had
4171 * already gone to 0.
4172 *
4173 * Thus, at the step 4 above when we determine
4174 * that there are still some unwritten delayed
4175 * allocated blocks outside of our current
4176 * block range, we should increment the
4177 * reserved clusters count so that when the
4178 * remaining blocks finally gets written, we
4179 * could claim them.
4180 */
4181 dquot_reserve_block(inode,
4182 EXT4_C2B(sbi, reservation));
4183 spin_lock(&ei->i_block_reservation_lock);
4184 ei->i_reserved_data_blocks += reservation;
4185 spin_unlock(&ei->i_block_reservation_lock);
4186 }
4187 }
4188 }
4189
4190 /*
4191 * Cache the extent and update transaction to commit on fdatasync only
4192 * when it is _not_ an uninitialized extent.
4193 */
4194 if ((flags & EXT4_GET_BLOCKS_UNINIT_EXT) == 0) {
4195 ext4_ext_put_in_cache(inode, map->m_lblk, allocated, newblock);
4196 ext4_update_inode_fsync_trans(handle, inode, 1);
4197 } else
4198 ext4_update_inode_fsync_trans(handle, inode, 0);
4199 out:
4200 if (allocated > map->m_len)
4201 allocated = map->m_len;
4202 ext4_ext_show_leaf(inode, path);
4203 map->m_flags |= EXT4_MAP_MAPPED;
4204 map->m_pblk = newblock;
4205 map->m_len = allocated;
4206 out2:
4207 if (path) {
4208 ext4_ext_drop_refs(path);
4209 kfree(path);
4210 }
4211
4212 trace_ext4_ext_map_blocks_exit(inode, map->m_lblk,
4213 newblock, map->m_len, err ? err : allocated);
4214
4215 return err ? err : allocated;
4216 }
4217
ext4_ext_truncate(struct inode * inode)4218 void ext4_ext_truncate(struct inode *inode)
4219 {
4220 struct address_space *mapping = inode->i_mapping;
4221 struct super_block *sb = inode->i_sb;
4222 ext4_lblk_t last_block;
4223 handle_t *handle;
4224 loff_t page_len;
4225 int err = 0;
4226
4227 /*
4228 * finish any pending end_io work so we won't run the risk of
4229 * converting any truncated blocks to initialized later
4230 */
4231 ext4_flush_completed_IO(inode);
4232
4233 /*
4234 * probably first extent we're gonna free will be last in block
4235 */
4236 err = ext4_writepage_trans_blocks(inode);
4237 handle = ext4_journal_start(inode, err);
4238 if (IS_ERR(handle))
4239 return;
4240
4241 if (inode->i_size % PAGE_CACHE_SIZE != 0) {
4242 page_len = PAGE_CACHE_SIZE -
4243 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4244
4245 err = ext4_discard_partial_page_buffers(handle,
4246 mapping, inode->i_size, page_len, 0);
4247
4248 if (err)
4249 goto out_stop;
4250 }
4251
4252 if (ext4_orphan_add(handle, inode))
4253 goto out_stop;
4254
4255 down_write(&EXT4_I(inode)->i_data_sem);
4256 ext4_ext_invalidate_cache(inode);
4257
4258 ext4_discard_preallocations(inode);
4259
4260 /*
4261 * TODO: optimization is possible here.
4262 * Probably we need not scan at all,
4263 * because page truncation is enough.
4264 */
4265
4266 /* we have to know where to truncate from in crash case */
4267 EXT4_I(inode)->i_disksize = inode->i_size;
4268 ext4_mark_inode_dirty(handle, inode);
4269
4270 last_block = (inode->i_size + sb->s_blocksize - 1)
4271 >> EXT4_BLOCK_SIZE_BITS(sb);
4272 err = ext4_ext_remove_space(inode, last_block, EXT_MAX_BLOCKS - 1);
4273
4274 /* In a multi-transaction truncate, we only make the final
4275 * transaction synchronous.
4276 */
4277 if (IS_SYNC(inode))
4278 ext4_handle_sync(handle);
4279
4280 up_write(&EXT4_I(inode)->i_data_sem);
4281
4282 out_stop:
4283 /*
4284 * If this was a simple ftruncate() and the file will remain alive,
4285 * then we need to clear up the orphan record which we created above.
4286 * However, if this was a real unlink then we were called by
4287 * ext4_delete_inode(), and we allow that function to clean up the
4288 * orphan info for us.
4289 */
4290 if (inode->i_nlink)
4291 ext4_orphan_del(handle, inode);
4292
4293 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4294 ext4_mark_inode_dirty(handle, inode);
4295 ext4_journal_stop(handle);
4296 }
4297
ext4_falloc_update_inode(struct inode * inode,int mode,loff_t new_size,int update_ctime)4298 static void ext4_falloc_update_inode(struct inode *inode,
4299 int mode, loff_t new_size, int update_ctime)
4300 {
4301 struct timespec now;
4302
4303 if (update_ctime) {
4304 now = current_fs_time(inode->i_sb);
4305 if (!timespec_equal(&inode->i_ctime, &now))
4306 inode->i_ctime = now;
4307 }
4308 /*
4309 * Update only when preallocation was requested beyond
4310 * the file size.
4311 */
4312 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
4313 if (new_size > i_size_read(inode))
4314 i_size_write(inode, new_size);
4315 if (new_size > EXT4_I(inode)->i_disksize)
4316 ext4_update_i_disksize(inode, new_size);
4317 } else {
4318 /*
4319 * Mark that we allocate beyond EOF so the subsequent truncate
4320 * can proceed even if the new size is the same as i_size.
4321 */
4322 if (new_size > i_size_read(inode))
4323 ext4_set_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4324 }
4325
4326 }
4327
4328 /*
4329 * preallocate space for a file. This implements ext4's fallocate file
4330 * operation, which gets called from sys_fallocate system call.
4331 * For block-mapped files, posix_fallocate should fall back to the method
4332 * of writing zeroes to the required new blocks (the same behavior which is
4333 * expected for file systems which do not support fallocate() system call).
4334 */
ext4_fallocate(struct file * file,int mode,loff_t offset,loff_t len)4335 long ext4_fallocate(struct file *file, int mode, loff_t offset, loff_t len)
4336 {
4337 struct inode *inode = file->f_path.dentry->d_inode;
4338 handle_t *handle;
4339 loff_t new_size;
4340 unsigned int max_blocks;
4341 int ret = 0;
4342 int ret2 = 0;
4343 int retries = 0;
4344 int flags;
4345 struct ext4_map_blocks map;
4346 unsigned int credits, blkbits = inode->i_blkbits;
4347
4348 /*
4349 * currently supporting (pre)allocate mode for extent-based
4350 * files _only_
4351 */
4352 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4353 return -EOPNOTSUPP;
4354
4355 /* Return error if mode is not supported */
4356 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
4357 return -EOPNOTSUPP;
4358
4359 if (mode & FALLOC_FL_PUNCH_HOLE)
4360 return ext4_punch_hole(file, offset, len);
4361
4362 trace_ext4_fallocate_enter(inode, offset, len, mode);
4363 map.m_lblk = offset >> blkbits;
4364 /*
4365 * We can't just convert len to max_blocks because
4366 * If blocksize = 4096 offset = 3072 and len = 2048
4367 */
4368 max_blocks = (EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits)
4369 - map.m_lblk;
4370 /*
4371 * credits to insert 1 extent into extent tree
4372 */
4373 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4374 mutex_lock(&inode->i_mutex);
4375 ret = inode_newsize_ok(inode, (len + offset));
4376 if (ret) {
4377 mutex_unlock(&inode->i_mutex);
4378 trace_ext4_fallocate_exit(inode, offset, max_blocks, ret);
4379 return ret;
4380 }
4381 flags = EXT4_GET_BLOCKS_CREATE_UNINIT_EXT;
4382 if (mode & FALLOC_FL_KEEP_SIZE)
4383 flags |= EXT4_GET_BLOCKS_KEEP_SIZE;
4384 /*
4385 * Don't normalize the request if it can fit in one extent so
4386 * that it doesn't get unnecessarily split into multiple
4387 * extents.
4388 */
4389 if (len <= EXT_UNINIT_MAX_LEN << blkbits)
4390 flags |= EXT4_GET_BLOCKS_NO_NORMALIZE;
4391 retry:
4392 while (ret >= 0 && ret < max_blocks) {
4393 map.m_lblk = map.m_lblk + ret;
4394 map.m_len = max_blocks = max_blocks - ret;
4395 handle = ext4_journal_start(inode, credits);
4396 if (IS_ERR(handle)) {
4397 ret = PTR_ERR(handle);
4398 break;
4399 }
4400 ret = ext4_map_blocks(handle, inode, &map, flags);
4401 if (ret <= 0) {
4402 #ifdef EXT4FS_DEBUG
4403 WARN_ON(ret <= 0);
4404 printk(KERN_ERR "%s: ext4_ext_map_blocks "
4405 "returned error inode#%lu, block=%u, "
4406 "max_blocks=%u", __func__,
4407 inode->i_ino, map.m_lblk, max_blocks);
4408 #endif
4409 ext4_mark_inode_dirty(handle, inode);
4410 ret2 = ext4_journal_stop(handle);
4411 break;
4412 }
4413 if ((map.m_lblk + ret) >= (EXT4_BLOCK_ALIGN(offset + len,
4414 blkbits) >> blkbits))
4415 new_size = offset + len;
4416 else
4417 new_size = ((loff_t) map.m_lblk + ret) << blkbits;
4418
4419 ext4_falloc_update_inode(inode, mode, new_size,
4420 (map.m_flags & EXT4_MAP_NEW));
4421 ext4_mark_inode_dirty(handle, inode);
4422 ret2 = ext4_journal_stop(handle);
4423 if (ret2)
4424 break;
4425 }
4426 if (ret == -ENOSPC &&
4427 ext4_should_retry_alloc(inode->i_sb, &retries)) {
4428 ret = 0;
4429 goto retry;
4430 }
4431 mutex_unlock(&inode->i_mutex);
4432 trace_ext4_fallocate_exit(inode, offset, max_blocks,
4433 ret > 0 ? ret2 : ret);
4434 return ret > 0 ? ret2 : ret;
4435 }
4436
4437 /*
4438 * This function convert a range of blocks to written extents
4439 * The caller of this function will pass the start offset and the size.
4440 * all unwritten extents within this range will be converted to
4441 * written extents.
4442 *
4443 * This function is called from the direct IO end io call back
4444 * function, to convert the fallocated extents after IO is completed.
4445 * Returns 0 on success.
4446 */
ext4_convert_unwritten_extents(struct inode * inode,loff_t offset,ssize_t len)4447 int ext4_convert_unwritten_extents(struct inode *inode, loff_t offset,
4448 ssize_t len)
4449 {
4450 handle_t *handle;
4451 unsigned int max_blocks;
4452 int ret = 0;
4453 int ret2 = 0;
4454 struct ext4_map_blocks map;
4455 unsigned int credits, blkbits = inode->i_blkbits;
4456
4457 map.m_lblk = offset >> blkbits;
4458 /*
4459 * We can't just convert len to max_blocks because
4460 * If blocksize = 4096 offset = 3072 and len = 2048
4461 */
4462 max_blocks = ((EXT4_BLOCK_ALIGN(len + offset, blkbits) >> blkbits) -
4463 map.m_lblk);
4464 /*
4465 * credits to insert 1 extent into extent tree
4466 */
4467 credits = ext4_chunk_trans_blocks(inode, max_blocks);
4468 while (ret >= 0 && ret < max_blocks) {
4469 map.m_lblk += ret;
4470 map.m_len = (max_blocks -= ret);
4471 handle = ext4_journal_start(inode, credits);
4472 if (IS_ERR(handle)) {
4473 ret = PTR_ERR(handle);
4474 break;
4475 }
4476 ret = ext4_map_blocks(handle, inode, &map,
4477 EXT4_GET_BLOCKS_IO_CONVERT_EXT);
4478 if (ret <= 0) {
4479 WARN_ON(ret <= 0);
4480 ext4_msg(inode->i_sb, KERN_ERR,
4481 "%s:%d: inode #%lu: block %u: len %u: "
4482 "ext4_ext_map_blocks returned %d",
4483 __func__, __LINE__, inode->i_ino, map.m_lblk,
4484 map.m_len, ret);
4485 }
4486 ext4_mark_inode_dirty(handle, inode);
4487 ret2 = ext4_journal_stop(handle);
4488 if (ret <= 0 || ret2 )
4489 break;
4490 }
4491 return ret > 0 ? ret2 : ret;
4492 }
4493
4494 /*
4495 * Callback function called for each extent to gather FIEMAP information.
4496 */
ext4_ext_fiemap_cb(struct inode * inode,ext4_lblk_t next,struct ext4_ext_cache * newex,struct ext4_extent * ex,void * data)4497 static int ext4_ext_fiemap_cb(struct inode *inode, ext4_lblk_t next,
4498 struct ext4_ext_cache *newex, struct ext4_extent *ex,
4499 void *data)
4500 {
4501 __u64 logical;
4502 __u64 physical;
4503 __u64 length;
4504 __u32 flags = 0;
4505 int ret = 0;
4506 struct fiemap_extent_info *fieinfo = data;
4507 unsigned char blksize_bits;
4508
4509 blksize_bits = inode->i_sb->s_blocksize_bits;
4510 logical = (__u64)newex->ec_block << blksize_bits;
4511
4512 if (newex->ec_start == 0) {
4513 /*
4514 * No extent in extent-tree contains block @newex->ec_start,
4515 * then the block may stay in 1)a hole or 2)delayed-extent.
4516 *
4517 * Holes or delayed-extents are processed as follows.
4518 * 1. lookup dirty pages with specified range in pagecache.
4519 * If no page is got, then there is no delayed-extent and
4520 * return with EXT_CONTINUE.
4521 * 2. find the 1st mapped buffer,
4522 * 3. check if the mapped buffer is both in the request range
4523 * and a delayed buffer. If not, there is no delayed-extent,
4524 * then return.
4525 * 4. a delayed-extent is found, the extent will be collected.
4526 */
4527 ext4_lblk_t end = 0;
4528 pgoff_t last_offset;
4529 pgoff_t offset;
4530 pgoff_t index;
4531 pgoff_t start_index = 0;
4532 struct page **pages = NULL;
4533 struct buffer_head *bh = NULL;
4534 struct buffer_head *head = NULL;
4535 unsigned int nr_pages = PAGE_SIZE / sizeof(struct page *);
4536
4537 pages = kmalloc(PAGE_SIZE, GFP_KERNEL);
4538 if (pages == NULL)
4539 return -ENOMEM;
4540
4541 offset = logical >> PAGE_SHIFT;
4542 repeat:
4543 last_offset = offset;
4544 head = NULL;
4545 ret = find_get_pages_tag(inode->i_mapping, &offset,
4546 PAGECACHE_TAG_DIRTY, nr_pages, pages);
4547
4548 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4549 /* First time, try to find a mapped buffer. */
4550 if (ret == 0) {
4551 out:
4552 for (index = 0; index < ret; index++)
4553 page_cache_release(pages[index]);
4554 /* just a hole. */
4555 kfree(pages);
4556 return EXT_CONTINUE;
4557 }
4558 index = 0;
4559
4560 next_page:
4561 /* Try to find the 1st mapped buffer. */
4562 end = ((__u64)pages[index]->index << PAGE_SHIFT) >>
4563 blksize_bits;
4564 if (!page_has_buffers(pages[index]))
4565 goto out;
4566 head = page_buffers(pages[index]);
4567 if (!head)
4568 goto out;
4569
4570 index++;
4571 bh = head;
4572 do {
4573 if (end >= newex->ec_block +
4574 newex->ec_len)
4575 /* The buffer is out of
4576 * the request range.
4577 */
4578 goto out;
4579
4580 if (buffer_mapped(bh) &&
4581 end >= newex->ec_block) {
4582 start_index = index - 1;
4583 /* get the 1st mapped buffer. */
4584 goto found_mapped_buffer;
4585 }
4586
4587 bh = bh->b_this_page;
4588 end++;
4589 } while (bh != head);
4590
4591 /* No mapped buffer in the range found in this page,
4592 * We need to look up next page.
4593 */
4594 if (index >= ret) {
4595 /* There is no page left, but we need to limit
4596 * newex->ec_len.
4597 */
4598 newex->ec_len = end - newex->ec_block;
4599 goto out;
4600 }
4601 goto next_page;
4602 } else {
4603 /*Find contiguous delayed buffers. */
4604 if (ret > 0 && pages[0]->index == last_offset)
4605 head = page_buffers(pages[0]);
4606 bh = head;
4607 index = 1;
4608 start_index = 0;
4609 }
4610
4611 found_mapped_buffer:
4612 if (bh != NULL && buffer_delay(bh)) {
4613 /* 1st or contiguous delayed buffer found. */
4614 if (!(flags & FIEMAP_EXTENT_DELALLOC)) {
4615 /*
4616 * 1st delayed buffer found, record
4617 * the start of extent.
4618 */
4619 flags |= FIEMAP_EXTENT_DELALLOC;
4620 newex->ec_block = end;
4621 logical = (__u64)end << blksize_bits;
4622 }
4623 /* Find contiguous delayed buffers. */
4624 do {
4625 if (!buffer_delay(bh))
4626 goto found_delayed_extent;
4627 bh = bh->b_this_page;
4628 end++;
4629 } while (bh != head);
4630
4631 for (; index < ret; index++) {
4632 if (!page_has_buffers(pages[index])) {
4633 bh = NULL;
4634 break;
4635 }
4636 head = page_buffers(pages[index]);
4637 if (!head) {
4638 bh = NULL;
4639 break;
4640 }
4641
4642 if (pages[index]->index !=
4643 pages[start_index]->index + index
4644 - start_index) {
4645 /* Blocks are not contiguous. */
4646 bh = NULL;
4647 break;
4648 }
4649 bh = head;
4650 do {
4651 if (!buffer_delay(bh))
4652 /* Delayed-extent ends. */
4653 goto found_delayed_extent;
4654 bh = bh->b_this_page;
4655 end++;
4656 } while (bh != head);
4657 }
4658 } else if (!(flags & FIEMAP_EXTENT_DELALLOC))
4659 /* a hole found. */
4660 goto out;
4661
4662 found_delayed_extent:
4663 newex->ec_len = min(end - newex->ec_block,
4664 (ext4_lblk_t)EXT_INIT_MAX_LEN);
4665 if (ret == nr_pages && bh != NULL &&
4666 newex->ec_len < EXT_INIT_MAX_LEN &&
4667 buffer_delay(bh)) {
4668 /* Have not collected an extent and continue. */
4669 for (index = 0; index < ret; index++)
4670 page_cache_release(pages[index]);
4671 goto repeat;
4672 }
4673
4674 for (index = 0; index < ret; index++)
4675 page_cache_release(pages[index]);
4676 kfree(pages);
4677 }
4678
4679 physical = (__u64)newex->ec_start << blksize_bits;
4680 length = (__u64)newex->ec_len << blksize_bits;
4681
4682 if (ex && ext4_ext_is_uninitialized(ex))
4683 flags |= FIEMAP_EXTENT_UNWRITTEN;
4684
4685 if (next == EXT_MAX_BLOCKS)
4686 flags |= FIEMAP_EXTENT_LAST;
4687
4688 ret = fiemap_fill_next_extent(fieinfo, logical, physical,
4689 length, flags);
4690 if (ret < 0)
4691 return ret;
4692 if (ret == 1)
4693 return EXT_BREAK;
4694 return EXT_CONTINUE;
4695 }
4696 /* fiemap flags we can handle specified here */
4697 #define EXT4_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC|FIEMAP_FLAG_XATTR)
4698
ext4_xattr_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo)4699 static int ext4_xattr_fiemap(struct inode *inode,
4700 struct fiemap_extent_info *fieinfo)
4701 {
4702 __u64 physical = 0;
4703 __u64 length;
4704 __u32 flags = FIEMAP_EXTENT_LAST;
4705 int blockbits = inode->i_sb->s_blocksize_bits;
4706 int error = 0;
4707
4708 /* in-inode? */
4709 if (ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4710 struct ext4_iloc iloc;
4711 int offset; /* offset of xattr in inode */
4712
4713 error = ext4_get_inode_loc(inode, &iloc);
4714 if (error)
4715 return error;
4716 physical = (__u64)iloc.bh->b_blocknr << blockbits;
4717 offset = EXT4_GOOD_OLD_INODE_SIZE +
4718 EXT4_I(inode)->i_extra_isize;
4719 physical += offset;
4720 length = EXT4_SB(inode->i_sb)->s_inode_size - offset;
4721 flags |= FIEMAP_EXTENT_DATA_INLINE;
4722 brelse(iloc.bh);
4723 } else { /* external block */
4724 physical = (__u64)EXT4_I(inode)->i_file_acl << blockbits;
4725 length = inode->i_sb->s_blocksize;
4726 }
4727
4728 if (physical)
4729 error = fiemap_fill_next_extent(fieinfo, 0, physical,
4730 length, flags);
4731 return (error < 0 ? error : 0);
4732 }
4733
4734 /*
4735 * ext4_ext_punch_hole
4736 *
4737 * Punches a hole of "length" bytes in a file starting
4738 * at byte "offset"
4739 *
4740 * @inode: The inode of the file to punch a hole in
4741 * @offset: The starting byte offset of the hole
4742 * @length: The length of the hole
4743 *
4744 * Returns the number of blocks removed or negative on err
4745 */
ext4_ext_punch_hole(struct file * file,loff_t offset,loff_t length)4746 int ext4_ext_punch_hole(struct file *file, loff_t offset, loff_t length)
4747 {
4748 struct inode *inode = file->f_path.dentry->d_inode;
4749 struct super_block *sb = inode->i_sb;
4750 ext4_lblk_t first_block, stop_block;
4751 struct address_space *mapping = inode->i_mapping;
4752 handle_t *handle;
4753 loff_t first_page, last_page, page_len;
4754 loff_t first_page_offset, last_page_offset;
4755 int credits, err = 0;
4756
4757 /* No need to punch hole beyond i_size */
4758 if (offset >= inode->i_size)
4759 return 0;
4760
4761 /*
4762 * If the hole extends beyond i_size, set the hole
4763 * to end after the page that contains i_size
4764 */
4765 if (offset + length > inode->i_size) {
4766 length = inode->i_size +
4767 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
4768 offset;
4769 }
4770
4771 first_page = (offset + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
4772 last_page = (offset + length) >> PAGE_CACHE_SHIFT;
4773
4774 first_page_offset = first_page << PAGE_CACHE_SHIFT;
4775 last_page_offset = last_page << PAGE_CACHE_SHIFT;
4776
4777 /*
4778 * Write out all dirty pages to avoid race conditions
4779 * Then release them.
4780 */
4781 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4782 err = filemap_write_and_wait_range(mapping,
4783 offset, offset + length - 1);
4784
4785 if (err)
4786 return err;
4787 }
4788
4789 /* Now release the pages */
4790 if (last_page_offset > first_page_offset) {
4791 truncate_inode_pages_range(mapping, first_page_offset,
4792 last_page_offset-1);
4793 }
4794
4795 /* finish any pending end_io work */
4796 ext4_flush_completed_IO(inode);
4797
4798 credits = ext4_writepage_trans_blocks(inode);
4799 handle = ext4_journal_start(inode, credits);
4800 if (IS_ERR(handle))
4801 return PTR_ERR(handle);
4802
4803 err = ext4_orphan_add(handle, inode);
4804 if (err)
4805 goto out;
4806
4807 /*
4808 * Now we need to zero out the non-page-aligned data in the
4809 * pages at the start and tail of the hole, and unmap the buffer
4810 * heads for the block aligned regions of the page that were
4811 * completely zeroed.
4812 */
4813 if (first_page > last_page) {
4814 /*
4815 * If the file space being truncated is contained within a page
4816 * just zero out and unmap the middle of that page
4817 */
4818 err = ext4_discard_partial_page_buffers(handle,
4819 mapping, offset, length, 0);
4820
4821 if (err)
4822 goto out;
4823 } else {
4824 /*
4825 * zero out and unmap the partial page that contains
4826 * the start of the hole
4827 */
4828 page_len = first_page_offset - offset;
4829 if (page_len > 0) {
4830 err = ext4_discard_partial_page_buffers(handle, mapping,
4831 offset, page_len, 0);
4832 if (err)
4833 goto out;
4834 }
4835
4836 /*
4837 * zero out and unmap the partial page that contains
4838 * the end of the hole
4839 */
4840 page_len = offset + length - last_page_offset;
4841 if (page_len > 0) {
4842 err = ext4_discard_partial_page_buffers(handle, mapping,
4843 last_page_offset, page_len, 0);
4844 if (err)
4845 goto out;
4846 }
4847 }
4848
4849 /*
4850 * If i_size is contained in the last page, we need to
4851 * unmap and zero the partial page after i_size
4852 */
4853 if (inode->i_size >> PAGE_CACHE_SHIFT == last_page &&
4854 inode->i_size % PAGE_CACHE_SIZE != 0) {
4855
4856 page_len = PAGE_CACHE_SIZE -
4857 (inode->i_size & (PAGE_CACHE_SIZE - 1));
4858
4859 if (page_len > 0) {
4860 err = ext4_discard_partial_page_buffers(handle,
4861 mapping, inode->i_size, page_len, 0);
4862
4863 if (err)
4864 goto out;
4865 }
4866 }
4867
4868 first_block = (offset + sb->s_blocksize - 1) >>
4869 EXT4_BLOCK_SIZE_BITS(sb);
4870 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4871
4872 /* If there are no blocks to remove, return now */
4873 if (first_block >= stop_block)
4874 goto out;
4875
4876 down_write(&EXT4_I(inode)->i_data_sem);
4877 ext4_ext_invalidate_cache(inode);
4878 ext4_discard_preallocations(inode);
4879
4880 err = ext4_ext_remove_space(inode, first_block, stop_block - 1);
4881
4882 ext4_ext_invalidate_cache(inode);
4883 ext4_discard_preallocations(inode);
4884
4885 if (IS_SYNC(inode))
4886 ext4_handle_sync(handle);
4887
4888 up_write(&EXT4_I(inode)->i_data_sem);
4889
4890 out:
4891 ext4_orphan_del(handle, inode);
4892 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4893 ext4_mark_inode_dirty(handle, inode);
4894 ext4_journal_stop(handle);
4895 return err;
4896 }
ext4_fiemap(struct inode * inode,struct fiemap_extent_info * fieinfo,__u64 start,__u64 len)4897 int ext4_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4898 __u64 start, __u64 len)
4899 {
4900 ext4_lblk_t start_blk;
4901 int error = 0;
4902
4903 /* fallback to generic here if not in extents fmt */
4904 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4905 return generic_block_fiemap(inode, fieinfo, start, len,
4906 ext4_get_block);
4907
4908 if (fiemap_check_flags(fieinfo, EXT4_FIEMAP_FLAGS))
4909 return -EBADR;
4910
4911 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
4912 error = ext4_xattr_fiemap(inode, fieinfo);
4913 } else {
4914 ext4_lblk_t len_blks;
4915 __u64 last_blk;
4916
4917 start_blk = start >> inode->i_sb->s_blocksize_bits;
4918 last_blk = (start + len - 1) >> inode->i_sb->s_blocksize_bits;
4919 if (last_blk >= EXT_MAX_BLOCKS)
4920 last_blk = EXT_MAX_BLOCKS-1;
4921 len_blks = ((ext4_lblk_t) last_blk) - start_blk + 1;
4922
4923 /*
4924 * Walk the extent tree gathering extent information.
4925 * ext4_ext_fiemap_cb will push extents back to user.
4926 */
4927 error = ext4_ext_walk_space(inode, start_blk, len_blks,
4928 ext4_ext_fiemap_cb, fieinfo);
4929 }
4930
4931 return error;
4932 }
4933