1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/freezer.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ writeback_in_progress(struct backing_dev_info * bdi)67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 EXPORT_SYMBOL(writeback_in_progress); 72 inode_to_bdi(struct inode * inode)73 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 74 { 75 struct super_block *sb = inode->i_sb; 76 77 if (strcmp(sb->s_type->name, "bdev") == 0) 78 return inode->i_mapping->backing_dev_info; 79 80 return sb->s_bdi; 81 } 82 wb_inode(struct list_head * head)83 static inline struct inode *wb_inode(struct list_head *head) 84 { 85 return list_entry(head, struct inode, i_wb_list); 86 } 87 88 /* 89 * Include the creation of the trace points after defining the 90 * wb_writeback_work structure and inline functions so that the definition 91 * remains local to this file. 92 */ 93 #define CREATE_TRACE_POINTS 94 #include <trace/events/writeback.h> 95 96 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ bdi_wakeup_flusher(struct backing_dev_info * bdi)97 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 98 { 99 if (bdi->wb.task) { 100 wake_up_process(bdi->wb.task); 101 } else { 102 /* 103 * The bdi thread isn't there, wake up the forker thread which 104 * will create and run it. 105 */ 106 wake_up_process(default_backing_dev_info.wb.task); 107 } 108 } 109 bdi_queue_work(struct backing_dev_info * bdi,struct wb_writeback_work * work)110 static void bdi_queue_work(struct backing_dev_info *bdi, 111 struct wb_writeback_work *work) 112 { 113 trace_writeback_queue(bdi, work); 114 115 spin_lock_bh(&bdi->wb_lock); 116 list_add_tail(&work->list, &bdi->work_list); 117 if (!bdi->wb.task) 118 trace_writeback_nothread(bdi, work); 119 bdi_wakeup_flusher(bdi); 120 spin_unlock_bh(&bdi->wb_lock); 121 } 122 123 static void __bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,bool range_cyclic,enum wb_reason reason)124 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 125 bool range_cyclic, enum wb_reason reason) 126 { 127 struct wb_writeback_work *work; 128 129 /* 130 * This is WB_SYNC_NONE writeback, so if allocation fails just 131 * wakeup the thread for old dirty data writeback 132 */ 133 work = kzalloc(sizeof(*work), GFP_ATOMIC); 134 if (!work) { 135 if (bdi->wb.task) { 136 trace_writeback_nowork(bdi); 137 wake_up_process(bdi->wb.task); 138 } 139 return; 140 } 141 142 work->sync_mode = WB_SYNC_NONE; 143 work->nr_pages = nr_pages; 144 work->range_cyclic = range_cyclic; 145 work->reason = reason; 146 147 bdi_queue_work(bdi, work); 148 } 149 150 /** 151 * bdi_start_writeback - start writeback 152 * @bdi: the backing device to write from 153 * @nr_pages: the number of pages to write 154 * @reason: reason why some writeback work was initiated 155 * 156 * Description: 157 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 158 * started when this function returns, we make no guarantees on 159 * completion. Caller need not hold sb s_umount semaphore. 160 * 161 */ bdi_start_writeback(struct backing_dev_info * bdi,long nr_pages,enum wb_reason reason)162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 163 enum wb_reason reason) 164 { 165 __bdi_start_writeback(bdi, nr_pages, true, reason); 166 } 167 168 /** 169 * bdi_start_background_writeback - start background writeback 170 * @bdi: the backing device to write from 171 * 172 * Description: 173 * This makes sure WB_SYNC_NONE background writeback happens. When 174 * this function returns, it is only guaranteed that for given BDI 175 * some IO is happening if we are over background dirty threshold. 176 * Caller need not hold sb s_umount semaphore. 177 */ bdi_start_background_writeback(struct backing_dev_info * bdi)178 void bdi_start_background_writeback(struct backing_dev_info *bdi) 179 { 180 /* 181 * We just wake up the flusher thread. It will perform background 182 * writeback as soon as there is no other work to do. 183 */ 184 trace_writeback_wake_background(bdi); 185 spin_lock_bh(&bdi->wb_lock); 186 bdi_wakeup_flusher(bdi); 187 spin_unlock_bh(&bdi->wb_lock); 188 } 189 190 /* 191 * Remove the inode from the writeback list it is on. 192 */ inode_wb_list_del(struct inode * inode)193 void inode_wb_list_del(struct inode *inode) 194 { 195 struct backing_dev_info *bdi = inode_to_bdi(inode); 196 197 spin_lock(&bdi->wb.list_lock); 198 list_del_init(&inode->i_wb_list); 199 spin_unlock(&bdi->wb.list_lock); 200 } 201 202 /* 203 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 204 * furthest end of its superblock's dirty-inode list. 205 * 206 * Before stamping the inode's ->dirtied_when, we check to see whether it is 207 * already the most-recently-dirtied inode on the b_dirty list. If that is 208 * the case then the inode must have been redirtied while it was being written 209 * out and we don't reset its dirtied_when. 210 */ redirty_tail(struct inode * inode,struct bdi_writeback * wb)211 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 212 { 213 assert_spin_locked(&wb->list_lock); 214 if (!list_empty(&wb->b_dirty)) { 215 struct inode *tail; 216 217 tail = wb_inode(wb->b_dirty.next); 218 if (time_before(inode->dirtied_when, tail->dirtied_when)) 219 inode->dirtied_when = jiffies; 220 } 221 list_move(&inode->i_wb_list, &wb->b_dirty); 222 } 223 224 /* 225 * requeue inode for re-scanning after bdi->b_io list is exhausted. 226 */ requeue_io(struct inode * inode,struct bdi_writeback * wb)227 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 228 { 229 assert_spin_locked(&wb->list_lock); 230 list_move(&inode->i_wb_list, &wb->b_more_io); 231 } 232 inode_sync_complete(struct inode * inode)233 static void inode_sync_complete(struct inode *inode) 234 { 235 /* 236 * Prevent speculative execution through 237 * spin_unlock(&wb->list_lock); 238 */ 239 240 smp_mb(); 241 wake_up_bit(&inode->i_state, __I_SYNC); 242 } 243 inode_dirtied_after(struct inode * inode,unsigned long t)244 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 245 { 246 bool ret = time_after(inode->dirtied_when, t); 247 #ifndef CONFIG_64BIT 248 /* 249 * For inodes being constantly redirtied, dirtied_when can get stuck. 250 * It _appears_ to be in the future, but is actually in distant past. 251 * This test is necessary to prevent such wrapped-around relative times 252 * from permanently stopping the whole bdi writeback. 253 */ 254 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 255 #endif 256 return ret; 257 } 258 259 /* 260 * Move expired (dirtied after work->older_than_this) dirty inodes from 261 * @delaying_queue to @dispatch_queue. 262 */ move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,struct wb_writeback_work * work)263 static int move_expired_inodes(struct list_head *delaying_queue, 264 struct list_head *dispatch_queue, 265 struct wb_writeback_work *work) 266 { 267 LIST_HEAD(tmp); 268 struct list_head *pos, *node; 269 struct super_block *sb = NULL; 270 struct inode *inode; 271 int do_sb_sort = 0; 272 int moved = 0; 273 274 while (!list_empty(delaying_queue)) { 275 inode = wb_inode(delaying_queue->prev); 276 if (work->older_than_this && 277 inode_dirtied_after(inode, *work->older_than_this)) 278 break; 279 if (sb && sb != inode->i_sb) 280 do_sb_sort = 1; 281 sb = inode->i_sb; 282 list_move(&inode->i_wb_list, &tmp); 283 moved++; 284 } 285 286 /* just one sb in list, splice to dispatch_queue and we're done */ 287 if (!do_sb_sort) { 288 list_splice(&tmp, dispatch_queue); 289 goto out; 290 } 291 292 /* Move inodes from one superblock together */ 293 while (!list_empty(&tmp)) { 294 sb = wb_inode(tmp.prev)->i_sb; 295 list_for_each_prev_safe(pos, node, &tmp) { 296 inode = wb_inode(pos); 297 if (inode->i_sb == sb) 298 list_move(&inode->i_wb_list, dispatch_queue); 299 } 300 } 301 out: 302 return moved; 303 } 304 305 /* 306 * Queue all expired dirty inodes for io, eldest first. 307 * Before 308 * newly dirtied b_dirty b_io b_more_io 309 * =============> gf edc BA 310 * After 311 * newly dirtied b_dirty b_io b_more_io 312 * =============> g fBAedc 313 * | 314 * +--> dequeue for IO 315 */ queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work)316 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 317 { 318 int moved; 319 assert_spin_locked(&wb->list_lock); 320 list_splice_init(&wb->b_more_io, &wb->b_io); 321 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 322 trace_writeback_queue_io(wb, work, moved); 323 } 324 write_inode(struct inode * inode,struct writeback_control * wbc)325 static int write_inode(struct inode *inode, struct writeback_control *wbc) 326 { 327 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 328 return inode->i_sb->s_op->write_inode(inode, wbc); 329 return 0; 330 } 331 332 /* 333 * Wait for writeback on an inode to complete. 334 */ inode_wait_for_writeback(struct inode * inode,struct bdi_writeback * wb)335 static void inode_wait_for_writeback(struct inode *inode, 336 struct bdi_writeback *wb) 337 { 338 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 339 wait_queue_head_t *wqh; 340 341 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 342 while (inode->i_state & I_SYNC) { 343 spin_unlock(&inode->i_lock); 344 spin_unlock(&wb->list_lock); 345 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 346 spin_lock(&wb->list_lock); 347 spin_lock(&inode->i_lock); 348 } 349 } 350 351 /* 352 * Write out an inode's dirty pages. Called under wb->list_lock and 353 * inode->i_lock. Either the caller has an active reference on the inode or 354 * the inode has I_WILL_FREE set. 355 * 356 * If `wait' is set, wait on the writeout. 357 * 358 * The whole writeout design is quite complex and fragile. We want to avoid 359 * starvation of particular inodes when others are being redirtied, prevent 360 * livelocks, etc. 361 */ 362 static int writeback_single_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)363 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 364 struct writeback_control *wbc) 365 { 366 struct address_space *mapping = inode->i_mapping; 367 long nr_to_write = wbc->nr_to_write; 368 unsigned dirty; 369 int ret; 370 371 assert_spin_locked(&wb->list_lock); 372 assert_spin_locked(&inode->i_lock); 373 374 if (!atomic_read(&inode->i_count)) 375 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 376 else 377 WARN_ON(inode->i_state & I_WILL_FREE); 378 379 if (inode->i_state & I_SYNC) { 380 /* 381 * If this inode is locked for writeback and we are not doing 382 * writeback-for-data-integrity, move it to b_more_io so that 383 * writeback can proceed with the other inodes on s_io. 384 * 385 * We'll have another go at writing back this inode when we 386 * completed a full scan of b_io. 387 */ 388 if (wbc->sync_mode != WB_SYNC_ALL) { 389 requeue_io(inode, wb); 390 trace_writeback_single_inode_requeue(inode, wbc, 391 nr_to_write); 392 return 0; 393 } 394 395 /* 396 * It's a data-integrity sync. We must wait. 397 */ 398 inode_wait_for_writeback(inode, wb); 399 } 400 401 BUG_ON(inode->i_state & I_SYNC); 402 403 /* Set I_SYNC, reset I_DIRTY_PAGES */ 404 inode->i_state |= I_SYNC; 405 inode->i_state &= ~I_DIRTY_PAGES; 406 spin_unlock(&inode->i_lock); 407 spin_unlock(&wb->list_lock); 408 409 ret = do_writepages(mapping, wbc); 410 411 /* 412 * Make sure to wait on the data before writing out the metadata. 413 * This is important for filesystems that modify metadata on data 414 * I/O completion. 415 */ 416 if (wbc->sync_mode == WB_SYNC_ALL) { 417 int err = filemap_fdatawait(mapping); 418 if (ret == 0) 419 ret = err; 420 } 421 422 /* 423 * Some filesystems may redirty the inode during the writeback 424 * due to delalloc, clear dirty metadata flags right before 425 * write_inode() 426 */ 427 spin_lock(&inode->i_lock); 428 dirty = inode->i_state & I_DIRTY; 429 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 430 spin_unlock(&inode->i_lock); 431 /* Don't write the inode if only I_DIRTY_PAGES was set */ 432 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 433 int err = write_inode(inode, wbc); 434 if (ret == 0) 435 ret = err; 436 } 437 438 spin_lock(&wb->list_lock); 439 spin_lock(&inode->i_lock); 440 inode->i_state &= ~I_SYNC; 441 if (!(inode->i_state & I_FREEING)) { 442 /* 443 * Sync livelock prevention. Each inode is tagged and synced in 444 * one shot. If still dirty, it will be redirty_tail()'ed below. 445 * Update the dirty time to prevent enqueue and sync it again. 446 */ 447 if ((inode->i_state & I_DIRTY) && 448 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 449 inode->dirtied_when = jiffies; 450 451 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 452 /* 453 * We didn't write back all the pages. nfs_writepages() 454 * sometimes bales out without doing anything. 455 */ 456 inode->i_state |= I_DIRTY_PAGES; 457 if (wbc->nr_to_write <= 0) { 458 /* 459 * slice used up: queue for next turn 460 */ 461 requeue_io(inode, wb); 462 } else { 463 /* 464 * Writeback blocked by something other than 465 * congestion. Delay the inode for some time to 466 * avoid spinning on the CPU (100% iowait) 467 * retrying writeback of the dirty page/inode 468 * that cannot be performed immediately. 469 */ 470 redirty_tail(inode, wb); 471 } 472 } else if (inode->i_state & I_DIRTY) { 473 /* 474 * Filesystems can dirty the inode during writeback 475 * operations, such as delayed allocation during 476 * submission or metadata updates after data IO 477 * completion. 478 */ 479 redirty_tail(inode, wb); 480 } else { 481 /* 482 * The inode is clean. At this point we either have 483 * a reference to the inode or it's on it's way out. 484 * No need to add it back to the LRU. 485 */ 486 list_del_init(&inode->i_wb_list); 487 } 488 } 489 inode_sync_complete(inode); 490 trace_writeback_single_inode(inode, wbc, nr_to_write); 491 return ret; 492 } 493 writeback_chunk_size(struct backing_dev_info * bdi,struct wb_writeback_work * work)494 static long writeback_chunk_size(struct backing_dev_info *bdi, 495 struct wb_writeback_work *work) 496 { 497 long pages; 498 499 /* 500 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 501 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 502 * here avoids calling into writeback_inodes_wb() more than once. 503 * 504 * The intended call sequence for WB_SYNC_ALL writeback is: 505 * 506 * wb_writeback() 507 * writeback_sb_inodes() <== called only once 508 * write_cache_pages() <== called once for each inode 509 * (quickly) tag currently dirty pages 510 * (maybe slowly) sync all tagged pages 511 */ 512 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 513 pages = LONG_MAX; 514 else { 515 pages = min(bdi->avg_write_bandwidth / 2, 516 global_dirty_limit / DIRTY_SCOPE); 517 pages = min(pages, work->nr_pages); 518 pages = round_down(pages + MIN_WRITEBACK_PAGES, 519 MIN_WRITEBACK_PAGES); 520 } 521 522 return pages; 523 } 524 525 /* 526 * Write a portion of b_io inodes which belong to @sb. 527 * 528 * If @only_this_sb is true, then find and write all such 529 * inodes. Otherwise write only ones which go sequentially 530 * in reverse order. 531 * 532 * Return the number of pages and/or inodes written. 533 */ writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)534 static long writeback_sb_inodes(struct super_block *sb, 535 struct bdi_writeback *wb, 536 struct wb_writeback_work *work) 537 { 538 struct writeback_control wbc = { 539 .sync_mode = work->sync_mode, 540 .tagged_writepages = work->tagged_writepages, 541 .for_kupdate = work->for_kupdate, 542 .for_background = work->for_background, 543 .range_cyclic = work->range_cyclic, 544 .range_start = 0, 545 .range_end = LLONG_MAX, 546 }; 547 unsigned long start_time = jiffies; 548 long write_chunk; 549 long wrote = 0; /* count both pages and inodes */ 550 551 while (!list_empty(&wb->b_io)) { 552 struct inode *inode = wb_inode(wb->b_io.prev); 553 554 if (inode->i_sb != sb) { 555 if (work->sb) { 556 /* 557 * We only want to write back data for this 558 * superblock, move all inodes not belonging 559 * to it back onto the dirty list. 560 */ 561 redirty_tail(inode, wb); 562 continue; 563 } 564 565 /* 566 * The inode belongs to a different superblock. 567 * Bounce back to the caller to unpin this and 568 * pin the next superblock. 569 */ 570 break; 571 } 572 573 /* 574 * Don't bother with new inodes or inodes beeing freed, first 575 * kind does not need peridic writeout yet, and for the latter 576 * kind writeout is handled by the freer. 577 */ 578 spin_lock(&inode->i_lock); 579 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 580 spin_unlock(&inode->i_lock); 581 redirty_tail(inode, wb); 582 continue; 583 } 584 __iget(inode); 585 write_chunk = writeback_chunk_size(wb->bdi, work); 586 wbc.nr_to_write = write_chunk; 587 wbc.pages_skipped = 0; 588 589 writeback_single_inode(inode, wb, &wbc); 590 591 work->nr_pages -= write_chunk - wbc.nr_to_write; 592 wrote += write_chunk - wbc.nr_to_write; 593 if (!(inode->i_state & I_DIRTY)) 594 wrote++; 595 if (wbc.pages_skipped) { 596 /* 597 * writeback is not making progress due to locked 598 * buffers. Skip this inode for now. 599 */ 600 redirty_tail(inode, wb); 601 } 602 spin_unlock(&inode->i_lock); 603 spin_unlock(&wb->list_lock); 604 iput(inode); 605 cond_resched(); 606 spin_lock(&wb->list_lock); 607 /* 608 * bail out to wb_writeback() often enough to check 609 * background threshold and other termination conditions. 610 */ 611 if (wrote) { 612 if (time_is_before_jiffies(start_time + HZ / 10UL)) 613 break; 614 if (work->nr_pages <= 0) 615 break; 616 } 617 } 618 return wrote; 619 } 620 __writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)621 static long __writeback_inodes_wb(struct bdi_writeback *wb, 622 struct wb_writeback_work *work) 623 { 624 unsigned long start_time = jiffies; 625 long wrote = 0; 626 627 while (!list_empty(&wb->b_io)) { 628 struct inode *inode = wb_inode(wb->b_io.prev); 629 struct super_block *sb = inode->i_sb; 630 631 if (!grab_super_passive(sb)) { 632 /* 633 * grab_super_passive() may fail consistently due to 634 * s_umount being grabbed by someone else. Don't use 635 * requeue_io() to avoid busy retrying the inode/sb. 636 */ 637 redirty_tail(inode, wb); 638 continue; 639 } 640 wrote += writeback_sb_inodes(sb, wb, work); 641 drop_super(sb); 642 643 /* refer to the same tests at the end of writeback_sb_inodes */ 644 if (wrote) { 645 if (time_is_before_jiffies(start_time + HZ / 10UL)) 646 break; 647 if (work->nr_pages <= 0) 648 break; 649 } 650 } 651 /* Leave any unwritten inodes on b_io */ 652 return wrote; 653 } 654 writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)655 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 656 enum wb_reason reason) 657 { 658 struct wb_writeback_work work = { 659 .nr_pages = nr_pages, 660 .sync_mode = WB_SYNC_NONE, 661 .range_cyclic = 1, 662 .reason = reason, 663 }; 664 665 spin_lock(&wb->list_lock); 666 if (list_empty(&wb->b_io)) 667 queue_io(wb, &work); 668 __writeback_inodes_wb(wb, &work); 669 spin_unlock(&wb->list_lock); 670 671 return nr_pages - work.nr_pages; 672 } 673 over_bground_thresh(struct backing_dev_info * bdi)674 static bool over_bground_thresh(struct backing_dev_info *bdi) 675 { 676 unsigned long background_thresh, dirty_thresh; 677 678 global_dirty_limits(&background_thresh, &dirty_thresh); 679 680 if (global_page_state(NR_FILE_DIRTY) + 681 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 682 return true; 683 684 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 685 bdi_dirty_limit(bdi, background_thresh)) 686 return true; 687 688 return false; 689 } 690 691 /* 692 * Called under wb->list_lock. If there are multiple wb per bdi, 693 * only the flusher working on the first wb should do it. 694 */ wb_update_bandwidth(struct bdi_writeback * wb,unsigned long start_time)695 static void wb_update_bandwidth(struct bdi_writeback *wb, 696 unsigned long start_time) 697 { 698 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 699 } 700 701 /* 702 * Explicit flushing or periodic writeback of "old" data. 703 * 704 * Define "old": the first time one of an inode's pages is dirtied, we mark the 705 * dirtying-time in the inode's address_space. So this periodic writeback code 706 * just walks the superblock inode list, writing back any inodes which are 707 * older than a specific point in time. 708 * 709 * Try to run once per dirty_writeback_interval. But if a writeback event 710 * takes longer than a dirty_writeback_interval interval, then leave a 711 * one-second gap. 712 * 713 * older_than_this takes precedence over nr_to_write. So we'll only write back 714 * all dirty pages if they are all attached to "old" mappings. 715 */ wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)716 static long wb_writeback(struct bdi_writeback *wb, 717 struct wb_writeback_work *work) 718 { 719 unsigned long wb_start = jiffies; 720 long nr_pages = work->nr_pages; 721 unsigned long oldest_jif; 722 struct inode *inode; 723 long progress; 724 725 oldest_jif = jiffies; 726 work->older_than_this = &oldest_jif; 727 728 spin_lock(&wb->list_lock); 729 for (;;) { 730 /* 731 * Stop writeback when nr_pages has been consumed 732 */ 733 if (work->nr_pages <= 0) 734 break; 735 736 /* 737 * Background writeout and kupdate-style writeback may 738 * run forever. Stop them if there is other work to do 739 * so that e.g. sync can proceed. They'll be restarted 740 * after the other works are all done. 741 */ 742 if ((work->for_background || work->for_kupdate) && 743 !list_empty(&wb->bdi->work_list)) 744 break; 745 746 /* 747 * For background writeout, stop when we are below the 748 * background dirty threshold 749 */ 750 if (work->for_background && !over_bground_thresh(wb->bdi)) 751 break; 752 753 /* 754 * Kupdate and background works are special and we want to 755 * include all inodes that need writing. Livelock avoidance is 756 * handled by these works yielding to any other work so we are 757 * safe. 758 */ 759 if (work->for_kupdate) { 760 oldest_jif = jiffies - 761 msecs_to_jiffies(dirty_expire_interval * 10); 762 } else if (work->for_background) 763 oldest_jif = jiffies; 764 765 trace_writeback_start(wb->bdi, work); 766 if (list_empty(&wb->b_io)) 767 queue_io(wb, work); 768 if (work->sb) 769 progress = writeback_sb_inodes(work->sb, wb, work); 770 else 771 progress = __writeback_inodes_wb(wb, work); 772 trace_writeback_written(wb->bdi, work); 773 774 wb_update_bandwidth(wb, wb_start); 775 776 /* 777 * Did we write something? Try for more 778 * 779 * Dirty inodes are moved to b_io for writeback in batches. 780 * The completion of the current batch does not necessarily 781 * mean the overall work is done. So we keep looping as long 782 * as made some progress on cleaning pages or inodes. 783 */ 784 if (progress) 785 continue; 786 /* 787 * No more inodes for IO, bail 788 */ 789 if (list_empty(&wb->b_more_io)) 790 break; 791 /* 792 * Nothing written. Wait for some inode to 793 * become available for writeback. Otherwise 794 * we'll just busyloop. 795 */ 796 if (!list_empty(&wb->b_more_io)) { 797 trace_writeback_wait(wb->bdi, work); 798 inode = wb_inode(wb->b_more_io.prev); 799 spin_lock(&inode->i_lock); 800 inode_wait_for_writeback(inode, wb); 801 spin_unlock(&inode->i_lock); 802 } 803 } 804 spin_unlock(&wb->list_lock); 805 806 return nr_pages - work->nr_pages; 807 } 808 809 /* 810 * Return the next wb_writeback_work struct that hasn't been processed yet. 811 */ 812 static struct wb_writeback_work * get_next_work_item(struct backing_dev_info * bdi)813 get_next_work_item(struct backing_dev_info *bdi) 814 { 815 struct wb_writeback_work *work = NULL; 816 817 spin_lock_bh(&bdi->wb_lock); 818 if (!list_empty(&bdi->work_list)) { 819 work = list_entry(bdi->work_list.next, 820 struct wb_writeback_work, list); 821 list_del_init(&work->list); 822 } 823 spin_unlock_bh(&bdi->wb_lock); 824 return work; 825 } 826 827 /* 828 * Add in the number of potentially dirty inodes, because each inode 829 * write can dirty pagecache in the underlying blockdev. 830 */ get_nr_dirty_pages(void)831 static unsigned long get_nr_dirty_pages(void) 832 { 833 return global_page_state(NR_FILE_DIRTY) + 834 global_page_state(NR_UNSTABLE_NFS) + 835 get_nr_dirty_inodes(); 836 } 837 wb_check_background_flush(struct bdi_writeback * wb)838 static long wb_check_background_flush(struct bdi_writeback *wb) 839 { 840 if (over_bground_thresh(wb->bdi)) { 841 842 struct wb_writeback_work work = { 843 .nr_pages = LONG_MAX, 844 .sync_mode = WB_SYNC_NONE, 845 .for_background = 1, 846 .range_cyclic = 1, 847 .reason = WB_REASON_BACKGROUND, 848 }; 849 850 return wb_writeback(wb, &work); 851 } 852 853 return 0; 854 } 855 wb_check_old_data_flush(struct bdi_writeback * wb)856 static long wb_check_old_data_flush(struct bdi_writeback *wb) 857 { 858 unsigned long expired; 859 long nr_pages; 860 861 /* 862 * When set to zero, disable periodic writeback 863 */ 864 if (!dirty_writeback_interval) 865 return 0; 866 867 expired = wb->last_old_flush + 868 msecs_to_jiffies(dirty_writeback_interval * 10); 869 if (time_before(jiffies, expired)) 870 return 0; 871 872 wb->last_old_flush = jiffies; 873 nr_pages = get_nr_dirty_pages(); 874 875 if (nr_pages) { 876 struct wb_writeback_work work = { 877 .nr_pages = nr_pages, 878 .sync_mode = WB_SYNC_NONE, 879 .for_kupdate = 1, 880 .range_cyclic = 1, 881 .reason = WB_REASON_PERIODIC, 882 }; 883 884 return wb_writeback(wb, &work); 885 } 886 887 return 0; 888 } 889 890 /* 891 * Retrieve work items and do the writeback they describe 892 */ wb_do_writeback(struct bdi_writeback * wb,int force_wait)893 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 894 { 895 struct backing_dev_info *bdi = wb->bdi; 896 struct wb_writeback_work *work; 897 long wrote = 0; 898 899 set_bit(BDI_writeback_running, &wb->bdi->state); 900 while ((work = get_next_work_item(bdi)) != NULL) { 901 /* 902 * Override sync mode, in case we must wait for completion 903 * because this thread is exiting now. 904 */ 905 if (force_wait) 906 work->sync_mode = WB_SYNC_ALL; 907 908 trace_writeback_exec(bdi, work); 909 910 wrote += wb_writeback(wb, work); 911 912 /* 913 * Notify the caller of completion if this is a synchronous 914 * work item, otherwise just free it. 915 */ 916 if (work->done) 917 complete(work->done); 918 else 919 kfree(work); 920 } 921 922 /* 923 * Check for periodic writeback, kupdated() style 924 */ 925 wrote += wb_check_old_data_flush(wb); 926 wrote += wb_check_background_flush(wb); 927 clear_bit(BDI_writeback_running, &wb->bdi->state); 928 929 return wrote; 930 } 931 932 /* 933 * Handle writeback of dirty data for the device backed by this bdi. Also 934 * wakes up periodically and does kupdated style flushing. 935 */ bdi_writeback_thread(void * data)936 int bdi_writeback_thread(void *data) 937 { 938 struct bdi_writeback *wb = data; 939 struct backing_dev_info *bdi = wb->bdi; 940 long pages_written; 941 942 current->flags |= PF_SWAPWRITE; 943 set_freezable(); 944 wb->last_active = jiffies; 945 946 /* 947 * Our parent may run at a different priority, just set us to normal 948 */ 949 set_user_nice(current, 0); 950 951 trace_writeback_thread_start(bdi); 952 953 while (!kthread_freezable_should_stop(NULL)) { 954 /* 955 * Remove own delayed wake-up timer, since we are already awake 956 * and we'll take care of the preriodic write-back. 957 */ 958 del_timer(&wb->wakeup_timer); 959 960 pages_written = wb_do_writeback(wb, 0); 961 962 trace_writeback_pages_written(pages_written); 963 964 if (pages_written) 965 wb->last_active = jiffies; 966 967 set_current_state(TASK_INTERRUPTIBLE); 968 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 969 __set_current_state(TASK_RUNNING); 970 continue; 971 } 972 973 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 974 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 975 else { 976 /* 977 * We have nothing to do, so can go sleep without any 978 * timeout and save power. When a work is queued or 979 * something is made dirty - we will be woken up. 980 */ 981 schedule(); 982 } 983 } 984 985 /* Flush any work that raced with us exiting */ 986 if (!list_empty(&bdi->work_list)) 987 wb_do_writeback(wb, 1); 988 989 trace_writeback_thread_stop(bdi); 990 return 0; 991 } 992 993 994 /* 995 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 996 * the whole world. 997 */ wakeup_flusher_threads(long nr_pages,enum wb_reason reason)998 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 999 { 1000 struct backing_dev_info *bdi; 1001 1002 if (!nr_pages) { 1003 nr_pages = global_page_state(NR_FILE_DIRTY) + 1004 global_page_state(NR_UNSTABLE_NFS); 1005 } 1006 1007 rcu_read_lock(); 1008 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1009 if (!bdi_has_dirty_io(bdi)) 1010 continue; 1011 __bdi_start_writeback(bdi, nr_pages, false, reason); 1012 } 1013 rcu_read_unlock(); 1014 } 1015 block_dump___mark_inode_dirty(struct inode * inode)1016 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1017 { 1018 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1019 struct dentry *dentry; 1020 const char *name = "?"; 1021 1022 dentry = d_find_alias(inode); 1023 if (dentry) { 1024 spin_lock(&dentry->d_lock); 1025 name = (const char *) dentry->d_name.name; 1026 } 1027 printk(KERN_DEBUG 1028 "%s(%d): dirtied inode %lu (%s) on %s\n", 1029 current->comm, task_pid_nr(current), inode->i_ino, 1030 name, inode->i_sb->s_id); 1031 if (dentry) { 1032 spin_unlock(&dentry->d_lock); 1033 dput(dentry); 1034 } 1035 } 1036 } 1037 1038 /** 1039 * __mark_inode_dirty - internal function 1040 * @inode: inode to mark 1041 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1042 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1043 * mark_inode_dirty_sync. 1044 * 1045 * Put the inode on the super block's dirty list. 1046 * 1047 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1048 * dirty list only if it is hashed or if it refers to a blockdev. 1049 * If it was not hashed, it will never be added to the dirty list 1050 * even if it is later hashed, as it will have been marked dirty already. 1051 * 1052 * In short, make sure you hash any inodes _before_ you start marking 1053 * them dirty. 1054 * 1055 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1056 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1057 * the kernel-internal blockdev inode represents the dirtying time of the 1058 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1059 * page->mapping->host, so the page-dirtying time is recorded in the internal 1060 * blockdev inode. 1061 */ __mark_inode_dirty(struct inode * inode,int flags)1062 void __mark_inode_dirty(struct inode *inode, int flags) 1063 { 1064 struct super_block *sb = inode->i_sb; 1065 struct backing_dev_info *bdi = NULL; 1066 1067 /* 1068 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1069 * dirty the inode itself 1070 */ 1071 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1072 if (sb->s_op->dirty_inode) 1073 sb->s_op->dirty_inode(inode, flags); 1074 } 1075 1076 /* 1077 * make sure that changes are seen by all cpus before we test i_state 1078 * -- mikulas 1079 */ 1080 smp_mb(); 1081 1082 /* avoid the locking if we can */ 1083 if ((inode->i_state & flags) == flags) 1084 return; 1085 1086 if (unlikely(block_dump > 1)) 1087 block_dump___mark_inode_dirty(inode); 1088 1089 spin_lock(&inode->i_lock); 1090 if ((inode->i_state & flags) != flags) { 1091 const int was_dirty = inode->i_state & I_DIRTY; 1092 1093 inode->i_state |= flags; 1094 1095 /* 1096 * If the inode is being synced, just update its dirty state. 1097 * The unlocker will place the inode on the appropriate 1098 * superblock list, based upon its state. 1099 */ 1100 if (inode->i_state & I_SYNC) 1101 goto out_unlock_inode; 1102 1103 /* 1104 * Only add valid (hashed) inodes to the superblock's 1105 * dirty list. Add blockdev inodes as well. 1106 */ 1107 if (!S_ISBLK(inode->i_mode)) { 1108 if (inode_unhashed(inode)) 1109 goto out_unlock_inode; 1110 } 1111 if (inode->i_state & I_FREEING) 1112 goto out_unlock_inode; 1113 1114 /* 1115 * If the inode was already on b_dirty/b_io/b_more_io, don't 1116 * reposition it (that would break b_dirty time-ordering). 1117 */ 1118 if (!was_dirty) { 1119 bool wakeup_bdi = false; 1120 bdi = inode_to_bdi(inode); 1121 1122 if (bdi_cap_writeback_dirty(bdi)) { 1123 WARN(!test_bit(BDI_registered, &bdi->state), 1124 "bdi-%s not registered\n", bdi->name); 1125 1126 /* 1127 * If this is the first dirty inode for this 1128 * bdi, we have to wake-up the corresponding 1129 * bdi thread to make sure background 1130 * write-back happens later. 1131 */ 1132 if (!wb_has_dirty_io(&bdi->wb)) 1133 wakeup_bdi = true; 1134 } 1135 1136 spin_unlock(&inode->i_lock); 1137 spin_lock(&bdi->wb.list_lock); 1138 inode->dirtied_when = jiffies; 1139 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1140 spin_unlock(&bdi->wb.list_lock); 1141 1142 if (wakeup_bdi) 1143 bdi_wakeup_thread_delayed(bdi); 1144 return; 1145 } 1146 } 1147 out_unlock_inode: 1148 spin_unlock(&inode->i_lock); 1149 1150 } 1151 EXPORT_SYMBOL(__mark_inode_dirty); 1152 wait_sb_inodes(struct super_block * sb)1153 static void wait_sb_inodes(struct super_block *sb) 1154 { 1155 struct inode *inode, *old_inode = NULL; 1156 1157 /* 1158 * We need to be protected against the filesystem going from 1159 * r/o to r/w or vice versa. 1160 */ 1161 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1162 1163 spin_lock(&inode_sb_list_lock); 1164 1165 /* 1166 * Data integrity sync. Must wait for all pages under writeback, 1167 * because there may have been pages dirtied before our sync 1168 * call, but which had writeout started before we write it out. 1169 * In which case, the inode may not be on the dirty list, but 1170 * we still have to wait for that writeout. 1171 */ 1172 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1173 struct address_space *mapping = inode->i_mapping; 1174 1175 spin_lock(&inode->i_lock); 1176 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1177 (mapping->nrpages == 0)) { 1178 spin_unlock(&inode->i_lock); 1179 continue; 1180 } 1181 __iget(inode); 1182 spin_unlock(&inode->i_lock); 1183 spin_unlock(&inode_sb_list_lock); 1184 1185 /* 1186 * We hold a reference to 'inode' so it couldn't have been 1187 * removed from s_inodes list while we dropped the 1188 * inode_sb_list_lock. We cannot iput the inode now as we can 1189 * be holding the last reference and we cannot iput it under 1190 * inode_sb_list_lock. So we keep the reference and iput it 1191 * later. 1192 */ 1193 iput(old_inode); 1194 old_inode = inode; 1195 1196 filemap_fdatawait(mapping); 1197 1198 cond_resched(); 1199 1200 spin_lock(&inode_sb_list_lock); 1201 } 1202 spin_unlock(&inode_sb_list_lock); 1203 iput(old_inode); 1204 } 1205 1206 /** 1207 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1208 * @sb: the superblock 1209 * @nr: the number of pages to write 1210 * @reason: reason why some writeback work initiated 1211 * 1212 * Start writeback on some inodes on this super_block. No guarantees are made 1213 * on how many (if any) will be written, and this function does not wait 1214 * for IO completion of submitted IO. 1215 */ writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)1216 void writeback_inodes_sb_nr(struct super_block *sb, 1217 unsigned long nr, 1218 enum wb_reason reason) 1219 { 1220 DECLARE_COMPLETION_ONSTACK(done); 1221 struct wb_writeback_work work = { 1222 .sb = sb, 1223 .sync_mode = WB_SYNC_NONE, 1224 .tagged_writepages = 1, 1225 .done = &done, 1226 .nr_pages = nr, 1227 .reason = reason, 1228 }; 1229 1230 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1231 bdi_queue_work(sb->s_bdi, &work); 1232 wait_for_completion(&done); 1233 } 1234 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1235 1236 /** 1237 * writeback_inodes_sb - writeback dirty inodes from given super_block 1238 * @sb: the superblock 1239 * @reason: reason why some writeback work was initiated 1240 * 1241 * Start writeback on some inodes on this super_block. No guarantees are made 1242 * on how many (if any) will be written, and this function does not wait 1243 * for IO completion of submitted IO. 1244 */ writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)1245 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1246 { 1247 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1248 } 1249 EXPORT_SYMBOL(writeback_inodes_sb); 1250 1251 /** 1252 * writeback_inodes_sb_if_idle - start writeback if none underway 1253 * @sb: the superblock 1254 * @reason: reason why some writeback work was initiated 1255 * 1256 * Invoke writeback_inodes_sb if no writeback is currently underway. 1257 * Returns 1 if writeback was started, 0 if not. 1258 */ writeback_inodes_sb_if_idle(struct super_block * sb,enum wb_reason reason)1259 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1260 { 1261 if (!writeback_in_progress(sb->s_bdi)) { 1262 down_read(&sb->s_umount); 1263 writeback_inodes_sb(sb, reason); 1264 up_read(&sb->s_umount); 1265 return 1; 1266 } else 1267 return 0; 1268 } 1269 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1270 1271 /** 1272 * writeback_inodes_sb_nr_if_idle - start writeback if none underway 1273 * @sb: the superblock 1274 * @nr: the number of pages to write 1275 * @reason: reason why some writeback work was initiated 1276 * 1277 * Invoke writeback_inodes_sb if no writeback is currently underway. 1278 * Returns 1 if writeback was started, 0 if not. 1279 */ writeback_inodes_sb_nr_if_idle(struct super_block * sb,unsigned long nr,enum wb_reason reason)1280 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1281 unsigned long nr, 1282 enum wb_reason reason) 1283 { 1284 if (!writeback_in_progress(sb->s_bdi)) { 1285 down_read(&sb->s_umount); 1286 writeback_inodes_sb_nr(sb, nr, reason); 1287 up_read(&sb->s_umount); 1288 return 1; 1289 } else 1290 return 0; 1291 } 1292 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1293 1294 /** 1295 * sync_inodes_sb - sync sb inode pages 1296 * @sb: the superblock 1297 * 1298 * This function writes and waits on any dirty inode belonging to this 1299 * super_block. 1300 */ sync_inodes_sb(struct super_block * sb)1301 void sync_inodes_sb(struct super_block *sb) 1302 { 1303 DECLARE_COMPLETION_ONSTACK(done); 1304 struct wb_writeback_work work = { 1305 .sb = sb, 1306 .sync_mode = WB_SYNC_ALL, 1307 .nr_pages = LONG_MAX, 1308 .range_cyclic = 0, 1309 .done = &done, 1310 .reason = WB_REASON_SYNC, 1311 }; 1312 1313 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1314 1315 bdi_queue_work(sb->s_bdi, &work); 1316 wait_for_completion(&done); 1317 1318 wait_sb_inodes(sb); 1319 } 1320 EXPORT_SYMBOL(sync_inodes_sb); 1321 1322 /** 1323 * write_inode_now - write an inode to disk 1324 * @inode: inode to write to disk 1325 * @sync: whether the write should be synchronous or not 1326 * 1327 * This function commits an inode to disk immediately if it is dirty. This is 1328 * primarily needed by knfsd. 1329 * 1330 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1331 */ write_inode_now(struct inode * inode,int sync)1332 int write_inode_now(struct inode *inode, int sync) 1333 { 1334 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1335 int ret; 1336 struct writeback_control wbc = { 1337 .nr_to_write = LONG_MAX, 1338 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1339 .range_start = 0, 1340 .range_end = LLONG_MAX, 1341 }; 1342 1343 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1344 wbc.nr_to_write = 0; 1345 1346 might_sleep(); 1347 spin_lock(&wb->list_lock); 1348 spin_lock(&inode->i_lock); 1349 ret = writeback_single_inode(inode, wb, &wbc); 1350 spin_unlock(&inode->i_lock); 1351 spin_unlock(&wb->list_lock); 1352 return ret; 1353 } 1354 EXPORT_SYMBOL(write_inode_now); 1355 1356 /** 1357 * sync_inode - write an inode and its pages to disk. 1358 * @inode: the inode to sync 1359 * @wbc: controls the writeback mode 1360 * 1361 * sync_inode() will write an inode and its pages to disk. It will also 1362 * correctly update the inode on its superblock's dirty inode lists and will 1363 * update inode->i_state. 1364 * 1365 * The caller must have a ref on the inode. 1366 */ sync_inode(struct inode * inode,struct writeback_control * wbc)1367 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1368 { 1369 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1370 int ret; 1371 1372 spin_lock(&wb->list_lock); 1373 spin_lock(&inode->i_lock); 1374 ret = writeback_single_inode(inode, wb, wbc); 1375 spin_unlock(&inode->i_lock); 1376 spin_unlock(&wb->list_lock); 1377 return ret; 1378 } 1379 EXPORT_SYMBOL(sync_inode); 1380 1381 /** 1382 * sync_inode_metadata - write an inode to disk 1383 * @inode: the inode to sync 1384 * @wait: wait for I/O to complete. 1385 * 1386 * Write an inode to disk and adjust its dirty state after completion. 1387 * 1388 * Note: only writes the actual inode, no associated data or other metadata. 1389 */ sync_inode_metadata(struct inode * inode,int wait)1390 int sync_inode_metadata(struct inode *inode, int wait) 1391 { 1392 struct writeback_control wbc = { 1393 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1394 .nr_to_write = 0, /* metadata-only */ 1395 }; 1396 1397 return sync_inode(inode, &wbc); 1398 } 1399 EXPORT_SYMBOL(sync_inode_metadata); 1400