• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  /*
2   * page.c - buffer/page management specific to NILFS
3   *
4   * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5   *
6   * This program is free software; you can redistribute it and/or modify
7   * it under the terms of the GNU General Public License as published by
8   * the Free Software Foundation; either version 2 of the License, or
9   * (at your option) any later version.
10   *
11   * This program is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14   * GNU General Public License for more details.
15   *
16   * You should have received a copy of the GNU General Public License
17   * along with this program; if not, write to the Free Software
18   * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19   *
20   * Written by Ryusuke Konishi <ryusuke@osrg.net>,
21   *            Seiji Kihara <kihara@osrg.net>.
22   */
23  
24  #include <linux/pagemap.h>
25  #include <linux/writeback.h>
26  #include <linux/swap.h>
27  #include <linux/bitops.h>
28  #include <linux/page-flags.h>
29  #include <linux/list.h>
30  #include <linux/highmem.h>
31  #include <linux/pagevec.h>
32  #include <linux/gfp.h>
33  #include "nilfs.h"
34  #include "page.h"
35  #include "mdt.h"
36  
37  
38  #define NILFS_BUFFER_INHERENT_BITS  \
39  	((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
40  	 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked))
41  
42  static struct buffer_head *
__nilfs_get_page_block(struct page * page,unsigned long block,pgoff_t index,int blkbits,unsigned long b_state)43  __nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
44  		       int blkbits, unsigned long b_state)
45  
46  {
47  	unsigned long first_block;
48  	struct buffer_head *bh;
49  
50  	if (!page_has_buffers(page))
51  		create_empty_buffers(page, 1 << blkbits, b_state);
52  
53  	first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
54  	bh = nilfs_page_get_nth_block(page, block - first_block);
55  
56  	touch_buffer(bh);
57  	wait_on_buffer(bh);
58  	return bh;
59  }
60  
nilfs_grab_buffer(struct inode * inode,struct address_space * mapping,unsigned long blkoff,unsigned long b_state)61  struct buffer_head *nilfs_grab_buffer(struct inode *inode,
62  				      struct address_space *mapping,
63  				      unsigned long blkoff,
64  				      unsigned long b_state)
65  {
66  	int blkbits = inode->i_blkbits;
67  	pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
68  	struct page *page;
69  	struct buffer_head *bh;
70  
71  	page = grab_cache_page(mapping, index);
72  	if (unlikely(!page))
73  		return NULL;
74  
75  	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
76  	if (unlikely(!bh)) {
77  		unlock_page(page);
78  		page_cache_release(page);
79  		return NULL;
80  	}
81  	return bh;
82  }
83  
84  /**
85   * nilfs_forget_buffer - discard dirty state
86   * @inode: owner inode of the buffer
87   * @bh: buffer head of the buffer to be discarded
88   */
nilfs_forget_buffer(struct buffer_head * bh)89  void nilfs_forget_buffer(struct buffer_head *bh)
90  {
91  	struct page *page = bh->b_page;
92  
93  	lock_buffer(bh);
94  	clear_buffer_nilfs_volatile(bh);
95  	clear_buffer_nilfs_checked(bh);
96  	clear_buffer_nilfs_redirected(bh);
97  	clear_buffer_dirty(bh);
98  	if (nilfs_page_buffers_clean(page))
99  		__nilfs_clear_page_dirty(page);
100  
101  	clear_buffer_uptodate(bh);
102  	clear_buffer_mapped(bh);
103  	bh->b_blocknr = -1;
104  	ClearPageUptodate(page);
105  	ClearPageMappedToDisk(page);
106  	unlock_buffer(bh);
107  	brelse(bh);
108  }
109  
110  /**
111   * nilfs_copy_buffer -- copy buffer data and flags
112   * @dbh: destination buffer
113   * @sbh: source buffer
114   */
nilfs_copy_buffer(struct buffer_head * dbh,struct buffer_head * sbh)115  void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
116  {
117  	void *kaddr0, *kaddr1;
118  	unsigned long bits;
119  	struct page *spage = sbh->b_page, *dpage = dbh->b_page;
120  	struct buffer_head *bh;
121  
122  	kaddr0 = kmap_atomic(spage);
123  	kaddr1 = kmap_atomic(dpage);
124  	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
125  	kunmap_atomic(kaddr1);
126  	kunmap_atomic(kaddr0);
127  
128  	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
129  	dbh->b_blocknr = sbh->b_blocknr;
130  	dbh->b_bdev = sbh->b_bdev;
131  
132  	bh = dbh;
133  	bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
134  	while ((bh = bh->b_this_page) != dbh) {
135  		lock_buffer(bh);
136  		bits &= bh->b_state;
137  		unlock_buffer(bh);
138  	}
139  	if (bits & (1UL << BH_Uptodate))
140  		SetPageUptodate(dpage);
141  	else
142  		ClearPageUptodate(dpage);
143  	if (bits & (1UL << BH_Mapped))
144  		SetPageMappedToDisk(dpage);
145  	else
146  		ClearPageMappedToDisk(dpage);
147  }
148  
149  /**
150   * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
151   * @page: page to be checked
152   *
153   * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
154   * Otherwise, it returns non-zero value.
155   */
nilfs_page_buffers_clean(struct page * page)156  int nilfs_page_buffers_clean(struct page *page)
157  {
158  	struct buffer_head *bh, *head;
159  
160  	bh = head = page_buffers(page);
161  	do {
162  		if (buffer_dirty(bh))
163  			return 0;
164  		bh = bh->b_this_page;
165  	} while (bh != head);
166  	return 1;
167  }
168  
nilfs_page_bug(struct page * page)169  void nilfs_page_bug(struct page *page)
170  {
171  	struct address_space *m;
172  	unsigned long ino;
173  
174  	if (unlikely(!page)) {
175  		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
176  		return;
177  	}
178  
179  	m = page->mapping;
180  	ino = m ? m->host->i_ino : 0;
181  
182  	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
183  	       "mapping=%p ino=%lu\n",
184  	       page, atomic_read(&page->_count),
185  	       (unsigned long long)page->index, page->flags, m, ino);
186  
187  	if (page_has_buffers(page)) {
188  		struct buffer_head *bh, *head;
189  		int i = 0;
190  
191  		bh = head = page_buffers(page);
192  		do {
193  			printk(KERN_CRIT
194  			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
195  			       i++, bh, atomic_read(&bh->b_count),
196  			       (unsigned long long)bh->b_blocknr, bh->b_state);
197  			bh = bh->b_this_page;
198  		} while (bh != head);
199  	}
200  }
201  
202  /**
203   * nilfs_copy_page -- copy the page with buffers
204   * @dst: destination page
205   * @src: source page
206   * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
207   *
208   * This function is for both data pages and btnode pages.  The dirty flag
209   * should be treated by caller.  The page must not be under i/o.
210   * Both src and dst page must be locked
211   */
nilfs_copy_page(struct page * dst,struct page * src,int copy_dirty)212  static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
213  {
214  	struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
215  	unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
216  
217  	BUG_ON(PageWriteback(dst));
218  
219  	sbh = sbufs = page_buffers(src);
220  	if (!page_has_buffers(dst))
221  		create_empty_buffers(dst, sbh->b_size, 0);
222  
223  	if (copy_dirty)
224  		mask |= (1UL << BH_Dirty);
225  
226  	dbh = dbufs = page_buffers(dst);
227  	do {
228  		lock_buffer(sbh);
229  		lock_buffer(dbh);
230  		dbh->b_state = sbh->b_state & mask;
231  		dbh->b_blocknr = sbh->b_blocknr;
232  		dbh->b_bdev = sbh->b_bdev;
233  		sbh = sbh->b_this_page;
234  		dbh = dbh->b_this_page;
235  	} while (dbh != dbufs);
236  
237  	copy_highpage(dst, src);
238  
239  	if (PageUptodate(src) && !PageUptodate(dst))
240  		SetPageUptodate(dst);
241  	else if (!PageUptodate(src) && PageUptodate(dst))
242  		ClearPageUptodate(dst);
243  	if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
244  		SetPageMappedToDisk(dst);
245  	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
246  		ClearPageMappedToDisk(dst);
247  
248  	do {
249  		unlock_buffer(sbh);
250  		unlock_buffer(dbh);
251  		sbh = sbh->b_this_page;
252  		dbh = dbh->b_this_page;
253  	} while (dbh != dbufs);
254  }
255  
nilfs_copy_dirty_pages(struct address_space * dmap,struct address_space * smap)256  int nilfs_copy_dirty_pages(struct address_space *dmap,
257  			   struct address_space *smap)
258  {
259  	struct pagevec pvec;
260  	unsigned int i;
261  	pgoff_t index = 0;
262  	int err = 0;
263  
264  	pagevec_init(&pvec, 0);
265  repeat:
266  	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
267  				PAGEVEC_SIZE))
268  		return 0;
269  
270  	for (i = 0; i < pagevec_count(&pvec); i++) {
271  		struct page *page = pvec.pages[i], *dpage;
272  
273  		lock_page(page);
274  		if (unlikely(!PageDirty(page)))
275  			NILFS_PAGE_BUG(page, "inconsistent dirty state");
276  
277  		dpage = grab_cache_page(dmap, page->index);
278  		if (unlikely(!dpage)) {
279  			/* No empty page is added to the page cache */
280  			err = -ENOMEM;
281  			unlock_page(page);
282  			break;
283  		}
284  		if (unlikely(!page_has_buffers(page)))
285  			NILFS_PAGE_BUG(page,
286  				       "found empty page in dat page cache");
287  
288  		nilfs_copy_page(dpage, page, 1);
289  		__set_page_dirty_nobuffers(dpage);
290  
291  		unlock_page(dpage);
292  		page_cache_release(dpage);
293  		unlock_page(page);
294  	}
295  	pagevec_release(&pvec);
296  	cond_resched();
297  
298  	if (likely(!err))
299  		goto repeat;
300  	return err;
301  }
302  
303  /**
304   * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
305   * @dmap: destination page cache
306   * @smap: source page cache
307   *
308   * No pages must no be added to the cache during this process.
309   * This must be ensured by the caller.
310   */
nilfs_copy_back_pages(struct address_space * dmap,struct address_space * smap)311  void nilfs_copy_back_pages(struct address_space *dmap,
312  			   struct address_space *smap)
313  {
314  	struct pagevec pvec;
315  	unsigned int i, n;
316  	pgoff_t index = 0;
317  	int err;
318  
319  	pagevec_init(&pvec, 0);
320  repeat:
321  	n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
322  	if (!n)
323  		return;
324  	index = pvec.pages[n - 1]->index + 1;
325  
326  	for (i = 0; i < pagevec_count(&pvec); i++) {
327  		struct page *page = pvec.pages[i], *dpage;
328  		pgoff_t offset = page->index;
329  
330  		lock_page(page);
331  		dpage = find_lock_page(dmap, offset);
332  		if (dpage) {
333  			/* override existing page on the destination cache */
334  			WARN_ON(PageDirty(dpage));
335  			nilfs_copy_page(dpage, page, 0);
336  			unlock_page(dpage);
337  			page_cache_release(dpage);
338  		} else {
339  			struct page *page2;
340  
341  			/* move the page to the destination cache */
342  			spin_lock_irq(&smap->tree_lock);
343  			page2 = radix_tree_delete(&smap->page_tree, offset);
344  			WARN_ON(page2 != page);
345  
346  			smap->nrpages--;
347  			spin_unlock_irq(&smap->tree_lock);
348  
349  			spin_lock_irq(&dmap->tree_lock);
350  			err = radix_tree_insert(&dmap->page_tree, offset, page);
351  			if (unlikely(err < 0)) {
352  				WARN_ON(err == -EEXIST);
353  				page->mapping = NULL;
354  				page_cache_release(page); /* for cache */
355  			} else {
356  				page->mapping = dmap;
357  				dmap->nrpages++;
358  				if (PageDirty(page))
359  					radix_tree_tag_set(&dmap->page_tree,
360  							   offset,
361  							   PAGECACHE_TAG_DIRTY);
362  			}
363  			spin_unlock_irq(&dmap->tree_lock);
364  		}
365  		unlock_page(page);
366  	}
367  	pagevec_release(&pvec);
368  	cond_resched();
369  
370  	goto repeat;
371  }
372  
nilfs_clear_dirty_pages(struct address_space * mapping)373  void nilfs_clear_dirty_pages(struct address_space *mapping)
374  {
375  	struct pagevec pvec;
376  	unsigned int i;
377  	pgoff_t index = 0;
378  
379  	pagevec_init(&pvec, 0);
380  
381  	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
382  				  PAGEVEC_SIZE)) {
383  		for (i = 0; i < pagevec_count(&pvec); i++) {
384  			struct page *page = pvec.pages[i];
385  			struct buffer_head *bh, *head;
386  
387  			lock_page(page);
388  			ClearPageUptodate(page);
389  			ClearPageMappedToDisk(page);
390  			bh = head = page_buffers(page);
391  			do {
392  				lock_buffer(bh);
393  				clear_buffer_dirty(bh);
394  				clear_buffer_nilfs_volatile(bh);
395  				clear_buffer_nilfs_checked(bh);
396  				clear_buffer_nilfs_redirected(bh);
397  				clear_buffer_uptodate(bh);
398  				clear_buffer_mapped(bh);
399  				unlock_buffer(bh);
400  				bh = bh->b_this_page;
401  			} while (bh != head);
402  
403  			__nilfs_clear_page_dirty(page);
404  			unlock_page(page);
405  		}
406  		pagevec_release(&pvec);
407  		cond_resched();
408  	}
409  }
410  
nilfs_page_count_clean_buffers(struct page * page,unsigned from,unsigned to)411  unsigned nilfs_page_count_clean_buffers(struct page *page,
412  					unsigned from, unsigned to)
413  {
414  	unsigned block_start, block_end;
415  	struct buffer_head *bh, *head;
416  	unsigned nc = 0;
417  
418  	for (bh = head = page_buffers(page), block_start = 0;
419  	     bh != head || !block_start;
420  	     block_start = block_end, bh = bh->b_this_page) {
421  		block_end = block_start + bh->b_size;
422  		if (block_end > from && block_start < to && !buffer_dirty(bh))
423  			nc++;
424  	}
425  	return nc;
426  }
427  
nilfs_mapping_init(struct address_space * mapping,struct inode * inode,struct backing_dev_info * bdi)428  void nilfs_mapping_init(struct address_space *mapping, struct inode *inode,
429  			struct backing_dev_info *bdi)
430  {
431  	mapping->host = inode;
432  	mapping->flags = 0;
433  	mapping_set_gfp_mask(mapping, GFP_NOFS);
434  	mapping->assoc_mapping = NULL;
435  	mapping->backing_dev_info = bdi;
436  	mapping->a_ops = &empty_aops;
437  }
438  
439  /*
440   * NILFS2 needs clear_page_dirty() in the following two cases:
441   *
442   * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
443   *    page dirty flags when it copies back pages from the shadow cache
444   *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
445   *    (dat->{i_mapping,i_btnode_cache}).
446   *
447   * 2) Some B-tree operations like insertion or deletion may dispose buffers
448   *    in dirty state, and this needs to cancel the dirty state of their pages.
449   */
__nilfs_clear_page_dirty(struct page * page)450  int __nilfs_clear_page_dirty(struct page *page)
451  {
452  	struct address_space *mapping = page->mapping;
453  
454  	if (mapping) {
455  		spin_lock_irq(&mapping->tree_lock);
456  		if (test_bit(PG_dirty, &page->flags)) {
457  			radix_tree_tag_clear(&mapping->page_tree,
458  					     page_index(page),
459  					     PAGECACHE_TAG_DIRTY);
460  			spin_unlock_irq(&mapping->tree_lock);
461  			return clear_page_dirty_for_io(page);
462  		}
463  		spin_unlock_irq(&mapping->tree_lock);
464  		return 0;
465  	}
466  	return TestClearPageDirty(page);
467  }
468  
469  /**
470   * nilfs_find_uncommitted_extent - find extent of uncommitted data
471   * @inode: inode
472   * @start_blk: start block offset (in)
473   * @blkoff: start offset of the found extent (out)
474   *
475   * This function searches an extent of buffers marked "delayed" which
476   * starts from a block offset equal to or larger than @start_blk.  If
477   * such an extent was found, this will store the start offset in
478   * @blkoff and return its length in blocks.  Otherwise, zero is
479   * returned.
480   */
nilfs_find_uncommitted_extent(struct inode * inode,sector_t start_blk,sector_t * blkoff)481  unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
482  					    sector_t start_blk,
483  					    sector_t *blkoff)
484  {
485  	unsigned int i;
486  	pgoff_t index;
487  	unsigned int nblocks_in_page;
488  	unsigned long length = 0;
489  	sector_t b;
490  	struct pagevec pvec;
491  	struct page *page;
492  
493  	if (inode->i_mapping->nrpages == 0)
494  		return 0;
495  
496  	index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
497  	nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits);
498  
499  	pagevec_init(&pvec, 0);
500  
501  repeat:
502  	pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
503  					pvec.pages);
504  	if (pvec.nr == 0)
505  		return length;
506  
507  	if (length > 0 && pvec.pages[0]->index > index)
508  		goto out;
509  
510  	b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
511  	i = 0;
512  	do {
513  		page = pvec.pages[i];
514  
515  		lock_page(page);
516  		if (page_has_buffers(page)) {
517  			struct buffer_head *bh, *head;
518  
519  			bh = head = page_buffers(page);
520  			do {
521  				if (b < start_blk)
522  					continue;
523  				if (buffer_delay(bh)) {
524  					if (length == 0)
525  						*blkoff = b;
526  					length++;
527  				} else if (length > 0) {
528  					goto out_locked;
529  				}
530  			} while (++b, bh = bh->b_this_page, bh != head);
531  		} else {
532  			if (length > 0)
533  				goto out_locked;
534  
535  			b += nblocks_in_page;
536  		}
537  		unlock_page(page);
538  
539  	} while (++i < pagevec_count(&pvec));
540  
541  	index = page->index + 1;
542  	pagevec_release(&pvec);
543  	cond_resched();
544  	goto repeat;
545  
546  out_locked:
547  	unlock_page(page);
548  out:
549  	pagevec_release(&pvec);
550  	return length;
551  }
552