1 #ifndef __LINUX_USB_H
2 #define __LINUX_USB_H
3
4 #include <linux/mod_devicetable.h>
5 #include <linux/usb/ch9.h>
6
7 #define USB_MAJOR 180
8 #define USB_DEVICE_MAJOR 189
9
10
11 #ifdef __KERNEL__
12
13 #include <linux/errno.h> /* for -ENODEV */
14 #include <linux/delay.h> /* for mdelay() */
15 #include <linux/interrupt.h> /* for in_interrupt() */
16 #include <linux/list.h> /* for struct list_head */
17 #include <linux/kref.h> /* for struct kref */
18 #include <linux/device.h> /* for struct device */
19 #include <linux/fs.h> /* for struct file_operations */
20 #include <linux/completion.h> /* for struct completion */
21 #include <linux/sched.h> /* for current && schedule_timeout */
22 #include <linux/mutex.h> /* for struct mutex */
23 #include <linux/pm_runtime.h> /* for runtime PM */
24
25 struct usb_device;
26 struct usb_driver;
27 struct wusb_dev;
28
29 /*-------------------------------------------------------------------------*/
30
31 /*
32 * Host-side wrappers for standard USB descriptors ... these are parsed
33 * from the data provided by devices. Parsing turns them from a flat
34 * sequence of descriptors into a hierarchy:
35 *
36 * - devices have one (usually) or more configs;
37 * - configs have one (often) or more interfaces;
38 * - interfaces have one (usually) or more settings;
39 * - each interface setting has zero or (usually) more endpoints.
40 * - a SuperSpeed endpoint has a companion descriptor
41 *
42 * And there might be other descriptors mixed in with those.
43 *
44 * Devices may also have class-specific or vendor-specific descriptors.
45 */
46
47 struct ep_device;
48
49 /**
50 * struct usb_host_endpoint - host-side endpoint descriptor and queue
51 * @desc: descriptor for this endpoint, wMaxPacketSize in native byteorder
52 * @ss_ep_comp: SuperSpeed companion descriptor for this endpoint
53 * @urb_list: urbs queued to this endpoint; maintained by usbcore
54 * @hcpriv: for use by HCD; typically holds hardware dma queue head (QH)
55 * with one or more transfer descriptors (TDs) per urb
56 * @ep_dev: ep_device for sysfs info
57 * @extra: descriptors following this endpoint in the configuration
58 * @extralen: how many bytes of "extra" are valid
59 * @enabled: URBs may be submitted to this endpoint
60 *
61 * USB requests are always queued to a given endpoint, identified by a
62 * descriptor within an active interface in a given USB configuration.
63 */
64 struct usb_host_endpoint {
65 struct usb_endpoint_descriptor desc;
66 struct usb_ss_ep_comp_descriptor ss_ep_comp;
67 struct list_head urb_list;
68 void *hcpriv;
69 struct ep_device *ep_dev; /* For sysfs info */
70
71 unsigned char *extra; /* Extra descriptors */
72 int extralen;
73 int enabled;
74 };
75
76 /* host-side wrapper for one interface setting's parsed descriptors */
77 struct usb_host_interface {
78 struct usb_interface_descriptor desc;
79
80 /* array of desc.bNumEndpoint endpoints associated with this
81 * interface setting. these will be in no particular order.
82 */
83 struct usb_host_endpoint *endpoint;
84
85 char *string; /* iInterface string, if present */
86 unsigned char *extra; /* Extra descriptors */
87 int extralen;
88 };
89
90 enum usb_interface_condition {
91 USB_INTERFACE_UNBOUND = 0,
92 USB_INTERFACE_BINDING,
93 USB_INTERFACE_BOUND,
94 USB_INTERFACE_UNBINDING,
95 };
96
97 /**
98 * struct usb_interface - what usb device drivers talk to
99 * @altsetting: array of interface structures, one for each alternate
100 * setting that may be selected. Each one includes a set of
101 * endpoint configurations. They will be in no particular order.
102 * @cur_altsetting: the current altsetting.
103 * @num_altsetting: number of altsettings defined.
104 * @intf_assoc: interface association descriptor
105 * @minor: the minor number assigned to this interface, if this
106 * interface is bound to a driver that uses the USB major number.
107 * If this interface does not use the USB major, this field should
108 * be unused. The driver should set this value in the probe()
109 * function of the driver, after it has been assigned a minor
110 * number from the USB core by calling usb_register_dev().
111 * @condition: binding state of the interface: not bound, binding
112 * (in probe()), bound to a driver, or unbinding (in disconnect())
113 * @sysfs_files_created: sysfs attributes exist
114 * @ep_devs_created: endpoint child pseudo-devices exist
115 * @unregistering: flag set when the interface is being unregistered
116 * @needs_remote_wakeup: flag set when the driver requires remote-wakeup
117 * capability during autosuspend.
118 * @needs_altsetting0: flag set when a set-interface request for altsetting 0
119 * has been deferred.
120 * @needs_binding: flag set when the driver should be re-probed or unbound
121 * following a reset or suspend operation it doesn't support.
122 * @dev: driver model's view of this device
123 * @usb_dev: if an interface is bound to the USB major, this will point
124 * to the sysfs representation for that device.
125 * @pm_usage_cnt: PM usage counter for this interface
126 * @reset_ws: Used for scheduling resets from atomic context.
127 * @reset_running: set to 1 if the interface is currently running a
128 * queued reset so that usb_cancel_queued_reset() doesn't try to
129 * remove from the workqueue when running inside the worker
130 * thread. See __usb_queue_reset_device().
131 * @resetting_device: USB core reset the device, so use alt setting 0 as
132 * current; needs bandwidth alloc after reset.
133 *
134 * USB device drivers attach to interfaces on a physical device. Each
135 * interface encapsulates a single high level function, such as feeding
136 * an audio stream to a speaker or reporting a change in a volume control.
137 * Many USB devices only have one interface. The protocol used to talk to
138 * an interface's endpoints can be defined in a usb "class" specification,
139 * or by a product's vendor. The (default) control endpoint is part of
140 * every interface, but is never listed among the interface's descriptors.
141 *
142 * The driver that is bound to the interface can use standard driver model
143 * calls such as dev_get_drvdata() on the dev member of this structure.
144 *
145 * Each interface may have alternate settings. The initial configuration
146 * of a device sets altsetting 0, but the device driver can change
147 * that setting using usb_set_interface(). Alternate settings are often
148 * used to control the use of periodic endpoints, such as by having
149 * different endpoints use different amounts of reserved USB bandwidth.
150 * All standards-conformant USB devices that use isochronous endpoints
151 * will use them in non-default settings.
152 *
153 * The USB specification says that alternate setting numbers must run from
154 * 0 to one less than the total number of alternate settings. But some
155 * devices manage to mess this up, and the structures aren't necessarily
156 * stored in numerical order anyhow. Use usb_altnum_to_altsetting() to
157 * look up an alternate setting in the altsetting array based on its number.
158 */
159 struct usb_interface {
160 /* array of alternate settings for this interface,
161 * stored in no particular order */
162 struct usb_host_interface *altsetting;
163
164 struct usb_host_interface *cur_altsetting; /* the currently
165 * active alternate setting */
166 unsigned num_altsetting; /* number of alternate settings */
167
168 /* If there is an interface association descriptor then it will list
169 * the associated interfaces */
170 struct usb_interface_assoc_descriptor *intf_assoc;
171
172 int minor; /* minor number this interface is
173 * bound to */
174 enum usb_interface_condition condition; /* state of binding */
175 unsigned sysfs_files_created:1; /* the sysfs attributes exist */
176 unsigned ep_devs_created:1; /* endpoint "devices" exist */
177 unsigned unregistering:1; /* unregistration is in progress */
178 unsigned needs_remote_wakeup:1; /* driver requires remote wakeup */
179 unsigned needs_altsetting0:1; /* switch to altsetting 0 is pending */
180 unsigned needs_binding:1; /* needs delayed unbind/rebind */
181 unsigned reset_running:1;
182 unsigned resetting_device:1; /* true: bandwidth alloc after reset */
183
184 struct device dev; /* interface specific device info */
185 struct device *usb_dev;
186 atomic_t pm_usage_cnt; /* usage counter for autosuspend */
187 struct work_struct reset_ws; /* for resets in atomic context */
188 };
189 #define to_usb_interface(d) container_of(d, struct usb_interface, dev)
190
usb_get_intfdata(struct usb_interface * intf)191 static inline void *usb_get_intfdata(struct usb_interface *intf)
192 {
193 return dev_get_drvdata(&intf->dev);
194 }
195
usb_set_intfdata(struct usb_interface * intf,void * data)196 static inline void usb_set_intfdata(struct usb_interface *intf, void *data)
197 {
198 dev_set_drvdata(&intf->dev, data);
199 }
200
201 struct usb_interface *usb_get_intf(struct usb_interface *intf);
202 void usb_put_intf(struct usb_interface *intf);
203
204 /* this maximum is arbitrary */
205 #define USB_MAXINTERFACES 32
206 #define USB_MAXIADS (USB_MAXINTERFACES/2)
207
208 /**
209 * struct usb_interface_cache - long-term representation of a device interface
210 * @num_altsetting: number of altsettings defined.
211 * @ref: reference counter.
212 * @altsetting: variable-length array of interface structures, one for
213 * each alternate setting that may be selected. Each one includes a
214 * set of endpoint configurations. They will be in no particular order.
215 *
216 * These structures persist for the lifetime of a usb_device, unlike
217 * struct usb_interface (which persists only as long as its configuration
218 * is installed). The altsetting arrays can be accessed through these
219 * structures at any time, permitting comparison of configurations and
220 * providing support for the /proc/bus/usb/devices pseudo-file.
221 */
222 struct usb_interface_cache {
223 unsigned num_altsetting; /* number of alternate settings */
224 struct kref ref; /* reference counter */
225
226 /* variable-length array of alternate settings for this interface,
227 * stored in no particular order */
228 struct usb_host_interface altsetting[0];
229 };
230 #define ref_to_usb_interface_cache(r) \
231 container_of(r, struct usb_interface_cache, ref)
232 #define altsetting_to_usb_interface_cache(a) \
233 container_of(a, struct usb_interface_cache, altsetting[0])
234
235 /**
236 * struct usb_host_config - representation of a device's configuration
237 * @desc: the device's configuration descriptor.
238 * @string: pointer to the cached version of the iConfiguration string, if
239 * present for this configuration.
240 * @intf_assoc: list of any interface association descriptors in this config
241 * @interface: array of pointers to usb_interface structures, one for each
242 * interface in the configuration. The number of interfaces is stored
243 * in desc.bNumInterfaces. These pointers are valid only while the
244 * the configuration is active.
245 * @intf_cache: array of pointers to usb_interface_cache structures, one
246 * for each interface in the configuration. These structures exist
247 * for the entire life of the device.
248 * @extra: pointer to buffer containing all extra descriptors associated
249 * with this configuration (those preceding the first interface
250 * descriptor).
251 * @extralen: length of the extra descriptors buffer.
252 *
253 * USB devices may have multiple configurations, but only one can be active
254 * at any time. Each encapsulates a different operational environment;
255 * for example, a dual-speed device would have separate configurations for
256 * full-speed and high-speed operation. The number of configurations
257 * available is stored in the device descriptor as bNumConfigurations.
258 *
259 * A configuration can contain multiple interfaces. Each corresponds to
260 * a different function of the USB device, and all are available whenever
261 * the configuration is active. The USB standard says that interfaces
262 * are supposed to be numbered from 0 to desc.bNumInterfaces-1, but a lot
263 * of devices get this wrong. In addition, the interface array is not
264 * guaranteed to be sorted in numerical order. Use usb_ifnum_to_if() to
265 * look up an interface entry based on its number.
266 *
267 * Device drivers should not attempt to activate configurations. The choice
268 * of which configuration to install is a policy decision based on such
269 * considerations as available power, functionality provided, and the user's
270 * desires (expressed through userspace tools). However, drivers can call
271 * usb_reset_configuration() to reinitialize the current configuration and
272 * all its interfaces.
273 */
274 struct usb_host_config {
275 struct usb_config_descriptor desc;
276
277 char *string; /* iConfiguration string, if present */
278
279 /* List of any Interface Association Descriptors in this
280 * configuration. */
281 struct usb_interface_assoc_descriptor *intf_assoc[USB_MAXIADS];
282
283 /* the interfaces associated with this configuration,
284 * stored in no particular order */
285 struct usb_interface *interface[USB_MAXINTERFACES];
286
287 /* Interface information available even when this is not the
288 * active configuration */
289 struct usb_interface_cache *intf_cache[USB_MAXINTERFACES];
290
291 unsigned char *extra; /* Extra descriptors */
292 int extralen;
293 };
294
295 /* USB2.0 and USB3.0 device BOS descriptor set */
296 struct usb_host_bos {
297 struct usb_bos_descriptor *desc;
298
299 /* wireless cap descriptor is handled by wusb */
300 struct usb_ext_cap_descriptor *ext_cap;
301 struct usb_ss_cap_descriptor *ss_cap;
302 struct usb_ss_container_id_descriptor *ss_id;
303 };
304
305 int __usb_get_extra_descriptor(char *buffer, unsigned size,
306 unsigned char type, void **ptr);
307 #define usb_get_extra_descriptor(ifpoint, type, ptr) \
308 __usb_get_extra_descriptor((ifpoint)->extra, \
309 (ifpoint)->extralen, \
310 type, (void **)ptr)
311
312 /* ----------------------------------------------------------------------- */
313
314 /* USB device number allocation bitmap */
315 struct usb_devmap {
316 unsigned long devicemap[128 / (8*sizeof(unsigned long))];
317 };
318
319 /*
320 * Allocated per bus (tree of devices) we have:
321 */
322 struct usb_bus {
323 struct device *controller; /* host/master side hardware */
324 int busnum; /* Bus number (in order of reg) */
325 const char *bus_name; /* stable id (PCI slot_name etc) */
326 u8 uses_dma; /* Does the host controller use DMA? */
327 u8 uses_pio_for_control; /*
328 * Does the host controller use PIO
329 * for control transfers?
330 */
331 u8 otg_port; /* 0, or number of OTG/HNP port */
332 unsigned is_b_host:1; /* true during some HNP roleswitches */
333 unsigned b_hnp_enable:1; /* OTG: did A-Host enable HNP? */
334 unsigned sg_tablesize; /* 0 or largest number of sg list entries */
335
336 int devnum_next; /* Next open device number in
337 * round-robin allocation */
338
339 struct usb_devmap devmap; /* device address allocation map */
340 struct usb_device *root_hub; /* Root hub */
341 struct usb_bus *hs_companion; /* Companion EHCI bus, if any */
342 struct list_head bus_list; /* list of busses */
343
344 int bandwidth_allocated; /* on this bus: how much of the time
345 * reserved for periodic (intr/iso)
346 * requests is used, on average?
347 * Units: microseconds/frame.
348 * Limits: Full/low speed reserve 90%,
349 * while high speed reserves 80%.
350 */
351 int bandwidth_int_reqs; /* number of Interrupt requests */
352 int bandwidth_isoc_reqs; /* number of Isoc. requests */
353
354 #ifdef CONFIG_USB_DEVICEFS
355 struct dentry *usbfs_dentry; /* usbfs dentry entry for the bus */
356 #endif
357
358 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
359 struct mon_bus *mon_bus; /* non-null when associated */
360 int monitored; /* non-zero when monitored */
361 #endif
362 };
363
364 /* ----------------------------------------------------------------------- */
365
366 /* This is arbitrary.
367 * From USB 2.0 spec Table 11-13, offset 7, a hub can
368 * have up to 255 ports. The most yet reported is 10.
369 *
370 * Current Wireless USB host hardware (Intel i1480 for example) allows
371 * up to 22 devices to connect. Upcoming hardware might raise that
372 * limit. Because the arrays need to add a bit for hub status data, we
373 * do 31, so plus one evens out to four bytes.
374 */
375 #define USB_MAXCHILDREN (31)
376
377 struct usb_tt;
378
379 enum usb_device_removable {
380 USB_DEVICE_REMOVABLE_UNKNOWN = 0,
381 USB_DEVICE_REMOVABLE,
382 USB_DEVICE_FIXED,
383 };
384
385 /**
386 * struct usb_device - kernel's representation of a USB device
387 * @devnum: device number; address on a USB bus
388 * @devpath: device ID string for use in messages (e.g., /port/...)
389 * @route: tree topology hex string for use with xHCI
390 * @state: device state: configured, not attached, etc.
391 * @speed: device speed: high/full/low (or error)
392 * @tt: Transaction Translator info; used with low/full speed dev, highspeed hub
393 * @ttport: device port on that tt hub
394 * @toggle: one bit for each endpoint, with ([0] = IN, [1] = OUT) endpoints
395 * @parent: our hub, unless we're the root
396 * @bus: bus we're part of
397 * @ep0: endpoint 0 data (default control pipe)
398 * @dev: generic device interface
399 * @descriptor: USB device descriptor
400 * @bos: USB device BOS descriptor set
401 * @config: all of the device's configs
402 * @actconfig: the active configuration
403 * @ep_in: array of IN endpoints
404 * @ep_out: array of OUT endpoints
405 * @rawdescriptors: raw descriptors for each config
406 * @bus_mA: Current available from the bus
407 * @portnum: parent port number (origin 1)
408 * @level: number of USB hub ancestors
409 * @can_submit: URBs may be submitted
410 * @persist_enabled: USB_PERSIST enabled for this device
411 * @have_langid: whether string_langid is valid
412 * @authorized: policy has said we can use it;
413 * (user space) policy determines if we authorize this device to be
414 * used or not. By default, wired USB devices are authorized.
415 * WUSB devices are not, until we authorize them from user space.
416 * FIXME -- complete doc
417 * @authenticated: Crypto authentication passed
418 * @wusb: device is Wireless USB
419 * @lpm_capable: device supports LPM
420 * @usb2_hw_lpm_capable: device can perform USB2 hardware LPM
421 * @usb2_hw_lpm_enabled: USB2 hardware LPM enabled
422 * @string_langid: language ID for strings
423 * @product: iProduct string, if present (static)
424 * @manufacturer: iManufacturer string, if present (static)
425 * @serial: iSerialNumber string, if present (static)
426 * @filelist: usbfs files that are open to this device
427 * @usb_classdev: USB class device that was created for usbfs device
428 * access from userspace
429 * @usbfs_dentry: usbfs dentry entry for the device
430 * @maxchild: number of ports if hub
431 * @children: child devices - USB devices that are attached to this hub
432 * @quirks: quirks of the whole device
433 * @urbnum: number of URBs submitted for the whole device
434 * @active_duration: total time device is not suspended
435 * @connect_time: time device was first connected
436 * @do_remote_wakeup: remote wakeup should be enabled
437 * @reset_resume: needs reset instead of resume
438 * @wusb_dev: if this is a Wireless USB device, link to the WUSB
439 * specific data for the device.
440 * @slot_id: Slot ID assigned by xHCI
441 * @removable: Device can be physically removed from this port
442 *
443 * Notes:
444 * Usbcore drivers should not set usbdev->state directly. Instead use
445 * usb_set_device_state().
446 */
447 struct usb_device {
448 int devnum;
449 char devpath[16];
450 u32 route;
451 enum usb_device_state state;
452 enum usb_device_speed speed;
453
454 struct usb_tt *tt;
455 int ttport;
456
457 unsigned int toggle[2];
458
459 struct usb_device *parent;
460 struct usb_bus *bus;
461 struct usb_host_endpoint ep0;
462
463 struct device dev;
464
465 struct usb_device_descriptor descriptor;
466 struct usb_host_bos *bos;
467 struct usb_host_config *config;
468
469 struct usb_host_config *actconfig;
470 struct usb_host_endpoint *ep_in[16];
471 struct usb_host_endpoint *ep_out[16];
472
473 char **rawdescriptors;
474
475 unsigned short bus_mA;
476 u8 portnum;
477 u8 level;
478
479 unsigned can_submit:1;
480 unsigned persist_enabled:1;
481 unsigned have_langid:1;
482 unsigned authorized:1;
483 unsigned authenticated:1;
484 unsigned wusb:1;
485 unsigned lpm_capable:1;
486 unsigned usb2_hw_lpm_capable:1;
487 unsigned usb2_hw_lpm_enabled:1;
488 int string_langid;
489
490 /* static strings from the device */
491 char *product;
492 char *manufacturer;
493 char *serial;
494
495 struct list_head filelist;
496 #ifdef CONFIG_USB_DEVICE_CLASS
497 struct device *usb_classdev;
498 #endif
499 #ifdef CONFIG_USB_DEVICEFS
500 struct dentry *usbfs_dentry;
501 #endif
502
503 int maxchild;
504 struct usb_device **children;
505
506 u32 quirks;
507 atomic_t urbnum;
508
509 unsigned long active_duration;
510
511 #ifdef CONFIG_PM
512 unsigned long connect_time;
513
514 unsigned do_remote_wakeup:1;
515 unsigned reset_resume:1;
516 #endif
517 struct wusb_dev *wusb_dev;
518 int slot_id;
519 enum usb_device_removable removable;
520 };
521 #define to_usb_device(d) container_of(d, struct usb_device, dev)
522
interface_to_usbdev(struct usb_interface * intf)523 static inline struct usb_device *interface_to_usbdev(struct usb_interface *intf)
524 {
525 return to_usb_device(intf->dev.parent);
526 }
527
528 extern struct usb_device *usb_get_dev(struct usb_device *dev);
529 extern void usb_put_dev(struct usb_device *dev);
530
531 /* USB device locking */
532 #define usb_lock_device(udev) device_lock(&(udev)->dev)
533 #define usb_unlock_device(udev) device_unlock(&(udev)->dev)
534 #define usb_trylock_device(udev) device_trylock(&(udev)->dev)
535 extern int usb_lock_device_for_reset(struct usb_device *udev,
536 const struct usb_interface *iface);
537
538 /* USB port reset for device reinitialization */
539 extern int usb_reset_device(struct usb_device *dev);
540 extern void usb_queue_reset_device(struct usb_interface *dev);
541
542
543 /* USB autosuspend and autoresume */
544 #ifdef CONFIG_USB_SUSPEND
545 extern void usb_enable_autosuspend(struct usb_device *udev);
546 extern void usb_disable_autosuspend(struct usb_device *udev);
547
548 extern int usb_autopm_get_interface(struct usb_interface *intf);
549 extern void usb_autopm_put_interface(struct usb_interface *intf);
550 extern int usb_autopm_get_interface_async(struct usb_interface *intf);
551 extern void usb_autopm_put_interface_async(struct usb_interface *intf);
552 extern void usb_autopm_get_interface_no_resume(struct usb_interface *intf);
553 extern void usb_autopm_put_interface_no_suspend(struct usb_interface *intf);
554
usb_mark_last_busy(struct usb_device * udev)555 static inline void usb_mark_last_busy(struct usb_device *udev)
556 {
557 pm_runtime_mark_last_busy(&udev->dev);
558 }
559
560 #else
561
usb_enable_autosuspend(struct usb_device * udev)562 static inline int usb_enable_autosuspend(struct usb_device *udev)
563 { return 0; }
usb_disable_autosuspend(struct usb_device * udev)564 static inline int usb_disable_autosuspend(struct usb_device *udev)
565 { return 0; }
566
usb_autopm_get_interface(struct usb_interface * intf)567 static inline int usb_autopm_get_interface(struct usb_interface *intf)
568 { return 0; }
usb_autopm_get_interface_async(struct usb_interface * intf)569 static inline int usb_autopm_get_interface_async(struct usb_interface *intf)
570 { return 0; }
571
usb_autopm_put_interface(struct usb_interface * intf)572 static inline void usb_autopm_put_interface(struct usb_interface *intf)
573 { }
usb_autopm_put_interface_async(struct usb_interface * intf)574 static inline void usb_autopm_put_interface_async(struct usb_interface *intf)
575 { }
usb_autopm_get_interface_no_resume(struct usb_interface * intf)576 static inline void usb_autopm_get_interface_no_resume(
577 struct usb_interface *intf)
578 { }
usb_autopm_put_interface_no_suspend(struct usb_interface * intf)579 static inline void usb_autopm_put_interface_no_suspend(
580 struct usb_interface *intf)
581 { }
usb_mark_last_busy(struct usb_device * udev)582 static inline void usb_mark_last_busy(struct usb_device *udev)
583 { }
584 #endif
585
586 /*-------------------------------------------------------------------------*/
587
588 /* for drivers using iso endpoints */
589 extern int usb_get_current_frame_number(struct usb_device *usb_dev);
590
591 /* Sets up a group of bulk endpoints to support multiple stream IDs. */
592 extern int usb_alloc_streams(struct usb_interface *interface,
593 struct usb_host_endpoint **eps, unsigned int num_eps,
594 unsigned int num_streams, gfp_t mem_flags);
595
596 /* Reverts a group of bulk endpoints back to not using stream IDs. */
597 extern void usb_free_streams(struct usb_interface *interface,
598 struct usb_host_endpoint **eps, unsigned int num_eps,
599 gfp_t mem_flags);
600
601 /* used these for multi-interface device registration */
602 extern int usb_driver_claim_interface(struct usb_driver *driver,
603 struct usb_interface *iface, void *priv);
604
605 /**
606 * usb_interface_claimed - returns true iff an interface is claimed
607 * @iface: the interface being checked
608 *
609 * Returns true (nonzero) iff the interface is claimed, else false (zero).
610 * Callers must own the driver model's usb bus readlock. So driver
611 * probe() entries don't need extra locking, but other call contexts
612 * may need to explicitly claim that lock.
613 *
614 */
usb_interface_claimed(struct usb_interface * iface)615 static inline int usb_interface_claimed(struct usb_interface *iface)
616 {
617 return (iface->dev.driver != NULL);
618 }
619
620 extern void usb_driver_release_interface(struct usb_driver *driver,
621 struct usb_interface *iface);
622 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
623 const struct usb_device_id *id);
624 extern int usb_match_one_id(struct usb_interface *interface,
625 const struct usb_device_id *id);
626
627 extern struct usb_interface *usb_find_interface(struct usb_driver *drv,
628 int minor);
629 extern struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
630 unsigned ifnum);
631 extern struct usb_host_interface *usb_altnum_to_altsetting(
632 const struct usb_interface *intf, unsigned int altnum);
633 extern struct usb_host_interface *usb_find_alt_setting(
634 struct usb_host_config *config,
635 unsigned int iface_num,
636 unsigned int alt_num);
637
638
639 /**
640 * usb_make_path - returns stable device path in the usb tree
641 * @dev: the device whose path is being constructed
642 * @buf: where to put the string
643 * @size: how big is "buf"?
644 *
645 * Returns length of the string (> 0) or negative if size was too small.
646 *
647 * This identifier is intended to be "stable", reflecting physical paths in
648 * hardware such as physical bus addresses for host controllers or ports on
649 * USB hubs. That makes it stay the same until systems are physically
650 * reconfigured, by re-cabling a tree of USB devices or by moving USB host
651 * controllers. Adding and removing devices, including virtual root hubs
652 * in host controller driver modules, does not change these path identifiers;
653 * neither does rebooting or re-enumerating. These are more useful identifiers
654 * than changeable ("unstable") ones like bus numbers or device addresses.
655 *
656 * With a partial exception for devices connected to USB 2.0 root hubs, these
657 * identifiers are also predictable. So long as the device tree isn't changed,
658 * plugging any USB device into a given hub port always gives it the same path.
659 * Because of the use of "companion" controllers, devices connected to ports on
660 * USB 2.0 root hubs (EHCI host controllers) will get one path ID if they are
661 * high speed, and a different one if they are full or low speed.
662 */
usb_make_path(struct usb_device * dev,char * buf,size_t size)663 static inline int usb_make_path(struct usb_device *dev, char *buf, size_t size)
664 {
665 int actual;
666 actual = snprintf(buf, size, "usb-%s-%s", dev->bus->bus_name,
667 dev->devpath);
668 return (actual >= (int)size) ? -1 : actual;
669 }
670
671 /*-------------------------------------------------------------------------*/
672
673 #define USB_DEVICE_ID_MATCH_DEVICE \
674 (USB_DEVICE_ID_MATCH_VENDOR | USB_DEVICE_ID_MATCH_PRODUCT)
675 #define USB_DEVICE_ID_MATCH_DEV_RANGE \
676 (USB_DEVICE_ID_MATCH_DEV_LO | USB_DEVICE_ID_MATCH_DEV_HI)
677 #define USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION \
678 (USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_DEV_RANGE)
679 #define USB_DEVICE_ID_MATCH_DEV_INFO \
680 (USB_DEVICE_ID_MATCH_DEV_CLASS | \
681 USB_DEVICE_ID_MATCH_DEV_SUBCLASS | \
682 USB_DEVICE_ID_MATCH_DEV_PROTOCOL)
683 #define USB_DEVICE_ID_MATCH_INT_INFO \
684 (USB_DEVICE_ID_MATCH_INT_CLASS | \
685 USB_DEVICE_ID_MATCH_INT_SUBCLASS | \
686 USB_DEVICE_ID_MATCH_INT_PROTOCOL)
687
688 /**
689 * USB_DEVICE - macro used to describe a specific usb device
690 * @vend: the 16 bit USB Vendor ID
691 * @prod: the 16 bit USB Product ID
692 *
693 * This macro is used to create a struct usb_device_id that matches a
694 * specific device.
695 */
696 #define USB_DEVICE(vend, prod) \
697 .match_flags = USB_DEVICE_ID_MATCH_DEVICE, \
698 .idVendor = (vend), \
699 .idProduct = (prod)
700 /**
701 * USB_DEVICE_VER - describe a specific usb device with a version range
702 * @vend: the 16 bit USB Vendor ID
703 * @prod: the 16 bit USB Product ID
704 * @lo: the bcdDevice_lo value
705 * @hi: the bcdDevice_hi value
706 *
707 * This macro is used to create a struct usb_device_id that matches a
708 * specific device, with a version range.
709 */
710 #define USB_DEVICE_VER(vend, prod, lo, hi) \
711 .match_flags = USB_DEVICE_ID_MATCH_DEVICE_AND_VERSION, \
712 .idVendor = (vend), \
713 .idProduct = (prod), \
714 .bcdDevice_lo = (lo), \
715 .bcdDevice_hi = (hi)
716
717 /**
718 * USB_DEVICE_INTERFACE_PROTOCOL - describe a usb device with a specific interface protocol
719 * @vend: the 16 bit USB Vendor ID
720 * @prod: the 16 bit USB Product ID
721 * @pr: bInterfaceProtocol value
722 *
723 * This macro is used to create a struct usb_device_id that matches a
724 * specific interface protocol of devices.
725 */
726 #define USB_DEVICE_INTERFACE_PROTOCOL(vend, prod, pr) \
727 .match_flags = USB_DEVICE_ID_MATCH_DEVICE | \
728 USB_DEVICE_ID_MATCH_INT_PROTOCOL, \
729 .idVendor = (vend), \
730 .idProduct = (prod), \
731 .bInterfaceProtocol = (pr)
732
733 /**
734 * USB_DEVICE_INFO - macro used to describe a class of usb devices
735 * @cl: bDeviceClass value
736 * @sc: bDeviceSubClass value
737 * @pr: bDeviceProtocol value
738 *
739 * This macro is used to create a struct usb_device_id that matches a
740 * specific class of devices.
741 */
742 #define USB_DEVICE_INFO(cl, sc, pr) \
743 .match_flags = USB_DEVICE_ID_MATCH_DEV_INFO, \
744 .bDeviceClass = (cl), \
745 .bDeviceSubClass = (sc), \
746 .bDeviceProtocol = (pr)
747
748 /**
749 * USB_INTERFACE_INFO - macro used to describe a class of usb interfaces
750 * @cl: bInterfaceClass value
751 * @sc: bInterfaceSubClass value
752 * @pr: bInterfaceProtocol value
753 *
754 * This macro is used to create a struct usb_device_id that matches a
755 * specific class of interfaces.
756 */
757 #define USB_INTERFACE_INFO(cl, sc, pr) \
758 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO, \
759 .bInterfaceClass = (cl), \
760 .bInterfaceSubClass = (sc), \
761 .bInterfaceProtocol = (pr)
762
763 /**
764 * USB_DEVICE_AND_INTERFACE_INFO - describe a specific usb device with a class of usb interfaces
765 * @vend: the 16 bit USB Vendor ID
766 * @prod: the 16 bit USB Product ID
767 * @cl: bInterfaceClass value
768 * @sc: bInterfaceSubClass value
769 * @pr: bInterfaceProtocol value
770 *
771 * This macro is used to create a struct usb_device_id that matches a
772 * specific device with a specific class of interfaces.
773 *
774 * This is especially useful when explicitly matching devices that have
775 * vendor specific bDeviceClass values, but standards-compliant interfaces.
776 */
777 #define USB_DEVICE_AND_INTERFACE_INFO(vend, prod, cl, sc, pr) \
778 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
779 | USB_DEVICE_ID_MATCH_DEVICE, \
780 .idVendor = (vend), \
781 .idProduct = (prod), \
782 .bInterfaceClass = (cl), \
783 .bInterfaceSubClass = (sc), \
784 .bInterfaceProtocol = (pr)
785
786 /**
787 * USB_VENDOR_AND_INTERFACE_INFO - describe a specific usb vendor with a class of usb interfaces
788 * @vend: the 16 bit USB Vendor ID
789 * @cl: bInterfaceClass value
790 * @sc: bInterfaceSubClass value
791 * @pr: bInterfaceProtocol value
792 *
793 * This macro is used to create a struct usb_device_id that matches a
794 * specific vendor with a specific class of interfaces.
795 *
796 * This is especially useful when explicitly matching devices that have
797 * vendor specific bDeviceClass values, but standards-compliant interfaces.
798 */
799 #define USB_VENDOR_AND_INTERFACE_INFO(vend, cl, sc, pr) \
800 .match_flags = USB_DEVICE_ID_MATCH_INT_INFO \
801 | USB_DEVICE_ID_MATCH_VENDOR, \
802 .idVendor = (vend), \
803 .bInterfaceClass = (cl), \
804 .bInterfaceSubClass = (sc), \
805 .bInterfaceProtocol = (pr)
806
807 /* ----------------------------------------------------------------------- */
808
809 /* Stuff for dynamic usb ids */
810 struct usb_dynids {
811 spinlock_t lock;
812 struct list_head list;
813 };
814
815 struct usb_dynid {
816 struct list_head node;
817 struct usb_device_id id;
818 };
819
820 extern ssize_t usb_store_new_id(struct usb_dynids *dynids,
821 struct device_driver *driver,
822 const char *buf, size_t count);
823
824 /**
825 * struct usbdrv_wrap - wrapper for driver-model structure
826 * @driver: The driver-model core driver structure.
827 * @for_devices: Non-zero for device drivers, 0 for interface drivers.
828 */
829 struct usbdrv_wrap {
830 struct device_driver driver;
831 int for_devices;
832 };
833
834 /**
835 * struct usb_driver - identifies USB interface driver to usbcore
836 * @name: The driver name should be unique among USB drivers,
837 * and should normally be the same as the module name.
838 * @probe: Called to see if the driver is willing to manage a particular
839 * interface on a device. If it is, probe returns zero and uses
840 * usb_set_intfdata() to associate driver-specific data with the
841 * interface. It may also use usb_set_interface() to specify the
842 * appropriate altsetting. If unwilling to manage the interface,
843 * return -ENODEV, if genuine IO errors occurred, an appropriate
844 * negative errno value.
845 * @disconnect: Called when the interface is no longer accessible, usually
846 * because its device has been (or is being) disconnected or the
847 * driver module is being unloaded.
848 * @unlocked_ioctl: Used for drivers that want to talk to userspace through
849 * the "usbfs" filesystem. This lets devices provide ways to
850 * expose information to user space regardless of where they
851 * do (or don't) show up otherwise in the filesystem.
852 * @suspend: Called when the device is going to be suspended by the system.
853 * @resume: Called when the device is being resumed by the system.
854 * @reset_resume: Called when the suspended device has been reset instead
855 * of being resumed.
856 * @pre_reset: Called by usb_reset_device() when the device is about to be
857 * reset. This routine must not return until the driver has no active
858 * URBs for the device, and no more URBs may be submitted until the
859 * post_reset method is called.
860 * @post_reset: Called by usb_reset_device() after the device
861 * has been reset
862 * @id_table: USB drivers use ID table to support hotplugging.
863 * Export this with MODULE_DEVICE_TABLE(usb,...). This must be set
864 * or your driver's probe function will never get called.
865 * @dynids: used internally to hold the list of dynamically added device
866 * ids for this driver.
867 * @drvwrap: Driver-model core structure wrapper.
868 * @no_dynamic_id: if set to 1, the USB core will not allow dynamic ids to be
869 * added to this driver by preventing the sysfs file from being created.
870 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
871 * for interfaces bound to this driver.
872 * @soft_unbind: if set to 1, the USB core will not kill URBs and disable
873 * endpoints before calling the driver's disconnect method.
874 *
875 * USB interface drivers must provide a name, probe() and disconnect()
876 * methods, and an id_table. Other driver fields are optional.
877 *
878 * The id_table is used in hotplugging. It holds a set of descriptors,
879 * and specialized data may be associated with each entry. That table
880 * is used by both user and kernel mode hotplugging support.
881 *
882 * The probe() and disconnect() methods are called in a context where
883 * they can sleep, but they should avoid abusing the privilege. Most
884 * work to connect to a device should be done when the device is opened,
885 * and undone at the last close. The disconnect code needs to address
886 * concurrency issues with respect to open() and close() methods, as
887 * well as forcing all pending I/O requests to complete (by unlinking
888 * them as necessary, and blocking until the unlinks complete).
889 */
890 struct usb_driver {
891 const char *name;
892
893 int (*probe) (struct usb_interface *intf,
894 const struct usb_device_id *id);
895
896 void (*disconnect) (struct usb_interface *intf);
897
898 int (*unlocked_ioctl) (struct usb_interface *intf, unsigned int code,
899 void *buf);
900
901 int (*suspend) (struct usb_interface *intf, pm_message_t message);
902 int (*resume) (struct usb_interface *intf);
903 int (*reset_resume)(struct usb_interface *intf);
904
905 int (*pre_reset)(struct usb_interface *intf);
906 int (*post_reset)(struct usb_interface *intf);
907
908 const struct usb_device_id *id_table;
909
910 struct usb_dynids dynids;
911 struct usbdrv_wrap drvwrap;
912 unsigned int no_dynamic_id:1;
913 unsigned int supports_autosuspend:1;
914 unsigned int soft_unbind:1;
915 };
916 #define to_usb_driver(d) container_of(d, struct usb_driver, drvwrap.driver)
917
918 /**
919 * struct usb_device_driver - identifies USB device driver to usbcore
920 * @name: The driver name should be unique among USB drivers,
921 * and should normally be the same as the module name.
922 * @probe: Called to see if the driver is willing to manage a particular
923 * device. If it is, probe returns zero and uses dev_set_drvdata()
924 * to associate driver-specific data with the device. If unwilling
925 * to manage the device, return a negative errno value.
926 * @disconnect: Called when the device is no longer accessible, usually
927 * because it has been (or is being) disconnected or the driver's
928 * module is being unloaded.
929 * @suspend: Called when the device is going to be suspended by the system.
930 * @resume: Called when the device is being resumed by the system.
931 * @drvwrap: Driver-model core structure wrapper.
932 * @supports_autosuspend: if set to 0, the USB core will not allow autosuspend
933 * for devices bound to this driver.
934 *
935 * USB drivers must provide all the fields listed above except drvwrap.
936 */
937 struct usb_device_driver {
938 const char *name;
939
940 int (*probe) (struct usb_device *udev);
941 void (*disconnect) (struct usb_device *udev);
942
943 int (*suspend) (struct usb_device *udev, pm_message_t message);
944 int (*resume) (struct usb_device *udev, pm_message_t message);
945 struct usbdrv_wrap drvwrap;
946 unsigned int supports_autosuspend:1;
947 };
948 #define to_usb_device_driver(d) container_of(d, struct usb_device_driver, \
949 drvwrap.driver)
950
951 extern struct bus_type usb_bus_type;
952
953 /**
954 * struct usb_class_driver - identifies a USB driver that wants to use the USB major number
955 * @name: the usb class device name for this driver. Will show up in sysfs.
956 * @devnode: Callback to provide a naming hint for a possible
957 * device node to create.
958 * @fops: pointer to the struct file_operations of this driver.
959 * @minor_base: the start of the minor range for this driver.
960 *
961 * This structure is used for the usb_register_dev() and
962 * usb_unregister_dev() functions, to consolidate a number of the
963 * parameters used for them.
964 */
965 struct usb_class_driver {
966 char *name;
967 char *(*devnode)(struct device *dev, umode_t *mode);
968 const struct file_operations *fops;
969 int minor_base;
970 };
971
972 /*
973 * use these in module_init()/module_exit()
974 * and don't forget MODULE_DEVICE_TABLE(usb, ...)
975 */
976 extern int usb_register_driver(struct usb_driver *, struct module *,
977 const char *);
978
979 /* use a define to avoid include chaining to get THIS_MODULE & friends */
980 #define usb_register(driver) \
981 usb_register_driver(driver, THIS_MODULE, KBUILD_MODNAME)
982
983 extern void usb_deregister(struct usb_driver *);
984
985 /**
986 * module_usb_driver() - Helper macro for registering a USB driver
987 * @__usb_driver: usb_driver struct
988 *
989 * Helper macro for USB drivers which do not do anything special in module
990 * init/exit. This eliminates a lot of boilerplate. Each module may only
991 * use this macro once, and calling it replaces module_init() and module_exit()
992 */
993 #define module_usb_driver(__usb_driver) \
994 module_driver(__usb_driver, usb_register, \
995 usb_deregister)
996
997 extern int usb_register_device_driver(struct usb_device_driver *,
998 struct module *);
999 extern void usb_deregister_device_driver(struct usb_device_driver *);
1000
1001 extern int usb_register_dev(struct usb_interface *intf,
1002 struct usb_class_driver *class_driver);
1003 extern void usb_deregister_dev(struct usb_interface *intf,
1004 struct usb_class_driver *class_driver);
1005
1006 extern int usb_disabled(void);
1007
1008 /* ----------------------------------------------------------------------- */
1009
1010 /*
1011 * URB support, for asynchronous request completions
1012 */
1013
1014 /*
1015 * urb->transfer_flags:
1016 *
1017 * Note: URB_DIR_IN/OUT is automatically set in usb_submit_urb().
1018 */
1019 #define URB_SHORT_NOT_OK 0x0001 /* report short reads as errors */
1020 #define URB_ISO_ASAP 0x0002 /* iso-only, urb->start_frame
1021 * ignored */
1022 #define URB_NO_TRANSFER_DMA_MAP 0x0004 /* urb->transfer_dma valid on submit */
1023 #define URB_NO_FSBR 0x0020 /* UHCI-specific */
1024 #define URB_ZERO_PACKET 0x0040 /* Finish bulk OUT with short packet */
1025 #define URB_NO_INTERRUPT 0x0080 /* HINT: no non-error interrupt
1026 * needed */
1027 #define URB_FREE_BUFFER 0x0100 /* Free transfer buffer with the URB */
1028
1029 /* The following flags are used internally by usbcore and HCDs */
1030 #define URB_DIR_IN 0x0200 /* Transfer from device to host */
1031 #define URB_DIR_OUT 0
1032 #define URB_DIR_MASK URB_DIR_IN
1033
1034 #define URB_DMA_MAP_SINGLE 0x00010000 /* Non-scatter-gather mapping */
1035 #define URB_DMA_MAP_PAGE 0x00020000 /* HCD-unsupported S-G */
1036 #define URB_DMA_MAP_SG 0x00040000 /* HCD-supported S-G */
1037 #define URB_MAP_LOCAL 0x00080000 /* HCD-local-memory mapping */
1038 #define URB_SETUP_MAP_SINGLE 0x00100000 /* Setup packet DMA mapped */
1039 #define URB_SETUP_MAP_LOCAL 0x00200000 /* HCD-local setup packet */
1040 #define URB_DMA_SG_COMBINED 0x00400000 /* S-G entries were combined */
1041 #define URB_ALIGNED_TEMP_BUFFER 0x00800000 /* Temp buffer was alloc'd */
1042
1043 struct usb_iso_packet_descriptor {
1044 unsigned int offset;
1045 unsigned int length; /* expected length */
1046 unsigned int actual_length;
1047 int status;
1048 };
1049
1050 struct urb;
1051
1052 struct usb_anchor {
1053 struct list_head urb_list;
1054 wait_queue_head_t wait;
1055 spinlock_t lock;
1056 unsigned int poisoned:1;
1057 };
1058
init_usb_anchor(struct usb_anchor * anchor)1059 static inline void init_usb_anchor(struct usb_anchor *anchor)
1060 {
1061 INIT_LIST_HEAD(&anchor->urb_list);
1062 init_waitqueue_head(&anchor->wait);
1063 spin_lock_init(&anchor->lock);
1064 }
1065
1066 typedef void (*usb_complete_t)(struct urb *);
1067
1068 /**
1069 * struct urb - USB Request Block
1070 * @urb_list: For use by current owner of the URB.
1071 * @anchor_list: membership in the list of an anchor
1072 * @anchor: to anchor URBs to a common mooring
1073 * @ep: Points to the endpoint's data structure. Will eventually
1074 * replace @pipe.
1075 * @pipe: Holds endpoint number, direction, type, and more.
1076 * Create these values with the eight macros available;
1077 * usb_{snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is "ctrl"
1078 * (control), "bulk", "int" (interrupt), or "iso" (isochronous).
1079 * For example usb_sndbulkpipe() or usb_rcvintpipe(). Endpoint
1080 * numbers range from zero to fifteen. Note that "in" endpoint two
1081 * is a different endpoint (and pipe) from "out" endpoint two.
1082 * The current configuration controls the existence, type, and
1083 * maximum packet size of any given endpoint.
1084 * @stream_id: the endpoint's stream ID for bulk streams
1085 * @dev: Identifies the USB device to perform the request.
1086 * @status: This is read in non-iso completion functions to get the
1087 * status of the particular request. ISO requests only use it
1088 * to tell whether the URB was unlinked; detailed status for
1089 * each frame is in the fields of the iso_frame-desc.
1090 * @transfer_flags: A variety of flags may be used to affect how URB
1091 * submission, unlinking, or operation are handled. Different
1092 * kinds of URB can use different flags.
1093 * @transfer_buffer: This identifies the buffer to (or from) which the I/O
1094 * request will be performed unless URB_NO_TRANSFER_DMA_MAP is set
1095 * (however, do not leave garbage in transfer_buffer even then).
1096 * This buffer must be suitable for DMA; allocate it with
1097 * kmalloc() or equivalent. For transfers to "in" endpoints, contents
1098 * of this buffer will be modified. This buffer is used for the data
1099 * stage of control transfers.
1100 * @transfer_dma: When transfer_flags includes URB_NO_TRANSFER_DMA_MAP,
1101 * the device driver is saying that it provided this DMA address,
1102 * which the host controller driver should use in preference to the
1103 * transfer_buffer.
1104 * @sg: scatter gather buffer list
1105 * @num_mapped_sgs: (internal) number of mapped sg entries
1106 * @num_sgs: number of entries in the sg list
1107 * @transfer_buffer_length: How big is transfer_buffer. The transfer may
1108 * be broken up into chunks according to the current maximum packet
1109 * size for the endpoint, which is a function of the configuration
1110 * and is encoded in the pipe. When the length is zero, neither
1111 * transfer_buffer nor transfer_dma is used.
1112 * @actual_length: This is read in non-iso completion functions, and
1113 * it tells how many bytes (out of transfer_buffer_length) were
1114 * transferred. It will normally be the same as requested, unless
1115 * either an error was reported or a short read was performed.
1116 * The URB_SHORT_NOT_OK transfer flag may be used to make such
1117 * short reads be reported as errors.
1118 * @setup_packet: Only used for control transfers, this points to eight bytes
1119 * of setup data. Control transfers always start by sending this data
1120 * to the device. Then transfer_buffer is read or written, if needed.
1121 * @setup_dma: DMA pointer for the setup packet. The caller must not use
1122 * this field; setup_packet must point to a valid buffer.
1123 * @start_frame: Returns the initial frame for isochronous transfers.
1124 * @number_of_packets: Lists the number of ISO transfer buffers.
1125 * @interval: Specifies the polling interval for interrupt or isochronous
1126 * transfers. The units are frames (milliseconds) for full and low
1127 * speed devices, and microframes (1/8 millisecond) for highspeed
1128 * and SuperSpeed devices.
1129 * @error_count: Returns the number of ISO transfers that reported errors.
1130 * @context: For use in completion functions. This normally points to
1131 * request-specific driver context.
1132 * @complete: Completion handler. This URB is passed as the parameter to the
1133 * completion function. The completion function may then do what
1134 * it likes with the URB, including resubmitting or freeing it.
1135 * @iso_frame_desc: Used to provide arrays of ISO transfer buffers and to
1136 * collect the transfer status for each buffer.
1137 *
1138 * This structure identifies USB transfer requests. URBs must be allocated by
1139 * calling usb_alloc_urb() and freed with a call to usb_free_urb().
1140 * Initialization may be done using various usb_fill_*_urb() functions. URBs
1141 * are submitted using usb_submit_urb(), and pending requests may be canceled
1142 * using usb_unlink_urb() or usb_kill_urb().
1143 *
1144 * Data Transfer Buffers:
1145 *
1146 * Normally drivers provide I/O buffers allocated with kmalloc() or otherwise
1147 * taken from the general page pool. That is provided by transfer_buffer
1148 * (control requests also use setup_packet), and host controller drivers
1149 * perform a dma mapping (and unmapping) for each buffer transferred. Those
1150 * mapping operations can be expensive on some platforms (perhaps using a dma
1151 * bounce buffer or talking to an IOMMU),
1152 * although they're cheap on commodity x86 and ppc hardware.
1153 *
1154 * Alternatively, drivers may pass the URB_NO_TRANSFER_DMA_MAP transfer flag,
1155 * which tells the host controller driver that no such mapping is needed for
1156 * the transfer_buffer since
1157 * the device driver is DMA-aware. For example, a device driver might
1158 * allocate a DMA buffer with usb_alloc_coherent() or call usb_buffer_map().
1159 * When this transfer flag is provided, host controller drivers will
1160 * attempt to use the dma address found in the transfer_dma
1161 * field rather than determining a dma address themselves.
1162 *
1163 * Note that transfer_buffer must still be set if the controller
1164 * does not support DMA (as indicated by bus.uses_dma) and when talking
1165 * to root hub. If you have to trasfer between highmem zone and the device
1166 * on such controller, create a bounce buffer or bail out with an error.
1167 * If transfer_buffer cannot be set (is in highmem) and the controller is DMA
1168 * capable, assign NULL to it, so that usbmon knows not to use the value.
1169 * The setup_packet must always be set, so it cannot be located in highmem.
1170 *
1171 * Initialization:
1172 *
1173 * All URBs submitted must initialize the dev, pipe, transfer_flags (may be
1174 * zero), and complete fields. All URBs must also initialize
1175 * transfer_buffer and transfer_buffer_length. They may provide the
1176 * URB_SHORT_NOT_OK transfer flag, indicating that short reads are
1177 * to be treated as errors; that flag is invalid for write requests.
1178 *
1179 * Bulk URBs may
1180 * use the URB_ZERO_PACKET transfer flag, indicating that bulk OUT transfers
1181 * should always terminate with a short packet, even if it means adding an
1182 * extra zero length packet.
1183 *
1184 * Control URBs must provide a valid pointer in the setup_packet field.
1185 * Unlike the transfer_buffer, the setup_packet may not be mapped for DMA
1186 * beforehand.
1187 *
1188 * Interrupt URBs must provide an interval, saying how often (in milliseconds
1189 * or, for highspeed devices, 125 microsecond units)
1190 * to poll for transfers. After the URB has been submitted, the interval
1191 * field reflects how the transfer was actually scheduled.
1192 * The polling interval may be more frequent than requested.
1193 * For example, some controllers have a maximum interval of 32 milliseconds,
1194 * while others support intervals of up to 1024 milliseconds.
1195 * Isochronous URBs also have transfer intervals. (Note that for isochronous
1196 * endpoints, as well as high speed interrupt endpoints, the encoding of
1197 * the transfer interval in the endpoint descriptor is logarithmic.
1198 * Device drivers must convert that value to linear units themselves.)
1199 *
1200 * Isochronous URBs normally use the URB_ISO_ASAP transfer flag, telling
1201 * the host controller to schedule the transfer as soon as bandwidth
1202 * utilization allows, and then set start_frame to reflect the actual frame
1203 * selected during submission. Otherwise drivers must specify the start_frame
1204 * and handle the case where the transfer can't begin then. However, drivers
1205 * won't know how bandwidth is currently allocated, and while they can
1206 * find the current frame using usb_get_current_frame_number () they can't
1207 * know the range for that frame number. (Ranges for frame counter values
1208 * are HC-specific, and can go from 256 to 65536 frames from "now".)
1209 *
1210 * Isochronous URBs have a different data transfer model, in part because
1211 * the quality of service is only "best effort". Callers provide specially
1212 * allocated URBs, with number_of_packets worth of iso_frame_desc structures
1213 * at the end. Each such packet is an individual ISO transfer. Isochronous
1214 * URBs are normally queued, submitted by drivers to arrange that
1215 * transfers are at least double buffered, and then explicitly resubmitted
1216 * in completion handlers, so
1217 * that data (such as audio or video) streams at as constant a rate as the
1218 * host controller scheduler can support.
1219 *
1220 * Completion Callbacks:
1221 *
1222 * The completion callback is made in_interrupt(), and one of the first
1223 * things that a completion handler should do is check the status field.
1224 * The status field is provided for all URBs. It is used to report
1225 * unlinked URBs, and status for all non-ISO transfers. It should not
1226 * be examined before the URB is returned to the completion handler.
1227 *
1228 * The context field is normally used to link URBs back to the relevant
1229 * driver or request state.
1230 *
1231 * When the completion callback is invoked for non-isochronous URBs, the
1232 * actual_length field tells how many bytes were transferred. This field
1233 * is updated even when the URB terminated with an error or was unlinked.
1234 *
1235 * ISO transfer status is reported in the status and actual_length fields
1236 * of the iso_frame_desc array, and the number of errors is reported in
1237 * error_count. Completion callbacks for ISO transfers will normally
1238 * (re)submit URBs to ensure a constant transfer rate.
1239 *
1240 * Note that even fields marked "public" should not be touched by the driver
1241 * when the urb is owned by the hcd, that is, since the call to
1242 * usb_submit_urb() till the entry into the completion routine.
1243 */
1244 struct urb {
1245 /* private: usb core and host controller only fields in the urb */
1246 struct kref kref; /* reference count of the URB */
1247 void *hcpriv; /* private data for host controller */
1248 atomic_t use_count; /* concurrent submissions counter */
1249 atomic_t reject; /* submissions will fail */
1250 int unlinked; /* unlink error code */
1251
1252 /* public: documented fields in the urb that can be used by drivers */
1253 struct list_head urb_list; /* list head for use by the urb's
1254 * current owner */
1255 struct list_head anchor_list; /* the URB may be anchored */
1256 struct usb_anchor *anchor;
1257 struct usb_device *dev; /* (in) pointer to associated device */
1258 struct usb_host_endpoint *ep; /* (internal) pointer to endpoint */
1259 unsigned int pipe; /* (in) pipe information */
1260 unsigned int stream_id; /* (in) stream ID */
1261 int status; /* (return) non-ISO status */
1262 unsigned int transfer_flags; /* (in) URB_SHORT_NOT_OK | ...*/
1263 void *transfer_buffer; /* (in) associated data buffer */
1264 dma_addr_t transfer_dma; /* (in) dma addr for transfer_buffer */
1265 struct scatterlist *sg; /* (in) scatter gather buffer list */
1266 int num_mapped_sgs; /* (internal) mapped sg entries */
1267 int num_sgs; /* (in) number of entries in the sg list */
1268 u32 transfer_buffer_length; /* (in) data buffer length */
1269 u32 actual_length; /* (return) actual transfer length */
1270 unsigned char *setup_packet; /* (in) setup packet (control only) */
1271 dma_addr_t setup_dma; /* (in) dma addr for setup_packet */
1272 int start_frame; /* (modify) start frame (ISO) */
1273 int number_of_packets; /* (in) number of ISO packets */
1274 int interval; /* (modify) transfer interval
1275 * (INT/ISO) */
1276 int error_count; /* (return) number of ISO errors */
1277 void *context; /* (in) context for completion */
1278 usb_complete_t complete; /* (in) completion routine */
1279 struct usb_iso_packet_descriptor iso_frame_desc[0];
1280 /* (in) ISO ONLY */
1281 };
1282
1283 /* ----------------------------------------------------------------------- */
1284
1285 /**
1286 * usb_fill_control_urb - initializes a control urb
1287 * @urb: pointer to the urb to initialize.
1288 * @dev: pointer to the struct usb_device for this urb.
1289 * @pipe: the endpoint pipe
1290 * @setup_packet: pointer to the setup_packet buffer
1291 * @transfer_buffer: pointer to the transfer buffer
1292 * @buffer_length: length of the transfer buffer
1293 * @complete_fn: pointer to the usb_complete_t function
1294 * @context: what to set the urb context to.
1295 *
1296 * Initializes a control urb with the proper information needed to submit
1297 * it to a device.
1298 */
usb_fill_control_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,unsigned char * setup_packet,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1299 static inline void usb_fill_control_urb(struct urb *urb,
1300 struct usb_device *dev,
1301 unsigned int pipe,
1302 unsigned char *setup_packet,
1303 void *transfer_buffer,
1304 int buffer_length,
1305 usb_complete_t complete_fn,
1306 void *context)
1307 {
1308 urb->dev = dev;
1309 urb->pipe = pipe;
1310 urb->setup_packet = setup_packet;
1311 urb->transfer_buffer = transfer_buffer;
1312 urb->transfer_buffer_length = buffer_length;
1313 urb->complete = complete_fn;
1314 urb->context = context;
1315 }
1316
1317 /**
1318 * usb_fill_bulk_urb - macro to help initialize a bulk urb
1319 * @urb: pointer to the urb to initialize.
1320 * @dev: pointer to the struct usb_device for this urb.
1321 * @pipe: the endpoint pipe
1322 * @transfer_buffer: pointer to the transfer buffer
1323 * @buffer_length: length of the transfer buffer
1324 * @complete_fn: pointer to the usb_complete_t function
1325 * @context: what to set the urb context to.
1326 *
1327 * Initializes a bulk urb with the proper information needed to submit it
1328 * to a device.
1329 */
usb_fill_bulk_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context)1330 static inline void usb_fill_bulk_urb(struct urb *urb,
1331 struct usb_device *dev,
1332 unsigned int pipe,
1333 void *transfer_buffer,
1334 int buffer_length,
1335 usb_complete_t complete_fn,
1336 void *context)
1337 {
1338 urb->dev = dev;
1339 urb->pipe = pipe;
1340 urb->transfer_buffer = transfer_buffer;
1341 urb->transfer_buffer_length = buffer_length;
1342 urb->complete = complete_fn;
1343 urb->context = context;
1344 }
1345
1346 /**
1347 * usb_fill_int_urb - macro to help initialize a interrupt urb
1348 * @urb: pointer to the urb to initialize.
1349 * @dev: pointer to the struct usb_device for this urb.
1350 * @pipe: the endpoint pipe
1351 * @transfer_buffer: pointer to the transfer buffer
1352 * @buffer_length: length of the transfer buffer
1353 * @complete_fn: pointer to the usb_complete_t function
1354 * @context: what to set the urb context to.
1355 * @interval: what to set the urb interval to, encoded like
1356 * the endpoint descriptor's bInterval value.
1357 *
1358 * Initializes a interrupt urb with the proper information needed to submit
1359 * it to a device.
1360 *
1361 * Note that High Speed and SuperSpeed interrupt endpoints use a logarithmic
1362 * encoding of the endpoint interval, and express polling intervals in
1363 * microframes (eight per millisecond) rather than in frames (one per
1364 * millisecond).
1365 *
1366 * Wireless USB also uses the logarithmic encoding, but specifies it in units of
1367 * 128us instead of 125us. For Wireless USB devices, the interval is passed
1368 * through to the host controller, rather than being translated into microframe
1369 * units.
1370 */
usb_fill_int_urb(struct urb * urb,struct usb_device * dev,unsigned int pipe,void * transfer_buffer,int buffer_length,usb_complete_t complete_fn,void * context,int interval)1371 static inline void usb_fill_int_urb(struct urb *urb,
1372 struct usb_device *dev,
1373 unsigned int pipe,
1374 void *transfer_buffer,
1375 int buffer_length,
1376 usb_complete_t complete_fn,
1377 void *context,
1378 int interval)
1379 {
1380 urb->dev = dev;
1381 urb->pipe = pipe;
1382 urb->transfer_buffer = transfer_buffer;
1383 urb->transfer_buffer_length = buffer_length;
1384 urb->complete = complete_fn;
1385 urb->context = context;
1386 if (dev->speed == USB_SPEED_HIGH || dev->speed == USB_SPEED_SUPER)
1387 urb->interval = 1 << (interval - 1);
1388 else
1389 urb->interval = interval;
1390 urb->start_frame = -1;
1391 }
1392
1393 extern void usb_init_urb(struct urb *urb);
1394 extern struct urb *usb_alloc_urb(int iso_packets, gfp_t mem_flags);
1395 extern void usb_free_urb(struct urb *urb);
1396 #define usb_put_urb usb_free_urb
1397 extern struct urb *usb_get_urb(struct urb *urb);
1398 extern int usb_submit_urb(struct urb *urb, gfp_t mem_flags);
1399 extern int usb_unlink_urb(struct urb *urb);
1400 extern void usb_kill_urb(struct urb *urb);
1401 extern void usb_poison_urb(struct urb *urb);
1402 extern void usb_unpoison_urb(struct urb *urb);
1403 extern void usb_block_urb(struct urb *urb);
1404 extern void usb_kill_anchored_urbs(struct usb_anchor *anchor);
1405 extern void usb_poison_anchored_urbs(struct usb_anchor *anchor);
1406 extern void usb_unpoison_anchored_urbs(struct usb_anchor *anchor);
1407 extern void usb_unlink_anchored_urbs(struct usb_anchor *anchor);
1408 extern void usb_anchor_urb(struct urb *urb, struct usb_anchor *anchor);
1409 extern void usb_unanchor_urb(struct urb *urb);
1410 extern int usb_wait_anchor_empty_timeout(struct usb_anchor *anchor,
1411 unsigned int timeout);
1412 extern struct urb *usb_get_from_anchor(struct usb_anchor *anchor);
1413 extern void usb_scuttle_anchored_urbs(struct usb_anchor *anchor);
1414 extern int usb_anchor_empty(struct usb_anchor *anchor);
1415
1416 #define usb_unblock_urb usb_unpoison_urb
1417
1418 /**
1419 * usb_urb_dir_in - check if an URB describes an IN transfer
1420 * @urb: URB to be checked
1421 *
1422 * Returns 1 if @urb describes an IN transfer (device-to-host),
1423 * otherwise 0.
1424 */
usb_urb_dir_in(struct urb * urb)1425 static inline int usb_urb_dir_in(struct urb *urb)
1426 {
1427 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_IN;
1428 }
1429
1430 /**
1431 * usb_urb_dir_out - check if an URB describes an OUT transfer
1432 * @urb: URB to be checked
1433 *
1434 * Returns 1 if @urb describes an OUT transfer (host-to-device),
1435 * otherwise 0.
1436 */
usb_urb_dir_out(struct urb * urb)1437 static inline int usb_urb_dir_out(struct urb *urb)
1438 {
1439 return (urb->transfer_flags & URB_DIR_MASK) == URB_DIR_OUT;
1440 }
1441
1442 void *usb_alloc_coherent(struct usb_device *dev, size_t size,
1443 gfp_t mem_flags, dma_addr_t *dma);
1444 void usb_free_coherent(struct usb_device *dev, size_t size,
1445 void *addr, dma_addr_t dma);
1446
1447 #if 0
1448 struct urb *usb_buffer_map(struct urb *urb);
1449 void usb_buffer_dmasync(struct urb *urb);
1450 void usb_buffer_unmap(struct urb *urb);
1451 #endif
1452
1453 struct scatterlist;
1454 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
1455 struct scatterlist *sg, int nents);
1456 #if 0
1457 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
1458 struct scatterlist *sg, int n_hw_ents);
1459 #endif
1460 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
1461 struct scatterlist *sg, int n_hw_ents);
1462
1463 /*-------------------------------------------------------------------*
1464 * SYNCHRONOUS CALL SUPPORT *
1465 *-------------------------------------------------------------------*/
1466
1467 extern int usb_control_msg(struct usb_device *dev, unsigned int pipe,
1468 __u8 request, __u8 requesttype, __u16 value, __u16 index,
1469 void *data, __u16 size, int timeout);
1470 extern int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
1471 void *data, int len, int *actual_length, int timeout);
1472 extern int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
1473 void *data, int len, int *actual_length,
1474 int timeout);
1475
1476 /* wrappers around usb_control_msg() for the most common standard requests */
1477 extern int usb_get_descriptor(struct usb_device *dev, unsigned char desctype,
1478 unsigned char descindex, void *buf, int size);
1479 extern int usb_get_status(struct usb_device *dev,
1480 int type, int target, void *data);
1481 extern int usb_string(struct usb_device *dev, int index,
1482 char *buf, size_t size);
1483
1484 /* wrappers that also update important state inside usbcore */
1485 extern int usb_clear_halt(struct usb_device *dev, int pipe);
1486 extern int usb_reset_configuration(struct usb_device *dev);
1487 extern int usb_set_interface(struct usb_device *dev, int ifnum, int alternate);
1488 extern void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr);
1489
1490 /* this request isn't really synchronous, but it belongs with the others */
1491 extern int usb_driver_set_configuration(struct usb_device *udev, int config);
1492
1493 /*
1494 * timeouts, in milliseconds, used for sending/receiving control messages
1495 * they typically complete within a few frames (msec) after they're issued
1496 * USB identifies 5 second timeouts, maybe more in a few cases, and a few
1497 * slow devices (like some MGE Ellipse UPSes) actually push that limit.
1498 */
1499 #define USB_CTRL_GET_TIMEOUT 5000
1500 #define USB_CTRL_SET_TIMEOUT 5000
1501
1502
1503 /**
1504 * struct usb_sg_request - support for scatter/gather I/O
1505 * @status: zero indicates success, else negative errno
1506 * @bytes: counts bytes transferred.
1507 *
1508 * These requests are initialized using usb_sg_init(), and then are used
1509 * as request handles passed to usb_sg_wait() or usb_sg_cancel(). Most
1510 * members of the request object aren't for driver access.
1511 *
1512 * The status and bytecount values are valid only after usb_sg_wait()
1513 * returns. If the status is zero, then the bytecount matches the total
1514 * from the request.
1515 *
1516 * After an error completion, drivers may need to clear a halt condition
1517 * on the endpoint.
1518 */
1519 struct usb_sg_request {
1520 int status;
1521 size_t bytes;
1522
1523 /* private:
1524 * members below are private to usbcore,
1525 * and are not provided for driver access!
1526 */
1527 spinlock_t lock;
1528
1529 struct usb_device *dev;
1530 int pipe;
1531
1532 int entries;
1533 struct urb **urbs;
1534
1535 int count;
1536 struct completion complete;
1537 };
1538
1539 int usb_sg_init(
1540 struct usb_sg_request *io,
1541 struct usb_device *dev,
1542 unsigned pipe,
1543 unsigned period,
1544 struct scatterlist *sg,
1545 int nents,
1546 size_t length,
1547 gfp_t mem_flags
1548 );
1549 void usb_sg_cancel(struct usb_sg_request *io);
1550 void usb_sg_wait(struct usb_sg_request *io);
1551
1552
1553 /* ----------------------------------------------------------------------- */
1554
1555 /*
1556 * For various legacy reasons, Linux has a small cookie that's paired with
1557 * a struct usb_device to identify an endpoint queue. Queue characteristics
1558 * are defined by the endpoint's descriptor. This cookie is called a "pipe",
1559 * an unsigned int encoded as:
1560 *
1561 * - direction: bit 7 (0 = Host-to-Device [Out],
1562 * 1 = Device-to-Host [In] ...
1563 * like endpoint bEndpointAddress)
1564 * - device address: bits 8-14 ... bit positions known to uhci-hcd
1565 * - endpoint: bits 15-18 ... bit positions known to uhci-hcd
1566 * - pipe type: bits 30-31 (00 = isochronous, 01 = interrupt,
1567 * 10 = control, 11 = bulk)
1568 *
1569 * Given the device address and endpoint descriptor, pipes are redundant.
1570 */
1571
1572 /* NOTE: these are not the standard USB_ENDPOINT_XFER_* values!! */
1573 /* (yet ... they're the values used by usbfs) */
1574 #define PIPE_ISOCHRONOUS 0
1575 #define PIPE_INTERRUPT 1
1576 #define PIPE_CONTROL 2
1577 #define PIPE_BULK 3
1578
1579 #define usb_pipein(pipe) ((pipe) & USB_DIR_IN)
1580 #define usb_pipeout(pipe) (!usb_pipein(pipe))
1581
1582 #define usb_pipedevice(pipe) (((pipe) >> 8) & 0x7f)
1583 #define usb_pipeendpoint(pipe) (((pipe) >> 15) & 0xf)
1584
1585 #define usb_pipetype(pipe) (((pipe) >> 30) & 3)
1586 #define usb_pipeisoc(pipe) (usb_pipetype((pipe)) == PIPE_ISOCHRONOUS)
1587 #define usb_pipeint(pipe) (usb_pipetype((pipe)) == PIPE_INTERRUPT)
1588 #define usb_pipecontrol(pipe) (usb_pipetype((pipe)) == PIPE_CONTROL)
1589 #define usb_pipebulk(pipe) (usb_pipetype((pipe)) == PIPE_BULK)
1590
__create_pipe(struct usb_device * dev,unsigned int endpoint)1591 static inline unsigned int __create_pipe(struct usb_device *dev,
1592 unsigned int endpoint)
1593 {
1594 return (dev->devnum << 8) | (endpoint << 15);
1595 }
1596
1597 /* Create various pipes... */
1598 #define usb_sndctrlpipe(dev, endpoint) \
1599 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint))
1600 #define usb_rcvctrlpipe(dev, endpoint) \
1601 ((PIPE_CONTROL << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1602 #define usb_sndisocpipe(dev, endpoint) \
1603 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint))
1604 #define usb_rcvisocpipe(dev, endpoint) \
1605 ((PIPE_ISOCHRONOUS << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1606 #define usb_sndbulkpipe(dev, endpoint) \
1607 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint))
1608 #define usb_rcvbulkpipe(dev, endpoint) \
1609 ((PIPE_BULK << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1610 #define usb_sndintpipe(dev, endpoint) \
1611 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint))
1612 #define usb_rcvintpipe(dev, endpoint) \
1613 ((PIPE_INTERRUPT << 30) | __create_pipe(dev, endpoint) | USB_DIR_IN)
1614
1615 static inline struct usb_host_endpoint *
usb_pipe_endpoint(struct usb_device * dev,unsigned int pipe)1616 usb_pipe_endpoint(struct usb_device *dev, unsigned int pipe)
1617 {
1618 struct usb_host_endpoint **eps;
1619 eps = usb_pipein(pipe) ? dev->ep_in : dev->ep_out;
1620 return eps[usb_pipeendpoint(pipe)];
1621 }
1622
1623 /*-------------------------------------------------------------------------*/
1624
1625 static inline __u16
usb_maxpacket(struct usb_device * udev,int pipe,int is_out)1626 usb_maxpacket(struct usb_device *udev, int pipe, int is_out)
1627 {
1628 struct usb_host_endpoint *ep;
1629 unsigned epnum = usb_pipeendpoint(pipe);
1630
1631 if (is_out) {
1632 WARN_ON(usb_pipein(pipe));
1633 ep = udev->ep_out[epnum];
1634 } else {
1635 WARN_ON(usb_pipeout(pipe));
1636 ep = udev->ep_in[epnum];
1637 }
1638 if (!ep)
1639 return 0;
1640
1641 /* NOTE: only 0x07ff bits are for packet size... */
1642 return usb_endpoint_maxp(&ep->desc);
1643 }
1644
1645 /* ----------------------------------------------------------------------- */
1646
1647 /* translate USB error codes to codes user space understands */
usb_translate_errors(int error_code)1648 static inline int usb_translate_errors(int error_code)
1649 {
1650 switch (error_code) {
1651 case 0:
1652 case -ENOMEM:
1653 case -ENODEV:
1654 return error_code;
1655 default:
1656 return -EIO;
1657 }
1658 }
1659
1660 /* Events from the usb core */
1661 #define USB_DEVICE_ADD 0x0001
1662 #define USB_DEVICE_REMOVE 0x0002
1663 #define USB_BUS_ADD 0x0003
1664 #define USB_BUS_REMOVE 0x0004
1665 extern void usb_register_notify(struct notifier_block *nb);
1666 extern void usb_unregister_notify(struct notifier_block *nb);
1667
1668 #ifdef DEBUG
1669 #define dbg(format, arg...) \
1670 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg)
1671 #else
1672 #define dbg(format, arg...) \
1673 do { \
1674 if (0) \
1675 printk(KERN_DEBUG "%s: " format "\n", __FILE__, ##arg); \
1676 } while (0)
1677 #endif
1678
1679 #define err(format, arg...) \
1680 printk(KERN_ERR KBUILD_MODNAME ": " format "\n", ##arg)
1681
1682 /* debugfs stuff */
1683 extern struct dentry *usb_debug_root;
1684
1685 #endif /* __KERNEL__ */
1686
1687 #endif
1688