1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56
57 #include "cpu.h"
58
59 u32 elf_hwcap2 __read_mostly;
60
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75
76 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)77 void __init setup_cpu_local_masks(void)
78 {
79 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80 alloc_bootmem_cpumask_var(&cpu_callin_mask);
81 alloc_bootmem_cpumask_var(&cpu_callout_mask);
82 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84
default_init(struct cpuinfo_x86 * c)85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88 cpu_detect_cache_sizes(c);
89 #else
90 /* Not much we can do here... */
91 /* Check if at least it has cpuid */
92 if (c->cpuid_level == -1) {
93 /* No cpuid. It must be an ancient CPU */
94 if (c->x86 == 4)
95 strcpy(c->x86_model_id, "486");
96 else if (c->x86 == 3)
97 strcpy(c->x86_model_id, "386");
98 }
99 #endif
100 }
101
102 static const struct cpu_dev default_cpu = {
103 .c_init = default_init,
104 .c_vendor = "Unknown",
105 .c_x86_vendor = X86_VENDOR_UNKNOWN,
106 };
107
108 static const struct cpu_dev *this_cpu = &default_cpu;
109
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112 /*
113 * We need valid kernel segments for data and code in long mode too
114 * IRET will check the segment types kkeil 2000/10/28
115 * Also sysret mandates a special GDT layout
116 *
117 * TLS descriptors are currently at a different place compared to i386.
118 * Hopefully nobody expects them at a fixed place (Wine?)
119 */
120 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131 /*
132 * Segments used for calling PnP BIOS have byte granularity.
133 * They code segments and data segments have fixed 64k limits,
134 * the transfer segment sizes are set at run time.
135 */
136 /* 32-bit code */
137 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 /* 16-bit code */
139 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 /* 16-bit data */
141 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142 /* 16-bit data */
143 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
144 /* 16-bit data */
145 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
146 /*
147 * The APM segments have byte granularity and their bases
148 * are set at run time. All have 64k limits.
149 */
150 /* 32-bit code */
151 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152 /* 16-bit code */
153 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154 /* data */
155 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156
157 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163
x86_mpx_setup(char * s)164 static int __init x86_mpx_setup(char *s)
165 {
166 /* require an exact match without trailing characters */
167 if (strlen(s))
168 return 0;
169
170 /* do not emit a message if the feature is not present */
171 if (!boot_cpu_has(X86_FEATURE_MPX))
172 return 1;
173
174 setup_clear_cpu_cap(X86_FEATURE_MPX);
175 pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176 return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179
180 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)181 static int __init x86_nopcid_setup(char *s)
182 {
183 /* nopcid doesn't accept parameters */
184 if (s)
185 return -EINVAL;
186
187 /* do not emit a message if the feature is not present */
188 if (!boot_cpu_has(X86_FEATURE_PCID))
189 return 0;
190
191 setup_clear_cpu_cap(X86_FEATURE_PCID);
192 pr_info("nopcid: PCID feature disabled\n");
193 return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197
x86_noinvpcid_setup(char * s)198 static int __init x86_noinvpcid_setup(char *s)
199 {
200 /* noinvpcid doesn't accept parameters */
201 if (s)
202 return -EINVAL;
203
204 /* do not emit a message if the feature is not present */
205 if (!boot_cpu_has(X86_FEATURE_INVPCID))
206 return 0;
207
208 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209 pr_info("noinvpcid: INVPCID feature disabled\n");
210 return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217
cachesize_setup(char * str)218 static int __init cachesize_setup(char *str)
219 {
220 get_option(&str, &cachesize_override);
221 return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224
x86_sep_setup(char * s)225 static int __init x86_sep_setup(char *s)
226 {
227 setup_clear_cpu_cap(X86_FEATURE_SEP);
228 return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231
232 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 u32 f1, f2;
236
237 /*
238 * Cyrix and IDT cpus allow disabling of CPUID
239 * so the code below may return different results
240 * when it is executed before and after enabling
241 * the CPUID. Add "volatile" to not allow gcc to
242 * optimize the subsequent calls to this function.
243 */
244 asm volatile ("pushfl \n\t"
245 "pushfl \n\t"
246 "popl %0 \n\t"
247 "movl %0, %1 \n\t"
248 "xorl %2, %0 \n\t"
249 "pushl %0 \n\t"
250 "popfl \n\t"
251 "pushfl \n\t"
252 "popl %0 \n\t"
253 "popfl \n\t"
254
255 : "=&r" (f1), "=&r" (f2)
256 : "ir" (flag));
257
258 return ((f1^f2) & flag) != 0;
259 }
260
261 /* Probe for the CPUID instruction */
have_cpuid_p(void)262 int have_cpuid_p(void)
263 {
264 return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 unsigned long lo, hi;
270
271 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272 return;
273
274 /* Disable processor serial number: */
275
276 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 lo |= 0x200000;
278 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279
280 pr_notice("CPU serial number disabled.\n");
281 clear_cpu_cap(c, X86_FEATURE_PN);
282
283 /* Disabling the serial number may affect the cpuid level */
284 c->cpuid_level = cpuid_eax(0);
285 }
286
x86_serial_nr_setup(char * s)287 static int __init x86_serial_nr_setup(char *s)
288 {
289 disable_x86_serial_nr = 0;
290 return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
flag_is_changeable_p(u32 flag)294 static inline int flag_is_changeable_p(u32 flag)
295 {
296 return 1;
297 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302
setup_disable_smep(char * arg)303 static __init int setup_disable_smep(char *arg)
304 {
305 setup_clear_cpu_cap(X86_FEATURE_SMEP);
306 /* Check for things that depend on SMEP being enabled: */
307 check_mpx_erratum(&boot_cpu_data);
308 return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311
setup_smep(struct cpuinfo_x86 * c)312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314 if (cpu_has(c, X86_FEATURE_SMEP))
315 cr4_set_bits(X86_CR4_SMEP);
316 }
317
setup_disable_smap(char * arg)318 static __init int setup_disable_smap(char *arg)
319 {
320 setup_clear_cpu_cap(X86_FEATURE_SMAP);
321 return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324
setup_smap(struct cpuinfo_x86 * c)325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327 unsigned long eflags = native_save_fl();
328
329 /* This should have been cleared long ago */
330 BUG_ON(eflags & X86_EFLAGS_AC);
331
332 if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334 cr4_set_bits(X86_CR4_SMAP);
335 #else
336 cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338 }
339 }
340
341 /*
342 * Protection Keys are not available in 32-bit mode.
343 */
344 static bool pku_disabled;
345
setup_pku(struct cpuinfo_x86 * c)346 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
347 {
348 /* check the boot processor, plus compile options for PKU: */
349 if (!cpu_feature_enabled(X86_FEATURE_PKU))
350 return;
351 /* checks the actual processor's cpuid bits: */
352 if (!cpu_has(c, X86_FEATURE_PKU))
353 return;
354 if (pku_disabled)
355 return;
356
357 cr4_set_bits(X86_CR4_PKE);
358 /*
359 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
360 * cpuid bit to be set. We need to ensure that we
361 * update that bit in this CPU's "cpu_info".
362 */
363 set_cpu_cap(c, X86_FEATURE_OSPKE);
364 }
365
366 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)367 static __init int setup_disable_pku(char *arg)
368 {
369 /*
370 * Do not clear the X86_FEATURE_PKU bit. All of the
371 * runtime checks are against OSPKE so clearing the
372 * bit does nothing.
373 *
374 * This way, we will see "pku" in cpuinfo, but not
375 * "ospke", which is exactly what we want. It shows
376 * that the CPU has PKU, but the OS has not enabled it.
377 * This happens to be exactly how a system would look
378 * if we disabled the config option.
379 */
380 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
381 pku_disabled = true;
382 return 1;
383 }
384 __setup("nopku", setup_disable_pku);
385 #endif /* CONFIG_X86_64 */
386
387 /*
388 * Some CPU features depend on higher CPUID levels, which may not always
389 * be available due to CPUID level capping or broken virtualization
390 * software. Add those features to this table to auto-disable them.
391 */
392 struct cpuid_dependent_feature {
393 u32 feature;
394 u32 level;
395 };
396
397 static const struct cpuid_dependent_feature
398 cpuid_dependent_features[] = {
399 { X86_FEATURE_MWAIT, 0x00000005 },
400 { X86_FEATURE_DCA, 0x00000009 },
401 { X86_FEATURE_XSAVE, 0x0000000d },
402 { 0, 0 }
403 };
404
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)405 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
406 {
407 const struct cpuid_dependent_feature *df;
408
409 for (df = cpuid_dependent_features; df->feature; df++) {
410
411 if (!cpu_has(c, df->feature))
412 continue;
413 /*
414 * Note: cpuid_level is set to -1 if unavailable, but
415 * extended_extended_level is set to 0 if unavailable
416 * and the legitimate extended levels are all negative
417 * when signed; hence the weird messing around with
418 * signs here...
419 */
420 if (!((s32)df->level < 0 ?
421 (u32)df->level > (u32)c->extended_cpuid_level :
422 (s32)df->level > (s32)c->cpuid_level))
423 continue;
424
425 clear_cpu_cap(c, df->feature);
426 if (!warn)
427 continue;
428
429 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
430 x86_cap_flag(df->feature), df->level);
431 }
432 }
433
434 /*
435 * Naming convention should be: <Name> [(<Codename>)]
436 * This table only is used unless init_<vendor>() below doesn't set it;
437 * in particular, if CPUID levels 0x80000002..4 are supported, this
438 * isn't used
439 */
440
441 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)442 static const char *table_lookup_model(struct cpuinfo_x86 *c)
443 {
444 #ifdef CONFIG_X86_32
445 const struct legacy_cpu_model_info *info;
446
447 if (c->x86_model >= 16)
448 return NULL; /* Range check */
449
450 if (!this_cpu)
451 return NULL;
452
453 info = this_cpu->legacy_models;
454
455 while (info->family) {
456 if (info->family == c->x86)
457 return info->model_names[c->x86_model];
458 info++;
459 }
460 #endif
461 return NULL; /* Not found */
462 }
463
464 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
465 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
466
load_percpu_segment(int cpu)467 void load_percpu_segment(int cpu)
468 {
469 #ifdef CONFIG_X86_32
470 loadsegment(fs, __KERNEL_PERCPU);
471 #else
472 __loadsegment_simple(gs, 0);
473 wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
474 #endif
475 load_stack_canary_segment();
476 }
477
478 #ifdef CONFIG_X86_32
479 /* The 32-bit entry code needs to find cpu_entry_area. */
480 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
481 #endif
482
483 #ifdef CONFIG_X86_64
484 /*
485 * Special IST stacks which the CPU switches to when it calls
486 * an IST-marked descriptor entry. Up to 7 stacks (hardware
487 * limit), all of them are 4K, except the debug stack which
488 * is 8K.
489 */
490 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
491 [0 ... N_EXCEPTION_STACKS - 1] = EXCEPTION_STKSZ,
492 [DEBUG_STACK - 1] = DEBUG_STKSZ
493 };
494 #endif
495
496 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)497 void load_direct_gdt(int cpu)
498 {
499 struct desc_ptr gdt_descr;
500
501 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
502 gdt_descr.size = GDT_SIZE - 1;
503 load_gdt(&gdt_descr);
504 }
505 EXPORT_SYMBOL_GPL(load_direct_gdt);
506
507 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)508 void load_fixmap_gdt(int cpu)
509 {
510 struct desc_ptr gdt_descr;
511
512 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
513 gdt_descr.size = GDT_SIZE - 1;
514 load_gdt(&gdt_descr);
515 }
516 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
517
518 /*
519 * Current gdt points %fs at the "master" per-cpu area: after this,
520 * it's on the real one.
521 */
switch_to_new_gdt(int cpu)522 void switch_to_new_gdt(int cpu)
523 {
524 /* Load the original GDT */
525 load_direct_gdt(cpu);
526 /* Reload the per-cpu base */
527 load_percpu_segment(cpu);
528 }
529
530 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
531
get_model_name(struct cpuinfo_x86 * c)532 static void get_model_name(struct cpuinfo_x86 *c)
533 {
534 unsigned int *v;
535 char *p, *q, *s;
536
537 if (c->extended_cpuid_level < 0x80000004)
538 return;
539
540 v = (unsigned int *)c->x86_model_id;
541 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
542 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
543 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
544 c->x86_model_id[48] = 0;
545
546 /* Trim whitespace */
547 p = q = s = &c->x86_model_id[0];
548
549 while (*p == ' ')
550 p++;
551
552 while (*p) {
553 /* Note the last non-whitespace index */
554 if (!isspace(*p))
555 s = q;
556
557 *q++ = *p++;
558 }
559
560 *(s + 1) = '\0';
561 }
562
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)563 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
564 {
565 unsigned int n, dummy, ebx, ecx, edx, l2size;
566
567 n = c->extended_cpuid_level;
568
569 if (n >= 0x80000005) {
570 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
571 c->x86_cache_size = (ecx>>24) + (edx>>24);
572 #ifdef CONFIG_X86_64
573 /* On K8 L1 TLB is inclusive, so don't count it */
574 c->x86_tlbsize = 0;
575 #endif
576 }
577
578 if (n < 0x80000006) /* Some chips just has a large L1. */
579 return;
580
581 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
582 l2size = ecx >> 16;
583
584 #ifdef CONFIG_X86_64
585 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
586 #else
587 /* do processor-specific cache resizing */
588 if (this_cpu->legacy_cache_size)
589 l2size = this_cpu->legacy_cache_size(c, l2size);
590
591 /* Allow user to override all this if necessary. */
592 if (cachesize_override != -1)
593 l2size = cachesize_override;
594
595 if (l2size == 0)
596 return; /* Again, no L2 cache is possible */
597 #endif
598
599 c->x86_cache_size = l2size;
600 }
601
602 u16 __read_mostly tlb_lli_4k[NR_INFO];
603 u16 __read_mostly tlb_lli_2m[NR_INFO];
604 u16 __read_mostly tlb_lli_4m[NR_INFO];
605 u16 __read_mostly tlb_lld_4k[NR_INFO];
606 u16 __read_mostly tlb_lld_2m[NR_INFO];
607 u16 __read_mostly tlb_lld_4m[NR_INFO];
608 u16 __read_mostly tlb_lld_1g[NR_INFO];
609
cpu_detect_tlb(struct cpuinfo_x86 * c)610 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
611 {
612 if (this_cpu->c_detect_tlb)
613 this_cpu->c_detect_tlb(c);
614
615 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
616 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
617 tlb_lli_4m[ENTRIES]);
618
619 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
620 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
621 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
622 }
623
detect_ht_early(struct cpuinfo_x86 * c)624 int detect_ht_early(struct cpuinfo_x86 *c)
625 {
626 #ifdef CONFIG_SMP
627 u32 eax, ebx, ecx, edx;
628
629 if (!cpu_has(c, X86_FEATURE_HT))
630 return -1;
631
632 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
633 return -1;
634
635 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
636 return -1;
637
638 cpuid(1, &eax, &ebx, &ecx, &edx);
639
640 smp_num_siblings = (ebx & 0xff0000) >> 16;
641 if (smp_num_siblings == 1)
642 pr_info_once("CPU0: Hyper-Threading is disabled\n");
643 #endif
644 return 0;
645 }
646
detect_ht(struct cpuinfo_x86 * c)647 void detect_ht(struct cpuinfo_x86 *c)
648 {
649 #ifdef CONFIG_SMP
650 int index_msb, core_bits;
651
652 if (detect_ht_early(c) < 0)
653 return;
654
655 index_msb = get_count_order(smp_num_siblings);
656 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
657
658 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
659
660 index_msb = get_count_order(smp_num_siblings);
661
662 core_bits = get_count_order(c->x86_max_cores);
663
664 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
665 ((1 << core_bits) - 1);
666 #endif
667 }
668
get_cpu_vendor(struct cpuinfo_x86 * c)669 static void get_cpu_vendor(struct cpuinfo_x86 *c)
670 {
671 char *v = c->x86_vendor_id;
672 int i;
673
674 for (i = 0; i < X86_VENDOR_NUM; i++) {
675 if (!cpu_devs[i])
676 break;
677
678 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
679 (cpu_devs[i]->c_ident[1] &&
680 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
681
682 this_cpu = cpu_devs[i];
683 c->x86_vendor = this_cpu->c_x86_vendor;
684 return;
685 }
686 }
687
688 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
689 "CPU: Your system may be unstable.\n", v);
690
691 c->x86_vendor = X86_VENDOR_UNKNOWN;
692 this_cpu = &default_cpu;
693 }
694
cpu_detect(struct cpuinfo_x86 * c)695 void cpu_detect(struct cpuinfo_x86 *c)
696 {
697 /* Get vendor name */
698 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
699 (unsigned int *)&c->x86_vendor_id[0],
700 (unsigned int *)&c->x86_vendor_id[8],
701 (unsigned int *)&c->x86_vendor_id[4]);
702
703 c->x86 = 4;
704 /* Intel-defined flags: level 0x00000001 */
705 if (c->cpuid_level >= 0x00000001) {
706 u32 junk, tfms, cap0, misc;
707
708 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
709 c->x86 = x86_family(tfms);
710 c->x86_model = x86_model(tfms);
711 c->x86_stepping = x86_stepping(tfms);
712
713 if (cap0 & (1<<19)) {
714 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
715 c->x86_cache_alignment = c->x86_clflush_size;
716 }
717 }
718 }
719
apply_forced_caps(struct cpuinfo_x86 * c)720 static void apply_forced_caps(struct cpuinfo_x86 *c)
721 {
722 int i;
723
724 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
725 c->x86_capability[i] &= ~cpu_caps_cleared[i];
726 c->x86_capability[i] |= cpu_caps_set[i];
727 }
728 }
729
init_speculation_control(struct cpuinfo_x86 * c)730 static void init_speculation_control(struct cpuinfo_x86 *c)
731 {
732 /*
733 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
734 * and they also have a different bit for STIBP support. Also,
735 * a hypervisor might have set the individual AMD bits even on
736 * Intel CPUs, for finer-grained selection of what's available.
737 */
738 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
739 set_cpu_cap(c, X86_FEATURE_IBRS);
740 set_cpu_cap(c, X86_FEATURE_IBPB);
741 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
742 }
743
744 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
745 set_cpu_cap(c, X86_FEATURE_STIBP);
746
747 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
748 cpu_has(c, X86_FEATURE_VIRT_SSBD))
749 set_cpu_cap(c, X86_FEATURE_SSBD);
750
751 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
752 set_cpu_cap(c, X86_FEATURE_IBRS);
753 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
754 }
755
756 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
757 set_cpu_cap(c, X86_FEATURE_IBPB);
758
759 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
760 set_cpu_cap(c, X86_FEATURE_STIBP);
761 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
762 }
763
764 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
765 set_cpu_cap(c, X86_FEATURE_SSBD);
766 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
767 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
768 }
769 }
770
init_cqm(struct cpuinfo_x86 * c)771 static void init_cqm(struct cpuinfo_x86 *c)
772 {
773 if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
774 c->x86_cache_max_rmid = -1;
775 c->x86_cache_occ_scale = -1;
776 return;
777 }
778
779 /* will be overridden if occupancy monitoring exists */
780 c->x86_cache_max_rmid = cpuid_ebx(0xf);
781
782 if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
783 cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
784 cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
785 u32 eax, ebx, ecx, edx;
786
787 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
788 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
789
790 c->x86_cache_max_rmid = ecx;
791 c->x86_cache_occ_scale = ebx;
792 }
793 }
794
get_cpu_cap(struct cpuinfo_x86 * c)795 void get_cpu_cap(struct cpuinfo_x86 *c)
796 {
797 u32 eax, ebx, ecx, edx;
798
799 /* Intel-defined flags: level 0x00000001 */
800 if (c->cpuid_level >= 0x00000001) {
801 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
802
803 c->x86_capability[CPUID_1_ECX] = ecx;
804 c->x86_capability[CPUID_1_EDX] = edx;
805 }
806
807 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
808 if (c->cpuid_level >= 0x00000006)
809 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
810
811 /* Additional Intel-defined flags: level 0x00000007 */
812 if (c->cpuid_level >= 0x00000007) {
813 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
814 c->x86_capability[CPUID_7_0_EBX] = ebx;
815 c->x86_capability[CPUID_7_ECX] = ecx;
816 c->x86_capability[CPUID_7_EDX] = edx;
817 }
818
819 /* Extended state features: level 0x0000000d */
820 if (c->cpuid_level >= 0x0000000d) {
821 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
822
823 c->x86_capability[CPUID_D_1_EAX] = eax;
824 }
825
826 /* AMD-defined flags: level 0x80000001 */
827 eax = cpuid_eax(0x80000000);
828 c->extended_cpuid_level = eax;
829
830 if ((eax & 0xffff0000) == 0x80000000) {
831 if (eax >= 0x80000001) {
832 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
833
834 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
835 c->x86_capability[CPUID_8000_0001_EDX] = edx;
836 }
837 }
838
839 if (c->extended_cpuid_level >= 0x80000007) {
840 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
841
842 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
843 c->x86_power = edx;
844 }
845
846 if (c->extended_cpuid_level >= 0x80000008) {
847 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
848
849 c->x86_virt_bits = (eax >> 8) & 0xff;
850 c->x86_phys_bits = eax & 0xff;
851 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
852 }
853 #ifdef CONFIG_X86_32
854 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
855 c->x86_phys_bits = 36;
856 #endif
857
858 if (c->extended_cpuid_level >= 0x8000000a)
859 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
860
861 init_scattered_cpuid_features(c);
862 init_speculation_control(c);
863 init_cqm(c);
864
865 /*
866 * Clear/Set all flags overridden by options, after probe.
867 * This needs to happen each time we re-probe, which may happen
868 * several times during CPU initialization.
869 */
870 apply_forced_caps(c);
871 }
872
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)873 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
874 {
875 #ifdef CONFIG_X86_32
876 int i;
877
878 /*
879 * First of all, decide if this is a 486 or higher
880 * It's a 486 if we can modify the AC flag
881 */
882 if (flag_is_changeable_p(X86_EFLAGS_AC))
883 c->x86 = 4;
884 else
885 c->x86 = 3;
886
887 for (i = 0; i < X86_VENDOR_NUM; i++)
888 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
889 c->x86_vendor_id[0] = 0;
890 cpu_devs[i]->c_identify(c);
891 if (c->x86_vendor_id[0]) {
892 get_cpu_vendor(c);
893 break;
894 }
895 }
896 #endif
897 c->x86_cache_bits = c->x86_phys_bits;
898 }
899
900 #define NO_SPECULATION BIT(0)
901 #define NO_MELTDOWN BIT(1)
902 #define NO_SSB BIT(2)
903 #define NO_L1TF BIT(3)
904 #define NO_MDS BIT(4)
905 #define MSBDS_ONLY BIT(5)
906 #define NO_SWAPGS BIT(6)
907 #define NO_ITLB_MULTIHIT BIT(7)
908
909 #define VULNWL(_vendor, _family, _model, _whitelist) \
910 { X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
911
912 #define VULNWL_INTEL(model, whitelist) \
913 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
914
915 #define VULNWL_AMD(family, whitelist) \
916 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
917
918 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
919 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
920 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
921 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
922 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
923
924 /* Intel Family 6 */
925 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
926 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
927 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
928 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
929 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
930
931 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
932 VULNWL_INTEL(ATOM_SILVERMONT_X, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
933 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
934 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
935 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
936 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
937
938 VULNWL_INTEL(CORE_YONAH, NO_SSB),
939
940 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
941
942 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
943 VULNWL_INTEL(ATOM_GOLDMONT_X, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
944 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
945
946 /*
947 * Technically, swapgs isn't serializing on AMD (despite it previously
948 * being documented as such in the APM). But according to AMD, %gs is
949 * updated non-speculatively, and the issuing of %gs-relative memory
950 * operands will be blocked until the %gs update completes, which is
951 * good enough for our purposes.
952 */
953
954 VULNWL_INTEL(ATOM_TREMONT_X, NO_ITLB_MULTIHIT),
955
956 /* AMD Family 0xf - 0x12 */
957 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
958 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
959 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
960 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
961
962 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
963 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
964 {}
965 };
966
cpu_matches(unsigned long which)967 static bool __init cpu_matches(unsigned long which)
968 {
969 const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
970
971 return m && !!(m->driver_data & which);
972 }
973
x86_read_arch_cap_msr(void)974 u64 x86_read_arch_cap_msr(void)
975 {
976 u64 ia32_cap = 0;
977
978 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
979 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
980
981 return ia32_cap;
982 }
983
cpu_set_bug_bits(struct cpuinfo_x86 * c)984 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
985 {
986 u64 ia32_cap = x86_read_arch_cap_msr();
987
988 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
989 if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
990 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
991
992 if (cpu_matches(NO_SPECULATION))
993 return;
994
995 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
996 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
997
998 if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
999 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1000 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1001
1002 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1003 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1004
1005 if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1006 setup_force_cpu_bug(X86_BUG_MDS);
1007 if (cpu_matches(MSBDS_ONLY))
1008 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1009 }
1010
1011 if (!cpu_matches(NO_SWAPGS))
1012 setup_force_cpu_bug(X86_BUG_SWAPGS);
1013
1014 /*
1015 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1016 * - TSX is supported or
1017 * - TSX_CTRL is present
1018 *
1019 * TSX_CTRL check is needed for cases when TSX could be disabled before
1020 * the kernel boot e.g. kexec.
1021 * TSX_CTRL check alone is not sufficient for cases when the microcode
1022 * update is not present or running as guest that don't get TSX_CTRL.
1023 */
1024 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1025 (cpu_has(c, X86_FEATURE_RTM) ||
1026 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1027 setup_force_cpu_bug(X86_BUG_TAA);
1028
1029 if (cpu_matches(NO_MELTDOWN))
1030 return;
1031
1032 /* Rogue Data Cache Load? No! */
1033 if (ia32_cap & ARCH_CAP_RDCL_NO)
1034 return;
1035
1036 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1037
1038 if (cpu_matches(NO_L1TF))
1039 return;
1040
1041 setup_force_cpu_bug(X86_BUG_L1TF);
1042 }
1043
1044 /*
1045 * Do minimum CPU detection early.
1046 * Fields really needed: vendor, cpuid_level, family, model, mask,
1047 * cache alignment.
1048 * The others are not touched to avoid unwanted side effects.
1049 *
1050 * WARNING: this function is only called on the BP. Don't add code here
1051 * that is supposed to run on all CPUs.
1052 */
early_identify_cpu(struct cpuinfo_x86 * c)1053 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1054 {
1055 #ifdef CONFIG_X86_64
1056 c->x86_clflush_size = 64;
1057 c->x86_phys_bits = 36;
1058 c->x86_virt_bits = 48;
1059 #else
1060 c->x86_clflush_size = 32;
1061 c->x86_phys_bits = 32;
1062 c->x86_virt_bits = 32;
1063 #endif
1064 c->x86_cache_alignment = c->x86_clflush_size;
1065
1066 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1067 c->extended_cpuid_level = 0;
1068
1069 if (!have_cpuid_p())
1070 identify_cpu_without_cpuid(c);
1071
1072 /* cyrix could have cpuid enabled via c_identify()*/
1073 if (have_cpuid_p()) {
1074 cpu_detect(c);
1075 get_cpu_vendor(c);
1076 get_cpu_cap(c);
1077 setup_force_cpu_cap(X86_FEATURE_CPUID);
1078
1079 if (this_cpu->c_early_init)
1080 this_cpu->c_early_init(c);
1081
1082 c->cpu_index = 0;
1083 filter_cpuid_features(c, false);
1084
1085 if (this_cpu->c_bsp_init)
1086 this_cpu->c_bsp_init(c);
1087 } else {
1088 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1089 }
1090
1091 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1092
1093 cpu_set_bug_bits(c);
1094
1095 fpu__init_system(c);
1096
1097 #ifdef CONFIG_X86_32
1098 /*
1099 * Regardless of whether PCID is enumerated, the SDM says
1100 * that it can't be enabled in 32-bit mode.
1101 */
1102 setup_clear_cpu_cap(X86_FEATURE_PCID);
1103 #endif
1104 }
1105
early_cpu_init(void)1106 void __init early_cpu_init(void)
1107 {
1108 const struct cpu_dev *const *cdev;
1109 int count = 0;
1110
1111 #ifdef CONFIG_PROCESSOR_SELECT
1112 pr_info("KERNEL supported cpus:\n");
1113 #endif
1114
1115 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1116 const struct cpu_dev *cpudev = *cdev;
1117
1118 if (count >= X86_VENDOR_NUM)
1119 break;
1120 cpu_devs[count] = cpudev;
1121 count++;
1122
1123 #ifdef CONFIG_PROCESSOR_SELECT
1124 {
1125 unsigned int j;
1126
1127 for (j = 0; j < 2; j++) {
1128 if (!cpudev->c_ident[j])
1129 continue;
1130 pr_info(" %s %s\n", cpudev->c_vendor,
1131 cpudev->c_ident[j]);
1132 }
1133 }
1134 #endif
1135 }
1136 early_identify_cpu(&boot_cpu_data);
1137 }
1138
1139 /*
1140 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1141 * unfortunately, that's not true in practice because of early VIA
1142 * chips and (more importantly) broken virtualizers that are not easy
1143 * to detect. In the latter case it doesn't even *fail* reliably, so
1144 * probing for it doesn't even work. Disable it completely on 32-bit
1145 * unless we can find a reliable way to detect all the broken cases.
1146 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1147 */
detect_nopl(struct cpuinfo_x86 * c)1148 static void detect_nopl(struct cpuinfo_x86 *c)
1149 {
1150 #ifdef CONFIG_X86_32
1151 clear_cpu_cap(c, X86_FEATURE_NOPL);
1152 #else
1153 set_cpu_cap(c, X86_FEATURE_NOPL);
1154 #endif
1155 }
1156
detect_null_seg_behavior(struct cpuinfo_x86 * c)1157 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1158 {
1159 #ifdef CONFIG_X86_64
1160 /*
1161 * Empirically, writing zero to a segment selector on AMD does
1162 * not clear the base, whereas writing zero to a segment
1163 * selector on Intel does clear the base. Intel's behavior
1164 * allows slightly faster context switches in the common case
1165 * where GS is unused by the prev and next threads.
1166 *
1167 * Since neither vendor documents this anywhere that I can see,
1168 * detect it directly instead of hardcoding the choice by
1169 * vendor.
1170 *
1171 * I've designated AMD's behavior as the "bug" because it's
1172 * counterintuitive and less friendly.
1173 */
1174
1175 unsigned long old_base, tmp;
1176 rdmsrl(MSR_FS_BASE, old_base);
1177 wrmsrl(MSR_FS_BASE, 1);
1178 loadsegment(fs, 0);
1179 rdmsrl(MSR_FS_BASE, tmp);
1180 if (tmp != 0)
1181 set_cpu_bug(c, X86_BUG_NULL_SEG);
1182 wrmsrl(MSR_FS_BASE, old_base);
1183 #endif
1184 }
1185
generic_identify(struct cpuinfo_x86 * c)1186 static void generic_identify(struct cpuinfo_x86 *c)
1187 {
1188 c->extended_cpuid_level = 0;
1189
1190 if (!have_cpuid_p())
1191 identify_cpu_without_cpuid(c);
1192
1193 /* cyrix could have cpuid enabled via c_identify()*/
1194 if (!have_cpuid_p())
1195 return;
1196
1197 cpu_detect(c);
1198
1199 get_cpu_vendor(c);
1200
1201 get_cpu_cap(c);
1202
1203 if (c->cpuid_level >= 0x00000001) {
1204 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1205 #ifdef CONFIG_X86_32
1206 # ifdef CONFIG_SMP
1207 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1208 # else
1209 c->apicid = c->initial_apicid;
1210 # endif
1211 #endif
1212 c->phys_proc_id = c->initial_apicid;
1213 }
1214
1215 get_model_name(c); /* Default name */
1216
1217 detect_nopl(c);
1218
1219 detect_null_seg_behavior(c);
1220
1221 /*
1222 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1223 * systems that run Linux at CPL > 0 may or may not have the
1224 * issue, but, even if they have the issue, there's absolutely
1225 * nothing we can do about it because we can't use the real IRET
1226 * instruction.
1227 *
1228 * NB: For the time being, only 32-bit kernels support
1229 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1230 * whether to apply espfix using paravirt hooks. If any
1231 * non-paravirt system ever shows up that does *not* have the
1232 * ESPFIX issue, we can change this.
1233 */
1234 #ifdef CONFIG_X86_32
1235 # ifdef CONFIG_PARAVIRT
1236 do {
1237 extern void native_iret(void);
1238 if (pv_cpu_ops.iret == native_iret)
1239 set_cpu_bug(c, X86_BUG_ESPFIX);
1240 } while (0);
1241 # else
1242 set_cpu_bug(c, X86_BUG_ESPFIX);
1243 # endif
1244 #endif
1245 }
1246
x86_init_cache_qos(struct cpuinfo_x86 * c)1247 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1248 {
1249 /*
1250 * The heavy lifting of max_rmid and cache_occ_scale are handled
1251 * in get_cpu_cap(). Here we just set the max_rmid for the boot_cpu
1252 * in case CQM bits really aren't there in this CPU.
1253 */
1254 if (c != &boot_cpu_data) {
1255 boot_cpu_data.x86_cache_max_rmid =
1256 min(boot_cpu_data.x86_cache_max_rmid,
1257 c->x86_cache_max_rmid);
1258 }
1259 }
1260
1261 /*
1262 * Validate that ACPI/mptables have the same information about the
1263 * effective APIC id and update the package map.
1264 */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1265 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1266 {
1267 #ifdef CONFIG_SMP
1268 unsigned int apicid, cpu = smp_processor_id();
1269
1270 apicid = apic->cpu_present_to_apicid(cpu);
1271
1272 if (apicid != c->apicid) {
1273 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1274 cpu, apicid, c->initial_apicid);
1275 }
1276 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1277 #else
1278 c->logical_proc_id = 0;
1279 #endif
1280 }
1281
1282 /*
1283 * This does the hard work of actually picking apart the CPU stuff...
1284 */
identify_cpu(struct cpuinfo_x86 * c)1285 static void identify_cpu(struct cpuinfo_x86 *c)
1286 {
1287 int i;
1288
1289 c->loops_per_jiffy = loops_per_jiffy;
1290 c->x86_cache_size = 0;
1291 c->x86_vendor = X86_VENDOR_UNKNOWN;
1292 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1293 c->x86_vendor_id[0] = '\0'; /* Unset */
1294 c->x86_model_id[0] = '\0'; /* Unset */
1295 c->x86_max_cores = 1;
1296 c->x86_coreid_bits = 0;
1297 c->cu_id = 0xff;
1298 #ifdef CONFIG_X86_64
1299 c->x86_clflush_size = 64;
1300 c->x86_phys_bits = 36;
1301 c->x86_virt_bits = 48;
1302 #else
1303 c->cpuid_level = -1; /* CPUID not detected */
1304 c->x86_clflush_size = 32;
1305 c->x86_phys_bits = 32;
1306 c->x86_virt_bits = 32;
1307 #endif
1308 c->x86_cache_alignment = c->x86_clflush_size;
1309 memset(&c->x86_capability, 0, sizeof c->x86_capability);
1310
1311 generic_identify(c);
1312
1313 if (this_cpu->c_identify)
1314 this_cpu->c_identify(c);
1315
1316 /* Clear/Set all flags overridden by options, after probe */
1317 apply_forced_caps(c);
1318
1319 #ifdef CONFIG_X86_64
1320 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1321 #endif
1322
1323 /*
1324 * Vendor-specific initialization. In this section we
1325 * canonicalize the feature flags, meaning if there are
1326 * features a certain CPU supports which CPUID doesn't
1327 * tell us, CPUID claiming incorrect flags, or other bugs,
1328 * we handle them here.
1329 *
1330 * At the end of this section, c->x86_capability better
1331 * indicate the features this CPU genuinely supports!
1332 */
1333 if (this_cpu->c_init)
1334 this_cpu->c_init(c);
1335
1336 /* Disable the PN if appropriate */
1337 squash_the_stupid_serial_number(c);
1338
1339 /* Set up SMEP/SMAP */
1340 setup_smep(c);
1341 setup_smap(c);
1342
1343 /*
1344 * The vendor-specific functions might have changed features.
1345 * Now we do "generic changes."
1346 */
1347
1348 /* Filter out anything that depends on CPUID levels we don't have */
1349 filter_cpuid_features(c, true);
1350
1351 /* If the model name is still unset, do table lookup. */
1352 if (!c->x86_model_id[0]) {
1353 const char *p;
1354 p = table_lookup_model(c);
1355 if (p)
1356 strcpy(c->x86_model_id, p);
1357 else
1358 /* Last resort... */
1359 sprintf(c->x86_model_id, "%02x/%02x",
1360 c->x86, c->x86_model);
1361 }
1362
1363 #ifdef CONFIG_X86_64
1364 detect_ht(c);
1365 #endif
1366
1367 x86_init_rdrand(c);
1368 x86_init_cache_qos(c);
1369 setup_pku(c);
1370
1371 /*
1372 * Clear/Set all flags overridden by options, need do it
1373 * before following smp all cpus cap AND.
1374 */
1375 apply_forced_caps(c);
1376
1377 /*
1378 * On SMP, boot_cpu_data holds the common feature set between
1379 * all CPUs; so make sure that we indicate which features are
1380 * common between the CPUs. The first time this routine gets
1381 * executed, c == &boot_cpu_data.
1382 */
1383 if (c != &boot_cpu_data) {
1384 /* AND the already accumulated flags with these */
1385 for (i = 0; i < NCAPINTS; i++)
1386 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1387
1388 /* OR, i.e. replicate the bug flags */
1389 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1390 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1391 }
1392
1393 /* Init Machine Check Exception if available. */
1394 mcheck_cpu_init(c);
1395
1396 select_idle_routine(c);
1397
1398 #ifdef CONFIG_NUMA
1399 numa_add_cpu(smp_processor_id());
1400 #endif
1401 }
1402
1403 /*
1404 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1405 * on 32-bit kernels:
1406 */
1407 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1408 void enable_sep_cpu(void)
1409 {
1410 struct tss_struct *tss;
1411 int cpu;
1412
1413 if (!boot_cpu_has(X86_FEATURE_SEP))
1414 return;
1415
1416 cpu = get_cpu();
1417 tss = &per_cpu(cpu_tss_rw, cpu);
1418
1419 /*
1420 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1421 * see the big comment in struct x86_hw_tss's definition.
1422 */
1423
1424 tss->x86_tss.ss1 = __KERNEL_CS;
1425 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1426 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1427 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1428
1429 put_cpu();
1430 }
1431 #endif
1432
identify_boot_cpu(void)1433 void __init identify_boot_cpu(void)
1434 {
1435 identify_cpu(&boot_cpu_data);
1436 #ifdef CONFIG_X86_32
1437 sysenter_setup();
1438 enable_sep_cpu();
1439 #endif
1440 cpu_detect_tlb(&boot_cpu_data);
1441 tsx_init();
1442 }
1443
identify_secondary_cpu(struct cpuinfo_x86 * c)1444 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1445 {
1446 BUG_ON(c == &boot_cpu_data);
1447 identify_cpu(c);
1448 #ifdef CONFIG_X86_32
1449 enable_sep_cpu();
1450 #endif
1451 mtrr_ap_init();
1452 validate_apic_and_package_id(c);
1453 x86_spec_ctrl_setup_ap();
1454 }
1455
setup_noclflush(char * arg)1456 static __init int setup_noclflush(char *arg)
1457 {
1458 setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1459 setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1460 return 1;
1461 }
1462 __setup("noclflush", setup_noclflush);
1463
print_cpu_info(struct cpuinfo_x86 * c)1464 void print_cpu_info(struct cpuinfo_x86 *c)
1465 {
1466 const char *vendor = NULL;
1467
1468 if (c->x86_vendor < X86_VENDOR_NUM) {
1469 vendor = this_cpu->c_vendor;
1470 } else {
1471 if (c->cpuid_level >= 0)
1472 vendor = c->x86_vendor_id;
1473 }
1474
1475 if (vendor && !strstr(c->x86_model_id, vendor))
1476 pr_cont("%s ", vendor);
1477
1478 if (c->x86_model_id[0])
1479 pr_cont("%s", c->x86_model_id);
1480 else
1481 pr_cont("%d86", c->x86);
1482
1483 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1484
1485 if (c->x86_stepping || c->cpuid_level >= 0)
1486 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1487 else
1488 pr_cont(")\n");
1489 }
1490
1491 /*
1492 * clearcpuid= was already parsed in fpu__init_parse_early_param.
1493 * But we need to keep a dummy __setup around otherwise it would
1494 * show up as an environment variable for init.
1495 */
setup_clearcpuid(char * arg)1496 static __init int setup_clearcpuid(char *arg)
1497 {
1498 return 1;
1499 }
1500 __setup("clearcpuid=", setup_clearcpuid);
1501
1502 #ifdef CONFIG_X86_64
1503 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1504 irq_stack_union) __aligned(PAGE_SIZE) __visible;
1505
1506 /*
1507 * The following percpu variables are hot. Align current_task to
1508 * cacheline size such that they fall in the same cacheline.
1509 */
1510 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1511 &init_task;
1512 EXPORT_PER_CPU_SYMBOL(current_task);
1513
1514 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1515 init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1516
1517 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1518
1519 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1520 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1521
1522 /* May not be marked __init: used by software suspend */
syscall_init(void)1523 void syscall_init(void)
1524 {
1525 extern char _entry_trampoline[];
1526 extern char entry_SYSCALL_64_trampoline[];
1527
1528 int cpu = smp_processor_id();
1529 unsigned long SYSCALL64_entry_trampoline =
1530 (unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1531 (entry_SYSCALL_64_trampoline - _entry_trampoline);
1532
1533 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1534 if (static_cpu_has(X86_FEATURE_PTI))
1535 wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1536 else
1537 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1538
1539 #ifdef CONFIG_IA32_EMULATION
1540 wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1541 /*
1542 * This only works on Intel CPUs.
1543 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1544 * This does not cause SYSENTER to jump to the wrong location, because
1545 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1546 */
1547 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1548 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1549 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1550 #else
1551 wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1552 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1553 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1554 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1555 #endif
1556
1557 /* Flags to clear on syscall */
1558 wrmsrl(MSR_SYSCALL_MASK,
1559 X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1560 X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1561 }
1562
1563 /*
1564 * Copies of the original ist values from the tss are only accessed during
1565 * debugging, no special alignment required.
1566 */
1567 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1568
1569 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1570 DEFINE_PER_CPU(int, debug_stack_usage);
1571
is_debug_stack(unsigned long addr)1572 int is_debug_stack(unsigned long addr)
1573 {
1574 return __this_cpu_read(debug_stack_usage) ||
1575 (addr <= __this_cpu_read(debug_stack_addr) &&
1576 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1577 }
1578 NOKPROBE_SYMBOL(is_debug_stack);
1579
1580 DEFINE_PER_CPU(u32, debug_idt_ctr);
1581
debug_stack_set_zero(void)1582 void debug_stack_set_zero(void)
1583 {
1584 this_cpu_inc(debug_idt_ctr);
1585 load_current_idt();
1586 }
1587 NOKPROBE_SYMBOL(debug_stack_set_zero);
1588
debug_stack_reset(void)1589 void debug_stack_reset(void)
1590 {
1591 if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1592 return;
1593 if (this_cpu_dec_return(debug_idt_ctr) == 0)
1594 load_current_idt();
1595 }
1596 NOKPROBE_SYMBOL(debug_stack_reset);
1597
1598 #else /* CONFIG_X86_64 */
1599
1600 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1601 EXPORT_PER_CPU_SYMBOL(current_task);
1602 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1603 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1604
1605 /*
1606 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1607 * the top of the kernel stack. Use an extra percpu variable to track the
1608 * top of the kernel stack directly.
1609 */
1610 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1611 (unsigned long)&init_thread_union + THREAD_SIZE;
1612 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1613
1614 #ifdef CONFIG_CC_STACKPROTECTOR
1615 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1616 #endif
1617
1618 #endif /* CONFIG_X86_64 */
1619
1620 /*
1621 * Clear all 6 debug registers:
1622 */
clear_all_debug_regs(void)1623 static void clear_all_debug_regs(void)
1624 {
1625 int i;
1626
1627 for (i = 0; i < 8; i++) {
1628 /* Ignore db4, db5 */
1629 if ((i == 4) || (i == 5))
1630 continue;
1631
1632 set_debugreg(0, i);
1633 }
1634 }
1635
1636 #ifdef CONFIG_KGDB
1637 /*
1638 * Restore debug regs if using kgdbwait and you have a kernel debugger
1639 * connection established.
1640 */
dbg_restore_debug_regs(void)1641 static void dbg_restore_debug_regs(void)
1642 {
1643 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1644 arch_kgdb_ops.correct_hw_break();
1645 }
1646 #else /* ! CONFIG_KGDB */
1647 #define dbg_restore_debug_regs()
1648 #endif /* ! CONFIG_KGDB */
1649
wait_for_master_cpu(int cpu)1650 static void wait_for_master_cpu(int cpu)
1651 {
1652 #ifdef CONFIG_SMP
1653 /*
1654 * wait for ACK from master CPU before continuing
1655 * with AP initialization
1656 */
1657 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1658 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1659 cpu_relax();
1660 #endif
1661 }
1662
1663 /*
1664 * cpu_init() initializes state that is per-CPU. Some data is already
1665 * initialized (naturally) in the bootstrap process, such as the GDT
1666 * and IDT. We reload them nevertheless, this function acts as a
1667 * 'CPU state barrier', nothing should get across.
1668 * A lot of state is already set up in PDA init for 64 bit
1669 */
1670 #ifdef CONFIG_X86_64
1671
cpu_init(void)1672 void cpu_init(void)
1673 {
1674 struct orig_ist *oist;
1675 struct task_struct *me;
1676 struct tss_struct *t;
1677 unsigned long v;
1678 int cpu = raw_smp_processor_id();
1679 int i;
1680
1681 wait_for_master_cpu(cpu);
1682
1683 /*
1684 * Initialize the CR4 shadow before doing anything that could
1685 * try to read it.
1686 */
1687 cr4_init_shadow();
1688
1689 if (cpu)
1690 load_ucode_ap();
1691
1692 t = &per_cpu(cpu_tss_rw, cpu);
1693 oist = &per_cpu(orig_ist, cpu);
1694
1695 #ifdef CONFIG_NUMA
1696 if (this_cpu_read(numa_node) == 0 &&
1697 early_cpu_to_node(cpu) != NUMA_NO_NODE)
1698 set_numa_node(early_cpu_to_node(cpu));
1699 #endif
1700
1701 me = current;
1702
1703 pr_debug("Initializing CPU#%d\n", cpu);
1704
1705 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1706
1707 /*
1708 * Initialize the per-CPU GDT with the boot GDT,
1709 * and set up the GDT descriptor:
1710 */
1711
1712 switch_to_new_gdt(cpu);
1713 loadsegment(fs, 0);
1714
1715 load_current_idt();
1716
1717 memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1718 syscall_init();
1719
1720 wrmsrl(MSR_FS_BASE, 0);
1721 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1722 barrier();
1723
1724 x86_configure_nx();
1725 x2apic_setup();
1726
1727 /*
1728 * set up and load the per-CPU TSS
1729 */
1730 if (!oist->ist[0]) {
1731 char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1732
1733 for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1734 estacks += exception_stack_sizes[v];
1735 oist->ist[v] = t->x86_tss.ist[v] =
1736 (unsigned long)estacks;
1737 if (v == DEBUG_STACK-1)
1738 per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1739 }
1740 }
1741
1742 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1743
1744 /*
1745 * <= is required because the CPU will access up to
1746 * 8 bits beyond the end of the IO permission bitmap.
1747 */
1748 for (i = 0; i <= IO_BITMAP_LONGS; i++)
1749 t->io_bitmap[i] = ~0UL;
1750
1751 mmgrab(&init_mm);
1752 me->active_mm = &init_mm;
1753 BUG_ON(me->mm);
1754 initialize_tlbstate_and_flush();
1755 enter_lazy_tlb(&init_mm, me);
1756
1757 /*
1758 * Initialize the TSS. sp0 points to the entry trampoline stack
1759 * regardless of what task is running.
1760 */
1761 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1762 load_TR_desc();
1763 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1764
1765 load_mm_ldt(&init_mm);
1766
1767 clear_all_debug_regs();
1768 dbg_restore_debug_regs();
1769
1770 fpu__init_cpu();
1771
1772 if (is_uv_system())
1773 uv_cpu_init();
1774
1775 load_fixmap_gdt(cpu);
1776 }
1777
1778 #else
1779
cpu_init(void)1780 void cpu_init(void)
1781 {
1782 int cpu = smp_processor_id();
1783 struct task_struct *curr = current;
1784 struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1785
1786 wait_for_master_cpu(cpu);
1787
1788 /*
1789 * Initialize the CR4 shadow before doing anything that could
1790 * try to read it.
1791 */
1792 cr4_init_shadow();
1793
1794 show_ucode_info_early();
1795
1796 pr_info("Initializing CPU#%d\n", cpu);
1797
1798 if (cpu_feature_enabled(X86_FEATURE_VME) ||
1799 boot_cpu_has(X86_FEATURE_TSC) ||
1800 boot_cpu_has(X86_FEATURE_DE))
1801 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1802
1803 load_current_idt();
1804 switch_to_new_gdt(cpu);
1805
1806 /*
1807 * Set up and load the per-CPU TSS and LDT
1808 */
1809 mmgrab(&init_mm);
1810 curr->active_mm = &init_mm;
1811 BUG_ON(curr->mm);
1812 initialize_tlbstate_and_flush();
1813 enter_lazy_tlb(&init_mm, curr);
1814
1815 /*
1816 * Initialize the TSS. Don't bother initializing sp0, as the initial
1817 * task never enters user mode.
1818 */
1819 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1820 load_TR_desc();
1821
1822 load_mm_ldt(&init_mm);
1823
1824 t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1825
1826 #ifdef CONFIG_DOUBLEFAULT
1827 /* Set up doublefault TSS pointer in the GDT */
1828 __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1829 #endif
1830
1831 clear_all_debug_regs();
1832 dbg_restore_debug_regs();
1833
1834 fpu__init_cpu();
1835
1836 load_fixmap_gdt(cpu);
1837 }
1838 #endif
1839
bsp_resume(void)1840 static void bsp_resume(void)
1841 {
1842 if (this_cpu->c_bsp_resume)
1843 this_cpu->c_bsp_resume(&boot_cpu_data);
1844 }
1845
1846 static struct syscore_ops cpu_syscore_ops = {
1847 .resume = bsp_resume,
1848 };
1849
init_cpu_syscore(void)1850 static int __init init_cpu_syscore(void)
1851 {
1852 register_syscore_ops(&cpu_syscore_ops);
1853 return 0;
1854 }
1855 core_initcall(init_cpu_syscore);
1856
1857 /*
1858 * The microcode loader calls this upon late microcode load to recheck features,
1859 * only when microcode has been updated. Caller holds microcode_mutex and CPU
1860 * hotplug lock.
1861 */
microcode_check(void)1862 void microcode_check(void)
1863 {
1864 struct cpuinfo_x86 info;
1865
1866 perf_check_microcode();
1867
1868 /* Reload CPUID max function as it might've changed. */
1869 info.cpuid_level = cpuid_eax(0);
1870
1871 /*
1872 * Copy all capability leafs to pick up the synthetic ones so that
1873 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1874 * get overwritten in get_cpu_cap().
1875 */
1876 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1877
1878 get_cpu_cap(&info);
1879
1880 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1881 return;
1882
1883 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1884 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1885 }
1886