• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 #include <linux/bootmem.h>
2 #include <linux/linkage.h>
3 #include <linux/bitops.h>
4 #include <linux/kernel.h>
5 #include <linux/export.h>
6 #include <linux/percpu.h>
7 #include <linux/string.h>
8 #include <linux/ctype.h>
9 #include <linux/delay.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/clock.h>
12 #include <linux/sched/task.h>
13 #include <linux/init.h>
14 #include <linux/kprobes.h>
15 #include <linux/kgdb.h>
16 #include <linux/smp.h>
17 #include <linux/io.h>
18 #include <linux/syscore_ops.h>
19 
20 #include <asm/stackprotector.h>
21 #include <asm/perf_event.h>
22 #include <asm/mmu_context.h>
23 #include <asm/archrandom.h>
24 #include <asm/hypervisor.h>
25 #include <asm/processor.h>
26 #include <asm/tlbflush.h>
27 #include <asm/debugreg.h>
28 #include <asm/sections.h>
29 #include <asm/vsyscall.h>
30 #include <linux/topology.h>
31 #include <linux/cpumask.h>
32 #include <asm/pgtable.h>
33 #include <linux/atomic.h>
34 #include <asm/proto.h>
35 #include <asm/setup.h>
36 #include <asm/apic.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/internal.h>
39 #include <asm/mtrr.h>
40 #include <asm/hwcap2.h>
41 #include <linux/numa.h>
42 #include <asm/asm.h>
43 #include <asm/bugs.h>
44 #include <asm/cpu.h>
45 #include <asm/mce.h>
46 #include <asm/msr.h>
47 #include <asm/pat.h>
48 #include <asm/microcode.h>
49 #include <asm/microcode_intel.h>
50 #include <asm/intel-family.h>
51 #include <asm/cpu_device_id.h>
52 
53 #ifdef CONFIG_X86_LOCAL_APIC
54 #include <asm/uv/uv.h>
55 #endif
56 
57 #include "cpu.h"
58 
59 u32 elf_hwcap2 __read_mostly;
60 
61 /* all of these masks are initialized in setup_cpu_local_masks() */
62 cpumask_var_t cpu_initialized_mask;
63 cpumask_var_t cpu_callout_mask;
64 cpumask_var_t cpu_callin_mask;
65 
66 /* representing cpus for which sibling maps can be computed */
67 cpumask_var_t cpu_sibling_setup_mask;
68 
69 /* Number of siblings per CPU package */
70 int smp_num_siblings = 1;
71 EXPORT_SYMBOL(smp_num_siblings);
72 
73 /* Last level cache ID of each logical CPU */
74 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75 
76 /* correctly size the local cpu masks */
setup_cpu_local_masks(void)77 void __init setup_cpu_local_masks(void)
78 {
79 	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80 	alloc_bootmem_cpumask_var(&cpu_callin_mask);
81 	alloc_bootmem_cpumask_var(&cpu_callout_mask);
82 	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83 }
84 
default_init(struct cpuinfo_x86 * c)85 static void default_init(struct cpuinfo_x86 *c)
86 {
87 #ifdef CONFIG_X86_64
88 	cpu_detect_cache_sizes(c);
89 #else
90 	/* Not much we can do here... */
91 	/* Check if at least it has cpuid */
92 	if (c->cpuid_level == -1) {
93 		/* No cpuid. It must be an ancient CPU */
94 		if (c->x86 == 4)
95 			strcpy(c->x86_model_id, "486");
96 		else if (c->x86 == 3)
97 			strcpy(c->x86_model_id, "386");
98 	}
99 #endif
100 }
101 
102 static const struct cpu_dev default_cpu = {
103 	.c_init		= default_init,
104 	.c_vendor	= "Unknown",
105 	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
106 };
107 
108 static const struct cpu_dev *this_cpu = &default_cpu;
109 
110 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111 #ifdef CONFIG_X86_64
112 	/*
113 	 * We need valid kernel segments for data and code in long mode too
114 	 * IRET will check the segment types  kkeil 2000/10/28
115 	 * Also sysret mandates a special GDT layout
116 	 *
117 	 * TLS descriptors are currently at a different place compared to i386.
118 	 * Hopefully nobody expects them at a fixed place (Wine?)
119 	 */
120 	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123 	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126 #else
127 	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128 	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129 	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130 	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131 	/*
132 	 * Segments used for calling PnP BIOS have byte granularity.
133 	 * They code segments and data segments have fixed 64k limits,
134 	 * the transfer segment sizes are set at run time.
135 	 */
136 	/* 32-bit code */
137 	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138 	/* 16-bit code */
139 	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140 	/* 16-bit data */
141 	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142 	/* 16-bit data */
143 	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
144 	/* 16-bit data */
145 	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
146 	/*
147 	 * The APM segments have byte granularity and their bases
148 	 * are set at run time.  All have 64k limits.
149 	 */
150 	/* 32-bit code */
151 	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152 	/* 16-bit code */
153 	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154 	/* data */
155 	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156 
157 	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158 	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159 	GDT_STACK_CANARY_INIT
160 #endif
161 } };
162 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163 
x86_mpx_setup(char * s)164 static int __init x86_mpx_setup(char *s)
165 {
166 	/* require an exact match without trailing characters */
167 	if (strlen(s))
168 		return 0;
169 
170 	/* do not emit a message if the feature is not present */
171 	if (!boot_cpu_has(X86_FEATURE_MPX))
172 		return 1;
173 
174 	setup_clear_cpu_cap(X86_FEATURE_MPX);
175 	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176 	return 1;
177 }
178 __setup("nompx", x86_mpx_setup);
179 
180 #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)181 static int __init x86_nopcid_setup(char *s)
182 {
183 	/* nopcid doesn't accept parameters */
184 	if (s)
185 		return -EINVAL;
186 
187 	/* do not emit a message if the feature is not present */
188 	if (!boot_cpu_has(X86_FEATURE_PCID))
189 		return 0;
190 
191 	setup_clear_cpu_cap(X86_FEATURE_PCID);
192 	pr_info("nopcid: PCID feature disabled\n");
193 	return 0;
194 }
195 early_param("nopcid", x86_nopcid_setup);
196 #endif
197 
x86_noinvpcid_setup(char * s)198 static int __init x86_noinvpcid_setup(char *s)
199 {
200 	/* noinvpcid doesn't accept parameters */
201 	if (s)
202 		return -EINVAL;
203 
204 	/* do not emit a message if the feature is not present */
205 	if (!boot_cpu_has(X86_FEATURE_INVPCID))
206 		return 0;
207 
208 	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209 	pr_info("noinvpcid: INVPCID feature disabled\n");
210 	return 0;
211 }
212 early_param("noinvpcid", x86_noinvpcid_setup);
213 
214 #ifdef CONFIG_X86_32
215 static int cachesize_override = -1;
216 static int disable_x86_serial_nr = 1;
217 
cachesize_setup(char * str)218 static int __init cachesize_setup(char *str)
219 {
220 	get_option(&str, &cachesize_override);
221 	return 1;
222 }
223 __setup("cachesize=", cachesize_setup);
224 
x86_sep_setup(char * s)225 static int __init x86_sep_setup(char *s)
226 {
227 	setup_clear_cpu_cap(X86_FEATURE_SEP);
228 	return 1;
229 }
230 __setup("nosep", x86_sep_setup);
231 
232 /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)233 static inline int flag_is_changeable_p(u32 flag)
234 {
235 	u32 f1, f2;
236 
237 	/*
238 	 * Cyrix and IDT cpus allow disabling of CPUID
239 	 * so the code below may return different results
240 	 * when it is executed before and after enabling
241 	 * the CPUID. Add "volatile" to not allow gcc to
242 	 * optimize the subsequent calls to this function.
243 	 */
244 	asm volatile ("pushfl		\n\t"
245 		      "pushfl		\n\t"
246 		      "popl %0		\n\t"
247 		      "movl %0, %1	\n\t"
248 		      "xorl %2, %0	\n\t"
249 		      "pushl %0		\n\t"
250 		      "popfl		\n\t"
251 		      "pushfl		\n\t"
252 		      "popl %0		\n\t"
253 		      "popfl		\n\t"
254 
255 		      : "=&r" (f1), "=&r" (f2)
256 		      : "ir" (flag));
257 
258 	return ((f1^f2) & flag) != 0;
259 }
260 
261 /* Probe for the CPUID instruction */
have_cpuid_p(void)262 int have_cpuid_p(void)
263 {
264 	return flag_is_changeable_p(X86_EFLAGS_ID);
265 }
266 
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)267 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268 {
269 	unsigned long lo, hi;
270 
271 	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272 		return;
273 
274 	/* Disable processor serial number: */
275 
276 	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277 	lo |= 0x200000;
278 	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279 
280 	pr_notice("CPU serial number disabled.\n");
281 	clear_cpu_cap(c, X86_FEATURE_PN);
282 
283 	/* Disabling the serial number may affect the cpuid level */
284 	c->cpuid_level = cpuid_eax(0);
285 }
286 
x86_serial_nr_setup(char * s)287 static int __init x86_serial_nr_setup(char *s)
288 {
289 	disable_x86_serial_nr = 0;
290 	return 1;
291 }
292 __setup("serialnumber", x86_serial_nr_setup);
293 #else
flag_is_changeable_p(u32 flag)294 static inline int flag_is_changeable_p(u32 flag)
295 {
296 	return 1;
297 }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)298 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299 {
300 }
301 #endif
302 
setup_disable_smep(char * arg)303 static __init int setup_disable_smep(char *arg)
304 {
305 	setup_clear_cpu_cap(X86_FEATURE_SMEP);
306 	/* Check for things that depend on SMEP being enabled: */
307 	check_mpx_erratum(&boot_cpu_data);
308 	return 1;
309 }
310 __setup("nosmep", setup_disable_smep);
311 
setup_smep(struct cpuinfo_x86 * c)312 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313 {
314 	if (cpu_has(c, X86_FEATURE_SMEP))
315 		cr4_set_bits(X86_CR4_SMEP);
316 }
317 
setup_disable_smap(char * arg)318 static __init int setup_disable_smap(char *arg)
319 {
320 	setup_clear_cpu_cap(X86_FEATURE_SMAP);
321 	return 1;
322 }
323 __setup("nosmap", setup_disable_smap);
324 
setup_smap(struct cpuinfo_x86 * c)325 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326 {
327 	unsigned long eflags = native_save_fl();
328 
329 	/* This should have been cleared long ago */
330 	BUG_ON(eflags & X86_EFLAGS_AC);
331 
332 	if (cpu_has(c, X86_FEATURE_SMAP)) {
333 #ifdef CONFIG_X86_SMAP
334 		cr4_set_bits(X86_CR4_SMAP);
335 #else
336 		cr4_clear_bits(X86_CR4_SMAP);
337 #endif
338 	}
339 }
340 
341 /*
342  * Protection Keys are not available in 32-bit mode.
343  */
344 static bool pku_disabled;
345 
setup_pku(struct cpuinfo_x86 * c)346 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
347 {
348 	/* check the boot processor, plus compile options for PKU: */
349 	if (!cpu_feature_enabled(X86_FEATURE_PKU))
350 		return;
351 	/* checks the actual processor's cpuid bits: */
352 	if (!cpu_has(c, X86_FEATURE_PKU))
353 		return;
354 	if (pku_disabled)
355 		return;
356 
357 	cr4_set_bits(X86_CR4_PKE);
358 	/*
359 	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
360 	 * cpuid bit to be set.  We need to ensure that we
361 	 * update that bit in this CPU's "cpu_info".
362 	 */
363 	set_cpu_cap(c, X86_FEATURE_OSPKE);
364 }
365 
366 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)367 static __init int setup_disable_pku(char *arg)
368 {
369 	/*
370 	 * Do not clear the X86_FEATURE_PKU bit.  All of the
371 	 * runtime checks are against OSPKE so clearing the
372 	 * bit does nothing.
373 	 *
374 	 * This way, we will see "pku" in cpuinfo, but not
375 	 * "ospke", which is exactly what we want.  It shows
376 	 * that the CPU has PKU, but the OS has not enabled it.
377 	 * This happens to be exactly how a system would look
378 	 * if we disabled the config option.
379 	 */
380 	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
381 	pku_disabled = true;
382 	return 1;
383 }
384 __setup("nopku", setup_disable_pku);
385 #endif /* CONFIG_X86_64 */
386 
387 /*
388  * Some CPU features depend on higher CPUID levels, which may not always
389  * be available due to CPUID level capping or broken virtualization
390  * software.  Add those features to this table to auto-disable them.
391  */
392 struct cpuid_dependent_feature {
393 	u32 feature;
394 	u32 level;
395 };
396 
397 static const struct cpuid_dependent_feature
398 cpuid_dependent_features[] = {
399 	{ X86_FEATURE_MWAIT,		0x00000005 },
400 	{ X86_FEATURE_DCA,		0x00000009 },
401 	{ X86_FEATURE_XSAVE,		0x0000000d },
402 	{ 0, 0 }
403 };
404 
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)405 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
406 {
407 	const struct cpuid_dependent_feature *df;
408 
409 	for (df = cpuid_dependent_features; df->feature; df++) {
410 
411 		if (!cpu_has(c, df->feature))
412 			continue;
413 		/*
414 		 * Note: cpuid_level is set to -1 if unavailable, but
415 		 * extended_extended_level is set to 0 if unavailable
416 		 * and the legitimate extended levels are all negative
417 		 * when signed; hence the weird messing around with
418 		 * signs here...
419 		 */
420 		if (!((s32)df->level < 0 ?
421 		     (u32)df->level > (u32)c->extended_cpuid_level :
422 		     (s32)df->level > (s32)c->cpuid_level))
423 			continue;
424 
425 		clear_cpu_cap(c, df->feature);
426 		if (!warn)
427 			continue;
428 
429 		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
430 			x86_cap_flag(df->feature), df->level);
431 	}
432 }
433 
434 /*
435  * Naming convention should be: <Name> [(<Codename>)]
436  * This table only is used unless init_<vendor>() below doesn't set it;
437  * in particular, if CPUID levels 0x80000002..4 are supported, this
438  * isn't used
439  */
440 
441 /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)442 static const char *table_lookup_model(struct cpuinfo_x86 *c)
443 {
444 #ifdef CONFIG_X86_32
445 	const struct legacy_cpu_model_info *info;
446 
447 	if (c->x86_model >= 16)
448 		return NULL;	/* Range check */
449 
450 	if (!this_cpu)
451 		return NULL;
452 
453 	info = this_cpu->legacy_models;
454 
455 	while (info->family) {
456 		if (info->family == c->x86)
457 			return info->model_names[c->x86_model];
458 		info++;
459 	}
460 #endif
461 	return NULL;		/* Not found */
462 }
463 
464 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
465 __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
466 
load_percpu_segment(int cpu)467 void load_percpu_segment(int cpu)
468 {
469 #ifdef CONFIG_X86_32
470 	loadsegment(fs, __KERNEL_PERCPU);
471 #else
472 	__loadsegment_simple(gs, 0);
473 	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
474 #endif
475 	load_stack_canary_segment();
476 }
477 
478 #ifdef CONFIG_X86_32
479 /* The 32-bit entry code needs to find cpu_entry_area. */
480 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
481 #endif
482 
483 #ifdef CONFIG_X86_64
484 /*
485  * Special IST stacks which the CPU switches to when it calls
486  * an IST-marked descriptor entry. Up to 7 stacks (hardware
487  * limit), all of them are 4K, except the debug stack which
488  * is 8K.
489  */
490 static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
491 	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
492 	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
493 };
494 #endif
495 
496 /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)497 void load_direct_gdt(int cpu)
498 {
499 	struct desc_ptr gdt_descr;
500 
501 	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
502 	gdt_descr.size = GDT_SIZE - 1;
503 	load_gdt(&gdt_descr);
504 }
505 EXPORT_SYMBOL_GPL(load_direct_gdt);
506 
507 /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)508 void load_fixmap_gdt(int cpu)
509 {
510 	struct desc_ptr gdt_descr;
511 
512 	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
513 	gdt_descr.size = GDT_SIZE - 1;
514 	load_gdt(&gdt_descr);
515 }
516 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
517 
518 /*
519  * Current gdt points %fs at the "master" per-cpu area: after this,
520  * it's on the real one.
521  */
switch_to_new_gdt(int cpu)522 void switch_to_new_gdt(int cpu)
523 {
524 	/* Load the original GDT */
525 	load_direct_gdt(cpu);
526 	/* Reload the per-cpu base */
527 	load_percpu_segment(cpu);
528 }
529 
530 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
531 
get_model_name(struct cpuinfo_x86 * c)532 static void get_model_name(struct cpuinfo_x86 *c)
533 {
534 	unsigned int *v;
535 	char *p, *q, *s;
536 
537 	if (c->extended_cpuid_level < 0x80000004)
538 		return;
539 
540 	v = (unsigned int *)c->x86_model_id;
541 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
542 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
543 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
544 	c->x86_model_id[48] = 0;
545 
546 	/* Trim whitespace */
547 	p = q = s = &c->x86_model_id[0];
548 
549 	while (*p == ' ')
550 		p++;
551 
552 	while (*p) {
553 		/* Note the last non-whitespace index */
554 		if (!isspace(*p))
555 			s = q;
556 
557 		*q++ = *p++;
558 	}
559 
560 	*(s + 1) = '\0';
561 }
562 
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)563 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
564 {
565 	unsigned int n, dummy, ebx, ecx, edx, l2size;
566 
567 	n = c->extended_cpuid_level;
568 
569 	if (n >= 0x80000005) {
570 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
571 		c->x86_cache_size = (ecx>>24) + (edx>>24);
572 #ifdef CONFIG_X86_64
573 		/* On K8 L1 TLB is inclusive, so don't count it */
574 		c->x86_tlbsize = 0;
575 #endif
576 	}
577 
578 	if (n < 0x80000006)	/* Some chips just has a large L1. */
579 		return;
580 
581 	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
582 	l2size = ecx >> 16;
583 
584 #ifdef CONFIG_X86_64
585 	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
586 #else
587 	/* do processor-specific cache resizing */
588 	if (this_cpu->legacy_cache_size)
589 		l2size = this_cpu->legacy_cache_size(c, l2size);
590 
591 	/* Allow user to override all this if necessary. */
592 	if (cachesize_override != -1)
593 		l2size = cachesize_override;
594 
595 	if (l2size == 0)
596 		return;		/* Again, no L2 cache is possible */
597 #endif
598 
599 	c->x86_cache_size = l2size;
600 }
601 
602 u16 __read_mostly tlb_lli_4k[NR_INFO];
603 u16 __read_mostly tlb_lli_2m[NR_INFO];
604 u16 __read_mostly tlb_lli_4m[NR_INFO];
605 u16 __read_mostly tlb_lld_4k[NR_INFO];
606 u16 __read_mostly tlb_lld_2m[NR_INFO];
607 u16 __read_mostly tlb_lld_4m[NR_INFO];
608 u16 __read_mostly tlb_lld_1g[NR_INFO];
609 
cpu_detect_tlb(struct cpuinfo_x86 * c)610 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
611 {
612 	if (this_cpu->c_detect_tlb)
613 		this_cpu->c_detect_tlb(c);
614 
615 	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
616 		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
617 		tlb_lli_4m[ENTRIES]);
618 
619 	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
620 		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
621 		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
622 }
623 
detect_ht_early(struct cpuinfo_x86 * c)624 int detect_ht_early(struct cpuinfo_x86 *c)
625 {
626 #ifdef CONFIG_SMP
627 	u32 eax, ebx, ecx, edx;
628 
629 	if (!cpu_has(c, X86_FEATURE_HT))
630 		return -1;
631 
632 	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
633 		return -1;
634 
635 	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
636 		return -1;
637 
638 	cpuid(1, &eax, &ebx, &ecx, &edx);
639 
640 	smp_num_siblings = (ebx & 0xff0000) >> 16;
641 	if (smp_num_siblings == 1)
642 		pr_info_once("CPU0: Hyper-Threading is disabled\n");
643 #endif
644 	return 0;
645 }
646 
detect_ht(struct cpuinfo_x86 * c)647 void detect_ht(struct cpuinfo_x86 *c)
648 {
649 #ifdef CONFIG_SMP
650 	int index_msb, core_bits;
651 
652 	if (detect_ht_early(c) < 0)
653 		return;
654 
655 	index_msb = get_count_order(smp_num_siblings);
656 	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
657 
658 	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
659 
660 	index_msb = get_count_order(smp_num_siblings);
661 
662 	core_bits = get_count_order(c->x86_max_cores);
663 
664 	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
665 				       ((1 << core_bits) - 1);
666 #endif
667 }
668 
get_cpu_vendor(struct cpuinfo_x86 * c)669 static void get_cpu_vendor(struct cpuinfo_x86 *c)
670 {
671 	char *v = c->x86_vendor_id;
672 	int i;
673 
674 	for (i = 0; i < X86_VENDOR_NUM; i++) {
675 		if (!cpu_devs[i])
676 			break;
677 
678 		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
679 		    (cpu_devs[i]->c_ident[1] &&
680 		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
681 
682 			this_cpu = cpu_devs[i];
683 			c->x86_vendor = this_cpu->c_x86_vendor;
684 			return;
685 		}
686 	}
687 
688 	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
689 		    "CPU: Your system may be unstable.\n", v);
690 
691 	c->x86_vendor = X86_VENDOR_UNKNOWN;
692 	this_cpu = &default_cpu;
693 }
694 
cpu_detect(struct cpuinfo_x86 * c)695 void cpu_detect(struct cpuinfo_x86 *c)
696 {
697 	/* Get vendor name */
698 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
699 	      (unsigned int *)&c->x86_vendor_id[0],
700 	      (unsigned int *)&c->x86_vendor_id[8],
701 	      (unsigned int *)&c->x86_vendor_id[4]);
702 
703 	c->x86 = 4;
704 	/* Intel-defined flags: level 0x00000001 */
705 	if (c->cpuid_level >= 0x00000001) {
706 		u32 junk, tfms, cap0, misc;
707 
708 		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
709 		c->x86		= x86_family(tfms);
710 		c->x86_model	= x86_model(tfms);
711 		c->x86_stepping	= x86_stepping(tfms);
712 
713 		if (cap0 & (1<<19)) {
714 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
715 			c->x86_cache_alignment = c->x86_clflush_size;
716 		}
717 	}
718 }
719 
apply_forced_caps(struct cpuinfo_x86 * c)720 static void apply_forced_caps(struct cpuinfo_x86 *c)
721 {
722 	int i;
723 
724 	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
725 		c->x86_capability[i] &= ~cpu_caps_cleared[i];
726 		c->x86_capability[i] |= cpu_caps_set[i];
727 	}
728 }
729 
init_speculation_control(struct cpuinfo_x86 * c)730 static void init_speculation_control(struct cpuinfo_x86 *c)
731 {
732 	/*
733 	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
734 	 * and they also have a different bit for STIBP support. Also,
735 	 * a hypervisor might have set the individual AMD bits even on
736 	 * Intel CPUs, for finer-grained selection of what's available.
737 	 */
738 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
739 		set_cpu_cap(c, X86_FEATURE_IBRS);
740 		set_cpu_cap(c, X86_FEATURE_IBPB);
741 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
742 	}
743 
744 	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
745 		set_cpu_cap(c, X86_FEATURE_STIBP);
746 
747 	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
748 	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
749 		set_cpu_cap(c, X86_FEATURE_SSBD);
750 
751 	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
752 		set_cpu_cap(c, X86_FEATURE_IBRS);
753 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
754 	}
755 
756 	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
757 		set_cpu_cap(c, X86_FEATURE_IBPB);
758 
759 	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
760 		set_cpu_cap(c, X86_FEATURE_STIBP);
761 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
762 	}
763 
764 	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
765 		set_cpu_cap(c, X86_FEATURE_SSBD);
766 		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
767 		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
768 	}
769 }
770 
init_cqm(struct cpuinfo_x86 * c)771 static void init_cqm(struct cpuinfo_x86 *c)
772 {
773 	if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
774 		c->x86_cache_max_rmid  = -1;
775 		c->x86_cache_occ_scale = -1;
776 		return;
777 	}
778 
779 	/* will be overridden if occupancy monitoring exists */
780 	c->x86_cache_max_rmid = cpuid_ebx(0xf);
781 
782 	if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
783 	    cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
784 	    cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
785 		u32 eax, ebx, ecx, edx;
786 
787 		/* QoS sub-leaf, EAX=0Fh, ECX=1 */
788 		cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
789 
790 		c->x86_cache_max_rmid  = ecx;
791 		c->x86_cache_occ_scale = ebx;
792 	}
793 }
794 
get_cpu_cap(struct cpuinfo_x86 * c)795 void get_cpu_cap(struct cpuinfo_x86 *c)
796 {
797 	u32 eax, ebx, ecx, edx;
798 
799 	/* Intel-defined flags: level 0x00000001 */
800 	if (c->cpuid_level >= 0x00000001) {
801 		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
802 
803 		c->x86_capability[CPUID_1_ECX] = ecx;
804 		c->x86_capability[CPUID_1_EDX] = edx;
805 	}
806 
807 	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
808 	if (c->cpuid_level >= 0x00000006)
809 		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
810 
811 	/* Additional Intel-defined flags: level 0x00000007 */
812 	if (c->cpuid_level >= 0x00000007) {
813 		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
814 		c->x86_capability[CPUID_7_0_EBX] = ebx;
815 		c->x86_capability[CPUID_7_ECX] = ecx;
816 		c->x86_capability[CPUID_7_EDX] = edx;
817 	}
818 
819 	/* Extended state features: level 0x0000000d */
820 	if (c->cpuid_level >= 0x0000000d) {
821 		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
822 
823 		c->x86_capability[CPUID_D_1_EAX] = eax;
824 	}
825 
826 	/* AMD-defined flags: level 0x80000001 */
827 	eax = cpuid_eax(0x80000000);
828 	c->extended_cpuid_level = eax;
829 
830 	if ((eax & 0xffff0000) == 0x80000000) {
831 		if (eax >= 0x80000001) {
832 			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
833 
834 			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
835 			c->x86_capability[CPUID_8000_0001_EDX] = edx;
836 		}
837 	}
838 
839 	if (c->extended_cpuid_level >= 0x80000007) {
840 		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
841 
842 		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
843 		c->x86_power = edx;
844 	}
845 
846 	if (c->extended_cpuid_level >= 0x80000008) {
847 		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
848 
849 		c->x86_virt_bits = (eax >> 8) & 0xff;
850 		c->x86_phys_bits = eax & 0xff;
851 		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
852 	}
853 #ifdef CONFIG_X86_32
854 	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
855 		c->x86_phys_bits = 36;
856 #endif
857 
858 	if (c->extended_cpuid_level >= 0x8000000a)
859 		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
860 
861 	init_scattered_cpuid_features(c);
862 	init_speculation_control(c);
863 	init_cqm(c);
864 
865 	/*
866 	 * Clear/Set all flags overridden by options, after probe.
867 	 * This needs to happen each time we re-probe, which may happen
868 	 * several times during CPU initialization.
869 	 */
870 	apply_forced_caps(c);
871 }
872 
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)873 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
874 {
875 #ifdef CONFIG_X86_32
876 	int i;
877 
878 	/*
879 	 * First of all, decide if this is a 486 or higher
880 	 * It's a 486 if we can modify the AC flag
881 	 */
882 	if (flag_is_changeable_p(X86_EFLAGS_AC))
883 		c->x86 = 4;
884 	else
885 		c->x86 = 3;
886 
887 	for (i = 0; i < X86_VENDOR_NUM; i++)
888 		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
889 			c->x86_vendor_id[0] = 0;
890 			cpu_devs[i]->c_identify(c);
891 			if (c->x86_vendor_id[0]) {
892 				get_cpu_vendor(c);
893 				break;
894 			}
895 		}
896 #endif
897 	c->x86_cache_bits = c->x86_phys_bits;
898 }
899 
900 #define NO_SPECULATION		BIT(0)
901 #define NO_MELTDOWN		BIT(1)
902 #define NO_SSB			BIT(2)
903 #define NO_L1TF			BIT(3)
904 #define NO_MDS			BIT(4)
905 #define MSBDS_ONLY		BIT(5)
906 #define NO_SWAPGS		BIT(6)
907 #define NO_ITLB_MULTIHIT	BIT(7)
908 
909 #define VULNWL(_vendor, _family, _model, _whitelist)	\
910 	{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
911 
912 #define VULNWL_INTEL(model, whitelist)		\
913 	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
914 
915 #define VULNWL_AMD(family, whitelist)		\
916 	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
917 
918 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
919 	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
920 	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
921 	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
922 	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
923 
924 	/* Intel Family 6 */
925 	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
926 	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
927 	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
928 	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
929 	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
930 
931 	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
932 	VULNWL_INTEL(ATOM_SILVERMONT_X,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
933 	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
934 	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
935 	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
936 	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
937 
938 	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
939 
940 	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
941 
942 	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
943 	VULNWL_INTEL(ATOM_GOLDMONT_X,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
944 	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
945 
946 	/*
947 	 * Technically, swapgs isn't serializing on AMD (despite it previously
948 	 * being documented as such in the APM).  But according to AMD, %gs is
949 	 * updated non-speculatively, and the issuing of %gs-relative memory
950 	 * operands will be blocked until the %gs update completes, which is
951 	 * good enough for our purposes.
952 	 */
953 
954 	VULNWL_INTEL(ATOM_TREMONT_X,		NO_ITLB_MULTIHIT),
955 
956 	/* AMD Family 0xf - 0x12 */
957 	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
958 	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
959 	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
960 	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
961 
962 	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
963 	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
964 	{}
965 };
966 
cpu_matches(unsigned long which)967 static bool __init cpu_matches(unsigned long which)
968 {
969 	const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
970 
971 	return m && !!(m->driver_data & which);
972 }
973 
x86_read_arch_cap_msr(void)974 u64 x86_read_arch_cap_msr(void)
975 {
976 	u64 ia32_cap = 0;
977 
978 	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
979 		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
980 
981 	return ia32_cap;
982 }
983 
cpu_set_bug_bits(struct cpuinfo_x86 * c)984 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
985 {
986 	u64 ia32_cap = x86_read_arch_cap_msr();
987 
988 	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
989 	if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
990 		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
991 
992 	if (cpu_matches(NO_SPECULATION))
993 		return;
994 
995 	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
996 	setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
997 
998 	if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
999 	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1000 		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1001 
1002 	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1003 		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1004 
1005 	if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1006 		setup_force_cpu_bug(X86_BUG_MDS);
1007 		if (cpu_matches(MSBDS_ONLY))
1008 			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1009 	}
1010 
1011 	if (!cpu_matches(NO_SWAPGS))
1012 		setup_force_cpu_bug(X86_BUG_SWAPGS);
1013 
1014 	/*
1015 	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1016 	 *	- TSX is supported or
1017 	 *	- TSX_CTRL is present
1018 	 *
1019 	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1020 	 * the kernel boot e.g. kexec.
1021 	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1022 	 * update is not present or running as guest that don't get TSX_CTRL.
1023 	 */
1024 	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1025 	    (cpu_has(c, X86_FEATURE_RTM) ||
1026 	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1027 		setup_force_cpu_bug(X86_BUG_TAA);
1028 
1029 	if (cpu_matches(NO_MELTDOWN))
1030 		return;
1031 
1032 	/* Rogue Data Cache Load? No! */
1033 	if (ia32_cap & ARCH_CAP_RDCL_NO)
1034 		return;
1035 
1036 	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1037 
1038 	if (cpu_matches(NO_L1TF))
1039 		return;
1040 
1041 	setup_force_cpu_bug(X86_BUG_L1TF);
1042 }
1043 
1044 /*
1045  * Do minimum CPU detection early.
1046  * Fields really needed: vendor, cpuid_level, family, model, mask,
1047  * cache alignment.
1048  * The others are not touched to avoid unwanted side effects.
1049  *
1050  * WARNING: this function is only called on the BP.  Don't add code here
1051  * that is supposed to run on all CPUs.
1052  */
early_identify_cpu(struct cpuinfo_x86 * c)1053 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1054 {
1055 #ifdef CONFIG_X86_64
1056 	c->x86_clflush_size = 64;
1057 	c->x86_phys_bits = 36;
1058 	c->x86_virt_bits = 48;
1059 #else
1060 	c->x86_clflush_size = 32;
1061 	c->x86_phys_bits = 32;
1062 	c->x86_virt_bits = 32;
1063 #endif
1064 	c->x86_cache_alignment = c->x86_clflush_size;
1065 
1066 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1067 	c->extended_cpuid_level = 0;
1068 
1069 	if (!have_cpuid_p())
1070 		identify_cpu_without_cpuid(c);
1071 
1072 	/* cyrix could have cpuid enabled via c_identify()*/
1073 	if (have_cpuid_p()) {
1074 		cpu_detect(c);
1075 		get_cpu_vendor(c);
1076 		get_cpu_cap(c);
1077 		setup_force_cpu_cap(X86_FEATURE_CPUID);
1078 
1079 		if (this_cpu->c_early_init)
1080 			this_cpu->c_early_init(c);
1081 
1082 		c->cpu_index = 0;
1083 		filter_cpuid_features(c, false);
1084 
1085 		if (this_cpu->c_bsp_init)
1086 			this_cpu->c_bsp_init(c);
1087 	} else {
1088 		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1089 	}
1090 
1091 	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1092 
1093 	cpu_set_bug_bits(c);
1094 
1095 	fpu__init_system(c);
1096 
1097 #ifdef CONFIG_X86_32
1098 	/*
1099 	 * Regardless of whether PCID is enumerated, the SDM says
1100 	 * that it can't be enabled in 32-bit mode.
1101 	 */
1102 	setup_clear_cpu_cap(X86_FEATURE_PCID);
1103 #endif
1104 }
1105 
early_cpu_init(void)1106 void __init early_cpu_init(void)
1107 {
1108 	const struct cpu_dev *const *cdev;
1109 	int count = 0;
1110 
1111 #ifdef CONFIG_PROCESSOR_SELECT
1112 	pr_info("KERNEL supported cpus:\n");
1113 #endif
1114 
1115 	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1116 		const struct cpu_dev *cpudev = *cdev;
1117 
1118 		if (count >= X86_VENDOR_NUM)
1119 			break;
1120 		cpu_devs[count] = cpudev;
1121 		count++;
1122 
1123 #ifdef CONFIG_PROCESSOR_SELECT
1124 		{
1125 			unsigned int j;
1126 
1127 			for (j = 0; j < 2; j++) {
1128 				if (!cpudev->c_ident[j])
1129 					continue;
1130 				pr_info("  %s %s\n", cpudev->c_vendor,
1131 					cpudev->c_ident[j]);
1132 			}
1133 		}
1134 #endif
1135 	}
1136 	early_identify_cpu(&boot_cpu_data);
1137 }
1138 
1139 /*
1140  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1141  * unfortunately, that's not true in practice because of early VIA
1142  * chips and (more importantly) broken virtualizers that are not easy
1143  * to detect. In the latter case it doesn't even *fail* reliably, so
1144  * probing for it doesn't even work. Disable it completely on 32-bit
1145  * unless we can find a reliable way to detect all the broken cases.
1146  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1147  */
detect_nopl(struct cpuinfo_x86 * c)1148 static void detect_nopl(struct cpuinfo_x86 *c)
1149 {
1150 #ifdef CONFIG_X86_32
1151 	clear_cpu_cap(c, X86_FEATURE_NOPL);
1152 #else
1153 	set_cpu_cap(c, X86_FEATURE_NOPL);
1154 #endif
1155 }
1156 
detect_null_seg_behavior(struct cpuinfo_x86 * c)1157 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1158 {
1159 #ifdef CONFIG_X86_64
1160 	/*
1161 	 * Empirically, writing zero to a segment selector on AMD does
1162 	 * not clear the base, whereas writing zero to a segment
1163 	 * selector on Intel does clear the base.  Intel's behavior
1164 	 * allows slightly faster context switches in the common case
1165 	 * where GS is unused by the prev and next threads.
1166 	 *
1167 	 * Since neither vendor documents this anywhere that I can see,
1168 	 * detect it directly instead of hardcoding the choice by
1169 	 * vendor.
1170 	 *
1171 	 * I've designated AMD's behavior as the "bug" because it's
1172 	 * counterintuitive and less friendly.
1173 	 */
1174 
1175 	unsigned long old_base, tmp;
1176 	rdmsrl(MSR_FS_BASE, old_base);
1177 	wrmsrl(MSR_FS_BASE, 1);
1178 	loadsegment(fs, 0);
1179 	rdmsrl(MSR_FS_BASE, tmp);
1180 	if (tmp != 0)
1181 		set_cpu_bug(c, X86_BUG_NULL_SEG);
1182 	wrmsrl(MSR_FS_BASE, old_base);
1183 #endif
1184 }
1185 
generic_identify(struct cpuinfo_x86 * c)1186 static void generic_identify(struct cpuinfo_x86 *c)
1187 {
1188 	c->extended_cpuid_level = 0;
1189 
1190 	if (!have_cpuid_p())
1191 		identify_cpu_without_cpuid(c);
1192 
1193 	/* cyrix could have cpuid enabled via c_identify()*/
1194 	if (!have_cpuid_p())
1195 		return;
1196 
1197 	cpu_detect(c);
1198 
1199 	get_cpu_vendor(c);
1200 
1201 	get_cpu_cap(c);
1202 
1203 	if (c->cpuid_level >= 0x00000001) {
1204 		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1205 #ifdef CONFIG_X86_32
1206 # ifdef CONFIG_SMP
1207 		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1208 # else
1209 		c->apicid = c->initial_apicid;
1210 # endif
1211 #endif
1212 		c->phys_proc_id = c->initial_apicid;
1213 	}
1214 
1215 	get_model_name(c); /* Default name */
1216 
1217 	detect_nopl(c);
1218 
1219 	detect_null_seg_behavior(c);
1220 
1221 	/*
1222 	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1223 	 * systems that run Linux at CPL > 0 may or may not have the
1224 	 * issue, but, even if they have the issue, there's absolutely
1225 	 * nothing we can do about it because we can't use the real IRET
1226 	 * instruction.
1227 	 *
1228 	 * NB: For the time being, only 32-bit kernels support
1229 	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1230 	 * whether to apply espfix using paravirt hooks.  If any
1231 	 * non-paravirt system ever shows up that does *not* have the
1232 	 * ESPFIX issue, we can change this.
1233 	 */
1234 #ifdef CONFIG_X86_32
1235 # ifdef CONFIG_PARAVIRT
1236 	do {
1237 		extern void native_iret(void);
1238 		if (pv_cpu_ops.iret == native_iret)
1239 			set_cpu_bug(c, X86_BUG_ESPFIX);
1240 	} while (0);
1241 # else
1242 	set_cpu_bug(c, X86_BUG_ESPFIX);
1243 # endif
1244 #endif
1245 }
1246 
x86_init_cache_qos(struct cpuinfo_x86 * c)1247 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1248 {
1249 	/*
1250 	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1251 	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1252 	 * in case CQM bits really aren't there in this CPU.
1253 	 */
1254 	if (c != &boot_cpu_data) {
1255 		boot_cpu_data.x86_cache_max_rmid =
1256 			min(boot_cpu_data.x86_cache_max_rmid,
1257 			    c->x86_cache_max_rmid);
1258 	}
1259 }
1260 
1261 /*
1262  * Validate that ACPI/mptables have the same information about the
1263  * effective APIC id and update the package map.
1264  */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1265 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1266 {
1267 #ifdef CONFIG_SMP
1268 	unsigned int apicid, cpu = smp_processor_id();
1269 
1270 	apicid = apic->cpu_present_to_apicid(cpu);
1271 
1272 	if (apicid != c->apicid) {
1273 		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1274 		       cpu, apicid, c->initial_apicid);
1275 	}
1276 	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1277 #else
1278 	c->logical_proc_id = 0;
1279 #endif
1280 }
1281 
1282 /*
1283  * This does the hard work of actually picking apart the CPU stuff...
1284  */
identify_cpu(struct cpuinfo_x86 * c)1285 static void identify_cpu(struct cpuinfo_x86 *c)
1286 {
1287 	int i;
1288 
1289 	c->loops_per_jiffy = loops_per_jiffy;
1290 	c->x86_cache_size = 0;
1291 	c->x86_vendor = X86_VENDOR_UNKNOWN;
1292 	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1293 	c->x86_vendor_id[0] = '\0'; /* Unset */
1294 	c->x86_model_id[0] = '\0';  /* Unset */
1295 	c->x86_max_cores = 1;
1296 	c->x86_coreid_bits = 0;
1297 	c->cu_id = 0xff;
1298 #ifdef CONFIG_X86_64
1299 	c->x86_clflush_size = 64;
1300 	c->x86_phys_bits = 36;
1301 	c->x86_virt_bits = 48;
1302 #else
1303 	c->cpuid_level = -1;	/* CPUID not detected */
1304 	c->x86_clflush_size = 32;
1305 	c->x86_phys_bits = 32;
1306 	c->x86_virt_bits = 32;
1307 #endif
1308 	c->x86_cache_alignment = c->x86_clflush_size;
1309 	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1310 
1311 	generic_identify(c);
1312 
1313 	if (this_cpu->c_identify)
1314 		this_cpu->c_identify(c);
1315 
1316 	/* Clear/Set all flags overridden by options, after probe */
1317 	apply_forced_caps(c);
1318 
1319 #ifdef CONFIG_X86_64
1320 	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1321 #endif
1322 
1323 	/*
1324 	 * Vendor-specific initialization.  In this section we
1325 	 * canonicalize the feature flags, meaning if there are
1326 	 * features a certain CPU supports which CPUID doesn't
1327 	 * tell us, CPUID claiming incorrect flags, or other bugs,
1328 	 * we handle them here.
1329 	 *
1330 	 * At the end of this section, c->x86_capability better
1331 	 * indicate the features this CPU genuinely supports!
1332 	 */
1333 	if (this_cpu->c_init)
1334 		this_cpu->c_init(c);
1335 
1336 	/* Disable the PN if appropriate */
1337 	squash_the_stupid_serial_number(c);
1338 
1339 	/* Set up SMEP/SMAP */
1340 	setup_smep(c);
1341 	setup_smap(c);
1342 
1343 	/*
1344 	 * The vendor-specific functions might have changed features.
1345 	 * Now we do "generic changes."
1346 	 */
1347 
1348 	/* Filter out anything that depends on CPUID levels we don't have */
1349 	filter_cpuid_features(c, true);
1350 
1351 	/* If the model name is still unset, do table lookup. */
1352 	if (!c->x86_model_id[0]) {
1353 		const char *p;
1354 		p = table_lookup_model(c);
1355 		if (p)
1356 			strcpy(c->x86_model_id, p);
1357 		else
1358 			/* Last resort... */
1359 			sprintf(c->x86_model_id, "%02x/%02x",
1360 				c->x86, c->x86_model);
1361 	}
1362 
1363 #ifdef CONFIG_X86_64
1364 	detect_ht(c);
1365 #endif
1366 
1367 	x86_init_rdrand(c);
1368 	x86_init_cache_qos(c);
1369 	setup_pku(c);
1370 
1371 	/*
1372 	 * Clear/Set all flags overridden by options, need do it
1373 	 * before following smp all cpus cap AND.
1374 	 */
1375 	apply_forced_caps(c);
1376 
1377 	/*
1378 	 * On SMP, boot_cpu_data holds the common feature set between
1379 	 * all CPUs; so make sure that we indicate which features are
1380 	 * common between the CPUs.  The first time this routine gets
1381 	 * executed, c == &boot_cpu_data.
1382 	 */
1383 	if (c != &boot_cpu_data) {
1384 		/* AND the already accumulated flags with these */
1385 		for (i = 0; i < NCAPINTS; i++)
1386 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1387 
1388 		/* OR, i.e. replicate the bug flags */
1389 		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1390 			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1391 	}
1392 
1393 	/* Init Machine Check Exception if available. */
1394 	mcheck_cpu_init(c);
1395 
1396 	select_idle_routine(c);
1397 
1398 #ifdef CONFIG_NUMA
1399 	numa_add_cpu(smp_processor_id());
1400 #endif
1401 }
1402 
1403 /*
1404  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1405  * on 32-bit kernels:
1406  */
1407 #ifdef CONFIG_X86_32
enable_sep_cpu(void)1408 void enable_sep_cpu(void)
1409 {
1410 	struct tss_struct *tss;
1411 	int cpu;
1412 
1413 	if (!boot_cpu_has(X86_FEATURE_SEP))
1414 		return;
1415 
1416 	cpu = get_cpu();
1417 	tss = &per_cpu(cpu_tss_rw, cpu);
1418 
1419 	/*
1420 	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1421 	 * see the big comment in struct x86_hw_tss's definition.
1422 	 */
1423 
1424 	tss->x86_tss.ss1 = __KERNEL_CS;
1425 	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1426 	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1427 	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1428 
1429 	put_cpu();
1430 }
1431 #endif
1432 
identify_boot_cpu(void)1433 void __init identify_boot_cpu(void)
1434 {
1435 	identify_cpu(&boot_cpu_data);
1436 #ifdef CONFIG_X86_32
1437 	sysenter_setup();
1438 	enable_sep_cpu();
1439 #endif
1440 	cpu_detect_tlb(&boot_cpu_data);
1441 	tsx_init();
1442 }
1443 
identify_secondary_cpu(struct cpuinfo_x86 * c)1444 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1445 {
1446 	BUG_ON(c == &boot_cpu_data);
1447 	identify_cpu(c);
1448 #ifdef CONFIG_X86_32
1449 	enable_sep_cpu();
1450 #endif
1451 	mtrr_ap_init();
1452 	validate_apic_and_package_id(c);
1453 	x86_spec_ctrl_setup_ap();
1454 }
1455 
setup_noclflush(char * arg)1456 static __init int setup_noclflush(char *arg)
1457 {
1458 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1459 	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1460 	return 1;
1461 }
1462 __setup("noclflush", setup_noclflush);
1463 
print_cpu_info(struct cpuinfo_x86 * c)1464 void print_cpu_info(struct cpuinfo_x86 *c)
1465 {
1466 	const char *vendor = NULL;
1467 
1468 	if (c->x86_vendor < X86_VENDOR_NUM) {
1469 		vendor = this_cpu->c_vendor;
1470 	} else {
1471 		if (c->cpuid_level >= 0)
1472 			vendor = c->x86_vendor_id;
1473 	}
1474 
1475 	if (vendor && !strstr(c->x86_model_id, vendor))
1476 		pr_cont("%s ", vendor);
1477 
1478 	if (c->x86_model_id[0])
1479 		pr_cont("%s", c->x86_model_id);
1480 	else
1481 		pr_cont("%d86", c->x86);
1482 
1483 	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1484 
1485 	if (c->x86_stepping || c->cpuid_level >= 0)
1486 		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1487 	else
1488 		pr_cont(")\n");
1489 }
1490 
1491 /*
1492  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1493  * But we need to keep a dummy __setup around otherwise it would
1494  * show up as an environment variable for init.
1495  */
setup_clearcpuid(char * arg)1496 static __init int setup_clearcpuid(char *arg)
1497 {
1498 	return 1;
1499 }
1500 __setup("clearcpuid=", setup_clearcpuid);
1501 
1502 #ifdef CONFIG_X86_64
1503 DEFINE_PER_CPU_FIRST(union irq_stack_union,
1504 		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1505 
1506 /*
1507  * The following percpu variables are hot.  Align current_task to
1508  * cacheline size such that they fall in the same cacheline.
1509  */
1510 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1511 	&init_task;
1512 EXPORT_PER_CPU_SYMBOL(current_task);
1513 
1514 DEFINE_PER_CPU(char *, irq_stack_ptr) =
1515 	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1516 
1517 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1518 
1519 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1520 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1521 
1522 /* May not be marked __init: used by software suspend */
syscall_init(void)1523 void syscall_init(void)
1524 {
1525 	extern char _entry_trampoline[];
1526 	extern char entry_SYSCALL_64_trampoline[];
1527 
1528 	int cpu = smp_processor_id();
1529 	unsigned long SYSCALL64_entry_trampoline =
1530 		(unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1531 		(entry_SYSCALL_64_trampoline - _entry_trampoline);
1532 
1533 	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1534 	if (static_cpu_has(X86_FEATURE_PTI))
1535 		wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1536 	else
1537 		wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1538 
1539 #ifdef CONFIG_IA32_EMULATION
1540 	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1541 	/*
1542 	 * This only works on Intel CPUs.
1543 	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1544 	 * This does not cause SYSENTER to jump to the wrong location, because
1545 	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1546 	 */
1547 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1548 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1549 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1550 #else
1551 	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1552 	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1553 	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1554 	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1555 #endif
1556 
1557 	/* Flags to clear on syscall */
1558 	wrmsrl(MSR_SYSCALL_MASK,
1559 	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1560 	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1561 }
1562 
1563 /*
1564  * Copies of the original ist values from the tss are only accessed during
1565  * debugging, no special alignment required.
1566  */
1567 DEFINE_PER_CPU(struct orig_ist, orig_ist);
1568 
1569 static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1570 DEFINE_PER_CPU(int, debug_stack_usage);
1571 
is_debug_stack(unsigned long addr)1572 int is_debug_stack(unsigned long addr)
1573 {
1574 	return __this_cpu_read(debug_stack_usage) ||
1575 		(addr <= __this_cpu_read(debug_stack_addr) &&
1576 		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1577 }
1578 NOKPROBE_SYMBOL(is_debug_stack);
1579 
1580 DEFINE_PER_CPU(u32, debug_idt_ctr);
1581 
debug_stack_set_zero(void)1582 void debug_stack_set_zero(void)
1583 {
1584 	this_cpu_inc(debug_idt_ctr);
1585 	load_current_idt();
1586 }
1587 NOKPROBE_SYMBOL(debug_stack_set_zero);
1588 
debug_stack_reset(void)1589 void debug_stack_reset(void)
1590 {
1591 	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1592 		return;
1593 	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1594 		load_current_idt();
1595 }
1596 NOKPROBE_SYMBOL(debug_stack_reset);
1597 
1598 #else	/* CONFIG_X86_64 */
1599 
1600 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1601 EXPORT_PER_CPU_SYMBOL(current_task);
1602 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1603 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1604 
1605 /*
1606  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1607  * the top of the kernel stack.  Use an extra percpu variable to track the
1608  * top of the kernel stack directly.
1609  */
1610 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1611 	(unsigned long)&init_thread_union + THREAD_SIZE;
1612 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1613 
1614 #ifdef CONFIG_CC_STACKPROTECTOR
1615 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1616 #endif
1617 
1618 #endif	/* CONFIG_X86_64 */
1619 
1620 /*
1621  * Clear all 6 debug registers:
1622  */
clear_all_debug_regs(void)1623 static void clear_all_debug_regs(void)
1624 {
1625 	int i;
1626 
1627 	for (i = 0; i < 8; i++) {
1628 		/* Ignore db4, db5 */
1629 		if ((i == 4) || (i == 5))
1630 			continue;
1631 
1632 		set_debugreg(0, i);
1633 	}
1634 }
1635 
1636 #ifdef CONFIG_KGDB
1637 /*
1638  * Restore debug regs if using kgdbwait and you have a kernel debugger
1639  * connection established.
1640  */
dbg_restore_debug_regs(void)1641 static void dbg_restore_debug_regs(void)
1642 {
1643 	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1644 		arch_kgdb_ops.correct_hw_break();
1645 }
1646 #else /* ! CONFIG_KGDB */
1647 #define dbg_restore_debug_regs()
1648 #endif /* ! CONFIG_KGDB */
1649 
wait_for_master_cpu(int cpu)1650 static void wait_for_master_cpu(int cpu)
1651 {
1652 #ifdef CONFIG_SMP
1653 	/*
1654 	 * wait for ACK from master CPU before continuing
1655 	 * with AP initialization
1656 	 */
1657 	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1658 	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1659 		cpu_relax();
1660 #endif
1661 }
1662 
1663 /*
1664  * cpu_init() initializes state that is per-CPU. Some data is already
1665  * initialized (naturally) in the bootstrap process, such as the GDT
1666  * and IDT. We reload them nevertheless, this function acts as a
1667  * 'CPU state barrier', nothing should get across.
1668  * A lot of state is already set up in PDA init for 64 bit
1669  */
1670 #ifdef CONFIG_X86_64
1671 
cpu_init(void)1672 void cpu_init(void)
1673 {
1674 	struct orig_ist *oist;
1675 	struct task_struct *me;
1676 	struct tss_struct *t;
1677 	unsigned long v;
1678 	int cpu = raw_smp_processor_id();
1679 	int i;
1680 
1681 	wait_for_master_cpu(cpu);
1682 
1683 	/*
1684 	 * Initialize the CR4 shadow before doing anything that could
1685 	 * try to read it.
1686 	 */
1687 	cr4_init_shadow();
1688 
1689 	if (cpu)
1690 		load_ucode_ap();
1691 
1692 	t = &per_cpu(cpu_tss_rw, cpu);
1693 	oist = &per_cpu(orig_ist, cpu);
1694 
1695 #ifdef CONFIG_NUMA
1696 	if (this_cpu_read(numa_node) == 0 &&
1697 	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1698 		set_numa_node(early_cpu_to_node(cpu));
1699 #endif
1700 
1701 	me = current;
1702 
1703 	pr_debug("Initializing CPU#%d\n", cpu);
1704 
1705 	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1706 
1707 	/*
1708 	 * Initialize the per-CPU GDT with the boot GDT,
1709 	 * and set up the GDT descriptor:
1710 	 */
1711 
1712 	switch_to_new_gdt(cpu);
1713 	loadsegment(fs, 0);
1714 
1715 	load_current_idt();
1716 
1717 	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1718 	syscall_init();
1719 
1720 	wrmsrl(MSR_FS_BASE, 0);
1721 	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1722 	barrier();
1723 
1724 	x86_configure_nx();
1725 	x2apic_setup();
1726 
1727 	/*
1728 	 * set up and load the per-CPU TSS
1729 	 */
1730 	if (!oist->ist[0]) {
1731 		char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1732 
1733 		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1734 			estacks += exception_stack_sizes[v];
1735 			oist->ist[v] = t->x86_tss.ist[v] =
1736 					(unsigned long)estacks;
1737 			if (v == DEBUG_STACK-1)
1738 				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1739 		}
1740 	}
1741 
1742 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1743 
1744 	/*
1745 	 * <= is required because the CPU will access up to
1746 	 * 8 bits beyond the end of the IO permission bitmap.
1747 	 */
1748 	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1749 		t->io_bitmap[i] = ~0UL;
1750 
1751 	mmgrab(&init_mm);
1752 	me->active_mm = &init_mm;
1753 	BUG_ON(me->mm);
1754 	initialize_tlbstate_and_flush();
1755 	enter_lazy_tlb(&init_mm, me);
1756 
1757 	/*
1758 	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1759 	 * regardless of what task is running.
1760 	 */
1761 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1762 	load_TR_desc();
1763 	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1764 
1765 	load_mm_ldt(&init_mm);
1766 
1767 	clear_all_debug_regs();
1768 	dbg_restore_debug_regs();
1769 
1770 	fpu__init_cpu();
1771 
1772 	if (is_uv_system())
1773 		uv_cpu_init();
1774 
1775 	load_fixmap_gdt(cpu);
1776 }
1777 
1778 #else
1779 
cpu_init(void)1780 void cpu_init(void)
1781 {
1782 	int cpu = smp_processor_id();
1783 	struct task_struct *curr = current;
1784 	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1785 
1786 	wait_for_master_cpu(cpu);
1787 
1788 	/*
1789 	 * Initialize the CR4 shadow before doing anything that could
1790 	 * try to read it.
1791 	 */
1792 	cr4_init_shadow();
1793 
1794 	show_ucode_info_early();
1795 
1796 	pr_info("Initializing CPU#%d\n", cpu);
1797 
1798 	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1799 	    boot_cpu_has(X86_FEATURE_TSC) ||
1800 	    boot_cpu_has(X86_FEATURE_DE))
1801 		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1802 
1803 	load_current_idt();
1804 	switch_to_new_gdt(cpu);
1805 
1806 	/*
1807 	 * Set up and load the per-CPU TSS and LDT
1808 	 */
1809 	mmgrab(&init_mm);
1810 	curr->active_mm = &init_mm;
1811 	BUG_ON(curr->mm);
1812 	initialize_tlbstate_and_flush();
1813 	enter_lazy_tlb(&init_mm, curr);
1814 
1815 	/*
1816 	 * Initialize the TSS.  Don't bother initializing sp0, as the initial
1817 	 * task never enters user mode.
1818 	 */
1819 	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1820 	load_TR_desc();
1821 
1822 	load_mm_ldt(&init_mm);
1823 
1824 	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1825 
1826 #ifdef CONFIG_DOUBLEFAULT
1827 	/* Set up doublefault TSS pointer in the GDT */
1828 	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1829 #endif
1830 
1831 	clear_all_debug_regs();
1832 	dbg_restore_debug_regs();
1833 
1834 	fpu__init_cpu();
1835 
1836 	load_fixmap_gdt(cpu);
1837 }
1838 #endif
1839 
bsp_resume(void)1840 static void bsp_resume(void)
1841 {
1842 	if (this_cpu->c_bsp_resume)
1843 		this_cpu->c_bsp_resume(&boot_cpu_data);
1844 }
1845 
1846 static struct syscore_ops cpu_syscore_ops = {
1847 	.resume		= bsp_resume,
1848 };
1849 
init_cpu_syscore(void)1850 static int __init init_cpu_syscore(void)
1851 {
1852 	register_syscore_ops(&cpu_syscore_ops);
1853 	return 0;
1854 }
1855 core_initcall(init_cpu_syscore);
1856 
1857 /*
1858  * The microcode loader calls this upon late microcode load to recheck features,
1859  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1860  * hotplug lock.
1861  */
microcode_check(void)1862 void microcode_check(void)
1863 {
1864 	struct cpuinfo_x86 info;
1865 
1866 	perf_check_microcode();
1867 
1868 	/* Reload CPUID max function as it might've changed. */
1869 	info.cpuid_level = cpuid_eax(0);
1870 
1871 	/*
1872 	 * Copy all capability leafs to pick up the synthetic ones so that
1873 	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1874 	 * get overwritten in get_cpu_cap().
1875 	 */
1876 	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1877 
1878 	get_cpu_cap(&info);
1879 
1880 	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1881 		return;
1882 
1883 	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1884 	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1885 }
1886