• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  #include <linux/bootmem.h>
2  #include <linux/linkage.h>
3  #include <linux/bitops.h>
4  #include <linux/kernel.h>
5  #include <linux/export.h>
6  #include <linux/percpu.h>
7  #include <linux/string.h>
8  #include <linux/ctype.h>
9  #include <linux/delay.h>
10  #include <linux/sched/mm.h>
11  #include <linux/sched/clock.h>
12  #include <linux/sched/task.h>
13  #include <linux/init.h>
14  #include <linux/kprobes.h>
15  #include <linux/kgdb.h>
16  #include <linux/smp.h>
17  #include <linux/io.h>
18  #include <linux/syscore_ops.h>
19  
20  #include <asm/stackprotector.h>
21  #include <asm/perf_event.h>
22  #include <asm/mmu_context.h>
23  #include <asm/archrandom.h>
24  #include <asm/hypervisor.h>
25  #include <asm/processor.h>
26  #include <asm/tlbflush.h>
27  #include <asm/debugreg.h>
28  #include <asm/sections.h>
29  #include <asm/vsyscall.h>
30  #include <linux/topology.h>
31  #include <linux/cpumask.h>
32  #include <asm/pgtable.h>
33  #include <linux/atomic.h>
34  #include <asm/proto.h>
35  #include <asm/setup.h>
36  #include <asm/apic.h>
37  #include <asm/desc.h>
38  #include <asm/fpu/internal.h>
39  #include <asm/mtrr.h>
40  #include <asm/hwcap2.h>
41  #include <linux/numa.h>
42  #include <asm/asm.h>
43  #include <asm/bugs.h>
44  #include <asm/cpu.h>
45  #include <asm/mce.h>
46  #include <asm/msr.h>
47  #include <asm/pat.h>
48  #include <asm/microcode.h>
49  #include <asm/microcode_intel.h>
50  #include <asm/intel-family.h>
51  #include <asm/cpu_device_id.h>
52  
53  #ifdef CONFIG_X86_LOCAL_APIC
54  #include <asm/uv/uv.h>
55  #endif
56  
57  #include "cpu.h"
58  
59  u32 elf_hwcap2 __read_mostly;
60  
61  /* all of these masks are initialized in setup_cpu_local_masks() */
62  cpumask_var_t cpu_initialized_mask;
63  cpumask_var_t cpu_callout_mask;
64  cpumask_var_t cpu_callin_mask;
65  
66  /* representing cpus for which sibling maps can be computed */
67  cpumask_var_t cpu_sibling_setup_mask;
68  
69  /* Number of siblings per CPU package */
70  int smp_num_siblings = 1;
71  EXPORT_SYMBOL(smp_num_siblings);
72  
73  /* Last level cache ID of each logical CPU */
74  DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
75  
76  /* correctly size the local cpu masks */
setup_cpu_local_masks(void)77  void __init setup_cpu_local_masks(void)
78  {
79  	alloc_bootmem_cpumask_var(&cpu_initialized_mask);
80  	alloc_bootmem_cpumask_var(&cpu_callin_mask);
81  	alloc_bootmem_cpumask_var(&cpu_callout_mask);
82  	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
83  }
84  
default_init(struct cpuinfo_x86 * c)85  static void default_init(struct cpuinfo_x86 *c)
86  {
87  #ifdef CONFIG_X86_64
88  	cpu_detect_cache_sizes(c);
89  #else
90  	/* Not much we can do here... */
91  	/* Check if at least it has cpuid */
92  	if (c->cpuid_level == -1) {
93  		/* No cpuid. It must be an ancient CPU */
94  		if (c->x86 == 4)
95  			strcpy(c->x86_model_id, "486");
96  		else if (c->x86 == 3)
97  			strcpy(c->x86_model_id, "386");
98  	}
99  #endif
100  }
101  
102  static const struct cpu_dev default_cpu = {
103  	.c_init		= default_init,
104  	.c_vendor	= "Unknown",
105  	.c_x86_vendor	= X86_VENDOR_UNKNOWN,
106  };
107  
108  static const struct cpu_dev *this_cpu = &default_cpu;
109  
110  DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
111  #ifdef CONFIG_X86_64
112  	/*
113  	 * We need valid kernel segments for data and code in long mode too
114  	 * IRET will check the segment types  kkeil 2000/10/28
115  	 * Also sysret mandates a special GDT layout
116  	 *
117  	 * TLS descriptors are currently at a different place compared to i386.
118  	 * Hopefully nobody expects them at a fixed place (Wine?)
119  	 */
120  	[GDT_ENTRY_KERNEL32_CS]		= GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
121  	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
122  	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
123  	[GDT_ENTRY_DEFAULT_USER32_CS]	= GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
124  	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
125  	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
126  #else
127  	[GDT_ENTRY_KERNEL_CS]		= GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
128  	[GDT_ENTRY_KERNEL_DS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
129  	[GDT_ENTRY_DEFAULT_USER_CS]	= GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
130  	[GDT_ENTRY_DEFAULT_USER_DS]	= GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
131  	/*
132  	 * Segments used for calling PnP BIOS have byte granularity.
133  	 * They code segments and data segments have fixed 64k limits,
134  	 * the transfer segment sizes are set at run time.
135  	 */
136  	/* 32-bit code */
137  	[GDT_ENTRY_PNPBIOS_CS32]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
138  	/* 16-bit code */
139  	[GDT_ENTRY_PNPBIOS_CS16]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
140  	/* 16-bit data */
141  	[GDT_ENTRY_PNPBIOS_DS]		= GDT_ENTRY_INIT(0x0092, 0, 0xffff),
142  	/* 16-bit data */
143  	[GDT_ENTRY_PNPBIOS_TS1]		= GDT_ENTRY_INIT(0x0092, 0, 0),
144  	/* 16-bit data */
145  	[GDT_ENTRY_PNPBIOS_TS2]		= GDT_ENTRY_INIT(0x0092, 0, 0),
146  	/*
147  	 * The APM segments have byte granularity and their bases
148  	 * are set at run time.  All have 64k limits.
149  	 */
150  	/* 32-bit code */
151  	[GDT_ENTRY_APMBIOS_BASE]	= GDT_ENTRY_INIT(0x409a, 0, 0xffff),
152  	/* 16-bit code */
153  	[GDT_ENTRY_APMBIOS_BASE+1]	= GDT_ENTRY_INIT(0x009a, 0, 0xffff),
154  	/* data */
155  	[GDT_ENTRY_APMBIOS_BASE+2]	= GDT_ENTRY_INIT(0x4092, 0, 0xffff),
156  
157  	[GDT_ENTRY_ESPFIX_SS]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
158  	[GDT_ENTRY_PERCPU]		= GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
159  	GDT_STACK_CANARY_INIT
160  #endif
161  } };
162  EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
163  
x86_mpx_setup(char * s)164  static int __init x86_mpx_setup(char *s)
165  {
166  	/* require an exact match without trailing characters */
167  	if (strlen(s))
168  		return 0;
169  
170  	/* do not emit a message if the feature is not present */
171  	if (!boot_cpu_has(X86_FEATURE_MPX))
172  		return 1;
173  
174  	setup_clear_cpu_cap(X86_FEATURE_MPX);
175  	pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
176  	return 1;
177  }
178  __setup("nompx", x86_mpx_setup);
179  
180  #ifdef CONFIG_X86_64
x86_nopcid_setup(char * s)181  static int __init x86_nopcid_setup(char *s)
182  {
183  	/* nopcid doesn't accept parameters */
184  	if (s)
185  		return -EINVAL;
186  
187  	/* do not emit a message if the feature is not present */
188  	if (!boot_cpu_has(X86_FEATURE_PCID))
189  		return 0;
190  
191  	setup_clear_cpu_cap(X86_FEATURE_PCID);
192  	pr_info("nopcid: PCID feature disabled\n");
193  	return 0;
194  }
195  early_param("nopcid", x86_nopcid_setup);
196  #endif
197  
x86_noinvpcid_setup(char * s)198  static int __init x86_noinvpcid_setup(char *s)
199  {
200  	/* noinvpcid doesn't accept parameters */
201  	if (s)
202  		return -EINVAL;
203  
204  	/* do not emit a message if the feature is not present */
205  	if (!boot_cpu_has(X86_FEATURE_INVPCID))
206  		return 0;
207  
208  	setup_clear_cpu_cap(X86_FEATURE_INVPCID);
209  	pr_info("noinvpcid: INVPCID feature disabled\n");
210  	return 0;
211  }
212  early_param("noinvpcid", x86_noinvpcid_setup);
213  
214  #ifdef CONFIG_X86_32
215  static int cachesize_override = -1;
216  static int disable_x86_serial_nr = 1;
217  
cachesize_setup(char * str)218  static int __init cachesize_setup(char *str)
219  {
220  	get_option(&str, &cachesize_override);
221  	return 1;
222  }
223  __setup("cachesize=", cachesize_setup);
224  
x86_sep_setup(char * s)225  static int __init x86_sep_setup(char *s)
226  {
227  	setup_clear_cpu_cap(X86_FEATURE_SEP);
228  	return 1;
229  }
230  __setup("nosep", x86_sep_setup);
231  
232  /* Standard macro to see if a specific flag is changeable */
flag_is_changeable_p(u32 flag)233  static inline int flag_is_changeable_p(u32 flag)
234  {
235  	u32 f1, f2;
236  
237  	/*
238  	 * Cyrix and IDT cpus allow disabling of CPUID
239  	 * so the code below may return different results
240  	 * when it is executed before and after enabling
241  	 * the CPUID. Add "volatile" to not allow gcc to
242  	 * optimize the subsequent calls to this function.
243  	 */
244  	asm volatile ("pushfl		\n\t"
245  		      "pushfl		\n\t"
246  		      "popl %0		\n\t"
247  		      "movl %0, %1	\n\t"
248  		      "xorl %2, %0	\n\t"
249  		      "pushl %0		\n\t"
250  		      "popfl		\n\t"
251  		      "pushfl		\n\t"
252  		      "popl %0		\n\t"
253  		      "popfl		\n\t"
254  
255  		      : "=&r" (f1), "=&r" (f2)
256  		      : "ir" (flag));
257  
258  	return ((f1^f2) & flag) != 0;
259  }
260  
261  /* Probe for the CPUID instruction */
have_cpuid_p(void)262  int have_cpuid_p(void)
263  {
264  	return flag_is_changeable_p(X86_EFLAGS_ID);
265  }
266  
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)267  static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
268  {
269  	unsigned long lo, hi;
270  
271  	if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
272  		return;
273  
274  	/* Disable processor serial number: */
275  
276  	rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
277  	lo |= 0x200000;
278  	wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
279  
280  	pr_notice("CPU serial number disabled.\n");
281  	clear_cpu_cap(c, X86_FEATURE_PN);
282  
283  	/* Disabling the serial number may affect the cpuid level */
284  	c->cpuid_level = cpuid_eax(0);
285  }
286  
x86_serial_nr_setup(char * s)287  static int __init x86_serial_nr_setup(char *s)
288  {
289  	disable_x86_serial_nr = 0;
290  	return 1;
291  }
292  __setup("serialnumber", x86_serial_nr_setup);
293  #else
flag_is_changeable_p(u32 flag)294  static inline int flag_is_changeable_p(u32 flag)
295  {
296  	return 1;
297  }
squash_the_stupid_serial_number(struct cpuinfo_x86 * c)298  static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
299  {
300  }
301  #endif
302  
setup_disable_smep(char * arg)303  static __init int setup_disable_smep(char *arg)
304  {
305  	setup_clear_cpu_cap(X86_FEATURE_SMEP);
306  	/* Check for things that depend on SMEP being enabled: */
307  	check_mpx_erratum(&boot_cpu_data);
308  	return 1;
309  }
310  __setup("nosmep", setup_disable_smep);
311  
setup_smep(struct cpuinfo_x86 * c)312  static __always_inline void setup_smep(struct cpuinfo_x86 *c)
313  {
314  	if (cpu_has(c, X86_FEATURE_SMEP))
315  		cr4_set_bits(X86_CR4_SMEP);
316  }
317  
setup_disable_smap(char * arg)318  static __init int setup_disable_smap(char *arg)
319  {
320  	setup_clear_cpu_cap(X86_FEATURE_SMAP);
321  	return 1;
322  }
323  __setup("nosmap", setup_disable_smap);
324  
setup_smap(struct cpuinfo_x86 * c)325  static __always_inline void setup_smap(struct cpuinfo_x86 *c)
326  {
327  	unsigned long eflags = native_save_fl();
328  
329  	/* This should have been cleared long ago */
330  	BUG_ON(eflags & X86_EFLAGS_AC);
331  
332  	if (cpu_has(c, X86_FEATURE_SMAP)) {
333  #ifdef CONFIG_X86_SMAP
334  		cr4_set_bits(X86_CR4_SMAP);
335  #else
336  		cr4_clear_bits(X86_CR4_SMAP);
337  #endif
338  	}
339  }
340  
341  /*
342   * Protection Keys are not available in 32-bit mode.
343   */
344  static bool pku_disabled;
345  
setup_pku(struct cpuinfo_x86 * c)346  static __always_inline void setup_pku(struct cpuinfo_x86 *c)
347  {
348  	/* check the boot processor, plus compile options for PKU: */
349  	if (!cpu_feature_enabled(X86_FEATURE_PKU))
350  		return;
351  	/* checks the actual processor's cpuid bits: */
352  	if (!cpu_has(c, X86_FEATURE_PKU))
353  		return;
354  	if (pku_disabled)
355  		return;
356  
357  	cr4_set_bits(X86_CR4_PKE);
358  	/*
359  	 * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
360  	 * cpuid bit to be set.  We need to ensure that we
361  	 * update that bit in this CPU's "cpu_info".
362  	 */
363  	set_cpu_cap(c, X86_FEATURE_OSPKE);
364  }
365  
366  #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
setup_disable_pku(char * arg)367  static __init int setup_disable_pku(char *arg)
368  {
369  	/*
370  	 * Do not clear the X86_FEATURE_PKU bit.  All of the
371  	 * runtime checks are against OSPKE so clearing the
372  	 * bit does nothing.
373  	 *
374  	 * This way, we will see "pku" in cpuinfo, but not
375  	 * "ospke", which is exactly what we want.  It shows
376  	 * that the CPU has PKU, but the OS has not enabled it.
377  	 * This happens to be exactly how a system would look
378  	 * if we disabled the config option.
379  	 */
380  	pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
381  	pku_disabled = true;
382  	return 1;
383  }
384  __setup("nopku", setup_disable_pku);
385  #endif /* CONFIG_X86_64 */
386  
387  /*
388   * Some CPU features depend on higher CPUID levels, which may not always
389   * be available due to CPUID level capping or broken virtualization
390   * software.  Add those features to this table to auto-disable them.
391   */
392  struct cpuid_dependent_feature {
393  	u32 feature;
394  	u32 level;
395  };
396  
397  static const struct cpuid_dependent_feature
398  cpuid_dependent_features[] = {
399  	{ X86_FEATURE_MWAIT,		0x00000005 },
400  	{ X86_FEATURE_DCA,		0x00000009 },
401  	{ X86_FEATURE_XSAVE,		0x0000000d },
402  	{ 0, 0 }
403  };
404  
filter_cpuid_features(struct cpuinfo_x86 * c,bool warn)405  static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
406  {
407  	const struct cpuid_dependent_feature *df;
408  
409  	for (df = cpuid_dependent_features; df->feature; df++) {
410  
411  		if (!cpu_has(c, df->feature))
412  			continue;
413  		/*
414  		 * Note: cpuid_level is set to -1 if unavailable, but
415  		 * extended_extended_level is set to 0 if unavailable
416  		 * and the legitimate extended levels are all negative
417  		 * when signed; hence the weird messing around with
418  		 * signs here...
419  		 */
420  		if (!((s32)df->level < 0 ?
421  		     (u32)df->level > (u32)c->extended_cpuid_level :
422  		     (s32)df->level > (s32)c->cpuid_level))
423  			continue;
424  
425  		clear_cpu_cap(c, df->feature);
426  		if (!warn)
427  			continue;
428  
429  		pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
430  			x86_cap_flag(df->feature), df->level);
431  	}
432  }
433  
434  /*
435   * Naming convention should be: <Name> [(<Codename>)]
436   * This table only is used unless init_<vendor>() below doesn't set it;
437   * in particular, if CPUID levels 0x80000002..4 are supported, this
438   * isn't used
439   */
440  
441  /* Look up CPU names by table lookup. */
table_lookup_model(struct cpuinfo_x86 * c)442  static const char *table_lookup_model(struct cpuinfo_x86 *c)
443  {
444  #ifdef CONFIG_X86_32
445  	const struct legacy_cpu_model_info *info;
446  
447  	if (c->x86_model >= 16)
448  		return NULL;	/* Range check */
449  
450  	if (!this_cpu)
451  		return NULL;
452  
453  	info = this_cpu->legacy_models;
454  
455  	while (info->family) {
456  		if (info->family == c->x86)
457  			return info->model_names[c->x86_model];
458  		info++;
459  	}
460  #endif
461  	return NULL;		/* Not found */
462  }
463  
464  __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS];
465  __u32 cpu_caps_set[NCAPINTS + NBUGINTS];
466  
load_percpu_segment(int cpu)467  void load_percpu_segment(int cpu)
468  {
469  #ifdef CONFIG_X86_32
470  	loadsegment(fs, __KERNEL_PERCPU);
471  #else
472  	__loadsegment_simple(gs, 0);
473  	wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
474  #endif
475  	load_stack_canary_segment();
476  }
477  
478  #ifdef CONFIG_X86_32
479  /* The 32-bit entry code needs to find cpu_entry_area. */
480  DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
481  #endif
482  
483  #ifdef CONFIG_X86_64
484  /*
485   * Special IST stacks which the CPU switches to when it calls
486   * an IST-marked descriptor entry. Up to 7 stacks (hardware
487   * limit), all of them are 4K, except the debug stack which
488   * is 8K.
489   */
490  static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
491  	  [0 ... N_EXCEPTION_STACKS - 1]	= EXCEPTION_STKSZ,
492  	  [DEBUG_STACK - 1]			= DEBUG_STKSZ
493  };
494  #endif
495  
496  /* Load the original GDT from the per-cpu structure */
load_direct_gdt(int cpu)497  void load_direct_gdt(int cpu)
498  {
499  	struct desc_ptr gdt_descr;
500  
501  	gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
502  	gdt_descr.size = GDT_SIZE - 1;
503  	load_gdt(&gdt_descr);
504  }
505  EXPORT_SYMBOL_GPL(load_direct_gdt);
506  
507  /* Load a fixmap remapping of the per-cpu GDT */
load_fixmap_gdt(int cpu)508  void load_fixmap_gdt(int cpu)
509  {
510  	struct desc_ptr gdt_descr;
511  
512  	gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
513  	gdt_descr.size = GDT_SIZE - 1;
514  	load_gdt(&gdt_descr);
515  }
516  EXPORT_SYMBOL_GPL(load_fixmap_gdt);
517  
518  /*
519   * Current gdt points %fs at the "master" per-cpu area: after this,
520   * it's on the real one.
521   */
switch_to_new_gdt(int cpu)522  void switch_to_new_gdt(int cpu)
523  {
524  	/* Load the original GDT */
525  	load_direct_gdt(cpu);
526  	/* Reload the per-cpu base */
527  	load_percpu_segment(cpu);
528  }
529  
530  static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
531  
get_model_name(struct cpuinfo_x86 * c)532  static void get_model_name(struct cpuinfo_x86 *c)
533  {
534  	unsigned int *v;
535  	char *p, *q, *s;
536  
537  	if (c->extended_cpuid_level < 0x80000004)
538  		return;
539  
540  	v = (unsigned int *)c->x86_model_id;
541  	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
542  	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
543  	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
544  	c->x86_model_id[48] = 0;
545  
546  	/* Trim whitespace */
547  	p = q = s = &c->x86_model_id[0];
548  
549  	while (*p == ' ')
550  		p++;
551  
552  	while (*p) {
553  		/* Note the last non-whitespace index */
554  		if (!isspace(*p))
555  			s = q;
556  
557  		*q++ = *p++;
558  	}
559  
560  	*(s + 1) = '\0';
561  }
562  
cpu_detect_cache_sizes(struct cpuinfo_x86 * c)563  void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
564  {
565  	unsigned int n, dummy, ebx, ecx, edx, l2size;
566  
567  	n = c->extended_cpuid_level;
568  
569  	if (n >= 0x80000005) {
570  		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
571  		c->x86_cache_size = (ecx>>24) + (edx>>24);
572  #ifdef CONFIG_X86_64
573  		/* On K8 L1 TLB is inclusive, so don't count it */
574  		c->x86_tlbsize = 0;
575  #endif
576  	}
577  
578  	if (n < 0x80000006)	/* Some chips just has a large L1. */
579  		return;
580  
581  	cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
582  	l2size = ecx >> 16;
583  
584  #ifdef CONFIG_X86_64
585  	c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
586  #else
587  	/* do processor-specific cache resizing */
588  	if (this_cpu->legacy_cache_size)
589  		l2size = this_cpu->legacy_cache_size(c, l2size);
590  
591  	/* Allow user to override all this if necessary. */
592  	if (cachesize_override != -1)
593  		l2size = cachesize_override;
594  
595  	if (l2size == 0)
596  		return;		/* Again, no L2 cache is possible */
597  #endif
598  
599  	c->x86_cache_size = l2size;
600  }
601  
602  u16 __read_mostly tlb_lli_4k[NR_INFO];
603  u16 __read_mostly tlb_lli_2m[NR_INFO];
604  u16 __read_mostly tlb_lli_4m[NR_INFO];
605  u16 __read_mostly tlb_lld_4k[NR_INFO];
606  u16 __read_mostly tlb_lld_2m[NR_INFO];
607  u16 __read_mostly tlb_lld_4m[NR_INFO];
608  u16 __read_mostly tlb_lld_1g[NR_INFO];
609  
cpu_detect_tlb(struct cpuinfo_x86 * c)610  static void cpu_detect_tlb(struct cpuinfo_x86 *c)
611  {
612  	if (this_cpu->c_detect_tlb)
613  		this_cpu->c_detect_tlb(c);
614  
615  	pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
616  		tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
617  		tlb_lli_4m[ENTRIES]);
618  
619  	pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
620  		tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
621  		tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
622  }
623  
detect_ht_early(struct cpuinfo_x86 * c)624  int detect_ht_early(struct cpuinfo_x86 *c)
625  {
626  #ifdef CONFIG_SMP
627  	u32 eax, ebx, ecx, edx;
628  
629  	if (!cpu_has(c, X86_FEATURE_HT))
630  		return -1;
631  
632  	if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
633  		return -1;
634  
635  	if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
636  		return -1;
637  
638  	cpuid(1, &eax, &ebx, &ecx, &edx);
639  
640  	smp_num_siblings = (ebx & 0xff0000) >> 16;
641  	if (smp_num_siblings == 1)
642  		pr_info_once("CPU0: Hyper-Threading is disabled\n");
643  #endif
644  	return 0;
645  }
646  
detect_ht(struct cpuinfo_x86 * c)647  void detect_ht(struct cpuinfo_x86 *c)
648  {
649  #ifdef CONFIG_SMP
650  	int index_msb, core_bits;
651  
652  	if (detect_ht_early(c) < 0)
653  		return;
654  
655  	index_msb = get_count_order(smp_num_siblings);
656  	c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
657  
658  	smp_num_siblings = smp_num_siblings / c->x86_max_cores;
659  
660  	index_msb = get_count_order(smp_num_siblings);
661  
662  	core_bits = get_count_order(c->x86_max_cores);
663  
664  	c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
665  				       ((1 << core_bits) - 1);
666  #endif
667  }
668  
get_cpu_vendor(struct cpuinfo_x86 * c)669  static void get_cpu_vendor(struct cpuinfo_x86 *c)
670  {
671  	char *v = c->x86_vendor_id;
672  	int i;
673  
674  	for (i = 0; i < X86_VENDOR_NUM; i++) {
675  		if (!cpu_devs[i])
676  			break;
677  
678  		if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
679  		    (cpu_devs[i]->c_ident[1] &&
680  		     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
681  
682  			this_cpu = cpu_devs[i];
683  			c->x86_vendor = this_cpu->c_x86_vendor;
684  			return;
685  		}
686  	}
687  
688  	pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
689  		    "CPU: Your system may be unstable.\n", v);
690  
691  	c->x86_vendor = X86_VENDOR_UNKNOWN;
692  	this_cpu = &default_cpu;
693  }
694  
cpu_detect(struct cpuinfo_x86 * c)695  void cpu_detect(struct cpuinfo_x86 *c)
696  {
697  	/* Get vendor name */
698  	cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
699  	      (unsigned int *)&c->x86_vendor_id[0],
700  	      (unsigned int *)&c->x86_vendor_id[8],
701  	      (unsigned int *)&c->x86_vendor_id[4]);
702  
703  	c->x86 = 4;
704  	/* Intel-defined flags: level 0x00000001 */
705  	if (c->cpuid_level >= 0x00000001) {
706  		u32 junk, tfms, cap0, misc;
707  
708  		cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
709  		c->x86		= x86_family(tfms);
710  		c->x86_model	= x86_model(tfms);
711  		c->x86_stepping	= x86_stepping(tfms);
712  
713  		if (cap0 & (1<<19)) {
714  			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
715  			c->x86_cache_alignment = c->x86_clflush_size;
716  		}
717  	}
718  }
719  
apply_forced_caps(struct cpuinfo_x86 * c)720  static void apply_forced_caps(struct cpuinfo_x86 *c)
721  {
722  	int i;
723  
724  	for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
725  		c->x86_capability[i] &= ~cpu_caps_cleared[i];
726  		c->x86_capability[i] |= cpu_caps_set[i];
727  	}
728  }
729  
init_speculation_control(struct cpuinfo_x86 * c)730  static void init_speculation_control(struct cpuinfo_x86 *c)
731  {
732  	/*
733  	 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
734  	 * and they also have a different bit for STIBP support. Also,
735  	 * a hypervisor might have set the individual AMD bits even on
736  	 * Intel CPUs, for finer-grained selection of what's available.
737  	 */
738  	if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
739  		set_cpu_cap(c, X86_FEATURE_IBRS);
740  		set_cpu_cap(c, X86_FEATURE_IBPB);
741  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
742  	}
743  
744  	if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
745  		set_cpu_cap(c, X86_FEATURE_STIBP);
746  
747  	if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
748  	    cpu_has(c, X86_FEATURE_VIRT_SSBD))
749  		set_cpu_cap(c, X86_FEATURE_SSBD);
750  
751  	if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
752  		set_cpu_cap(c, X86_FEATURE_IBRS);
753  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
754  	}
755  
756  	if (cpu_has(c, X86_FEATURE_AMD_IBPB))
757  		set_cpu_cap(c, X86_FEATURE_IBPB);
758  
759  	if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
760  		set_cpu_cap(c, X86_FEATURE_STIBP);
761  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
762  	}
763  
764  	if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
765  		set_cpu_cap(c, X86_FEATURE_SSBD);
766  		set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
767  		clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
768  	}
769  }
770  
init_cqm(struct cpuinfo_x86 * c)771  static void init_cqm(struct cpuinfo_x86 *c)
772  {
773  	if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
774  		c->x86_cache_max_rmid  = -1;
775  		c->x86_cache_occ_scale = -1;
776  		return;
777  	}
778  
779  	/* will be overridden if occupancy monitoring exists */
780  	c->x86_cache_max_rmid = cpuid_ebx(0xf);
781  
782  	if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
783  	    cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
784  	    cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
785  		u32 eax, ebx, ecx, edx;
786  
787  		/* QoS sub-leaf, EAX=0Fh, ECX=1 */
788  		cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
789  
790  		c->x86_cache_max_rmid  = ecx;
791  		c->x86_cache_occ_scale = ebx;
792  	}
793  }
794  
get_cpu_cap(struct cpuinfo_x86 * c)795  void get_cpu_cap(struct cpuinfo_x86 *c)
796  {
797  	u32 eax, ebx, ecx, edx;
798  
799  	/* Intel-defined flags: level 0x00000001 */
800  	if (c->cpuid_level >= 0x00000001) {
801  		cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
802  
803  		c->x86_capability[CPUID_1_ECX] = ecx;
804  		c->x86_capability[CPUID_1_EDX] = edx;
805  	}
806  
807  	/* Thermal and Power Management Leaf: level 0x00000006 (eax) */
808  	if (c->cpuid_level >= 0x00000006)
809  		c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
810  
811  	/* Additional Intel-defined flags: level 0x00000007 */
812  	if (c->cpuid_level >= 0x00000007) {
813  		cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
814  		c->x86_capability[CPUID_7_0_EBX] = ebx;
815  		c->x86_capability[CPUID_7_ECX] = ecx;
816  		c->x86_capability[CPUID_7_EDX] = edx;
817  	}
818  
819  	/* Extended state features: level 0x0000000d */
820  	if (c->cpuid_level >= 0x0000000d) {
821  		cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
822  
823  		c->x86_capability[CPUID_D_1_EAX] = eax;
824  	}
825  
826  	/* AMD-defined flags: level 0x80000001 */
827  	eax = cpuid_eax(0x80000000);
828  	c->extended_cpuid_level = eax;
829  
830  	if ((eax & 0xffff0000) == 0x80000000) {
831  		if (eax >= 0x80000001) {
832  			cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
833  
834  			c->x86_capability[CPUID_8000_0001_ECX] = ecx;
835  			c->x86_capability[CPUID_8000_0001_EDX] = edx;
836  		}
837  	}
838  
839  	if (c->extended_cpuid_level >= 0x80000007) {
840  		cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
841  
842  		c->x86_capability[CPUID_8000_0007_EBX] = ebx;
843  		c->x86_power = edx;
844  	}
845  
846  	if (c->extended_cpuid_level >= 0x80000008) {
847  		cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
848  
849  		c->x86_virt_bits = (eax >> 8) & 0xff;
850  		c->x86_phys_bits = eax & 0xff;
851  		c->x86_capability[CPUID_8000_0008_EBX] = ebx;
852  	}
853  #ifdef CONFIG_X86_32
854  	else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
855  		c->x86_phys_bits = 36;
856  #endif
857  
858  	if (c->extended_cpuid_level >= 0x8000000a)
859  		c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
860  
861  	init_scattered_cpuid_features(c);
862  	init_speculation_control(c);
863  	init_cqm(c);
864  
865  	/*
866  	 * Clear/Set all flags overridden by options, after probe.
867  	 * This needs to happen each time we re-probe, which may happen
868  	 * several times during CPU initialization.
869  	 */
870  	apply_forced_caps(c);
871  }
872  
identify_cpu_without_cpuid(struct cpuinfo_x86 * c)873  static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
874  {
875  #ifdef CONFIG_X86_32
876  	int i;
877  
878  	/*
879  	 * First of all, decide if this is a 486 or higher
880  	 * It's a 486 if we can modify the AC flag
881  	 */
882  	if (flag_is_changeable_p(X86_EFLAGS_AC))
883  		c->x86 = 4;
884  	else
885  		c->x86 = 3;
886  
887  	for (i = 0; i < X86_VENDOR_NUM; i++)
888  		if (cpu_devs[i] && cpu_devs[i]->c_identify) {
889  			c->x86_vendor_id[0] = 0;
890  			cpu_devs[i]->c_identify(c);
891  			if (c->x86_vendor_id[0]) {
892  				get_cpu_vendor(c);
893  				break;
894  			}
895  		}
896  #endif
897  	c->x86_cache_bits = c->x86_phys_bits;
898  }
899  
900  #define NO_SPECULATION		BIT(0)
901  #define NO_MELTDOWN		BIT(1)
902  #define NO_SSB			BIT(2)
903  #define NO_L1TF			BIT(3)
904  #define NO_MDS			BIT(4)
905  #define MSBDS_ONLY		BIT(5)
906  #define NO_SWAPGS		BIT(6)
907  #define NO_ITLB_MULTIHIT	BIT(7)
908  
909  #define VULNWL(_vendor, _family, _model, _whitelist)	\
910  	{ X86_VENDOR_##_vendor, _family, _model, X86_FEATURE_ANY, _whitelist }
911  
912  #define VULNWL_INTEL(model, whitelist)		\
913  	VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
914  
915  #define VULNWL_AMD(family, whitelist)		\
916  	VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
917  
918  static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
919  	VULNWL(ANY,	4, X86_MODEL_ANY,	NO_SPECULATION),
920  	VULNWL(CENTAUR,	5, X86_MODEL_ANY,	NO_SPECULATION),
921  	VULNWL(INTEL,	5, X86_MODEL_ANY,	NO_SPECULATION),
922  	VULNWL(NSC,	5, X86_MODEL_ANY,	NO_SPECULATION),
923  
924  	/* Intel Family 6 */
925  	VULNWL_INTEL(ATOM_SALTWELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
926  	VULNWL_INTEL(ATOM_SALTWELL_TABLET,	NO_SPECULATION | NO_ITLB_MULTIHIT),
927  	VULNWL_INTEL(ATOM_SALTWELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
928  	VULNWL_INTEL(ATOM_BONNELL,		NO_SPECULATION | NO_ITLB_MULTIHIT),
929  	VULNWL_INTEL(ATOM_BONNELL_MID,		NO_SPECULATION | NO_ITLB_MULTIHIT),
930  
931  	VULNWL_INTEL(ATOM_SILVERMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
932  	VULNWL_INTEL(ATOM_SILVERMONT_X,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
933  	VULNWL_INTEL(ATOM_SILVERMONT_MID,	NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
934  	VULNWL_INTEL(ATOM_AIRMONT,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
935  	VULNWL_INTEL(XEON_PHI_KNL,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
936  	VULNWL_INTEL(XEON_PHI_KNM,		NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
937  
938  	VULNWL_INTEL(CORE_YONAH,		NO_SSB),
939  
940  	VULNWL_INTEL(ATOM_AIRMONT_MID,		NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
941  
942  	VULNWL_INTEL(ATOM_GOLDMONT,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
943  	VULNWL_INTEL(ATOM_GOLDMONT_X,		NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
944  	VULNWL_INTEL(ATOM_GOLDMONT_PLUS,	NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
945  
946  	/*
947  	 * Technically, swapgs isn't serializing on AMD (despite it previously
948  	 * being documented as such in the APM).  But according to AMD, %gs is
949  	 * updated non-speculatively, and the issuing of %gs-relative memory
950  	 * operands will be blocked until the %gs update completes, which is
951  	 * good enough for our purposes.
952  	 */
953  
954  	VULNWL_INTEL(ATOM_TREMONT_X,		NO_ITLB_MULTIHIT),
955  
956  	/* AMD Family 0xf - 0x12 */
957  	VULNWL_AMD(0x0f,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
958  	VULNWL_AMD(0x10,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
959  	VULNWL_AMD(0x11,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
960  	VULNWL_AMD(0x12,	NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
961  
962  	/* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
963  	VULNWL_AMD(X86_FAMILY_ANY,	NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
964  	{}
965  };
966  
cpu_matches(unsigned long which)967  static bool __init cpu_matches(unsigned long which)
968  {
969  	const struct x86_cpu_id *m = x86_match_cpu(cpu_vuln_whitelist);
970  
971  	return m && !!(m->driver_data & which);
972  }
973  
x86_read_arch_cap_msr(void)974  u64 x86_read_arch_cap_msr(void)
975  {
976  	u64 ia32_cap = 0;
977  
978  	if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
979  		rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
980  
981  	return ia32_cap;
982  }
983  
cpu_set_bug_bits(struct cpuinfo_x86 * c)984  static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
985  {
986  	u64 ia32_cap = x86_read_arch_cap_msr();
987  
988  	/* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
989  	if (!cpu_matches(NO_ITLB_MULTIHIT) && !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
990  		setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
991  
992  	if (cpu_matches(NO_SPECULATION))
993  		return;
994  
995  	setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
996  	setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
997  
998  	if (!cpu_matches(NO_SSB) && !(ia32_cap & ARCH_CAP_SSB_NO) &&
999  	   !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1000  		setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1001  
1002  	if (ia32_cap & ARCH_CAP_IBRS_ALL)
1003  		setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1004  
1005  	if (!cpu_matches(NO_MDS) && !(ia32_cap & ARCH_CAP_MDS_NO)) {
1006  		setup_force_cpu_bug(X86_BUG_MDS);
1007  		if (cpu_matches(MSBDS_ONLY))
1008  			setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1009  	}
1010  
1011  	if (!cpu_matches(NO_SWAPGS))
1012  		setup_force_cpu_bug(X86_BUG_SWAPGS);
1013  
1014  	/*
1015  	 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1016  	 *	- TSX is supported or
1017  	 *	- TSX_CTRL is present
1018  	 *
1019  	 * TSX_CTRL check is needed for cases when TSX could be disabled before
1020  	 * the kernel boot e.g. kexec.
1021  	 * TSX_CTRL check alone is not sufficient for cases when the microcode
1022  	 * update is not present or running as guest that don't get TSX_CTRL.
1023  	 */
1024  	if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1025  	    (cpu_has(c, X86_FEATURE_RTM) ||
1026  	     (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1027  		setup_force_cpu_bug(X86_BUG_TAA);
1028  
1029  	if (cpu_matches(NO_MELTDOWN))
1030  		return;
1031  
1032  	/* Rogue Data Cache Load? No! */
1033  	if (ia32_cap & ARCH_CAP_RDCL_NO)
1034  		return;
1035  
1036  	setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1037  
1038  	if (cpu_matches(NO_L1TF))
1039  		return;
1040  
1041  	setup_force_cpu_bug(X86_BUG_L1TF);
1042  }
1043  
1044  /*
1045   * Do minimum CPU detection early.
1046   * Fields really needed: vendor, cpuid_level, family, model, mask,
1047   * cache alignment.
1048   * The others are not touched to avoid unwanted side effects.
1049   *
1050   * WARNING: this function is only called on the BP.  Don't add code here
1051   * that is supposed to run on all CPUs.
1052   */
early_identify_cpu(struct cpuinfo_x86 * c)1053  static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1054  {
1055  #ifdef CONFIG_X86_64
1056  	c->x86_clflush_size = 64;
1057  	c->x86_phys_bits = 36;
1058  	c->x86_virt_bits = 48;
1059  #else
1060  	c->x86_clflush_size = 32;
1061  	c->x86_phys_bits = 32;
1062  	c->x86_virt_bits = 32;
1063  #endif
1064  	c->x86_cache_alignment = c->x86_clflush_size;
1065  
1066  	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1067  	c->extended_cpuid_level = 0;
1068  
1069  	if (!have_cpuid_p())
1070  		identify_cpu_without_cpuid(c);
1071  
1072  	/* cyrix could have cpuid enabled via c_identify()*/
1073  	if (have_cpuid_p()) {
1074  		cpu_detect(c);
1075  		get_cpu_vendor(c);
1076  		get_cpu_cap(c);
1077  		setup_force_cpu_cap(X86_FEATURE_CPUID);
1078  
1079  		if (this_cpu->c_early_init)
1080  			this_cpu->c_early_init(c);
1081  
1082  		c->cpu_index = 0;
1083  		filter_cpuid_features(c, false);
1084  
1085  		if (this_cpu->c_bsp_init)
1086  			this_cpu->c_bsp_init(c);
1087  	} else {
1088  		setup_clear_cpu_cap(X86_FEATURE_CPUID);
1089  	}
1090  
1091  	setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1092  
1093  	cpu_set_bug_bits(c);
1094  
1095  	fpu__init_system(c);
1096  
1097  #ifdef CONFIG_X86_32
1098  	/*
1099  	 * Regardless of whether PCID is enumerated, the SDM says
1100  	 * that it can't be enabled in 32-bit mode.
1101  	 */
1102  	setup_clear_cpu_cap(X86_FEATURE_PCID);
1103  #endif
1104  }
1105  
early_cpu_init(void)1106  void __init early_cpu_init(void)
1107  {
1108  	const struct cpu_dev *const *cdev;
1109  	int count = 0;
1110  
1111  #ifdef CONFIG_PROCESSOR_SELECT
1112  	pr_info("KERNEL supported cpus:\n");
1113  #endif
1114  
1115  	for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1116  		const struct cpu_dev *cpudev = *cdev;
1117  
1118  		if (count >= X86_VENDOR_NUM)
1119  			break;
1120  		cpu_devs[count] = cpudev;
1121  		count++;
1122  
1123  #ifdef CONFIG_PROCESSOR_SELECT
1124  		{
1125  			unsigned int j;
1126  
1127  			for (j = 0; j < 2; j++) {
1128  				if (!cpudev->c_ident[j])
1129  					continue;
1130  				pr_info("  %s %s\n", cpudev->c_vendor,
1131  					cpudev->c_ident[j]);
1132  			}
1133  		}
1134  #endif
1135  	}
1136  	early_identify_cpu(&boot_cpu_data);
1137  }
1138  
1139  /*
1140   * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1141   * unfortunately, that's not true in practice because of early VIA
1142   * chips and (more importantly) broken virtualizers that are not easy
1143   * to detect. In the latter case it doesn't even *fail* reliably, so
1144   * probing for it doesn't even work. Disable it completely on 32-bit
1145   * unless we can find a reliable way to detect all the broken cases.
1146   * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1147   */
detect_nopl(struct cpuinfo_x86 * c)1148  static void detect_nopl(struct cpuinfo_x86 *c)
1149  {
1150  #ifdef CONFIG_X86_32
1151  	clear_cpu_cap(c, X86_FEATURE_NOPL);
1152  #else
1153  	set_cpu_cap(c, X86_FEATURE_NOPL);
1154  #endif
1155  }
1156  
detect_null_seg_behavior(struct cpuinfo_x86 * c)1157  static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1158  {
1159  #ifdef CONFIG_X86_64
1160  	/*
1161  	 * Empirically, writing zero to a segment selector on AMD does
1162  	 * not clear the base, whereas writing zero to a segment
1163  	 * selector on Intel does clear the base.  Intel's behavior
1164  	 * allows slightly faster context switches in the common case
1165  	 * where GS is unused by the prev and next threads.
1166  	 *
1167  	 * Since neither vendor documents this anywhere that I can see,
1168  	 * detect it directly instead of hardcoding the choice by
1169  	 * vendor.
1170  	 *
1171  	 * I've designated AMD's behavior as the "bug" because it's
1172  	 * counterintuitive and less friendly.
1173  	 */
1174  
1175  	unsigned long old_base, tmp;
1176  	rdmsrl(MSR_FS_BASE, old_base);
1177  	wrmsrl(MSR_FS_BASE, 1);
1178  	loadsegment(fs, 0);
1179  	rdmsrl(MSR_FS_BASE, tmp);
1180  	if (tmp != 0)
1181  		set_cpu_bug(c, X86_BUG_NULL_SEG);
1182  	wrmsrl(MSR_FS_BASE, old_base);
1183  #endif
1184  }
1185  
generic_identify(struct cpuinfo_x86 * c)1186  static void generic_identify(struct cpuinfo_x86 *c)
1187  {
1188  	c->extended_cpuid_level = 0;
1189  
1190  	if (!have_cpuid_p())
1191  		identify_cpu_without_cpuid(c);
1192  
1193  	/* cyrix could have cpuid enabled via c_identify()*/
1194  	if (!have_cpuid_p())
1195  		return;
1196  
1197  	cpu_detect(c);
1198  
1199  	get_cpu_vendor(c);
1200  
1201  	get_cpu_cap(c);
1202  
1203  	if (c->cpuid_level >= 0x00000001) {
1204  		c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1205  #ifdef CONFIG_X86_32
1206  # ifdef CONFIG_SMP
1207  		c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1208  # else
1209  		c->apicid = c->initial_apicid;
1210  # endif
1211  #endif
1212  		c->phys_proc_id = c->initial_apicid;
1213  	}
1214  
1215  	get_model_name(c); /* Default name */
1216  
1217  	detect_nopl(c);
1218  
1219  	detect_null_seg_behavior(c);
1220  
1221  	/*
1222  	 * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1223  	 * systems that run Linux at CPL > 0 may or may not have the
1224  	 * issue, but, even if they have the issue, there's absolutely
1225  	 * nothing we can do about it because we can't use the real IRET
1226  	 * instruction.
1227  	 *
1228  	 * NB: For the time being, only 32-bit kernels support
1229  	 * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1230  	 * whether to apply espfix using paravirt hooks.  If any
1231  	 * non-paravirt system ever shows up that does *not* have the
1232  	 * ESPFIX issue, we can change this.
1233  	 */
1234  #ifdef CONFIG_X86_32
1235  # ifdef CONFIG_PARAVIRT
1236  	do {
1237  		extern void native_iret(void);
1238  		if (pv_cpu_ops.iret == native_iret)
1239  			set_cpu_bug(c, X86_BUG_ESPFIX);
1240  	} while (0);
1241  # else
1242  	set_cpu_bug(c, X86_BUG_ESPFIX);
1243  # endif
1244  #endif
1245  }
1246  
x86_init_cache_qos(struct cpuinfo_x86 * c)1247  static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1248  {
1249  	/*
1250  	 * The heavy lifting of max_rmid and cache_occ_scale are handled
1251  	 * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1252  	 * in case CQM bits really aren't there in this CPU.
1253  	 */
1254  	if (c != &boot_cpu_data) {
1255  		boot_cpu_data.x86_cache_max_rmid =
1256  			min(boot_cpu_data.x86_cache_max_rmid,
1257  			    c->x86_cache_max_rmid);
1258  	}
1259  }
1260  
1261  /*
1262   * Validate that ACPI/mptables have the same information about the
1263   * effective APIC id and update the package map.
1264   */
validate_apic_and_package_id(struct cpuinfo_x86 * c)1265  static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1266  {
1267  #ifdef CONFIG_SMP
1268  	unsigned int apicid, cpu = smp_processor_id();
1269  
1270  	apicid = apic->cpu_present_to_apicid(cpu);
1271  
1272  	if (apicid != c->apicid) {
1273  		pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1274  		       cpu, apicid, c->initial_apicid);
1275  	}
1276  	BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1277  #else
1278  	c->logical_proc_id = 0;
1279  #endif
1280  }
1281  
1282  /*
1283   * This does the hard work of actually picking apart the CPU stuff...
1284   */
identify_cpu(struct cpuinfo_x86 * c)1285  static void identify_cpu(struct cpuinfo_x86 *c)
1286  {
1287  	int i;
1288  
1289  	c->loops_per_jiffy = loops_per_jiffy;
1290  	c->x86_cache_size = 0;
1291  	c->x86_vendor = X86_VENDOR_UNKNOWN;
1292  	c->x86_model = c->x86_stepping = 0;	/* So far unknown... */
1293  	c->x86_vendor_id[0] = '\0'; /* Unset */
1294  	c->x86_model_id[0] = '\0';  /* Unset */
1295  	c->x86_max_cores = 1;
1296  	c->x86_coreid_bits = 0;
1297  	c->cu_id = 0xff;
1298  #ifdef CONFIG_X86_64
1299  	c->x86_clflush_size = 64;
1300  	c->x86_phys_bits = 36;
1301  	c->x86_virt_bits = 48;
1302  #else
1303  	c->cpuid_level = -1;	/* CPUID not detected */
1304  	c->x86_clflush_size = 32;
1305  	c->x86_phys_bits = 32;
1306  	c->x86_virt_bits = 32;
1307  #endif
1308  	c->x86_cache_alignment = c->x86_clflush_size;
1309  	memset(&c->x86_capability, 0, sizeof c->x86_capability);
1310  
1311  	generic_identify(c);
1312  
1313  	if (this_cpu->c_identify)
1314  		this_cpu->c_identify(c);
1315  
1316  	/* Clear/Set all flags overridden by options, after probe */
1317  	apply_forced_caps(c);
1318  
1319  #ifdef CONFIG_X86_64
1320  	c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1321  #endif
1322  
1323  	/*
1324  	 * Vendor-specific initialization.  In this section we
1325  	 * canonicalize the feature flags, meaning if there are
1326  	 * features a certain CPU supports which CPUID doesn't
1327  	 * tell us, CPUID claiming incorrect flags, or other bugs,
1328  	 * we handle them here.
1329  	 *
1330  	 * At the end of this section, c->x86_capability better
1331  	 * indicate the features this CPU genuinely supports!
1332  	 */
1333  	if (this_cpu->c_init)
1334  		this_cpu->c_init(c);
1335  
1336  	/* Disable the PN if appropriate */
1337  	squash_the_stupid_serial_number(c);
1338  
1339  	/* Set up SMEP/SMAP */
1340  	setup_smep(c);
1341  	setup_smap(c);
1342  
1343  	/*
1344  	 * The vendor-specific functions might have changed features.
1345  	 * Now we do "generic changes."
1346  	 */
1347  
1348  	/* Filter out anything that depends on CPUID levels we don't have */
1349  	filter_cpuid_features(c, true);
1350  
1351  	/* If the model name is still unset, do table lookup. */
1352  	if (!c->x86_model_id[0]) {
1353  		const char *p;
1354  		p = table_lookup_model(c);
1355  		if (p)
1356  			strcpy(c->x86_model_id, p);
1357  		else
1358  			/* Last resort... */
1359  			sprintf(c->x86_model_id, "%02x/%02x",
1360  				c->x86, c->x86_model);
1361  	}
1362  
1363  #ifdef CONFIG_X86_64
1364  	detect_ht(c);
1365  #endif
1366  
1367  	x86_init_rdrand(c);
1368  	x86_init_cache_qos(c);
1369  	setup_pku(c);
1370  
1371  	/*
1372  	 * Clear/Set all flags overridden by options, need do it
1373  	 * before following smp all cpus cap AND.
1374  	 */
1375  	apply_forced_caps(c);
1376  
1377  	/*
1378  	 * On SMP, boot_cpu_data holds the common feature set between
1379  	 * all CPUs; so make sure that we indicate which features are
1380  	 * common between the CPUs.  The first time this routine gets
1381  	 * executed, c == &boot_cpu_data.
1382  	 */
1383  	if (c != &boot_cpu_data) {
1384  		/* AND the already accumulated flags with these */
1385  		for (i = 0; i < NCAPINTS; i++)
1386  			boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1387  
1388  		/* OR, i.e. replicate the bug flags */
1389  		for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1390  			c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1391  	}
1392  
1393  	/* Init Machine Check Exception if available. */
1394  	mcheck_cpu_init(c);
1395  
1396  	select_idle_routine(c);
1397  
1398  #ifdef CONFIG_NUMA
1399  	numa_add_cpu(smp_processor_id());
1400  #endif
1401  }
1402  
1403  /*
1404   * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1405   * on 32-bit kernels:
1406   */
1407  #ifdef CONFIG_X86_32
enable_sep_cpu(void)1408  void enable_sep_cpu(void)
1409  {
1410  	struct tss_struct *tss;
1411  	int cpu;
1412  
1413  	if (!boot_cpu_has(X86_FEATURE_SEP))
1414  		return;
1415  
1416  	cpu = get_cpu();
1417  	tss = &per_cpu(cpu_tss_rw, cpu);
1418  
1419  	/*
1420  	 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1421  	 * see the big comment in struct x86_hw_tss's definition.
1422  	 */
1423  
1424  	tss->x86_tss.ss1 = __KERNEL_CS;
1425  	wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1426  	wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1427  	wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1428  
1429  	put_cpu();
1430  }
1431  #endif
1432  
identify_boot_cpu(void)1433  void __init identify_boot_cpu(void)
1434  {
1435  	identify_cpu(&boot_cpu_data);
1436  #ifdef CONFIG_X86_32
1437  	sysenter_setup();
1438  	enable_sep_cpu();
1439  #endif
1440  	cpu_detect_tlb(&boot_cpu_data);
1441  	tsx_init();
1442  }
1443  
identify_secondary_cpu(struct cpuinfo_x86 * c)1444  void identify_secondary_cpu(struct cpuinfo_x86 *c)
1445  {
1446  	BUG_ON(c == &boot_cpu_data);
1447  	identify_cpu(c);
1448  #ifdef CONFIG_X86_32
1449  	enable_sep_cpu();
1450  #endif
1451  	mtrr_ap_init();
1452  	validate_apic_and_package_id(c);
1453  	x86_spec_ctrl_setup_ap();
1454  }
1455  
setup_noclflush(char * arg)1456  static __init int setup_noclflush(char *arg)
1457  {
1458  	setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1459  	setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1460  	return 1;
1461  }
1462  __setup("noclflush", setup_noclflush);
1463  
print_cpu_info(struct cpuinfo_x86 * c)1464  void print_cpu_info(struct cpuinfo_x86 *c)
1465  {
1466  	const char *vendor = NULL;
1467  
1468  	if (c->x86_vendor < X86_VENDOR_NUM) {
1469  		vendor = this_cpu->c_vendor;
1470  	} else {
1471  		if (c->cpuid_level >= 0)
1472  			vendor = c->x86_vendor_id;
1473  	}
1474  
1475  	if (vendor && !strstr(c->x86_model_id, vendor))
1476  		pr_cont("%s ", vendor);
1477  
1478  	if (c->x86_model_id[0])
1479  		pr_cont("%s", c->x86_model_id);
1480  	else
1481  		pr_cont("%d86", c->x86);
1482  
1483  	pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1484  
1485  	if (c->x86_stepping || c->cpuid_level >= 0)
1486  		pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1487  	else
1488  		pr_cont(")\n");
1489  }
1490  
1491  /*
1492   * clearcpuid= was already parsed in fpu__init_parse_early_param.
1493   * But we need to keep a dummy __setup around otherwise it would
1494   * show up as an environment variable for init.
1495   */
setup_clearcpuid(char * arg)1496  static __init int setup_clearcpuid(char *arg)
1497  {
1498  	return 1;
1499  }
1500  __setup("clearcpuid=", setup_clearcpuid);
1501  
1502  #ifdef CONFIG_X86_64
1503  DEFINE_PER_CPU_FIRST(union irq_stack_union,
1504  		     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1505  
1506  /*
1507   * The following percpu variables are hot.  Align current_task to
1508   * cacheline size such that they fall in the same cacheline.
1509   */
1510  DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1511  	&init_task;
1512  EXPORT_PER_CPU_SYMBOL(current_task);
1513  
1514  DEFINE_PER_CPU(char *, irq_stack_ptr) =
1515  	init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE;
1516  
1517  DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1518  
1519  DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1520  EXPORT_PER_CPU_SYMBOL(__preempt_count);
1521  
1522  /* May not be marked __init: used by software suspend */
syscall_init(void)1523  void syscall_init(void)
1524  {
1525  	extern char _entry_trampoline[];
1526  	extern char entry_SYSCALL_64_trampoline[];
1527  
1528  	int cpu = smp_processor_id();
1529  	unsigned long SYSCALL64_entry_trampoline =
1530  		(unsigned long)get_cpu_entry_area(cpu)->entry_trampoline +
1531  		(entry_SYSCALL_64_trampoline - _entry_trampoline);
1532  
1533  	wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1534  	if (static_cpu_has(X86_FEATURE_PTI))
1535  		wrmsrl(MSR_LSTAR, SYSCALL64_entry_trampoline);
1536  	else
1537  		wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1538  
1539  #ifdef CONFIG_IA32_EMULATION
1540  	wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1541  	/*
1542  	 * This only works on Intel CPUs.
1543  	 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1544  	 * This does not cause SYSENTER to jump to the wrong location, because
1545  	 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1546  	 */
1547  	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1548  	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1));
1549  	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1550  #else
1551  	wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1552  	wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1553  	wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1554  	wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1555  #endif
1556  
1557  	/* Flags to clear on syscall */
1558  	wrmsrl(MSR_SYSCALL_MASK,
1559  	       X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1560  	       X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1561  }
1562  
1563  /*
1564   * Copies of the original ist values from the tss are only accessed during
1565   * debugging, no special alignment required.
1566   */
1567  DEFINE_PER_CPU(struct orig_ist, orig_ist);
1568  
1569  static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1570  DEFINE_PER_CPU(int, debug_stack_usage);
1571  
is_debug_stack(unsigned long addr)1572  int is_debug_stack(unsigned long addr)
1573  {
1574  	return __this_cpu_read(debug_stack_usage) ||
1575  		(addr <= __this_cpu_read(debug_stack_addr) &&
1576  		 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1577  }
1578  NOKPROBE_SYMBOL(is_debug_stack);
1579  
1580  DEFINE_PER_CPU(u32, debug_idt_ctr);
1581  
debug_stack_set_zero(void)1582  void debug_stack_set_zero(void)
1583  {
1584  	this_cpu_inc(debug_idt_ctr);
1585  	load_current_idt();
1586  }
1587  NOKPROBE_SYMBOL(debug_stack_set_zero);
1588  
debug_stack_reset(void)1589  void debug_stack_reset(void)
1590  {
1591  	if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1592  		return;
1593  	if (this_cpu_dec_return(debug_idt_ctr) == 0)
1594  		load_current_idt();
1595  }
1596  NOKPROBE_SYMBOL(debug_stack_reset);
1597  
1598  #else	/* CONFIG_X86_64 */
1599  
1600  DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1601  EXPORT_PER_CPU_SYMBOL(current_task);
1602  DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1603  EXPORT_PER_CPU_SYMBOL(__preempt_count);
1604  
1605  /*
1606   * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1607   * the top of the kernel stack.  Use an extra percpu variable to track the
1608   * top of the kernel stack directly.
1609   */
1610  DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1611  	(unsigned long)&init_thread_union + THREAD_SIZE;
1612  EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1613  
1614  #ifdef CONFIG_CC_STACKPROTECTOR
1615  DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1616  #endif
1617  
1618  #endif	/* CONFIG_X86_64 */
1619  
1620  /*
1621   * Clear all 6 debug registers:
1622   */
clear_all_debug_regs(void)1623  static void clear_all_debug_regs(void)
1624  {
1625  	int i;
1626  
1627  	for (i = 0; i < 8; i++) {
1628  		/* Ignore db4, db5 */
1629  		if ((i == 4) || (i == 5))
1630  			continue;
1631  
1632  		set_debugreg(0, i);
1633  	}
1634  }
1635  
1636  #ifdef CONFIG_KGDB
1637  /*
1638   * Restore debug regs if using kgdbwait and you have a kernel debugger
1639   * connection established.
1640   */
dbg_restore_debug_regs(void)1641  static void dbg_restore_debug_regs(void)
1642  {
1643  	if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1644  		arch_kgdb_ops.correct_hw_break();
1645  }
1646  #else /* ! CONFIG_KGDB */
1647  #define dbg_restore_debug_regs()
1648  #endif /* ! CONFIG_KGDB */
1649  
wait_for_master_cpu(int cpu)1650  static void wait_for_master_cpu(int cpu)
1651  {
1652  #ifdef CONFIG_SMP
1653  	/*
1654  	 * wait for ACK from master CPU before continuing
1655  	 * with AP initialization
1656  	 */
1657  	WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1658  	while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1659  		cpu_relax();
1660  #endif
1661  }
1662  
1663  /*
1664   * cpu_init() initializes state that is per-CPU. Some data is already
1665   * initialized (naturally) in the bootstrap process, such as the GDT
1666   * and IDT. We reload them nevertheless, this function acts as a
1667   * 'CPU state barrier', nothing should get across.
1668   * A lot of state is already set up in PDA init for 64 bit
1669   */
1670  #ifdef CONFIG_X86_64
1671  
cpu_init(void)1672  void cpu_init(void)
1673  {
1674  	struct orig_ist *oist;
1675  	struct task_struct *me;
1676  	struct tss_struct *t;
1677  	unsigned long v;
1678  	int cpu = raw_smp_processor_id();
1679  	int i;
1680  
1681  	wait_for_master_cpu(cpu);
1682  
1683  	/*
1684  	 * Initialize the CR4 shadow before doing anything that could
1685  	 * try to read it.
1686  	 */
1687  	cr4_init_shadow();
1688  
1689  	if (cpu)
1690  		load_ucode_ap();
1691  
1692  	t = &per_cpu(cpu_tss_rw, cpu);
1693  	oist = &per_cpu(orig_ist, cpu);
1694  
1695  #ifdef CONFIG_NUMA
1696  	if (this_cpu_read(numa_node) == 0 &&
1697  	    early_cpu_to_node(cpu) != NUMA_NO_NODE)
1698  		set_numa_node(early_cpu_to_node(cpu));
1699  #endif
1700  
1701  	me = current;
1702  
1703  	pr_debug("Initializing CPU#%d\n", cpu);
1704  
1705  	cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1706  
1707  	/*
1708  	 * Initialize the per-CPU GDT with the boot GDT,
1709  	 * and set up the GDT descriptor:
1710  	 */
1711  
1712  	switch_to_new_gdt(cpu);
1713  	loadsegment(fs, 0);
1714  
1715  	load_current_idt();
1716  
1717  	memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1718  	syscall_init();
1719  
1720  	wrmsrl(MSR_FS_BASE, 0);
1721  	wrmsrl(MSR_KERNEL_GS_BASE, 0);
1722  	barrier();
1723  
1724  	x86_configure_nx();
1725  	x2apic_setup();
1726  
1727  	/*
1728  	 * set up and load the per-CPU TSS
1729  	 */
1730  	if (!oist->ist[0]) {
1731  		char *estacks = get_cpu_entry_area(cpu)->exception_stacks;
1732  
1733  		for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1734  			estacks += exception_stack_sizes[v];
1735  			oist->ist[v] = t->x86_tss.ist[v] =
1736  					(unsigned long)estacks;
1737  			if (v == DEBUG_STACK-1)
1738  				per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1739  		}
1740  	}
1741  
1742  	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1743  
1744  	/*
1745  	 * <= is required because the CPU will access up to
1746  	 * 8 bits beyond the end of the IO permission bitmap.
1747  	 */
1748  	for (i = 0; i <= IO_BITMAP_LONGS; i++)
1749  		t->io_bitmap[i] = ~0UL;
1750  
1751  	mmgrab(&init_mm);
1752  	me->active_mm = &init_mm;
1753  	BUG_ON(me->mm);
1754  	initialize_tlbstate_and_flush();
1755  	enter_lazy_tlb(&init_mm, me);
1756  
1757  	/*
1758  	 * Initialize the TSS.  sp0 points to the entry trampoline stack
1759  	 * regardless of what task is running.
1760  	 */
1761  	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1762  	load_TR_desc();
1763  	load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1764  
1765  	load_mm_ldt(&init_mm);
1766  
1767  	clear_all_debug_regs();
1768  	dbg_restore_debug_regs();
1769  
1770  	fpu__init_cpu();
1771  
1772  	if (is_uv_system())
1773  		uv_cpu_init();
1774  
1775  	load_fixmap_gdt(cpu);
1776  }
1777  
1778  #else
1779  
cpu_init(void)1780  void cpu_init(void)
1781  {
1782  	int cpu = smp_processor_id();
1783  	struct task_struct *curr = current;
1784  	struct tss_struct *t = &per_cpu(cpu_tss_rw, cpu);
1785  
1786  	wait_for_master_cpu(cpu);
1787  
1788  	/*
1789  	 * Initialize the CR4 shadow before doing anything that could
1790  	 * try to read it.
1791  	 */
1792  	cr4_init_shadow();
1793  
1794  	show_ucode_info_early();
1795  
1796  	pr_info("Initializing CPU#%d\n", cpu);
1797  
1798  	if (cpu_feature_enabled(X86_FEATURE_VME) ||
1799  	    boot_cpu_has(X86_FEATURE_TSC) ||
1800  	    boot_cpu_has(X86_FEATURE_DE))
1801  		cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1802  
1803  	load_current_idt();
1804  	switch_to_new_gdt(cpu);
1805  
1806  	/*
1807  	 * Set up and load the per-CPU TSS and LDT
1808  	 */
1809  	mmgrab(&init_mm);
1810  	curr->active_mm = &init_mm;
1811  	BUG_ON(curr->mm);
1812  	initialize_tlbstate_and_flush();
1813  	enter_lazy_tlb(&init_mm, curr);
1814  
1815  	/*
1816  	 * Initialize the TSS.  Don't bother initializing sp0, as the initial
1817  	 * task never enters user mode.
1818  	 */
1819  	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1820  	load_TR_desc();
1821  
1822  	load_mm_ldt(&init_mm);
1823  
1824  	t->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET;
1825  
1826  #ifdef CONFIG_DOUBLEFAULT
1827  	/* Set up doublefault TSS pointer in the GDT */
1828  	__set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1829  #endif
1830  
1831  	clear_all_debug_regs();
1832  	dbg_restore_debug_regs();
1833  
1834  	fpu__init_cpu();
1835  
1836  	load_fixmap_gdt(cpu);
1837  }
1838  #endif
1839  
bsp_resume(void)1840  static void bsp_resume(void)
1841  {
1842  	if (this_cpu->c_bsp_resume)
1843  		this_cpu->c_bsp_resume(&boot_cpu_data);
1844  }
1845  
1846  static struct syscore_ops cpu_syscore_ops = {
1847  	.resume		= bsp_resume,
1848  };
1849  
init_cpu_syscore(void)1850  static int __init init_cpu_syscore(void)
1851  {
1852  	register_syscore_ops(&cpu_syscore_ops);
1853  	return 0;
1854  }
1855  core_initcall(init_cpu_syscore);
1856  
1857  /*
1858   * The microcode loader calls this upon late microcode load to recheck features,
1859   * only when microcode has been updated. Caller holds microcode_mutex and CPU
1860   * hotplug lock.
1861   */
microcode_check(void)1862  void microcode_check(void)
1863  {
1864  	struct cpuinfo_x86 info;
1865  
1866  	perf_check_microcode();
1867  
1868  	/* Reload CPUID max function as it might've changed. */
1869  	info.cpuid_level = cpuid_eax(0);
1870  
1871  	/*
1872  	 * Copy all capability leafs to pick up the synthetic ones so that
1873  	 * memcmp() below doesn't fail on that. The ones coming from CPUID will
1874  	 * get overwritten in get_cpu_cap().
1875  	 */
1876  	memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1877  
1878  	get_cpu_cap(&info);
1879  
1880  	if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1881  		return;
1882  
1883  	pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1884  	pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1885  }
1886