1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73
74 #include "i915_vma.h"
75
76 #include "intel_gvt.h"
77
78 /* General customization:
79 */
80
81 #define DRIVER_NAME "i915"
82 #define DRIVER_DESC "Intel Graphics"
83 #define DRIVER_DATE "20170818"
84 #define DRIVER_TIMESTAMP 1503088845
85
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87 * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88 * which may not necessarily be a user visible problem. This will either
89 * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90 * enable distros and users to tailor their preferred amount of i915 abrt
91 * spam.
92 */
93 #define I915_STATE_WARN(condition, format...) ({ \
94 int __ret_warn_on = !!(condition); \
95 if (unlikely(__ret_warn_on)) \
96 if (!WARN(i915.verbose_state_checks, format)) \
97 DRM_ERROR(format); \
98 unlikely(__ret_warn_on); \
99 })
100
101 #define I915_STATE_WARN_ON(x) \
102 I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 __i915_inject_load_failure(__func__, __LINE__)
107
108 typedef struct {
109 uint32_t val;
110 } uint_fixed_16_16_t;
111
112 #define FP_16_16_MAX ({ \
113 uint_fixed_16_16_t fp; \
114 fp.val = UINT_MAX; \
115 fp; \
116 })
117
is_fixed16_zero(uint_fixed_16_16_t val)118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 if (val.val == 0)
121 return true;
122 return false;
123 }
124
u32_to_fixed16(uint32_t val)125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 uint_fixed_16_16_t fp;
128
129 WARN_ON(val >> 16);
130
131 fp.val = val << 16;
132 return fp;
133 }
134
fixed16_to_u32_round_up(uint_fixed_16_16_t fp)135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139
fixed16_to_u32(uint_fixed_16_16_t fp)140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 return fp.val >> 16;
143 }
144
min_fixed16(uint_fixed_16_16_t min1,uint_fixed_16_16_t min2)145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 uint_fixed_16_16_t min2)
147 {
148 uint_fixed_16_16_t min;
149
150 min.val = min(min1.val, min2.val);
151 return min;
152 }
153
max_fixed16(uint_fixed_16_16_t max1,uint_fixed_16_16_t max2)154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 uint_fixed_16_16_t max2)
156 {
157 uint_fixed_16_16_t max;
158
159 max.val = max(max1.val, max2.val);
160 return max;
161 }
162
clamp_u64_to_fixed16(uint64_t val)163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 uint_fixed_16_16_t fp;
166 WARN_ON(val >> 32);
167 fp.val = clamp_t(uint32_t, val, 0, ~0);
168 return fp;
169 }
170
div_round_up_fixed16(uint_fixed_16_16_t val,uint_fixed_16_16_t d)171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 uint_fixed_16_16_t d)
173 {
174 return DIV_ROUND_UP(val.val, d.val);
175 }
176
mul_round_up_u32_fixed16(uint32_t val,uint_fixed_16_16_t mul)177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 uint_fixed_16_16_t mul)
179 {
180 uint64_t intermediate_val;
181
182 intermediate_val = (uint64_t) val * mul.val;
183 intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 WARN_ON(intermediate_val >> 32);
185 return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187
mul_fixed16(uint_fixed_16_16_t val,uint_fixed_16_16_t mul)188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 uint_fixed_16_16_t mul)
190 {
191 uint64_t intermediate_val;
192
193 intermediate_val = (uint64_t) val.val * mul.val;
194 intermediate_val = intermediate_val >> 16;
195 return clamp_u64_to_fixed16(intermediate_val);
196 }
197
div_fixed16(uint32_t val,uint32_t d)198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 uint64_t interm_val;
201
202 interm_val = (uint64_t)val << 16;
203 interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 return clamp_u64_to_fixed16(interm_val);
205 }
206
div_round_up_u32_fixed16(uint32_t val,uint_fixed_16_16_t d)207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 uint_fixed_16_16_t d)
209 {
210 uint64_t interm_val;
211
212 interm_val = (uint64_t)val << 16;
213 interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 WARN_ON(interm_val >> 32);
215 return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217
mul_u32_fixed16(uint32_t val,uint_fixed_16_16_t mul)218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 uint_fixed_16_16_t mul)
220 {
221 uint64_t intermediate_val;
222
223 intermediate_val = (uint64_t) val * mul.val;
224 return clamp_u64_to_fixed16(intermediate_val);
225 }
226
add_fixed16(uint_fixed_16_16_t add1,uint_fixed_16_16_t add2)227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 uint_fixed_16_16_t add2)
229 {
230 uint64_t interm_sum;
231
232 interm_sum = (uint64_t) add1.val + add2.val;
233 return clamp_u64_to_fixed16(interm_sum);
234 }
235
add_fixed16_u32(uint_fixed_16_16_t add1,uint32_t add2)236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 uint32_t add2)
238 {
239 uint64_t interm_sum;
240 uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241
242 interm_sum = (uint64_t) add1.val + interm_add2.val;
243 return clamp_u64_to_fixed16(interm_sum);
244 }
245
yesno(bool v)246 static inline const char *yesno(bool v)
247 {
248 return v ? "yes" : "no";
249 }
250
onoff(bool v)251 static inline const char *onoff(bool v)
252 {
253 return v ? "on" : "off";
254 }
255
enableddisabled(bool v)256 static inline const char *enableddisabled(bool v)
257 {
258 return v ? "enabled" : "disabled";
259 }
260
261 enum pipe {
262 INVALID_PIPE = -1,
263 PIPE_A = 0,
264 PIPE_B,
265 PIPE_C,
266 _PIPE_EDP,
267 I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270
271 enum transcoder {
272 TRANSCODER_A = 0,
273 TRANSCODER_B,
274 TRANSCODER_C,
275 TRANSCODER_EDP,
276 TRANSCODER_DSI_A,
277 TRANSCODER_DSI_C,
278 I915_MAX_TRANSCODERS
279 };
280
transcoder_name(enum transcoder transcoder)281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 switch (transcoder) {
284 case TRANSCODER_A:
285 return "A";
286 case TRANSCODER_B:
287 return "B";
288 case TRANSCODER_C:
289 return "C";
290 case TRANSCODER_EDP:
291 return "EDP";
292 case TRANSCODER_DSI_A:
293 return "DSI A";
294 case TRANSCODER_DSI_C:
295 return "DSI C";
296 default:
297 return "<invalid>";
298 }
299 }
300
transcoder_is_dsi(enum transcoder transcoder)301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305
306 /*
307 * Global legacy plane identifier. Valid only for primary/sprite
308 * planes on pre-g4x, and only for primary planes on g4x+.
309 */
310 enum plane {
311 PLANE_A,
312 PLANE_B,
313 PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318
319 /*
320 * Per-pipe plane identifier.
321 * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322 * number of planes per CRTC. Not all platforms really have this many planes,
323 * which means some arrays of size I915_MAX_PLANES may have unused entries
324 * between the topmost sprite plane and the cursor plane.
325 *
326 * This is expected to be passed to various register macros
327 * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328 */
329 enum plane_id {
330 PLANE_PRIMARY,
331 PLANE_SPRITE0,
332 PLANE_SPRITE1,
333 PLANE_SPRITE2,
334 PLANE_CURSOR,
335 I915_MAX_PLANES,
336 };
337
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341
342 enum port {
343 PORT_NONE = -1,
344 PORT_A = 0,
345 PORT_B,
346 PORT_C,
347 PORT_D,
348 PORT_E,
349 I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352
353 #define I915_NUM_PHYS_VLV 2
354
355 enum dpio_channel {
356 DPIO_CH0,
357 DPIO_CH1
358 };
359
360 enum dpio_phy {
361 DPIO_PHY0,
362 DPIO_PHY1,
363 DPIO_PHY2,
364 };
365
366 enum intel_display_power_domain {
367 POWER_DOMAIN_PIPE_A,
368 POWER_DOMAIN_PIPE_B,
369 POWER_DOMAIN_PIPE_C,
370 POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 POWER_DOMAIN_TRANSCODER_A,
374 POWER_DOMAIN_TRANSCODER_B,
375 POWER_DOMAIN_TRANSCODER_C,
376 POWER_DOMAIN_TRANSCODER_EDP,
377 POWER_DOMAIN_TRANSCODER_DSI_A,
378 POWER_DOMAIN_TRANSCODER_DSI_C,
379 POWER_DOMAIN_PORT_DDI_A_LANES,
380 POWER_DOMAIN_PORT_DDI_B_LANES,
381 POWER_DOMAIN_PORT_DDI_C_LANES,
382 POWER_DOMAIN_PORT_DDI_D_LANES,
383 POWER_DOMAIN_PORT_DDI_E_LANES,
384 POWER_DOMAIN_PORT_DDI_A_IO,
385 POWER_DOMAIN_PORT_DDI_B_IO,
386 POWER_DOMAIN_PORT_DDI_C_IO,
387 POWER_DOMAIN_PORT_DDI_D_IO,
388 POWER_DOMAIN_PORT_DDI_E_IO,
389 POWER_DOMAIN_PORT_DSI,
390 POWER_DOMAIN_PORT_CRT,
391 POWER_DOMAIN_PORT_OTHER,
392 POWER_DOMAIN_VGA,
393 POWER_DOMAIN_AUDIO,
394 POWER_DOMAIN_PLLS,
395 POWER_DOMAIN_AUX_A,
396 POWER_DOMAIN_AUX_B,
397 POWER_DOMAIN_AUX_C,
398 POWER_DOMAIN_AUX_D,
399 POWER_DOMAIN_GMBUS,
400 POWER_DOMAIN_MODESET,
401 POWER_DOMAIN_INIT,
402
403 POWER_DOMAIN_NUM,
404 };
405
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 ((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 ((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 (tran) + POWER_DOMAIN_TRANSCODER_A)
412
413 enum hpd_pin {
414 HPD_NONE = 0,
415 HPD_TV = HPD_NONE, /* TV is known to be unreliable */
416 HPD_CRT,
417 HPD_SDVO_B,
418 HPD_SDVO_C,
419 HPD_PORT_A,
420 HPD_PORT_B,
421 HPD_PORT_C,
422 HPD_PORT_D,
423 HPD_PORT_E,
424 HPD_NUM_PINS
425 };
426
427 #define for_each_hpd_pin(__pin) \
428 for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431
432 struct i915_hotplug {
433 struct work_struct hotplug_work;
434
435 struct {
436 unsigned long last_jiffies;
437 int count;
438 enum {
439 HPD_ENABLED = 0,
440 HPD_DISABLED = 1,
441 HPD_MARK_DISABLED = 2
442 } state;
443 } stats[HPD_NUM_PINS];
444 u32 event_bits;
445 struct delayed_work reenable_work;
446
447 struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 u32 long_port_mask;
449 u32 short_port_mask;
450 struct work_struct dig_port_work;
451
452 struct work_struct poll_init_work;
453 bool poll_enabled;
454
455 unsigned int hpd_storm_threshold;
456
457 /*
458 * if we get a HPD irq from DP and a HPD irq from non-DP
459 * the non-DP HPD could block the workqueue on a mode config
460 * mutex getting, that userspace may have taken. However
461 * userspace is waiting on the DP workqueue to run which is
462 * blocked behind the non-DP one.
463 */
464 struct workqueue_struct *dp_wq;
465 };
466
467 #define I915_GEM_GPU_DOMAINS \
468 (I915_GEM_DOMAIN_RENDER | \
469 I915_GEM_DOMAIN_SAMPLER | \
470 I915_GEM_DOMAIN_COMMAND | \
471 I915_GEM_DOMAIN_INSTRUCTION | \
472 I915_GEM_DOMAIN_VERTEX)
473
474 #define for_each_pipe(__dev_priv, __p) \
475 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p) \
480 for ((__p) = 0; \
481 (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1; \
482 (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s) \
484 for ((__s) = 0; \
485 (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)]; \
486 (__s)++)
487
488 #define for_each_port_masked(__port, __ports_mask) \
489 for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++) \
490 for_each_if ((__ports_mask) & (1 << (__port)))
491
492 #define for_each_crtc(dev, crtc) \
493 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494
495 #define for_each_intel_plane(dev, intel_plane) \
496 list_for_each_entry(intel_plane, \
497 &(dev)->mode_config.plane_list, \
498 base.head)
499
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask) \
501 list_for_each_entry(intel_plane, \
502 &(dev)->mode_config.plane_list, \
503 base.head) \
504 for_each_if ((plane_mask) & \
505 (1 << drm_plane_index(&intel_plane->base)))
506
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) \
508 list_for_each_entry(intel_plane, \
509 &(dev)->mode_config.plane_list, \
510 base.head) \
511 for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512
513 #define for_each_intel_crtc(dev, intel_crtc) \
514 list_for_each_entry(intel_crtc, \
515 &(dev)->mode_config.crtc_list, \
516 base.head)
517
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask) \
519 list_for_each_entry(intel_crtc, \
520 &(dev)->mode_config.crtc_list, \
521 base.head) \
522 for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523
524 #define for_each_intel_encoder(dev, intel_encoder) \
525 list_for_each_entry(intel_encoder, \
526 &(dev)->mode_config.encoder_list, \
527 base.head)
528
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 for_each_if ((intel_encoder)->base.crtc == (__crtc))
535
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 for_each_if ((intel_connector)->base.encoder == (__encoder))
539
540 #define for_each_power_domain(domain, mask) \
541 for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++) \
542 for_each_if (BIT_ULL(domain) & (mask))
543
544 #define for_each_power_well(__dev_priv, __power_well) \
545 for ((__power_well) = (__dev_priv)->power_domains.power_wells; \
546 (__power_well) - (__dev_priv)->power_domains.power_wells < \
547 (__dev_priv)->power_domains.power_well_count; \
548 (__power_well)++)
549
550 #define for_each_power_well_rev(__dev_priv, __power_well) \
551 for ((__power_well) = (__dev_priv)->power_domains.power_wells + \
552 (__dev_priv)->power_domains.power_well_count - 1; \
553 (__power_well) - (__dev_priv)->power_domains.power_wells >= 0; \
554 (__power_well)--)
555
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask) \
557 for_each_power_well(__dev_priv, __power_well) \
558 for_each_if ((__power_well)->domains & (__domain_mask))
559
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 for_each_power_well_rev(__dev_priv, __power_well) \
562 for_each_if ((__power_well)->domains & (__domain_mask))
563
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 for ((__i) = 0; \
566 (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 (__i)++) \
570 for_each_if (plane_state)
571
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575
576 struct drm_i915_file_private {
577 struct drm_i915_private *dev_priv;
578 struct drm_file *file;
579
580 struct {
581 spinlock_t lock;
582 struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584 * chosen to prevent the CPU getting more than a frame ahead of the GPU
585 * (when using lax throttling for the frontbuffer). We also use it to
586 * offer free GPU waitboosts for severely congested workloads.
587 */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589 } mm;
590 struct idr context_idr;
591
592 struct intel_rps_client {
593 atomic_t boosts;
594 } rps;
595
596 unsigned int bsd_engine;
597
598 /* Client can have a maximum of 3 contexts banned before
599 * it is denied of creating new contexts. As one context
600 * ban needs 4 consecutive hangs, and more if there is
601 * progress in between, this is a last resort stop gap measure
602 * to limit the badly behaving clients access to gpu.
603 */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605 atomic_t context_bans;
606 };
607
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610 uint32_t tu;
611 uint32_t gmch_m;
612 uint32_t gmch_n;
613 uint32_t link_m;
614 uint32_t link_n;
615 };
616
617 void intel_link_compute_m_n(int bpp, int nlanes,
618 int pixel_clock, int link_clock,
619 struct intel_link_m_n *m_n,
620 bool reduce_m_n);
621
622 /* Interface history:
623 *
624 * 1.1: Original.
625 * 1.2: Add Power Management
626 * 1.3: Add vblank support
627 * 1.4: Fix cmdbuffer path, add heap destroy
628 * 1.5: Add vblank pipe configuration
629 * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630 * - Support vertical blank on secondary display pipe
631 */
632 #define DRIVER_MAJOR 1
633 #define DRIVER_MINOR 6
634 #define DRIVER_PATCHLEVEL 0
635
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640
641 struct intel_opregion {
642 struct opregion_header *header;
643 struct opregion_acpi *acpi;
644 struct opregion_swsci *swsci;
645 u32 swsci_gbda_sub_functions;
646 u32 swsci_sbcb_sub_functions;
647 struct opregion_asle *asle;
648 void *rvda;
649 void *vbt_firmware;
650 const void *vbt;
651 u32 vbt_size;
652 u32 *lid_state;
653 struct work_struct asle_work;
654 };
655 #define OPREGION_SIZE (8*1024)
656
657 struct intel_overlay;
658 struct intel_overlay_error_state;
659
660 struct sdvo_device_mapping {
661 u8 initialized;
662 u8 dvo_port;
663 u8 slave_addr;
664 u8 dvo_wiring;
665 u8 i2c_pin;
666 u8 ddc_pin;
667 };
668
669 struct intel_connector;
670 struct intel_encoder;
671 struct intel_atomic_state;
672 struct intel_crtc_state;
673 struct intel_initial_plane_config;
674 struct intel_crtc;
675 struct intel_limit;
676 struct dpll;
677 struct intel_cdclk_state;
678
679 struct drm_i915_display_funcs {
680 void (*get_cdclk)(struct drm_i915_private *dev_priv,
681 struct intel_cdclk_state *cdclk_state);
682 void (*set_cdclk)(struct drm_i915_private *dev_priv,
683 const struct intel_cdclk_state *cdclk_state);
684 int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
685 int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
686 int (*compute_intermediate_wm)(struct drm_device *dev,
687 struct intel_crtc *intel_crtc,
688 struct intel_crtc_state *newstate);
689 void (*initial_watermarks)(struct intel_atomic_state *state,
690 struct intel_crtc_state *cstate);
691 void (*atomic_update_watermarks)(struct intel_atomic_state *state,
692 struct intel_crtc_state *cstate);
693 void (*optimize_watermarks)(struct intel_atomic_state *state,
694 struct intel_crtc_state *cstate);
695 int (*compute_global_watermarks)(struct drm_atomic_state *state);
696 void (*update_wm)(struct intel_crtc *crtc);
697 int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
698 /* Returns the active state of the crtc, and if the crtc is active,
699 * fills out the pipe-config with the hw state. */
700 bool (*get_pipe_config)(struct intel_crtc *,
701 struct intel_crtc_state *);
702 void (*get_initial_plane_config)(struct intel_crtc *,
703 struct intel_initial_plane_config *);
704 int (*crtc_compute_clock)(struct intel_crtc *crtc,
705 struct intel_crtc_state *crtc_state);
706 void (*crtc_enable)(struct intel_crtc_state *pipe_config,
707 struct drm_atomic_state *old_state);
708 void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
709 struct drm_atomic_state *old_state);
710 void (*update_crtcs)(struct drm_atomic_state *state,
711 unsigned int *crtc_vblank_mask);
712 void (*audio_codec_enable)(struct drm_connector *connector,
713 struct intel_encoder *encoder,
714 const struct drm_display_mode *adjusted_mode);
715 void (*audio_codec_disable)(struct intel_encoder *encoder);
716 void (*fdi_link_train)(struct intel_crtc *crtc,
717 const struct intel_crtc_state *crtc_state);
718 void (*init_clock_gating)(struct drm_i915_private *dev_priv);
719 void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
720 /* clock updates for mode set */
721 /* cursor updates */
722 /* render clock increase/decrease */
723 /* display clock increase/decrease */
724 /* pll clock increase/decrease */
725
726 void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
727 void (*load_luts)(struct drm_crtc_state *crtc_state);
728 };
729
730 #define CSR_VERSION(major, minor) ((major) << 16 | (minor))
731 #define CSR_VERSION_MAJOR(version) ((version) >> 16)
732 #define CSR_VERSION_MINOR(version) ((version) & 0xffff)
733
734 struct intel_csr {
735 struct work_struct work;
736 const char *fw_path;
737 uint32_t *dmc_payload;
738 uint32_t dmc_fw_size;
739 uint32_t version;
740 uint32_t mmio_count;
741 i915_reg_t mmioaddr[8];
742 uint32_t mmiodata[8];
743 uint32_t dc_state;
744 uint32_t allowed_dc_mask;
745 };
746
747 #define DEV_INFO_FOR_EACH_FLAG(func) \
748 func(is_mobile); \
749 func(is_lp); \
750 func(is_alpha_support); \
751 /* Keep has_* in alphabetical order */ \
752 func(has_64bit_reloc); \
753 func(has_aliasing_ppgtt); \
754 func(has_csr); \
755 func(has_ddi); \
756 func(has_dp_mst); \
757 func(has_reset_engine); \
758 func(has_fbc); \
759 func(has_fpga_dbg); \
760 func(has_full_ppgtt); \
761 func(has_full_48bit_ppgtt); \
762 func(has_gmbus_irq); \
763 func(has_gmch_display); \
764 func(has_guc); \
765 func(has_guc_ct); \
766 func(has_hotplug); \
767 func(has_l3_dpf); \
768 func(has_llc); \
769 func(has_logical_ring_contexts); \
770 func(has_overlay); \
771 func(has_pipe_cxsr); \
772 func(has_pooled_eu); \
773 func(has_psr); \
774 func(has_rc6); \
775 func(has_rc6p); \
776 func(has_resource_streamer); \
777 func(has_runtime_pm); \
778 func(has_snoop); \
779 func(unfenced_needs_alignment); \
780 func(cursor_needs_physical); \
781 func(hws_needs_physical); \
782 func(overlay_needs_physical); \
783 func(supports_tv);
784
785 struct sseu_dev_info {
786 u8 slice_mask;
787 u8 subslice_mask;
788 u8 eu_total;
789 u8 eu_per_subslice;
790 u8 min_eu_in_pool;
791 /* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
792 u8 subslice_7eu[3];
793 u8 has_slice_pg:1;
794 u8 has_subslice_pg:1;
795 u8 has_eu_pg:1;
796 };
797
sseu_subslice_total(const struct sseu_dev_info * sseu)798 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
799 {
800 return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
801 }
802
803 /* Keep in gen based order, and chronological order within a gen */
804 enum intel_platform {
805 INTEL_PLATFORM_UNINITIALIZED = 0,
806 INTEL_I830,
807 INTEL_I845G,
808 INTEL_I85X,
809 INTEL_I865G,
810 INTEL_I915G,
811 INTEL_I915GM,
812 INTEL_I945G,
813 INTEL_I945GM,
814 INTEL_G33,
815 INTEL_PINEVIEW,
816 INTEL_I965G,
817 INTEL_I965GM,
818 INTEL_G45,
819 INTEL_GM45,
820 INTEL_IRONLAKE,
821 INTEL_SANDYBRIDGE,
822 INTEL_IVYBRIDGE,
823 INTEL_VALLEYVIEW,
824 INTEL_HASWELL,
825 INTEL_BROADWELL,
826 INTEL_CHERRYVIEW,
827 INTEL_SKYLAKE,
828 INTEL_BROXTON,
829 INTEL_KABYLAKE,
830 INTEL_GEMINILAKE,
831 INTEL_COFFEELAKE,
832 INTEL_CANNONLAKE,
833 INTEL_MAX_PLATFORMS
834 };
835
836 struct intel_device_info {
837 u32 display_mmio_offset;
838 u16 device_id;
839 u8 num_pipes;
840 u8 num_sprites[I915_MAX_PIPES];
841 u8 num_scalers[I915_MAX_PIPES];
842 u8 gen;
843 u16 gen_mask;
844 enum intel_platform platform;
845 u8 gt; /* GT number, 0 if undefined */
846 u8 ring_mask; /* Rings supported by the HW */
847 u8 num_rings;
848 #define DEFINE_FLAG(name) u8 name:1
849 DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
850 #undef DEFINE_FLAG
851 u16 ddb_size; /* in blocks */
852 /* Register offsets for the various display pipes and transcoders */
853 int pipe_offsets[I915_MAX_TRANSCODERS];
854 int trans_offsets[I915_MAX_TRANSCODERS];
855 int palette_offsets[I915_MAX_PIPES];
856 int cursor_offsets[I915_MAX_PIPES];
857
858 /* Slice/subslice/EU info */
859 struct sseu_dev_info sseu;
860
861 struct color_luts {
862 u16 degamma_lut_size;
863 u16 gamma_lut_size;
864 } color;
865 };
866
867 struct intel_display_error_state;
868
869 struct i915_gpu_state {
870 struct kref ref;
871 struct timeval time;
872 struct timeval boottime;
873 struct timeval uptime;
874
875 struct drm_i915_private *i915;
876
877 char error_msg[128];
878 bool simulated;
879 bool awake;
880 bool wakelock;
881 bool suspended;
882 int iommu;
883 u32 reset_count;
884 u32 suspend_count;
885 struct intel_device_info device_info;
886 struct i915_params params;
887
888 /* Generic register state */
889 u32 eir;
890 u32 pgtbl_er;
891 u32 ier;
892 u32 gtier[4], ngtier;
893 u32 ccid;
894 u32 derrmr;
895 u32 forcewake;
896 u32 error; /* gen6+ */
897 u32 err_int; /* gen7 */
898 u32 fault_data0; /* gen8, gen9 */
899 u32 fault_data1; /* gen8, gen9 */
900 u32 done_reg;
901 u32 gac_eco;
902 u32 gam_ecochk;
903 u32 gab_ctl;
904 u32 gfx_mode;
905
906 u32 nfence;
907 u64 fence[I915_MAX_NUM_FENCES];
908 struct intel_overlay_error_state *overlay;
909 struct intel_display_error_state *display;
910 struct drm_i915_error_object *semaphore;
911 struct drm_i915_error_object *guc_log;
912
913 struct drm_i915_error_engine {
914 int engine_id;
915 /* Software tracked state */
916 bool waiting;
917 int num_waiters;
918 unsigned long hangcheck_timestamp;
919 bool hangcheck_stalled;
920 enum intel_engine_hangcheck_action hangcheck_action;
921 struct i915_address_space *vm;
922 int num_requests;
923 u32 reset_count;
924
925 /* position of active request inside the ring */
926 u32 rq_head, rq_post, rq_tail;
927
928 /* our own tracking of ring head and tail */
929 u32 cpu_ring_head;
930 u32 cpu_ring_tail;
931
932 u32 last_seqno;
933
934 /* Register state */
935 u32 start;
936 u32 tail;
937 u32 head;
938 u32 ctl;
939 u32 mode;
940 u32 hws;
941 u32 ipeir;
942 u32 ipehr;
943 u32 bbstate;
944 u32 instpm;
945 u32 instps;
946 u32 seqno;
947 u64 bbaddr;
948 u64 acthd;
949 u32 fault_reg;
950 u64 faddr;
951 u32 rc_psmi; /* sleep state */
952 u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
953 struct intel_instdone instdone;
954
955 struct drm_i915_error_context {
956 char comm[TASK_COMM_LEN];
957 pid_t pid;
958 u32 handle;
959 u32 hw_id;
960 int ban_score;
961 int active;
962 int guilty;
963 } context;
964
965 struct drm_i915_error_object {
966 u64 gtt_offset;
967 u64 gtt_size;
968 int page_count;
969 int unused;
970 u32 *pages[0];
971 } *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
972
973 struct drm_i915_error_object **user_bo;
974 long user_bo_count;
975
976 struct drm_i915_error_object *wa_ctx;
977
978 struct drm_i915_error_request {
979 long jiffies;
980 pid_t pid;
981 u32 context;
982 int ban_score;
983 u32 seqno;
984 u32 head;
985 u32 tail;
986 } *requests, execlist[2];
987
988 struct drm_i915_error_waiter {
989 char comm[TASK_COMM_LEN];
990 pid_t pid;
991 u32 seqno;
992 } *waiters;
993
994 struct {
995 u32 gfx_mode;
996 union {
997 u64 pdp[4];
998 u32 pp_dir_base;
999 };
1000 } vm_info;
1001 } engine[I915_NUM_ENGINES];
1002
1003 struct drm_i915_error_buffer {
1004 u32 size;
1005 u32 name;
1006 u32 rseqno[I915_NUM_ENGINES], wseqno;
1007 u64 gtt_offset;
1008 u32 read_domains;
1009 u32 write_domain;
1010 s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1011 u32 tiling:2;
1012 u32 dirty:1;
1013 u32 purgeable:1;
1014 u32 userptr:1;
1015 s32 engine:4;
1016 u32 cache_level:3;
1017 } *active_bo[I915_NUM_ENGINES], *pinned_bo;
1018 u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1019 struct i915_address_space *active_vm[I915_NUM_ENGINES];
1020 };
1021
1022 enum i915_cache_level {
1023 I915_CACHE_NONE = 0,
1024 I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1025 I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1026 caches, eg sampler/render caches, and the
1027 large Last-Level-Cache. LLC is coherent with
1028 the CPU, but L3 is only visible to the GPU. */
1029 I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1030 };
1031
1032 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1033
1034 enum fb_op_origin {
1035 ORIGIN_GTT,
1036 ORIGIN_CPU,
1037 ORIGIN_CS,
1038 ORIGIN_FLIP,
1039 ORIGIN_DIRTYFB,
1040 };
1041
1042 struct intel_fbc {
1043 /* This is always the inner lock when overlapping with struct_mutex and
1044 * it's the outer lock when overlapping with stolen_lock. */
1045 struct mutex lock;
1046 unsigned threshold;
1047 unsigned int possible_framebuffer_bits;
1048 unsigned int busy_bits;
1049 unsigned int visible_pipes_mask;
1050 struct intel_crtc *crtc;
1051
1052 struct drm_mm_node compressed_fb;
1053 struct drm_mm_node *compressed_llb;
1054
1055 bool false_color;
1056
1057 bool enabled;
1058 bool active;
1059
1060 bool underrun_detected;
1061 struct work_struct underrun_work;
1062
1063 /*
1064 * Due to the atomic rules we can't access some structures without the
1065 * appropriate locking, so we cache information here in order to avoid
1066 * these problems.
1067 */
1068 struct intel_fbc_state_cache {
1069 struct i915_vma *vma;
1070
1071 struct {
1072 unsigned int mode_flags;
1073 uint32_t hsw_bdw_pixel_rate;
1074 } crtc;
1075
1076 struct {
1077 unsigned int rotation;
1078 int src_w;
1079 int src_h;
1080 bool visible;
1081 } plane;
1082
1083 struct {
1084 const struct drm_format_info *format;
1085 unsigned int stride;
1086 } fb;
1087 } state_cache;
1088
1089 /*
1090 * This structure contains everything that's relevant to program the
1091 * hardware registers. When we want to figure out if we need to disable
1092 * and re-enable FBC for a new configuration we just check if there's
1093 * something different in the struct. The genx_fbc_activate functions
1094 * are supposed to read from it in order to program the registers.
1095 */
1096 struct intel_fbc_reg_params {
1097 struct i915_vma *vma;
1098
1099 struct {
1100 enum pipe pipe;
1101 enum plane plane;
1102 unsigned int fence_y_offset;
1103 } crtc;
1104
1105 struct {
1106 const struct drm_format_info *format;
1107 unsigned int stride;
1108 } fb;
1109
1110 int cfb_size;
1111 } params;
1112
1113 struct intel_fbc_work {
1114 bool scheduled;
1115 u32 scheduled_vblank;
1116 struct work_struct work;
1117 } work;
1118
1119 const char *no_fbc_reason;
1120 };
1121
1122 /*
1123 * HIGH_RR is the highest eDP panel refresh rate read from EDID
1124 * LOW_RR is the lowest eDP panel refresh rate found from EDID
1125 * parsing for same resolution.
1126 */
1127 enum drrs_refresh_rate_type {
1128 DRRS_HIGH_RR,
1129 DRRS_LOW_RR,
1130 DRRS_MAX_RR, /* RR count */
1131 };
1132
1133 enum drrs_support_type {
1134 DRRS_NOT_SUPPORTED = 0,
1135 STATIC_DRRS_SUPPORT = 1,
1136 SEAMLESS_DRRS_SUPPORT = 2
1137 };
1138
1139 struct intel_dp;
1140 struct i915_drrs {
1141 struct mutex mutex;
1142 struct delayed_work work;
1143 struct intel_dp *dp;
1144 unsigned busy_frontbuffer_bits;
1145 enum drrs_refresh_rate_type refresh_rate_type;
1146 enum drrs_support_type type;
1147 };
1148
1149 struct i915_psr {
1150 struct mutex lock;
1151 bool sink_support;
1152 bool source_ok;
1153 struct intel_dp *enabled;
1154 bool active;
1155 struct delayed_work work;
1156 unsigned busy_frontbuffer_bits;
1157 bool psr2_support;
1158 bool aux_frame_sync;
1159 bool link_standby;
1160 bool y_cord_support;
1161 bool colorimetry_support;
1162 bool alpm;
1163 };
1164
1165 enum intel_pch {
1166 PCH_NONE = 0, /* No PCH present */
1167 PCH_IBX, /* Ibexpeak PCH */
1168 PCH_CPT, /* Cougarpoint/Pantherpoint PCH */
1169 PCH_LPT, /* Lynxpoint/Wildcatpoint PCH */
1170 PCH_SPT, /* Sunrisepoint PCH */
1171 PCH_KBP, /* Kaby Lake PCH */
1172 PCH_CNP, /* Cannon Lake PCH */
1173 PCH_NOP,
1174 };
1175
1176 enum intel_sbi_destination {
1177 SBI_ICLK,
1178 SBI_MPHY,
1179 };
1180
1181 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1182 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1183 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1184 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1185 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1186 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
1187
1188 struct intel_fbdev;
1189 struct intel_fbc_work;
1190
1191 struct intel_gmbus {
1192 struct i2c_adapter adapter;
1193 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1194 u32 force_bit;
1195 u32 reg0;
1196 i915_reg_t gpio_reg;
1197 struct i2c_algo_bit_data bit_algo;
1198 struct drm_i915_private *dev_priv;
1199 };
1200
1201 struct i915_suspend_saved_registers {
1202 u32 saveDSPARB;
1203 u32 saveFBC_CONTROL;
1204 u32 saveCACHE_MODE_0;
1205 u32 saveMI_ARB_STATE;
1206 u32 saveSWF0[16];
1207 u32 saveSWF1[16];
1208 u32 saveSWF3[3];
1209 uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1210 u32 savePCH_PORT_HOTPLUG;
1211 u16 saveGCDGMBUS;
1212 };
1213
1214 struct vlv_s0ix_state {
1215 /* GAM */
1216 u32 wr_watermark;
1217 u32 gfx_prio_ctrl;
1218 u32 arb_mode;
1219 u32 gfx_pend_tlb0;
1220 u32 gfx_pend_tlb1;
1221 u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1222 u32 media_max_req_count;
1223 u32 gfx_max_req_count;
1224 u32 render_hwsp;
1225 u32 ecochk;
1226 u32 bsd_hwsp;
1227 u32 blt_hwsp;
1228 u32 tlb_rd_addr;
1229
1230 /* MBC */
1231 u32 g3dctl;
1232 u32 gsckgctl;
1233 u32 mbctl;
1234
1235 /* GCP */
1236 u32 ucgctl1;
1237 u32 ucgctl3;
1238 u32 rcgctl1;
1239 u32 rcgctl2;
1240 u32 rstctl;
1241 u32 misccpctl;
1242
1243 /* GPM */
1244 u32 gfxpause;
1245 u32 rpdeuhwtc;
1246 u32 rpdeuc;
1247 u32 ecobus;
1248 u32 pwrdwnupctl;
1249 u32 rp_down_timeout;
1250 u32 rp_deucsw;
1251 u32 rcubmabdtmr;
1252 u32 rcedata;
1253 u32 spare2gh;
1254
1255 /* Display 1 CZ domain */
1256 u32 gt_imr;
1257 u32 gt_ier;
1258 u32 pm_imr;
1259 u32 pm_ier;
1260 u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1261
1262 /* GT SA CZ domain */
1263 u32 tilectl;
1264 u32 gt_fifoctl;
1265 u32 gtlc_wake_ctrl;
1266 u32 gtlc_survive;
1267 u32 pmwgicz;
1268
1269 /* Display 2 CZ domain */
1270 u32 gu_ctl0;
1271 u32 gu_ctl1;
1272 u32 pcbr;
1273 u32 clock_gate_dis2;
1274 };
1275
1276 struct intel_rps_ei {
1277 ktime_t ktime;
1278 u32 render_c0;
1279 u32 media_c0;
1280 };
1281
1282 struct intel_gen6_power_mgmt {
1283 /*
1284 * work, interrupts_enabled and pm_iir are protected by
1285 * dev_priv->irq_lock
1286 */
1287 struct work_struct work;
1288 bool interrupts_enabled;
1289 u32 pm_iir;
1290
1291 /* PM interrupt bits that should never be masked */
1292 u32 pm_intrmsk_mbz;
1293
1294 /* Frequencies are stored in potentially platform dependent multiples.
1295 * In other words, *_freq needs to be multiplied by X to be interesting.
1296 * Soft limits are those which are used for the dynamic reclocking done
1297 * by the driver (raise frequencies under heavy loads, and lower for
1298 * lighter loads). Hard limits are those imposed by the hardware.
1299 *
1300 * A distinction is made for overclocking, which is never enabled by
1301 * default, and is considered to be above the hard limit if it's
1302 * possible at all.
1303 */
1304 u8 cur_freq; /* Current frequency (cached, may not == HW) */
1305 u8 min_freq_softlimit; /* Minimum frequency permitted by the driver */
1306 u8 max_freq_softlimit; /* Max frequency permitted by the driver */
1307 u8 max_freq; /* Maximum frequency, RP0 if not overclocking */
1308 u8 min_freq; /* AKA RPn. Minimum frequency */
1309 u8 boost_freq; /* Frequency to request when wait boosting */
1310 u8 idle_freq; /* Frequency to request when we are idle */
1311 u8 efficient_freq; /* AKA RPe. Pre-determined balanced frequency */
1312 u8 rp1_freq; /* "less than" RP0 power/freqency */
1313 u8 rp0_freq; /* Non-overclocked max frequency. */
1314 u16 gpll_ref_freq; /* vlv/chv GPLL reference frequency */
1315
1316 u8 up_threshold; /* Current %busy required to uplock */
1317 u8 down_threshold; /* Current %busy required to downclock */
1318
1319 int last_adj;
1320 enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1321
1322 bool enabled;
1323 bool ctx_corrupted;
1324 struct delayed_work autoenable_work;
1325 atomic_t num_waiters;
1326 atomic_t boosts;
1327
1328 /* manual wa residency calculations */
1329 struct intel_rps_ei ei;
1330
1331 /*
1332 * Protects RPS/RC6 register access and PCU communication.
1333 * Must be taken after struct_mutex if nested. Note that
1334 * this lock may be held for long periods of time when
1335 * talking to hw - so only take it when talking to hw!
1336 */
1337 struct mutex hw_lock;
1338 };
1339
1340 /* defined intel_pm.c */
1341 extern spinlock_t mchdev_lock;
1342
1343 struct intel_ilk_power_mgmt {
1344 u8 cur_delay;
1345 u8 min_delay;
1346 u8 max_delay;
1347 u8 fmax;
1348 u8 fstart;
1349
1350 u64 last_count1;
1351 unsigned long last_time1;
1352 unsigned long chipset_power;
1353 u64 last_count2;
1354 u64 last_time2;
1355 unsigned long gfx_power;
1356 u8 corr;
1357
1358 int c_m;
1359 int r_t;
1360 };
1361
1362 struct drm_i915_private;
1363 struct i915_power_well;
1364
1365 struct i915_power_well_ops {
1366 /*
1367 * Synchronize the well's hw state to match the current sw state, for
1368 * example enable/disable it based on the current refcount. Called
1369 * during driver init and resume time, possibly after first calling
1370 * the enable/disable handlers.
1371 */
1372 void (*sync_hw)(struct drm_i915_private *dev_priv,
1373 struct i915_power_well *power_well);
1374 /*
1375 * Enable the well and resources that depend on it (for example
1376 * interrupts located on the well). Called after the 0->1 refcount
1377 * transition.
1378 */
1379 void (*enable)(struct drm_i915_private *dev_priv,
1380 struct i915_power_well *power_well);
1381 /*
1382 * Disable the well and resources that depend on it. Called after
1383 * the 1->0 refcount transition.
1384 */
1385 void (*disable)(struct drm_i915_private *dev_priv,
1386 struct i915_power_well *power_well);
1387 /* Returns the hw enabled state. */
1388 bool (*is_enabled)(struct drm_i915_private *dev_priv,
1389 struct i915_power_well *power_well);
1390 };
1391
1392 /* Power well structure for haswell */
1393 struct i915_power_well {
1394 const char *name;
1395 bool always_on;
1396 /* power well enable/disable usage count */
1397 int count;
1398 /* cached hw enabled state */
1399 bool hw_enabled;
1400 u64 domains;
1401 /* unique identifier for this power well */
1402 enum i915_power_well_id id;
1403 /*
1404 * Arbitraty data associated with this power well. Platform and power
1405 * well specific.
1406 */
1407 union {
1408 struct {
1409 enum dpio_phy phy;
1410 } bxt;
1411 struct {
1412 /* Mask of pipes whose IRQ logic is backed by the pw */
1413 u8 irq_pipe_mask;
1414 /* The pw is backing the VGA functionality */
1415 bool has_vga:1;
1416 bool has_fuses:1;
1417 } hsw;
1418 };
1419 const struct i915_power_well_ops *ops;
1420 };
1421
1422 struct i915_power_domains {
1423 /*
1424 * Power wells needed for initialization at driver init and suspend
1425 * time are on. They are kept on until after the first modeset.
1426 */
1427 bool init_power_on;
1428 bool initializing;
1429 int power_well_count;
1430
1431 struct mutex lock;
1432 int domain_use_count[POWER_DOMAIN_NUM];
1433 struct i915_power_well *power_wells;
1434 };
1435
1436 #define MAX_L3_SLICES 2
1437 struct intel_l3_parity {
1438 u32 *remap_info[MAX_L3_SLICES];
1439 struct work_struct error_work;
1440 int which_slice;
1441 };
1442
1443 struct i915_gem_mm {
1444 /** Memory allocator for GTT stolen memory */
1445 struct drm_mm stolen;
1446 /** Protects the usage of the GTT stolen memory allocator. This is
1447 * always the inner lock when overlapping with struct_mutex. */
1448 struct mutex stolen_lock;
1449
1450 /** List of all objects in gtt_space. Used to restore gtt
1451 * mappings on resume */
1452 struct list_head bound_list;
1453 /**
1454 * List of objects which are not bound to the GTT (thus
1455 * are idle and not used by the GPU). These objects may or may
1456 * not actually have any pages attached.
1457 */
1458 struct list_head unbound_list;
1459
1460 /** List of all objects in gtt_space, currently mmaped by userspace.
1461 * All objects within this list must also be on bound_list.
1462 */
1463 struct list_head userfault_list;
1464
1465 /**
1466 * List of objects which are pending destruction.
1467 */
1468 struct llist_head free_list;
1469 struct work_struct free_work;
1470
1471 /** Usable portion of the GTT for GEM */
1472 dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1473
1474 /** PPGTT used for aliasing the PPGTT with the GTT */
1475 struct i915_hw_ppgtt *aliasing_ppgtt;
1476
1477 struct notifier_block oom_notifier;
1478 struct notifier_block vmap_notifier;
1479 struct shrinker shrinker;
1480
1481 /** LRU list of objects with fence regs on them. */
1482 struct list_head fence_list;
1483
1484 /**
1485 * Workqueue to fault in userptr pages, flushed by the execbuf
1486 * when required but otherwise left to userspace to try again
1487 * on EAGAIN.
1488 */
1489 struct workqueue_struct *userptr_wq;
1490
1491 u64 unordered_timeline;
1492
1493 /* the indicator for dispatch video commands on two BSD rings */
1494 atomic_t bsd_engine_dispatch_index;
1495
1496 /** Bit 6 swizzling required for X tiling */
1497 uint32_t bit_6_swizzle_x;
1498 /** Bit 6 swizzling required for Y tiling */
1499 uint32_t bit_6_swizzle_y;
1500
1501 /* accounting, useful for userland debugging */
1502 spinlock_t object_stat_lock;
1503 u64 object_memory;
1504 u32 object_count;
1505 };
1506
1507 struct drm_i915_error_state_buf {
1508 struct drm_i915_private *i915;
1509 unsigned bytes;
1510 unsigned size;
1511 int err;
1512 u8 *buf;
1513 loff_t start;
1514 loff_t pos;
1515 };
1516
1517 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1518 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1519
1520 #define I915_ENGINE_DEAD_TIMEOUT (4 * HZ) /* Seqno, head and subunits dead */
1521 #define I915_SEQNO_DEAD_TIMEOUT (12 * HZ) /* Seqno dead with active head */
1522
1523 struct i915_gpu_error {
1524 /* For hangcheck timer */
1525 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1526 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1527
1528 struct delayed_work hangcheck_work;
1529
1530 /* For reset and error_state handling. */
1531 spinlock_t lock;
1532 /* Protected by the above dev->gpu_error.lock. */
1533 struct i915_gpu_state *first_error;
1534
1535 atomic_t pending_fb_pin;
1536
1537 unsigned long missed_irq_rings;
1538
1539 /**
1540 * State variable controlling the reset flow and count
1541 *
1542 * This is a counter which gets incremented when reset is triggered,
1543 *
1544 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1545 * meaning that any waiters holding onto the struct_mutex should
1546 * relinquish the lock immediately in order for the reset to start.
1547 *
1548 * If reset is not completed succesfully, the I915_WEDGE bit is
1549 * set meaning that hardware is terminally sour and there is no
1550 * recovery. All waiters on the reset_queue will be woken when
1551 * that happens.
1552 *
1553 * This counter is used by the wait_seqno code to notice that reset
1554 * event happened and it needs to restart the entire ioctl (since most
1555 * likely the seqno it waited for won't ever signal anytime soon).
1556 *
1557 * This is important for lock-free wait paths, where no contended lock
1558 * naturally enforces the correct ordering between the bail-out of the
1559 * waiter and the gpu reset work code.
1560 */
1561 unsigned long reset_count;
1562
1563 /**
1564 * flags: Control various stages of the GPU reset
1565 *
1566 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1567 * other users acquiring the struct_mutex. To do this we set the
1568 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1569 * and then check for that bit before acquiring the struct_mutex (in
1570 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1571 * secondary role in preventing two concurrent global reset attempts.
1572 *
1573 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1574 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1575 * but it may be held by some long running waiter (that we cannot
1576 * interrupt without causing trouble). Once we are ready to do the GPU
1577 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1578 * they already hold the struct_mutex and want to participate they can
1579 * inspect the bit and do the reset directly, otherwise the worker
1580 * waits for the struct_mutex.
1581 *
1582 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1583 * acquire the struct_mutex to reset an engine, we need an explicit
1584 * flag to prevent two concurrent reset attempts in the same engine.
1585 * As the number of engines continues to grow, allocate the flags from
1586 * the most significant bits.
1587 *
1588 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1589 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1590 * i915_gem_request_alloc(), this bit is checked and the sequence
1591 * aborted (with -EIO reported to userspace) if set.
1592 */
1593 unsigned long flags;
1594 #define I915_RESET_BACKOFF 0
1595 #define I915_RESET_HANDOFF 1
1596 #define I915_RESET_MODESET 2
1597 #define I915_WEDGED (BITS_PER_LONG - 1)
1598 #define I915_RESET_ENGINE (I915_WEDGED - I915_NUM_ENGINES)
1599
1600 /** Number of times an engine has been reset */
1601 u32 reset_engine_count[I915_NUM_ENGINES];
1602
1603 /**
1604 * Waitqueue to signal when a hang is detected. Used to for waiters
1605 * to release the struct_mutex for the reset to procede.
1606 */
1607 wait_queue_head_t wait_queue;
1608
1609 /**
1610 * Waitqueue to signal when the reset has completed. Used by clients
1611 * that wait for dev_priv->mm.wedged to settle.
1612 */
1613 wait_queue_head_t reset_queue;
1614
1615 /* For missed irq/seqno simulation. */
1616 unsigned long test_irq_rings;
1617 };
1618
1619 #define DP_AUX_A 0x40
1620 #define DP_AUX_B 0x10
1621 #define DP_AUX_C 0x20
1622 #define DP_AUX_D 0x30
1623
1624 #define DDC_PIN_B 0x05
1625 #define DDC_PIN_C 0x04
1626 #define DDC_PIN_D 0x06
1627
1628 struct ddi_vbt_port_info {
1629 /*
1630 * This is an index in the HDMI/DVI DDI buffer translation table.
1631 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1632 * populate this field.
1633 */
1634 #define HDMI_LEVEL_SHIFT_UNKNOWN 0xff
1635 uint8_t hdmi_level_shift;
1636
1637 uint8_t supports_dvi:1;
1638 uint8_t supports_hdmi:1;
1639 uint8_t supports_dp:1;
1640 uint8_t supports_edp:1;
1641
1642 uint8_t alternate_aux_channel;
1643 uint8_t alternate_ddc_pin;
1644
1645 uint8_t dp_boost_level;
1646 uint8_t hdmi_boost_level;
1647 };
1648
1649 enum psr_lines_to_wait {
1650 PSR_0_LINES_TO_WAIT = 0,
1651 PSR_1_LINE_TO_WAIT,
1652 PSR_4_LINES_TO_WAIT,
1653 PSR_8_LINES_TO_WAIT
1654 };
1655
1656 struct intel_vbt_data {
1657 struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1658 struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1659
1660 /* Feature bits */
1661 unsigned int int_tv_support:1;
1662 unsigned int lvds_dither:1;
1663 unsigned int lvds_vbt:1;
1664 unsigned int int_crt_support:1;
1665 unsigned int lvds_use_ssc:1;
1666 unsigned int display_clock_mode:1;
1667 unsigned int fdi_rx_polarity_inverted:1;
1668 unsigned int panel_type:4;
1669 int lvds_ssc_freq;
1670 unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1671
1672 enum drrs_support_type drrs_type;
1673
1674 struct {
1675 int rate;
1676 int lanes;
1677 int preemphasis;
1678 int vswing;
1679 bool low_vswing;
1680 bool initialized;
1681 bool support;
1682 int bpp;
1683 struct edp_power_seq pps;
1684 } edp;
1685
1686 struct {
1687 bool full_link;
1688 bool require_aux_wakeup;
1689 int idle_frames;
1690 enum psr_lines_to_wait lines_to_wait;
1691 int tp1_wakeup_time;
1692 int tp2_tp3_wakeup_time;
1693 } psr;
1694
1695 struct {
1696 u16 pwm_freq_hz;
1697 bool present;
1698 bool active_low_pwm;
1699 u8 min_brightness; /* min_brightness/255 of max */
1700 u8 controller; /* brightness controller number */
1701 enum intel_backlight_type type;
1702 } backlight;
1703
1704 /* MIPI DSI */
1705 struct {
1706 u16 panel_id;
1707 struct mipi_config *config;
1708 struct mipi_pps_data *pps;
1709 u8 seq_version;
1710 u32 size;
1711 u8 *data;
1712 const u8 *sequence[MIPI_SEQ_MAX];
1713 } dsi;
1714
1715 int crt_ddc_pin;
1716
1717 int child_dev_num;
1718 union child_device_config *child_dev;
1719
1720 struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1721 struct sdvo_device_mapping sdvo_mappings[2];
1722 };
1723
1724 enum intel_ddb_partitioning {
1725 INTEL_DDB_PART_1_2,
1726 INTEL_DDB_PART_5_6, /* IVB+ */
1727 };
1728
1729 struct intel_wm_level {
1730 bool enable;
1731 uint32_t pri_val;
1732 uint32_t spr_val;
1733 uint32_t cur_val;
1734 uint32_t fbc_val;
1735 };
1736
1737 struct ilk_wm_values {
1738 uint32_t wm_pipe[3];
1739 uint32_t wm_lp[3];
1740 uint32_t wm_lp_spr[3];
1741 uint32_t wm_linetime[3];
1742 bool enable_fbc_wm;
1743 enum intel_ddb_partitioning partitioning;
1744 };
1745
1746 struct g4x_pipe_wm {
1747 uint16_t plane[I915_MAX_PLANES];
1748 uint16_t fbc;
1749 };
1750
1751 struct g4x_sr_wm {
1752 uint16_t plane;
1753 uint16_t cursor;
1754 uint16_t fbc;
1755 };
1756
1757 struct vlv_wm_ddl_values {
1758 uint8_t plane[I915_MAX_PLANES];
1759 };
1760
1761 struct vlv_wm_values {
1762 struct g4x_pipe_wm pipe[3];
1763 struct g4x_sr_wm sr;
1764 struct vlv_wm_ddl_values ddl[3];
1765 uint8_t level;
1766 bool cxsr;
1767 };
1768
1769 struct g4x_wm_values {
1770 struct g4x_pipe_wm pipe[2];
1771 struct g4x_sr_wm sr;
1772 struct g4x_sr_wm hpll;
1773 bool cxsr;
1774 bool hpll_en;
1775 bool fbc_en;
1776 };
1777
1778 struct skl_ddb_entry {
1779 uint16_t start, end; /* in number of blocks, 'end' is exclusive */
1780 };
1781
skl_ddb_entry_size(const struct skl_ddb_entry * entry)1782 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1783 {
1784 return entry->end - entry->start;
1785 }
1786
skl_ddb_entry_equal(const struct skl_ddb_entry * e1,const struct skl_ddb_entry * e2)1787 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1788 const struct skl_ddb_entry *e2)
1789 {
1790 if (e1->start == e2->start && e1->end == e2->end)
1791 return true;
1792
1793 return false;
1794 }
1795
1796 struct skl_ddb_allocation {
1797 struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1798 struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1799 };
1800
1801 struct skl_wm_values {
1802 unsigned dirty_pipes;
1803 struct skl_ddb_allocation ddb;
1804 };
1805
1806 struct skl_wm_level {
1807 bool plane_en;
1808 uint16_t plane_res_b;
1809 uint8_t plane_res_l;
1810 };
1811
1812 /*
1813 * This struct helps tracking the state needed for runtime PM, which puts the
1814 * device in PCI D3 state. Notice that when this happens, nothing on the
1815 * graphics device works, even register access, so we don't get interrupts nor
1816 * anything else.
1817 *
1818 * Every piece of our code that needs to actually touch the hardware needs to
1819 * either call intel_runtime_pm_get or call intel_display_power_get with the
1820 * appropriate power domain.
1821 *
1822 * Our driver uses the autosuspend delay feature, which means we'll only really
1823 * suspend if we stay with zero refcount for a certain amount of time. The
1824 * default value is currently very conservative (see intel_runtime_pm_enable), but
1825 * it can be changed with the standard runtime PM files from sysfs.
1826 *
1827 * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1828 * goes back to false exactly before we reenable the IRQs. We use this variable
1829 * to check if someone is trying to enable/disable IRQs while they're supposed
1830 * to be disabled. This shouldn't happen and we'll print some error messages in
1831 * case it happens.
1832 *
1833 * For more, read the Documentation/power/runtime_pm.txt.
1834 */
1835 struct i915_runtime_pm {
1836 atomic_t wakeref_count;
1837 bool suspended;
1838 bool irqs_enabled;
1839 };
1840
1841 enum intel_pipe_crc_source {
1842 INTEL_PIPE_CRC_SOURCE_NONE,
1843 INTEL_PIPE_CRC_SOURCE_PLANE1,
1844 INTEL_PIPE_CRC_SOURCE_PLANE2,
1845 INTEL_PIPE_CRC_SOURCE_PF,
1846 INTEL_PIPE_CRC_SOURCE_PIPE,
1847 /* TV/DP on pre-gen5/vlv can't use the pipe source. */
1848 INTEL_PIPE_CRC_SOURCE_TV,
1849 INTEL_PIPE_CRC_SOURCE_DP_B,
1850 INTEL_PIPE_CRC_SOURCE_DP_C,
1851 INTEL_PIPE_CRC_SOURCE_DP_D,
1852 INTEL_PIPE_CRC_SOURCE_AUTO,
1853 INTEL_PIPE_CRC_SOURCE_MAX,
1854 };
1855
1856 struct intel_pipe_crc_entry {
1857 uint32_t frame;
1858 uint32_t crc[5];
1859 };
1860
1861 #define INTEL_PIPE_CRC_ENTRIES_NR 128
1862 struct intel_pipe_crc {
1863 spinlock_t lock;
1864 bool opened; /* exclusive access to the result file */
1865 struct intel_pipe_crc_entry *entries;
1866 enum intel_pipe_crc_source source;
1867 int head, tail;
1868 wait_queue_head_t wq;
1869 int skipped;
1870 };
1871
1872 struct i915_frontbuffer_tracking {
1873 spinlock_t lock;
1874
1875 /*
1876 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1877 * scheduled flips.
1878 */
1879 unsigned busy_bits;
1880 unsigned flip_bits;
1881 };
1882
1883 struct i915_wa_reg {
1884 i915_reg_t addr;
1885 u32 value;
1886 /* bitmask representing WA bits */
1887 u32 mask;
1888 };
1889
1890 /*
1891 * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1892 * allowing it for RCS as we don't foresee any requirement of having
1893 * a whitelist for other engines. When it is really required for
1894 * other engines then the limit need to be increased.
1895 */
1896 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1897
1898 struct i915_workarounds {
1899 struct i915_wa_reg reg[I915_MAX_WA_REGS];
1900 u32 count;
1901 u32 hw_whitelist_count[I915_NUM_ENGINES];
1902 };
1903
1904 struct i915_virtual_gpu {
1905 bool active;
1906 u32 caps;
1907 };
1908
1909 /* used in computing the new watermarks state */
1910 struct intel_wm_config {
1911 unsigned int num_pipes_active;
1912 bool sprites_enabled;
1913 bool sprites_scaled;
1914 };
1915
1916 struct i915_oa_format {
1917 u32 format;
1918 int size;
1919 };
1920
1921 struct i915_oa_reg {
1922 i915_reg_t addr;
1923 u32 value;
1924 };
1925
1926 struct i915_oa_config {
1927 char uuid[UUID_STRING_LEN + 1];
1928 int id;
1929
1930 const struct i915_oa_reg *mux_regs;
1931 u32 mux_regs_len;
1932 const struct i915_oa_reg *b_counter_regs;
1933 u32 b_counter_regs_len;
1934 const struct i915_oa_reg *flex_regs;
1935 u32 flex_regs_len;
1936
1937 struct attribute_group sysfs_metric;
1938 struct attribute *attrs[2];
1939 struct device_attribute sysfs_metric_id;
1940
1941 atomic_t ref_count;
1942 };
1943
1944 struct i915_perf_stream;
1945
1946 /**
1947 * struct i915_perf_stream_ops - the OPs to support a specific stream type
1948 */
1949 struct i915_perf_stream_ops {
1950 /**
1951 * @enable: Enables the collection of HW samples, either in response to
1952 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1953 * without `I915_PERF_FLAG_DISABLED`.
1954 */
1955 void (*enable)(struct i915_perf_stream *stream);
1956
1957 /**
1958 * @disable: Disables the collection of HW samples, either in response
1959 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1960 * the stream.
1961 */
1962 void (*disable)(struct i915_perf_stream *stream);
1963
1964 /**
1965 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1966 * once there is something ready to read() for the stream
1967 */
1968 void (*poll_wait)(struct i915_perf_stream *stream,
1969 struct file *file,
1970 poll_table *wait);
1971
1972 /**
1973 * @wait_unlocked: For handling a blocking read, wait until there is
1974 * something to ready to read() for the stream. E.g. wait on the same
1975 * wait queue that would be passed to poll_wait().
1976 */
1977 int (*wait_unlocked)(struct i915_perf_stream *stream);
1978
1979 /**
1980 * @read: Copy buffered metrics as records to userspace
1981 * **buf**: the userspace, destination buffer
1982 * **count**: the number of bytes to copy, requested by userspace
1983 * **offset**: zero at the start of the read, updated as the read
1984 * proceeds, it represents how many bytes have been copied so far and
1985 * the buffer offset for copying the next record.
1986 *
1987 * Copy as many buffered i915 perf samples and records for this stream
1988 * to userspace as will fit in the given buffer.
1989 *
1990 * Only write complete records; returning -%ENOSPC if there isn't room
1991 * for a complete record.
1992 *
1993 * Return any error condition that results in a short read such as
1994 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1995 * returning to userspace.
1996 */
1997 int (*read)(struct i915_perf_stream *stream,
1998 char __user *buf,
1999 size_t count,
2000 size_t *offset);
2001
2002 /**
2003 * @destroy: Cleanup any stream specific resources.
2004 *
2005 * The stream will always be disabled before this is called.
2006 */
2007 void (*destroy)(struct i915_perf_stream *stream);
2008 };
2009
2010 /**
2011 * struct i915_perf_stream - state for a single open stream FD
2012 */
2013 struct i915_perf_stream {
2014 /**
2015 * @dev_priv: i915 drm device
2016 */
2017 struct drm_i915_private *dev_priv;
2018
2019 /**
2020 * @link: Links the stream into ``&drm_i915_private->streams``
2021 */
2022 struct list_head link;
2023
2024 /**
2025 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2026 * properties given when opening a stream, representing the contents
2027 * of a single sample as read() by userspace.
2028 */
2029 u32 sample_flags;
2030
2031 /**
2032 * @sample_size: Considering the configured contents of a sample
2033 * combined with the required header size, this is the total size
2034 * of a single sample record.
2035 */
2036 int sample_size;
2037
2038 /**
2039 * @ctx: %NULL if measuring system-wide across all contexts or a
2040 * specific context that is being monitored.
2041 */
2042 struct i915_gem_context *ctx;
2043
2044 /**
2045 * @enabled: Whether the stream is currently enabled, considering
2046 * whether the stream was opened in a disabled state and based
2047 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2048 */
2049 bool enabled;
2050
2051 /**
2052 * @ops: The callbacks providing the implementation of this specific
2053 * type of configured stream.
2054 */
2055 const struct i915_perf_stream_ops *ops;
2056
2057 /**
2058 * @oa_config: The OA configuration used by the stream.
2059 */
2060 struct i915_oa_config *oa_config;
2061 };
2062
2063 /**
2064 * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2065 */
2066 struct i915_oa_ops {
2067 /**
2068 * @is_valid_b_counter_reg: Validates register's address for
2069 * programming boolean counters for a particular platform.
2070 */
2071 bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2072 u32 addr);
2073
2074 /**
2075 * @is_valid_mux_reg: Validates register's address for programming mux
2076 * for a particular platform.
2077 */
2078 bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2079
2080 /**
2081 * @is_valid_flex_reg: Validates register's address for programming
2082 * flex EU filtering for a particular platform.
2083 */
2084 bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2085
2086 /**
2087 * @init_oa_buffer: Resets the head and tail pointers of the
2088 * circular buffer for periodic OA reports.
2089 *
2090 * Called when first opening a stream for OA metrics, but also may be
2091 * called in response to an OA buffer overflow or other error
2092 * condition.
2093 *
2094 * Note it may be necessary to clear the full OA buffer here as part of
2095 * maintaining the invariable that new reports must be written to
2096 * zeroed memory for us to be able to reliable detect if an expected
2097 * report has not yet landed in memory. (At least on Haswell the OA
2098 * buffer tail pointer is not synchronized with reports being visible
2099 * to the CPU)
2100 */
2101 void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2102
2103 /**
2104 * @enable_metric_set: Selects and applies any MUX configuration to set
2105 * up the Boolean and Custom (B/C) counters that are part of the
2106 * counter reports being sampled. May apply system constraints such as
2107 * disabling EU clock gating as required.
2108 */
2109 int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2110 const struct i915_oa_config *oa_config);
2111
2112 /**
2113 * @disable_metric_set: Remove system constraints associated with using
2114 * the OA unit.
2115 */
2116 void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2117
2118 /**
2119 * @oa_enable: Enable periodic sampling
2120 */
2121 void (*oa_enable)(struct drm_i915_private *dev_priv);
2122
2123 /**
2124 * @oa_disable: Disable periodic sampling
2125 */
2126 void (*oa_disable)(struct drm_i915_private *dev_priv);
2127
2128 /**
2129 * @read: Copy data from the circular OA buffer into a given userspace
2130 * buffer.
2131 */
2132 int (*read)(struct i915_perf_stream *stream,
2133 char __user *buf,
2134 size_t count,
2135 size_t *offset);
2136
2137 /**
2138 * @oa_hw_tail_read: read the OA tail pointer register
2139 *
2140 * In particular this enables us to share all the fiddly code for
2141 * handling the OA unit tail pointer race that affects multiple
2142 * generations.
2143 */
2144 u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2145 };
2146
2147 struct intel_cdclk_state {
2148 unsigned int cdclk, vco, ref;
2149 };
2150
2151 struct drm_i915_private {
2152 struct drm_device drm;
2153
2154 struct kmem_cache *objects;
2155 struct kmem_cache *vmas;
2156 struct kmem_cache *luts;
2157 struct kmem_cache *requests;
2158 struct kmem_cache *dependencies;
2159 struct kmem_cache *priorities;
2160
2161 const struct intel_device_info info;
2162
2163 void __iomem *regs;
2164
2165 struct intel_uncore uncore;
2166
2167 struct i915_virtual_gpu vgpu;
2168
2169 struct intel_gvt *gvt;
2170
2171 struct intel_huc huc;
2172 struct intel_guc guc;
2173
2174 struct intel_csr csr;
2175
2176 struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2177
2178 /** gmbus_mutex protects against concurrent usage of the single hw gmbus
2179 * controller on different i2c buses. */
2180 struct mutex gmbus_mutex;
2181
2182 /**
2183 * Base address of the gmbus and gpio block.
2184 */
2185 uint32_t gpio_mmio_base;
2186
2187 /* MMIO base address for MIPI regs */
2188 uint32_t mipi_mmio_base;
2189
2190 uint32_t psr_mmio_base;
2191
2192 uint32_t pps_mmio_base;
2193
2194 wait_queue_head_t gmbus_wait_queue;
2195
2196 struct pci_dev *bridge_dev;
2197 struct i915_gem_context *kernel_context;
2198 struct intel_engine_cs *engine[I915_NUM_ENGINES];
2199 struct i915_vma *semaphore;
2200
2201 struct drm_dma_handle *status_page_dmah;
2202 struct resource mch_res;
2203
2204 /* protects the irq masks */
2205 spinlock_t irq_lock;
2206
2207 bool display_irqs_enabled;
2208
2209 /* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2210 struct pm_qos_request pm_qos;
2211
2212 /* Sideband mailbox protection */
2213 struct mutex sb_lock;
2214
2215 /** Cached value of IMR to avoid reads in updating the bitfield */
2216 union {
2217 u32 irq_mask;
2218 u32 de_irq_mask[I915_MAX_PIPES];
2219 };
2220 u32 gt_irq_mask;
2221 u32 pm_imr;
2222 u32 pm_ier;
2223 u32 pm_rps_events;
2224 u32 pm_guc_events;
2225 u32 pipestat_irq_mask[I915_MAX_PIPES];
2226
2227 struct i915_hotplug hotplug;
2228 struct intel_fbc fbc;
2229 struct i915_drrs drrs;
2230 struct intel_opregion opregion;
2231 struct intel_vbt_data vbt;
2232
2233 bool preserve_bios_swizzle;
2234
2235 /* overlay */
2236 struct intel_overlay *overlay;
2237
2238 /* backlight registers and fields in struct intel_panel */
2239 struct mutex backlight_lock;
2240
2241 /* LVDS info */
2242 bool no_aux_handshake;
2243
2244 /* protects panel power sequencer state */
2245 struct mutex pps_mutex;
2246
2247 struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2248 int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2249
2250 unsigned int fsb_freq, mem_freq, is_ddr3;
2251 unsigned int skl_preferred_vco_freq;
2252 unsigned int max_cdclk_freq;
2253
2254 unsigned int max_dotclk_freq;
2255 unsigned int rawclk_freq;
2256 unsigned int hpll_freq;
2257 unsigned int czclk_freq;
2258
2259 struct {
2260 /*
2261 * The current logical cdclk state.
2262 * See intel_atomic_state.cdclk.logical
2263 *
2264 * For reading holding any crtc lock is sufficient,
2265 * for writing must hold all of them.
2266 */
2267 struct intel_cdclk_state logical;
2268 /*
2269 * The current actual cdclk state.
2270 * See intel_atomic_state.cdclk.actual
2271 */
2272 struct intel_cdclk_state actual;
2273 /* The current hardware cdclk state */
2274 struct intel_cdclk_state hw;
2275 } cdclk;
2276
2277 /**
2278 * wq - Driver workqueue for GEM.
2279 *
2280 * NOTE: Work items scheduled here are not allowed to grab any modeset
2281 * locks, for otherwise the flushing done in the pageflip code will
2282 * result in deadlocks.
2283 */
2284 struct workqueue_struct *wq;
2285
2286 /* Display functions */
2287 struct drm_i915_display_funcs display;
2288
2289 /* PCH chipset type */
2290 enum intel_pch pch_type;
2291 unsigned short pch_id;
2292
2293 unsigned long quirks;
2294
2295 struct drm_atomic_state *modeset_restore_state;
2296 struct drm_modeset_acquire_ctx reset_ctx;
2297
2298 struct list_head vm_list; /* Global list of all address spaces */
2299 struct i915_ggtt ggtt; /* VM representing the global address space */
2300
2301 struct i915_gem_mm mm;
2302 DECLARE_HASHTABLE(mm_structs, 7);
2303 struct mutex mm_lock;
2304
2305 /* Kernel Modesetting */
2306
2307 struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2308 struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2309
2310 #ifdef CONFIG_DEBUG_FS
2311 struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2312 #endif
2313
2314 /* dpll and cdclk state is protected by connection_mutex */
2315 int num_shared_dpll;
2316 struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2317 const struct intel_dpll_mgr *dpll_mgr;
2318
2319 /*
2320 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2321 * Must be global rather than per dpll, because on some platforms
2322 * plls share registers.
2323 */
2324 struct mutex dpll_lock;
2325
2326 unsigned int active_crtcs;
2327 unsigned int min_pixclk[I915_MAX_PIPES];
2328
2329 int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2330
2331 struct i915_workarounds workarounds;
2332
2333 struct i915_frontbuffer_tracking fb_tracking;
2334
2335 struct intel_atomic_helper {
2336 struct llist_head free_list;
2337 struct work_struct free_work;
2338 } atomic_helper;
2339
2340 u16 orig_clock;
2341
2342 bool mchbar_need_disable;
2343
2344 struct intel_l3_parity l3_parity;
2345
2346 /* Cannot be determined by PCIID. You must always read a register. */
2347 u32 edram_cap;
2348
2349 /* gen6+ rps state */
2350 struct intel_gen6_power_mgmt rps;
2351
2352 /* ilk-only ips/rps state. Everything in here is protected by the global
2353 * mchdev_lock in intel_pm.c */
2354 struct intel_ilk_power_mgmt ips;
2355
2356 struct i915_power_domains power_domains;
2357
2358 struct i915_psr psr;
2359
2360 struct i915_gpu_error gpu_error;
2361
2362 struct drm_i915_gem_object *vlv_pctx;
2363
2364 /* list of fbdev register on this device */
2365 struct intel_fbdev *fbdev;
2366 struct work_struct fbdev_suspend_work;
2367
2368 struct drm_property *broadcast_rgb_property;
2369 struct drm_property *force_audio_property;
2370
2371 /* hda/i915 audio component */
2372 struct i915_audio_component *audio_component;
2373 bool audio_component_registered;
2374 /**
2375 * av_mutex - mutex for audio/video sync
2376 *
2377 */
2378 struct mutex av_mutex;
2379
2380 struct {
2381 struct list_head list;
2382 struct llist_head free_list;
2383 struct work_struct free_work;
2384
2385 /* The hw wants to have a stable context identifier for the
2386 * lifetime of the context (for OA, PASID, faults, etc).
2387 * This is limited in execlists to 21 bits.
2388 */
2389 struct ida hw_ida;
2390 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2391 } contexts;
2392
2393 u32 fdi_rx_config;
2394
2395 /* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2396 u32 chv_phy_control;
2397 /*
2398 * Shadows for CHV DPLL_MD regs to keep the state
2399 * checker somewhat working in the presence hardware
2400 * crappiness (can't read out DPLL_MD for pipes B & C).
2401 */
2402 u32 chv_dpll_md[I915_MAX_PIPES];
2403 u32 bxt_phy_grc;
2404
2405 u32 suspend_count;
2406 bool suspended_to_idle;
2407 struct i915_suspend_saved_registers regfile;
2408 struct vlv_s0ix_state vlv_s0ix_state;
2409
2410 enum {
2411 I915_SAGV_UNKNOWN = 0,
2412 I915_SAGV_DISABLED,
2413 I915_SAGV_ENABLED,
2414 I915_SAGV_NOT_CONTROLLED
2415 } sagv_status;
2416
2417 struct {
2418 /*
2419 * Raw watermark latency values:
2420 * in 0.1us units for WM0,
2421 * in 0.5us units for WM1+.
2422 */
2423 /* primary */
2424 uint16_t pri_latency[5];
2425 /* sprite */
2426 uint16_t spr_latency[5];
2427 /* cursor */
2428 uint16_t cur_latency[5];
2429 /*
2430 * Raw watermark memory latency values
2431 * for SKL for all 8 levels
2432 * in 1us units.
2433 */
2434 uint16_t skl_latency[8];
2435
2436 /* current hardware state */
2437 union {
2438 struct ilk_wm_values hw;
2439 struct skl_wm_values skl_hw;
2440 struct vlv_wm_values vlv;
2441 struct g4x_wm_values g4x;
2442 };
2443
2444 uint8_t max_level;
2445
2446 /*
2447 * Should be held around atomic WM register writing; also
2448 * protects * intel_crtc->wm.active and
2449 * cstate->wm.need_postvbl_update.
2450 */
2451 struct mutex wm_mutex;
2452
2453 /*
2454 * Set during HW readout of watermarks/DDB. Some platforms
2455 * need to know when we're still using BIOS-provided values
2456 * (which we don't fully trust).
2457 */
2458 bool distrust_bios_wm;
2459 } wm;
2460
2461 struct i915_runtime_pm pm;
2462
2463 struct {
2464 bool initialized;
2465
2466 struct kobject *metrics_kobj;
2467 struct ctl_table_header *sysctl_header;
2468
2469 /*
2470 * Lock associated with adding/modifying/removing OA configs
2471 * in dev_priv->perf.metrics_idr.
2472 */
2473 struct mutex metrics_lock;
2474
2475 /*
2476 * List of dynamic configurations, you need to hold
2477 * dev_priv->perf.metrics_lock to access it.
2478 */
2479 struct idr metrics_idr;
2480
2481 /*
2482 * Lock associated with anything below within this structure
2483 * except exclusive_stream.
2484 */
2485 struct mutex lock;
2486 struct list_head streams;
2487
2488 struct {
2489 /*
2490 * The stream currently using the OA unit. If accessed
2491 * outside a syscall associated to its file
2492 * descriptor, you need to hold
2493 * dev_priv->drm.struct_mutex.
2494 */
2495 struct i915_perf_stream *exclusive_stream;
2496
2497 u32 specific_ctx_id;
2498
2499 struct hrtimer poll_check_timer;
2500 wait_queue_head_t poll_wq;
2501 bool pollin;
2502
2503 /**
2504 * For rate limiting any notifications of spurious
2505 * invalid OA reports
2506 */
2507 struct ratelimit_state spurious_report_rs;
2508
2509 bool periodic;
2510 int period_exponent;
2511 int timestamp_frequency;
2512
2513 struct i915_oa_config test_config;
2514
2515 struct {
2516 struct i915_vma *vma;
2517 u8 *vaddr;
2518 u32 last_ctx_id;
2519 int format;
2520 int format_size;
2521
2522 /**
2523 * Locks reads and writes to all head/tail state
2524 *
2525 * Consider: the head and tail pointer state
2526 * needs to be read consistently from a hrtimer
2527 * callback (atomic context) and read() fop
2528 * (user context) with tail pointer updates
2529 * happening in atomic context and head updates
2530 * in user context and the (unlikely)
2531 * possibility of read() errors needing to
2532 * reset all head/tail state.
2533 *
2534 * Note: Contention or performance aren't
2535 * currently a significant concern here
2536 * considering the relatively low frequency of
2537 * hrtimer callbacks (5ms period) and that
2538 * reads typically only happen in response to a
2539 * hrtimer event and likely complete before the
2540 * next callback.
2541 *
2542 * Note: This lock is not held *while* reading
2543 * and copying data to userspace so the value
2544 * of head observed in htrimer callbacks won't
2545 * represent any partial consumption of data.
2546 */
2547 spinlock_t ptr_lock;
2548
2549 /**
2550 * One 'aging' tail pointer and one 'aged'
2551 * tail pointer ready to used for reading.
2552 *
2553 * Initial values of 0xffffffff are invalid
2554 * and imply that an update is required
2555 * (and should be ignored by an attempted
2556 * read)
2557 */
2558 struct {
2559 u32 offset;
2560 } tails[2];
2561
2562 /**
2563 * Index for the aged tail ready to read()
2564 * data up to.
2565 */
2566 unsigned int aged_tail_idx;
2567
2568 /**
2569 * A monotonic timestamp for when the current
2570 * aging tail pointer was read; used to
2571 * determine when it is old enough to trust.
2572 */
2573 u64 aging_timestamp;
2574
2575 /**
2576 * Although we can always read back the head
2577 * pointer register, we prefer to avoid
2578 * trusting the HW state, just to avoid any
2579 * risk that some hardware condition could
2580 * somehow bump the head pointer unpredictably
2581 * and cause us to forward the wrong OA buffer
2582 * data to userspace.
2583 */
2584 u32 head;
2585 } oa_buffer;
2586
2587 u32 gen7_latched_oastatus1;
2588 u32 ctx_oactxctrl_offset;
2589 u32 ctx_flexeu0_offset;
2590
2591 /**
2592 * The RPT_ID/reason field for Gen8+ includes a bit
2593 * to determine if the CTX ID in the report is valid
2594 * but the specific bit differs between Gen 8 and 9
2595 */
2596 u32 gen8_valid_ctx_bit;
2597
2598 struct i915_oa_ops ops;
2599 const struct i915_oa_format *oa_formats;
2600 } oa;
2601 } perf;
2602
2603 /* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2604 struct {
2605 void (*resume)(struct drm_i915_private *);
2606 void (*cleanup_engine)(struct intel_engine_cs *engine);
2607
2608 struct list_head timelines;
2609 struct i915_gem_timeline global_timeline;
2610 u32 active_requests;
2611
2612 /**
2613 * Is the GPU currently considered idle, or busy executing
2614 * userspace requests? Whilst idle, we allow runtime power
2615 * management to power down the hardware and display clocks.
2616 * In order to reduce the effect on performance, there
2617 * is a slight delay before we do so.
2618 */
2619 bool awake;
2620
2621 /**
2622 * We leave the user IRQ off as much as possible,
2623 * but this means that requests will finish and never
2624 * be retired once the system goes idle. Set a timer to
2625 * fire periodically while the ring is running. When it
2626 * fires, go retire requests.
2627 */
2628 struct delayed_work retire_work;
2629
2630 /**
2631 * When we detect an idle GPU, we want to turn on
2632 * powersaving features. So once we see that there
2633 * are no more requests outstanding and no more
2634 * arrive within a small period of time, we fire
2635 * off the idle_work.
2636 */
2637 struct delayed_work idle_work;
2638
2639 ktime_t last_init_time;
2640 } gt;
2641
2642 /* perform PHY state sanity checks? */
2643 bool chv_phy_assert[2];
2644
2645 bool ipc_enabled;
2646
2647 /* Used to save the pipe-to-encoder mapping for audio */
2648 struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2649
2650 /* necessary resource sharing with HDMI LPE audio driver. */
2651 struct {
2652 struct platform_device *platdev;
2653 int irq;
2654 } lpe_audio;
2655
2656 /*
2657 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2658 * will be rejected. Instead look for a better place.
2659 */
2660 };
2661
to_i915(const struct drm_device * dev)2662 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2663 {
2664 return container_of(dev, struct drm_i915_private, drm);
2665 }
2666
kdev_to_i915(struct device * kdev)2667 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2668 {
2669 return to_i915(dev_get_drvdata(kdev));
2670 }
2671
guc_to_i915(struct intel_guc * guc)2672 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2673 {
2674 return container_of(guc, struct drm_i915_private, guc);
2675 }
2676
huc_to_i915(struct intel_huc * huc)2677 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2678 {
2679 return container_of(huc, struct drm_i915_private, huc);
2680 }
2681
2682 /* Simple iterator over all initialised engines */
2683 #define for_each_engine(engine__, dev_priv__, id__) \
2684 for ((id__) = 0; \
2685 (id__) < I915_NUM_ENGINES; \
2686 (id__)++) \
2687 for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2688
2689 /* Iterator over subset of engines selected by mask */
2690 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2691 for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask; \
2692 tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2693
2694 enum hdmi_force_audio {
2695 HDMI_AUDIO_OFF_DVI = -2, /* no aux data for HDMI-DVI converter */
2696 HDMI_AUDIO_OFF, /* force turn off HDMI audio */
2697 HDMI_AUDIO_AUTO, /* trust EDID */
2698 HDMI_AUDIO_ON, /* force turn on HDMI audio */
2699 };
2700
2701 #define I915_GTT_OFFSET_NONE ((u32)-1)
2702
2703 /*
2704 * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2705 * considered to be the frontbuffer for the given plane interface-wise. This
2706 * doesn't mean that the hw necessarily already scans it out, but that any
2707 * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2708 *
2709 * We have one bit per pipe and per scanout plane type.
2710 */
2711 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2712 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2713 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2714 (1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2715 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2716 (1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2717 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2718 (1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2719 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2720 (1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2721 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2722 (0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2723
2724 /*
2725 * Optimised SGL iterator for GEM objects
2726 */
2727 static __always_inline struct sgt_iter {
2728 struct scatterlist *sgp;
2729 union {
2730 unsigned long pfn;
2731 dma_addr_t dma;
2732 };
2733 unsigned int curr;
2734 unsigned int max;
__sgt_iter(struct scatterlist * sgl,bool dma)2735 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2736 struct sgt_iter s = { .sgp = sgl };
2737
2738 if (s.sgp) {
2739 s.max = s.curr = s.sgp->offset;
2740 s.max += s.sgp->length;
2741 if (dma)
2742 s.dma = sg_dma_address(s.sgp);
2743 else
2744 s.pfn = page_to_pfn(sg_page(s.sgp));
2745 }
2746
2747 return s;
2748 }
2749
____sg_next(struct scatterlist * sg)2750 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2751 {
2752 ++sg;
2753 if (unlikely(sg_is_chain(sg)))
2754 sg = sg_chain_ptr(sg);
2755 return sg;
2756 }
2757
2758 /**
2759 * __sg_next - return the next scatterlist entry in a list
2760 * @sg: The current sg entry
2761 *
2762 * Description:
2763 * If the entry is the last, return NULL; otherwise, step to the next
2764 * element in the array (@sg@+1). If that's a chain pointer, follow it;
2765 * otherwise just return the pointer to the current element.
2766 **/
__sg_next(struct scatterlist * sg)2767 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2768 {
2769 #ifdef CONFIG_DEBUG_SG
2770 BUG_ON(sg->sg_magic != SG_MAGIC);
2771 #endif
2772 return sg_is_last(sg) ? NULL : ____sg_next(sg);
2773 }
2774
2775 /**
2776 * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2777 * @__dmap: DMA address (output)
2778 * @__iter: 'struct sgt_iter' (iterator state, internal)
2779 * @__sgt: sg_table to iterate over (input)
2780 */
2781 #define for_each_sgt_dma(__dmap, __iter, __sgt) \
2782 for ((__iter) = __sgt_iter((__sgt)->sgl, true); \
2783 ((__dmap) = (__iter).dma + (__iter).curr); \
2784 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2785 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2786
2787 /**
2788 * for_each_sgt_page - iterate over the pages of the given sg_table
2789 * @__pp: page pointer (output)
2790 * @__iter: 'struct sgt_iter' (iterator state, internal)
2791 * @__sgt: sg_table to iterate over (input)
2792 */
2793 #define for_each_sgt_page(__pp, __iter, __sgt) \
2794 for ((__iter) = __sgt_iter((__sgt)->sgl, false); \
2795 ((__pp) = (__iter).pfn == 0 ? NULL : \
2796 pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2797 (((__iter).curr += PAGE_SIZE) < (__iter).max) || \
2798 ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2799
2800 static inline const struct intel_device_info *
intel_info(const struct drm_i915_private * dev_priv)2801 intel_info(const struct drm_i915_private *dev_priv)
2802 {
2803 return &dev_priv->info;
2804 }
2805
2806 #define INTEL_INFO(dev_priv) intel_info((dev_priv))
2807
2808 #define INTEL_GEN(dev_priv) ((dev_priv)->info.gen)
2809 #define INTEL_DEVID(dev_priv) ((dev_priv)->info.device_id)
2810
2811 #define REVID_FOREVER 0xff
2812 #define INTEL_REVID(dev_priv) ((dev_priv)->drm.pdev->revision)
2813
2814 #define GEN_FOREVER (0)
2815 /*
2816 * Returns true if Gen is in inclusive range [Start, End].
2817 *
2818 * Use GEN_FOREVER for unbound start and or end.
2819 */
2820 #define IS_GEN(dev_priv, s, e) ({ \
2821 unsigned int __s = (s), __e = (e); \
2822 BUILD_BUG_ON(!__builtin_constant_p(s)); \
2823 BUILD_BUG_ON(!__builtin_constant_p(e)); \
2824 if ((__s) != GEN_FOREVER) \
2825 __s = (s) - 1; \
2826 if ((__e) == GEN_FOREVER) \
2827 __e = BITS_PER_LONG - 1; \
2828 else \
2829 __e = (e) - 1; \
2830 !!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2831 })
2832
2833 /*
2834 * Return true if revision is in range [since,until] inclusive.
2835 *
2836 * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2837 */
2838 #define IS_REVID(p, since, until) \
2839 (INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2840
2841 #define IS_I830(dev_priv) ((dev_priv)->info.platform == INTEL_I830)
2842 #define IS_I845G(dev_priv) ((dev_priv)->info.platform == INTEL_I845G)
2843 #define IS_I85X(dev_priv) ((dev_priv)->info.platform == INTEL_I85X)
2844 #define IS_I865G(dev_priv) ((dev_priv)->info.platform == INTEL_I865G)
2845 #define IS_I915G(dev_priv) ((dev_priv)->info.platform == INTEL_I915G)
2846 #define IS_I915GM(dev_priv) ((dev_priv)->info.platform == INTEL_I915GM)
2847 #define IS_I945G(dev_priv) ((dev_priv)->info.platform == INTEL_I945G)
2848 #define IS_I945GM(dev_priv) ((dev_priv)->info.platform == INTEL_I945GM)
2849 #define IS_I965G(dev_priv) ((dev_priv)->info.platform == INTEL_I965G)
2850 #define IS_I965GM(dev_priv) ((dev_priv)->info.platform == INTEL_I965GM)
2851 #define IS_G45(dev_priv) ((dev_priv)->info.platform == INTEL_G45)
2852 #define IS_GM45(dev_priv) ((dev_priv)->info.platform == INTEL_GM45)
2853 #define IS_G4X(dev_priv) (IS_G45(dev_priv) || IS_GM45(dev_priv))
2854 #define IS_PINEVIEW_G(dev_priv) (INTEL_DEVID(dev_priv) == 0xa001)
2855 #define IS_PINEVIEW_M(dev_priv) (INTEL_DEVID(dev_priv) == 0xa011)
2856 #define IS_PINEVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_PINEVIEW)
2857 #define IS_G33(dev_priv) ((dev_priv)->info.platform == INTEL_G33)
2858 #define IS_IRONLAKE_M(dev_priv) (INTEL_DEVID(dev_priv) == 0x0046)
2859 #define IS_IVYBRIDGE(dev_priv) ((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2860 #define IS_IVB_GT1(dev_priv) (INTEL_DEVID(dev_priv) == 0x0156 || \
2861 INTEL_DEVID(dev_priv) == 0x0152 || \
2862 INTEL_DEVID(dev_priv) == 0x015a)
2863 #define IS_VALLEYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2864 #define IS_CHERRYVIEW(dev_priv) ((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2865 #define IS_HASWELL(dev_priv) ((dev_priv)->info.platform == INTEL_HASWELL)
2866 #define IS_BROADWELL(dev_priv) ((dev_priv)->info.platform == INTEL_BROADWELL)
2867 #define IS_SKYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_SKYLAKE)
2868 #define IS_BROXTON(dev_priv) ((dev_priv)->info.platform == INTEL_BROXTON)
2869 #define IS_KABYLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_KABYLAKE)
2870 #define IS_GEMINILAKE(dev_priv) ((dev_priv)->info.platform == INTEL_GEMINILAKE)
2871 #define IS_COFFEELAKE(dev_priv) ((dev_priv)->info.platform == INTEL_COFFEELAKE)
2872 #define IS_CANNONLAKE(dev_priv) ((dev_priv)->info.platform == INTEL_CANNONLAKE)
2873 #define IS_MOBILE(dev_priv) ((dev_priv)->info.is_mobile)
2874 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2875 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2876 #define IS_BDW_ULT(dev_priv) (IS_BROADWELL(dev_priv) && \
2877 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 || \
2878 (INTEL_DEVID(dev_priv) & 0xf) == 0xb || \
2879 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2880 /* ULX machines are also considered ULT. */
2881 #define IS_BDW_ULX(dev_priv) (IS_BROADWELL(dev_priv) && \
2882 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2883 #define IS_BDW_GT3(dev_priv) (IS_BROADWELL(dev_priv) && \
2884 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2885 #define IS_HSW_ULT(dev_priv) (IS_HASWELL(dev_priv) && \
2886 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2887 #define IS_HSW_GT3(dev_priv) (IS_HASWELL(dev_priv) && \
2888 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2889 /* ULX machines are also considered ULT. */
2890 #define IS_HSW_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x0A0E || \
2891 INTEL_DEVID(dev_priv) == 0x0A1E)
2892 #define IS_SKL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x1906 || \
2893 INTEL_DEVID(dev_priv) == 0x1913 || \
2894 INTEL_DEVID(dev_priv) == 0x1916 || \
2895 INTEL_DEVID(dev_priv) == 0x1921 || \
2896 INTEL_DEVID(dev_priv) == 0x1926)
2897 #define IS_SKL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x190E || \
2898 INTEL_DEVID(dev_priv) == 0x1915 || \
2899 INTEL_DEVID(dev_priv) == 0x191E)
2900 #define IS_KBL_ULT(dev_priv) (INTEL_DEVID(dev_priv) == 0x5906 || \
2901 INTEL_DEVID(dev_priv) == 0x5913 || \
2902 INTEL_DEVID(dev_priv) == 0x5916 || \
2903 INTEL_DEVID(dev_priv) == 0x5921 || \
2904 INTEL_DEVID(dev_priv) == 0x5926)
2905 #define IS_KBL_ULX(dev_priv) (INTEL_DEVID(dev_priv) == 0x590E || \
2906 INTEL_DEVID(dev_priv) == 0x5915 || \
2907 INTEL_DEVID(dev_priv) == 0x591E)
2908 #define IS_SKL_GT2(dev_priv) (IS_SKYLAKE(dev_priv) && \
2909 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2910 #define IS_SKL_GT3(dev_priv) (IS_SKYLAKE(dev_priv) && \
2911 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2912 #define IS_SKL_GT4(dev_priv) (IS_SKYLAKE(dev_priv) && \
2913 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2914 #define IS_KBL_GT2(dev_priv) (IS_KABYLAKE(dev_priv) && \
2915 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2916 #define IS_KBL_GT3(dev_priv) (IS_KABYLAKE(dev_priv) && \
2917 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2918 #define IS_CFL_ULT(dev_priv) (IS_COFFEELAKE(dev_priv) && \
2919 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2920
2921 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2922
2923 #define SKL_REVID_A0 0x0
2924 #define SKL_REVID_B0 0x1
2925 #define SKL_REVID_C0 0x2
2926 #define SKL_REVID_D0 0x3
2927 #define SKL_REVID_E0 0x4
2928 #define SKL_REVID_F0 0x5
2929 #define SKL_REVID_G0 0x6
2930 #define SKL_REVID_H0 0x7
2931
2932 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2933
2934 #define BXT_REVID_A0 0x0
2935 #define BXT_REVID_A1 0x1
2936 #define BXT_REVID_B0 0x3
2937 #define BXT_REVID_B_LAST 0x8
2938 #define BXT_REVID_C0 0x9
2939
2940 #define IS_BXT_REVID(dev_priv, since, until) \
2941 (IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2942
2943 #define KBL_REVID_A0 0x0
2944 #define KBL_REVID_B0 0x1
2945 #define KBL_REVID_C0 0x2
2946 #define KBL_REVID_D0 0x3
2947 #define KBL_REVID_E0 0x4
2948
2949 #define IS_KBL_REVID(dev_priv, since, until) \
2950 (IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2951
2952 #define GLK_REVID_A0 0x0
2953 #define GLK_REVID_A1 0x1
2954
2955 #define IS_GLK_REVID(dev_priv, since, until) \
2956 (IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2957
2958 #define CNL_REVID_A0 0x0
2959 #define CNL_REVID_B0 0x1
2960
2961 #define IS_CNL_REVID(p, since, until) \
2962 (IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2963
2964 /*
2965 * The genX designation typically refers to the render engine, so render
2966 * capability related checks should use IS_GEN, while display and other checks
2967 * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2968 * chips, etc.).
2969 */
2970 #define IS_GEN2(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(1)))
2971 #define IS_GEN3(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(2)))
2972 #define IS_GEN4(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(3)))
2973 #define IS_GEN5(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(4)))
2974 #define IS_GEN6(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(5)))
2975 #define IS_GEN7(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(6)))
2976 #define IS_GEN8(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(7)))
2977 #define IS_GEN9(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(8)))
2978 #define IS_GEN10(dev_priv) (!!((dev_priv)->info.gen_mask & BIT(9)))
2979
2980 #define IS_LP(dev_priv) (INTEL_INFO(dev_priv)->is_lp)
2981 #define IS_GEN9_LP(dev_priv) (IS_GEN9(dev_priv) && IS_LP(dev_priv))
2982 #define IS_GEN9_BC(dev_priv) (IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2983
2984 /*
2985 * The Gen7 cmdparser copies the scanned buffer to the ggtt for execution
2986 * All later gens can run the final buffer from the ppgtt
2987 */
2988 #define CMDPARSER_USES_GGTT(dev_priv) IS_GEN7(dev_priv)
2989
2990 #define ENGINE_MASK(id) BIT(id)
2991 #define RENDER_RING ENGINE_MASK(RCS)
2992 #define BSD_RING ENGINE_MASK(VCS)
2993 #define BLT_RING ENGINE_MASK(BCS)
2994 #define VEBOX_RING ENGINE_MASK(VECS)
2995 #define BSD2_RING ENGINE_MASK(VCS2)
2996 #define ALL_ENGINES (~0)
2997
2998 #define HAS_ENGINE(dev_priv, id) \
2999 (!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3000
3001 #define HAS_BSD(dev_priv) HAS_ENGINE(dev_priv, VCS)
3002 #define HAS_BSD2(dev_priv) HAS_ENGINE(dev_priv, VCS2)
3003 #define HAS_BLT(dev_priv) HAS_ENGINE(dev_priv, BCS)
3004 #define HAS_VEBOX(dev_priv) HAS_ENGINE(dev_priv, VECS)
3005
3006 #define HAS_SECURE_BATCHES(dev_priv) (INTEL_GEN(dev_priv) < 6)
3007
3008 #define HAS_LLC(dev_priv) ((dev_priv)->info.has_llc)
3009 #define HAS_SNOOP(dev_priv) ((dev_priv)->info.has_snoop)
3010 #define HAS_EDRAM(dev_priv) (!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3011 #define HAS_WT(dev_priv) ((IS_HASWELL(dev_priv) || \
3012 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3013
3014 #define HWS_NEEDS_PHYSICAL(dev_priv) ((dev_priv)->info.hws_needs_physical)
3015
3016 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3017 ((dev_priv)->info.has_logical_ring_contexts)
3018 #define USES_PPGTT(dev_priv) (i915.enable_ppgtt)
3019 #define USES_FULL_PPGTT(dev_priv) (i915.enable_ppgtt >= 2)
3020 #define USES_FULL_48BIT_PPGTT(dev_priv) (i915.enable_ppgtt == 3)
3021
3022 #define HAS_OVERLAY(dev_priv) ((dev_priv)->info.has_overlay)
3023 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3024 ((dev_priv)->info.overlay_needs_physical)
3025
3026 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3027 #define HAS_BROKEN_CS_TLB(dev_priv) (IS_I830(dev_priv) || IS_I845G(dev_priv))
3028
3029 #define NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv) \
3030 (IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) == 9)
3031
3032 /* WaRsDisableCoarsePowerGating:skl,bxt */
3033 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3034 (INTEL_GEN(dev_priv) == 9)
3035
3036 /*
3037 * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3038 * even when in MSI mode. This results in spurious interrupt warnings if the
3039 * legacy irq no. is shared with another device. The kernel then disables that
3040 * interrupt source and so prevents the other device from working properly.
3041 */
3042 #define HAS_AUX_IRQ(dev_priv) ((dev_priv)->info.gen >= 5)
3043 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3044
3045 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3046 * rows, which changed the alignment requirements and fence programming.
3047 */
3048 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3049 !(IS_I915G(dev_priv) || \
3050 IS_I915GM(dev_priv)))
3051 #define SUPPORTS_TV(dev_priv) ((dev_priv)->info.supports_tv)
3052 #define I915_HAS_HOTPLUG(dev_priv) ((dev_priv)->info.has_hotplug)
3053
3054 #define HAS_FW_BLC(dev_priv) (INTEL_GEN(dev_priv) > 2)
3055 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3056 #define HAS_FBC(dev_priv) ((dev_priv)->info.has_fbc)
3057 #define HAS_CUR_FBC(dev_priv) (!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3058
3059 #define HAS_IPS(dev_priv) (IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3060
3061 #define HAS_DP_MST(dev_priv) ((dev_priv)->info.has_dp_mst)
3062
3063 #define HAS_DDI(dev_priv) ((dev_priv)->info.has_ddi)
3064 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3065 #define HAS_PSR(dev_priv) ((dev_priv)->info.has_psr)
3066 #define HAS_RC6(dev_priv) ((dev_priv)->info.has_rc6)
3067 #define HAS_RC6p(dev_priv) ((dev_priv)->info.has_rc6p)
3068
3069 #define HAS_CSR(dev_priv) ((dev_priv)->info.has_csr)
3070
3071 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3072 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3073
3074 /*
3075 * For now, anything with a GuC requires uCode loading, and then supports
3076 * command submission once loaded. But these are logically independent
3077 * properties, so we have separate macros to test them.
3078 */
3079 #define HAS_GUC(dev_priv) ((dev_priv)->info.has_guc)
3080 #define HAS_GUC_CT(dev_priv) ((dev_priv)->info.has_guc_ct)
3081 #define HAS_GUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3082 #define HAS_GUC_SCHED(dev_priv) (HAS_GUC(dev_priv))
3083 #define HAS_HUC_UCODE(dev_priv) (HAS_GUC(dev_priv))
3084
3085 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3086
3087 #define HAS_POOLED_EU(dev_priv) ((dev_priv)->info.has_pooled_eu)
3088
3089 #define INTEL_PCH_DEVICE_ID_MASK 0xff80
3090 #define INTEL_PCH_IBX_DEVICE_ID_TYPE 0x3b00
3091 #define INTEL_PCH_CPT_DEVICE_ID_TYPE 0x1c00
3092 #define INTEL_PCH_PPT_DEVICE_ID_TYPE 0x1e00
3093 #define INTEL_PCH_LPT_DEVICE_ID_TYPE 0x8c00
3094 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE 0x9c00
3095 #define INTEL_PCH_WPT_DEVICE_ID_TYPE 0x8c80
3096 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE 0x9c80
3097 #define INTEL_PCH_SPT_DEVICE_ID_TYPE 0xA100
3098 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE 0x9D00
3099 #define INTEL_PCH_KBP_DEVICE_ID_TYPE 0xA280
3100 #define INTEL_PCH_CNP_DEVICE_ID_TYPE 0xA300
3101 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE 0x9D80
3102 #define INTEL_PCH_P2X_DEVICE_ID_TYPE 0x7100
3103 #define INTEL_PCH_P3X_DEVICE_ID_TYPE 0x7000
3104 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE 0x2900 /* qemu q35 has 2918 */
3105
3106 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3107 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3108 #define HAS_PCH_CNP_LP(dev_priv) \
3109 ((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3110 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3111 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3112 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3113 #define HAS_PCH_LPT_LP(dev_priv) \
3114 ((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3115 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3116 #define HAS_PCH_LPT_H(dev_priv) \
3117 ((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3118 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3119 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3120 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3121 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3122 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3123
3124 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3125
3126 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3127
3128 /* DPF == dynamic parity feature */
3129 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3130 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3131 2 : HAS_L3_DPF(dev_priv))
3132
3133 #define GT_FREQUENCY_MULTIPLIER 50
3134 #define GEN9_FREQ_SCALER 3
3135
3136 #include "i915_trace.h"
3137
intel_vtd_active(void)3138 static inline bool intel_vtd_active(void)
3139 {
3140 #ifdef CONFIG_INTEL_IOMMU
3141 if (intel_iommu_gfx_mapped)
3142 return true;
3143 #endif
3144 return false;
3145 }
3146
intel_scanout_needs_vtd_wa(struct drm_i915_private * dev_priv)3147 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3148 {
3149 return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3150 }
3151
3152 static inline bool
intel_ggtt_update_needs_vtd_wa(struct drm_i915_private * dev_priv)3153 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3154 {
3155 return IS_BROXTON(dev_priv) && intel_vtd_active();
3156 }
3157
3158 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3159 int enable_ppgtt);
3160
3161 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3162
3163 /* i915_drv.c */
3164 void __printf(3, 4)
3165 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3166 const char *fmt, ...);
3167
3168 #define i915_report_error(dev_priv, fmt, ...) \
3169 __i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3170
3171 #ifdef CONFIG_COMPAT
3172 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3173 unsigned long arg);
3174 #else
3175 #define i915_compat_ioctl NULL
3176 #endif
3177 extern const struct dev_pm_ops i915_pm_ops;
3178
3179 extern int i915_driver_load(struct pci_dev *pdev,
3180 const struct pci_device_id *ent);
3181 extern void i915_driver_unload(struct drm_device *dev);
3182 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3183 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3184
3185 #define I915_RESET_QUIET BIT(0)
3186 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3187 extern int i915_reset_engine(struct intel_engine_cs *engine,
3188 unsigned int flags);
3189
3190 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3191 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3192 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3193 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3194 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3195 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3196 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3197 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3198 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3199
3200 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3201 int intel_engines_init(struct drm_i915_private *dev_priv);
3202
3203 /* intel_hotplug.c */
3204 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3205 u32 pin_mask, u32 long_mask);
3206 void intel_hpd_init(struct drm_i915_private *dev_priv);
3207 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3208 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3209 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3210 enum hpd_pin intel_hpd_pin(enum port port);
3211 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3212 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3213
3214 /* i915_irq.c */
i915_queue_hangcheck(struct drm_i915_private * dev_priv)3215 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3216 {
3217 unsigned long delay;
3218
3219 if (unlikely(!i915.enable_hangcheck))
3220 return;
3221
3222 /* Don't continually defer the hangcheck so that it is always run at
3223 * least once after work has been scheduled on any ring. Otherwise,
3224 * we will ignore a hung ring if a second ring is kept busy.
3225 */
3226
3227 delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3228 queue_delayed_work(system_long_wq,
3229 &dev_priv->gpu_error.hangcheck_work, delay);
3230 }
3231
3232 __printf(3, 4)
3233 void i915_handle_error(struct drm_i915_private *dev_priv,
3234 u32 engine_mask,
3235 const char *fmt, ...);
3236
3237 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3238 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3239 int intel_irq_install(struct drm_i915_private *dev_priv);
3240 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3241
intel_gvt_active(struct drm_i915_private * dev_priv)3242 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3243 {
3244 return dev_priv->gvt;
3245 }
3246
intel_vgpu_active(struct drm_i915_private * dev_priv)3247 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3248 {
3249 return dev_priv->vgpu.active;
3250 }
3251
3252 void
3253 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3254 u32 status_mask);
3255
3256 void
3257 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3258 u32 status_mask);
3259
3260 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3261 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3262 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3263 uint32_t mask,
3264 uint32_t bits);
3265 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3266 uint32_t interrupt_mask,
3267 uint32_t enabled_irq_mask);
3268 static inline void
ilk_enable_display_irq(struct drm_i915_private * dev_priv,uint32_t bits)3269 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3270 {
3271 ilk_update_display_irq(dev_priv, bits, bits);
3272 }
3273 static inline void
ilk_disable_display_irq(struct drm_i915_private * dev_priv,uint32_t bits)3274 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3275 {
3276 ilk_update_display_irq(dev_priv, bits, 0);
3277 }
3278 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3279 enum pipe pipe,
3280 uint32_t interrupt_mask,
3281 uint32_t enabled_irq_mask);
bdw_enable_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t bits)3282 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3283 enum pipe pipe, uint32_t bits)
3284 {
3285 bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3286 }
bdw_disable_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t bits)3287 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3288 enum pipe pipe, uint32_t bits)
3289 {
3290 bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3291 }
3292 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3293 uint32_t interrupt_mask,
3294 uint32_t enabled_irq_mask);
3295 static inline void
ibx_enable_display_interrupt(struct drm_i915_private * dev_priv,uint32_t bits)3296 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3297 {
3298 ibx_display_interrupt_update(dev_priv, bits, bits);
3299 }
3300 static inline void
ibx_disable_display_interrupt(struct drm_i915_private * dev_priv,uint32_t bits)3301 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3302 {
3303 ibx_display_interrupt_update(dev_priv, bits, 0);
3304 }
3305
3306 /* i915_gem.c */
3307 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3308 struct drm_file *file_priv);
3309 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3310 struct drm_file *file_priv);
3311 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3312 struct drm_file *file_priv);
3313 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3314 struct drm_file *file_priv);
3315 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3316 struct drm_file *file_priv);
3317 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3318 struct drm_file *file_priv);
3319 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3320 struct drm_file *file_priv);
3321 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3322 struct drm_file *file_priv);
3323 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3324 struct drm_file *file_priv);
3325 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3326 struct drm_file *file_priv);
3327 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3328 struct drm_file *file);
3329 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3330 struct drm_file *file);
3331 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3332 struct drm_file *file_priv);
3333 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3334 struct drm_file *file_priv);
3335 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3336 struct drm_file *file_priv);
3337 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3338 struct drm_file *file_priv);
3339 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3340 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3341 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3342 struct drm_file *file);
3343 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3344 struct drm_file *file_priv);
3345 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3346 struct drm_file *file_priv);
3347 void i915_gem_sanitize(struct drm_i915_private *i915);
3348 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3349 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3350 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3351 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3352 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3353
3354 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3355 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3356 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3357 const struct drm_i915_gem_object_ops *ops);
3358 struct drm_i915_gem_object *
3359 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3360 struct drm_i915_gem_object *
3361 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3362 const void *data, size_t size);
3363 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3364 void i915_gem_free_object(struct drm_gem_object *obj);
3365
i915_gem_drain_freed_objects(struct drm_i915_private * i915)3366 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3367 {
3368 /* A single pass should suffice to release all the freed objects (along
3369 * most call paths) , but be a little more paranoid in that freeing
3370 * the objects does take a little amount of time, during which the rcu
3371 * callbacks could have added new objects into the freed list, and
3372 * armed the work again.
3373 */
3374 do {
3375 rcu_barrier();
3376 } while (flush_work(&i915->mm.free_work));
3377 }
3378
i915_gem_drain_workqueue(struct drm_i915_private * i915)3379 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3380 {
3381 /*
3382 * Similar to objects above (see i915_gem_drain_freed-objects), in
3383 * general we have workers that are armed by RCU and then rearm
3384 * themselves in their callbacks. To be paranoid, we need to
3385 * drain the workqueue a second time after waiting for the RCU
3386 * grace period so that we catch work queued via RCU from the first
3387 * pass. As neither drain_workqueue() nor flush_workqueue() report
3388 * a result, we make an assumption that we only don't require more
3389 * than 2 passes to catch all recursive RCU delayed work.
3390 *
3391 */
3392 int pass = 2;
3393 do {
3394 rcu_barrier();
3395 drain_workqueue(i915->wq);
3396 } while (--pass);
3397 }
3398
3399 struct i915_vma * __must_check
3400 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3401 const struct i915_ggtt_view *view,
3402 u64 size,
3403 u64 alignment,
3404 u64 flags);
3405
3406 struct i915_vma * __must_check
3407 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3408 struct i915_address_space *vm,
3409 const struct i915_ggtt_view *view,
3410 u64 size,
3411 u64 alignment,
3412 u64 flags);
3413
3414 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3415 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3416
3417 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3418
__sg_page_count(const struct scatterlist * sg)3419 static inline int __sg_page_count(const struct scatterlist *sg)
3420 {
3421 return sg->length >> PAGE_SHIFT;
3422 }
3423
3424 struct scatterlist *
3425 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3426 unsigned int n, unsigned int *offset);
3427
3428 struct page *
3429 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3430 unsigned int n);
3431
3432 struct page *
3433 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3434 unsigned int n);
3435
3436 dma_addr_t
3437 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3438 unsigned long n);
3439
3440 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3441 struct sg_table *pages);
3442 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3443
3444 static inline int __must_check
i915_gem_object_pin_pages(struct drm_i915_gem_object * obj)3445 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3446 {
3447 might_lock(&obj->mm.lock);
3448
3449 if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3450 return 0;
3451
3452 return __i915_gem_object_get_pages(obj);
3453 }
3454
3455 static inline void
__i915_gem_object_pin_pages(struct drm_i915_gem_object * obj)3456 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3457 {
3458 GEM_BUG_ON(!obj->mm.pages);
3459
3460 atomic_inc(&obj->mm.pages_pin_count);
3461 }
3462
3463 static inline bool
i915_gem_object_has_pinned_pages(struct drm_i915_gem_object * obj)3464 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3465 {
3466 return atomic_read(&obj->mm.pages_pin_count);
3467 }
3468
3469 static inline void
__i915_gem_object_unpin_pages(struct drm_i915_gem_object * obj)3470 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3471 {
3472 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3473 GEM_BUG_ON(!obj->mm.pages);
3474
3475 atomic_dec(&obj->mm.pages_pin_count);
3476 }
3477
3478 static inline void
i915_gem_object_unpin_pages(struct drm_i915_gem_object * obj)3479 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3480 {
3481 __i915_gem_object_unpin_pages(obj);
3482 }
3483
3484 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3485 I915_MM_NORMAL = 0,
3486 I915_MM_SHRINKER
3487 };
3488
3489 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3490 enum i915_mm_subclass subclass);
3491 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3492
3493 enum i915_map_type {
3494 I915_MAP_WB = 0,
3495 I915_MAP_WC,
3496 #define I915_MAP_OVERRIDE BIT(31)
3497 I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3498 I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3499 };
3500
3501 /**
3502 * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3503 * @obj: the object to map into kernel address space
3504 * @type: the type of mapping, used to select pgprot_t
3505 *
3506 * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3507 * pages and then returns a contiguous mapping of the backing storage into
3508 * the kernel address space. Based on the @type of mapping, the PTE will be
3509 * set to either WriteBack or WriteCombine (via pgprot_t).
3510 *
3511 * The caller is responsible for calling i915_gem_object_unpin_map() when the
3512 * mapping is no longer required.
3513 *
3514 * Returns the pointer through which to access the mapped object, or an
3515 * ERR_PTR() on error.
3516 */
3517 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3518 enum i915_map_type type);
3519
3520 /**
3521 * i915_gem_object_unpin_map - releases an earlier mapping
3522 * @obj: the object to unmap
3523 *
3524 * After pinning the object and mapping its pages, once you are finished
3525 * with your access, call i915_gem_object_unpin_map() to release the pin
3526 * upon the mapping. Once the pin count reaches zero, that mapping may be
3527 * removed.
3528 */
i915_gem_object_unpin_map(struct drm_i915_gem_object * obj)3529 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3530 {
3531 i915_gem_object_unpin_pages(obj);
3532 }
3533
3534 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3535 unsigned int *needs_clflush);
3536 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3537 unsigned int *needs_clflush);
3538 #define CLFLUSH_BEFORE BIT(0)
3539 #define CLFLUSH_AFTER BIT(1)
3540 #define CLFLUSH_FLAGS (CLFLUSH_BEFORE | CLFLUSH_AFTER)
3541
3542 static inline void
i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object * obj)3543 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3544 {
3545 i915_gem_object_unpin_pages(obj);
3546 }
3547
3548 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3549 void i915_vma_move_to_active(struct i915_vma *vma,
3550 struct drm_i915_gem_request *req,
3551 unsigned int flags);
3552 int i915_gem_dumb_create(struct drm_file *file_priv,
3553 struct drm_device *dev,
3554 struct drm_mode_create_dumb *args);
3555 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3556 uint32_t handle, uint64_t *offset);
3557 int i915_gem_mmap_gtt_version(void);
3558
3559 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3560 struct drm_i915_gem_object *new,
3561 unsigned frontbuffer_bits);
3562
3563 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3564
3565 struct drm_i915_gem_request *
3566 i915_gem_find_active_request(struct intel_engine_cs *engine);
3567
3568 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3569
i915_reset_backoff(struct i915_gpu_error * error)3570 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3571 {
3572 return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3573 }
3574
i915_reset_handoff(struct i915_gpu_error * error)3575 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3576 {
3577 return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3578 }
3579
i915_terminally_wedged(struct i915_gpu_error * error)3580 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3581 {
3582 return unlikely(test_bit(I915_WEDGED, &error->flags));
3583 }
3584
i915_reset_backoff_or_wedged(struct i915_gpu_error * error)3585 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3586 {
3587 return i915_reset_backoff(error) | i915_terminally_wedged(error);
3588 }
3589
i915_reset_count(struct i915_gpu_error * error)3590 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3591 {
3592 return READ_ONCE(error->reset_count);
3593 }
3594
i915_reset_engine_count(struct i915_gpu_error * error,struct intel_engine_cs * engine)3595 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3596 struct intel_engine_cs *engine)
3597 {
3598 return READ_ONCE(error->reset_engine_count[engine->id]);
3599 }
3600
3601 struct drm_i915_gem_request *
3602 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3603 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3604 void i915_gem_reset(struct drm_i915_private *dev_priv);
3605 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3606 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3607 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3608 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3609 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3610 struct drm_i915_gem_request *request);
3611
3612 void i915_gem_init_mmio(struct drm_i915_private *i915);
3613 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3614 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3615 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3616 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3617 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3618 unsigned int flags);
3619 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3620 void i915_gem_resume(struct drm_i915_private *dev_priv);
3621 int i915_gem_fault(struct vm_fault *vmf);
3622 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3623 unsigned int flags,
3624 long timeout,
3625 struct intel_rps_client *rps);
3626 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3627 unsigned int flags,
3628 int priority);
3629 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3630
3631 int __must_check
3632 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3633 int __must_check
3634 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3635 int __must_check
3636 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3637 struct i915_vma * __must_check
3638 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3639 u32 alignment,
3640 const struct i915_ggtt_view *view);
3641 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3642 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3643 int align);
3644 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3645 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3646
3647 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3648 enum i915_cache_level cache_level);
3649
3650 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3651 struct dma_buf *dma_buf);
3652
3653 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3654 struct drm_gem_object *gem_obj, int flags);
3655
3656 static inline struct i915_hw_ppgtt *
i915_vm_to_ppgtt(struct i915_address_space * vm)3657 i915_vm_to_ppgtt(struct i915_address_space *vm)
3658 {
3659 return container_of(vm, struct i915_hw_ppgtt, base);
3660 }
3661
3662 /* i915_gem_fence_reg.c */
3663 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3664 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3665
3666 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3667 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3668
3669 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3670 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3671 struct sg_table *pages);
3672 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3673 struct sg_table *pages);
3674
3675 static inline struct i915_gem_context *
__i915_gem_context_lookup_rcu(struct drm_i915_file_private * file_priv,u32 id)3676 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3677 {
3678 return idr_find(&file_priv->context_idr, id);
3679 }
3680
3681 static inline struct i915_gem_context *
i915_gem_context_lookup(struct drm_i915_file_private * file_priv,u32 id)3682 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3683 {
3684 struct i915_gem_context *ctx;
3685
3686 rcu_read_lock();
3687 ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3688 if (ctx && !kref_get_unless_zero(&ctx->ref))
3689 ctx = NULL;
3690 rcu_read_unlock();
3691
3692 return ctx;
3693 }
3694
3695 static inline struct intel_timeline *
i915_gem_context_lookup_timeline(struct i915_gem_context * ctx,struct intel_engine_cs * engine)3696 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3697 struct intel_engine_cs *engine)
3698 {
3699 struct i915_address_space *vm;
3700
3701 vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3702 return &vm->timeline.engine[engine->id];
3703 }
3704
3705 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3706 struct drm_file *file);
3707 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3708 struct drm_file *file);
3709 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3710 struct drm_file *file);
3711 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3712 struct i915_gem_context *ctx,
3713 uint32_t *reg_state);
3714
3715 /* i915_gem_evict.c */
3716 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3717 u64 min_size, u64 alignment,
3718 unsigned cache_level,
3719 u64 start, u64 end,
3720 unsigned flags);
3721 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3722 struct drm_mm_node *node,
3723 unsigned int flags);
3724 int i915_gem_evict_vm(struct i915_address_space *vm);
3725
3726 /* belongs in i915_gem_gtt.h */
i915_gem_chipset_flush(struct drm_i915_private * dev_priv)3727 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3728 {
3729 wmb();
3730 if (INTEL_GEN(dev_priv) < 6)
3731 intel_gtt_chipset_flush();
3732 }
3733
3734 /* i915_gem_stolen.c */
3735 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3736 struct drm_mm_node *node, u64 size,
3737 unsigned alignment);
3738 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3739 struct drm_mm_node *node, u64 size,
3740 unsigned alignment, u64 start,
3741 u64 end);
3742 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3743 struct drm_mm_node *node);
3744 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3745 void i915_gem_cleanup_stolen(struct drm_device *dev);
3746 struct drm_i915_gem_object *
3747 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3748 struct drm_i915_gem_object *
3749 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3750 u32 stolen_offset,
3751 u32 gtt_offset,
3752 u32 size);
3753
3754 /* i915_gem_internal.c */
3755 struct drm_i915_gem_object *
3756 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3757 phys_addr_t size);
3758
3759 /* i915_gem_shrinker.c */
3760 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3761 unsigned long target,
3762 unsigned long *nr_scanned,
3763 unsigned flags);
3764 #define I915_SHRINK_PURGEABLE 0x1
3765 #define I915_SHRINK_UNBOUND 0x2
3766 #define I915_SHRINK_BOUND 0x4
3767 #define I915_SHRINK_ACTIVE 0x8
3768 #define I915_SHRINK_VMAPS 0x10
3769 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3770 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3771 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3772
3773
3774 /* i915_gem_tiling.c */
i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object * obj)3775 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3776 {
3777 struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3778
3779 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3780 i915_gem_object_is_tiled(obj);
3781 }
3782
3783 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3784 unsigned int tiling, unsigned int stride);
3785 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3786 unsigned int tiling, unsigned int stride);
3787
3788 /* i915_debugfs.c */
3789 #ifdef CONFIG_DEBUG_FS
3790 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3791 int i915_debugfs_connector_add(struct drm_connector *connector);
3792 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3793 #else
i915_debugfs_register(struct drm_i915_private * dev_priv)3794 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
i915_debugfs_connector_add(struct drm_connector * connector)3795 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3796 { return 0; }
intel_display_crc_init(struct drm_i915_private * dev_priv)3797 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3798 #endif
3799
3800 /* i915_gpu_error.c */
3801 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3802
3803 __printf(2, 3)
3804 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3805 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3806 const struct i915_gpu_state *gpu);
3807 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3808 struct drm_i915_private *i915,
3809 size_t count, loff_t pos);
i915_error_state_buf_release(struct drm_i915_error_state_buf * eb)3810 static inline void i915_error_state_buf_release(
3811 struct drm_i915_error_state_buf *eb)
3812 {
3813 kfree(eb->buf);
3814 }
3815
3816 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3817 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3818 u32 engine_mask,
3819 const char *error_msg);
3820
3821 static inline struct i915_gpu_state *
i915_gpu_state_get(struct i915_gpu_state * gpu)3822 i915_gpu_state_get(struct i915_gpu_state *gpu)
3823 {
3824 kref_get(&gpu->ref);
3825 return gpu;
3826 }
3827
3828 void __i915_gpu_state_free(struct kref *kref);
i915_gpu_state_put(struct i915_gpu_state * gpu)3829 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3830 {
3831 if (gpu)
3832 kref_put(&gpu->ref, __i915_gpu_state_free);
3833 }
3834
3835 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3836 void i915_reset_error_state(struct drm_i915_private *i915);
3837
3838 #else
3839
i915_capture_error_state(struct drm_i915_private * dev_priv,u32 engine_mask,const char * error_msg)3840 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3841 u32 engine_mask,
3842 const char *error_msg)
3843 {
3844 }
3845
3846 static inline struct i915_gpu_state *
i915_first_error_state(struct drm_i915_private * i915)3847 i915_first_error_state(struct drm_i915_private *i915)
3848 {
3849 return NULL;
3850 }
3851
i915_reset_error_state(struct drm_i915_private * i915)3852 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3853 {
3854 }
3855
3856 #endif
3857
3858 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3859
3860 /* i915_cmd_parser.c */
3861 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3862 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3863 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3864 int intel_engine_cmd_parser(struct i915_gem_context *cxt,
3865 struct intel_engine_cs *engine,
3866 struct drm_i915_gem_object *batch_obj,
3867 u64 user_batch_start,
3868 u32 batch_start_offset,
3869 u32 batch_len,
3870 struct drm_i915_gem_object *shadow_batch_obj,
3871 u64 shadow_batch_start);
3872
3873 /* i915_perf.c */
3874 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3875 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3876 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3877 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3878
3879 /* i915_suspend.c */
3880 extern int i915_save_state(struct drm_i915_private *dev_priv);
3881 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3882
3883 /* i915_sysfs.c */
3884 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3885 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3886
3887 /* intel_lpe_audio.c */
3888 int intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3889 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3890 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3891 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3892 enum pipe pipe, enum port port,
3893 const void *eld, int ls_clock, bool dp_output);
3894
3895 /* intel_i2c.c */
3896 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3897 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3898 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3899 unsigned int pin);
3900
3901 extern struct i2c_adapter *
3902 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3903 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3904 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
intel_gmbus_is_forced_bit(struct i2c_adapter * adapter)3905 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3906 {
3907 return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3908 }
3909 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3910
3911 /* intel_bios.c */
3912 void intel_bios_init(struct drm_i915_private *dev_priv);
3913 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3914 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3915 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3916 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3917 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3918 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3919 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3920 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3921 enum port port);
3922 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3923 enum port port);
3924
3925
3926 /* intel_opregion.c */
3927 #ifdef CONFIG_ACPI
3928 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3929 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3930 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3931 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3932 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3933 bool enable);
3934 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3935 pci_power_t state);
3936 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3937 #else
intel_opregion_setup(struct drm_i915_private * dev)3938 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
intel_opregion_register(struct drm_i915_private * dev_priv)3939 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
intel_opregion_unregister(struct drm_i915_private * dev_priv)3940 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
intel_opregion_asle_intr(struct drm_i915_private * dev_priv)3941 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3942 {
3943 }
3944 static inline int
intel_opregion_notify_encoder(struct intel_encoder * intel_encoder,bool enable)3945 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3946 {
3947 return 0;
3948 }
3949 static inline int
intel_opregion_notify_adapter(struct drm_i915_private * dev,pci_power_t state)3950 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3951 {
3952 return 0;
3953 }
intel_opregion_get_panel_type(struct drm_i915_private * dev)3954 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3955 {
3956 return -ENODEV;
3957 }
3958 #endif
3959
3960 /* intel_acpi.c */
3961 #ifdef CONFIG_ACPI
3962 extern void intel_register_dsm_handler(void);
3963 extern void intel_unregister_dsm_handler(void);
3964 #else
intel_register_dsm_handler(void)3965 static inline void intel_register_dsm_handler(void) { return; }
intel_unregister_dsm_handler(void)3966 static inline void intel_unregister_dsm_handler(void) { return; }
3967 #endif /* CONFIG_ACPI */
3968
3969 /* intel_device_info.c */
3970 static inline struct intel_device_info *
mkwrite_device_info(struct drm_i915_private * dev_priv)3971 mkwrite_device_info(struct drm_i915_private *dev_priv)
3972 {
3973 return (struct intel_device_info *)&dev_priv->info;
3974 }
3975
3976 const char *intel_platform_name(enum intel_platform platform);
3977 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3978 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3979
3980 /* modesetting */
3981 extern void intel_modeset_init_hw(struct drm_device *dev);
3982 extern int intel_modeset_init(struct drm_device *dev);
3983 extern void intel_modeset_gem_init(struct drm_device *dev);
3984 extern void intel_modeset_cleanup(struct drm_device *dev);
3985 extern int intel_connector_register(struct drm_connector *);
3986 extern void intel_connector_unregister(struct drm_connector *);
3987 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3988 bool state);
3989 extern void intel_display_resume(struct drm_device *dev);
3990 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3991 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3992 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3993 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3994 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3995 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3996 bool enable);
3997
3998 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3999 struct drm_file *file);
4000
4001 /* overlay */
4002 extern struct intel_overlay_error_state *
4003 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4004 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4005 struct intel_overlay_error_state *error);
4006
4007 extern struct intel_display_error_state *
4008 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4009 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4010 struct intel_display_error_state *error);
4011
4012 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4013 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
4014 u32 val, int timeout_us);
4015 #define sandybridge_pcode_write(dev_priv, mbox, val) \
4016 sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500)
4017
4018 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4019 u32 reply_mask, u32 reply, int timeout_base_ms);
4020
4021 /* intel_sideband.c */
4022 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4023 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4024 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4025 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4026 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4027 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4028 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4029 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4030 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4031 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4032 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4033 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4034 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4035 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4036 enum intel_sbi_destination destination);
4037 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4038 enum intel_sbi_destination destination);
4039 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4040 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4041
4042 /* intel_dpio_phy.c */
4043 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4044 enum dpio_phy *phy, enum dpio_channel *ch);
4045 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4046 enum port port, u32 margin, u32 scale,
4047 u32 enable, u32 deemphasis);
4048 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4049 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4050 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4051 enum dpio_phy phy);
4052 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4053 enum dpio_phy phy);
4054 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4055 uint8_t lane_count);
4056 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4057 uint8_t lane_lat_optim_mask);
4058 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4059
4060 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4061 u32 deemph_reg_value, u32 margin_reg_value,
4062 bool uniq_trans_scale);
4063 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4064 bool reset);
4065 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4066 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4067 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4068 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4069
4070 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4071 u32 demph_reg_value, u32 preemph_reg_value,
4072 u32 uniqtranscale_reg_value, u32 tx3_demph);
4073 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4074 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4075 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4076
4077 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4078 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4079 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4080 const i915_reg_t reg);
4081
4082 #define I915_READ8(reg) dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4083 #define I915_WRITE8(reg, val) dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4084
4085 #define I915_READ16(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4086 #define I915_WRITE16(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4087 #define I915_READ16_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4088 #define I915_WRITE16_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4089
4090 #define I915_READ(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4091 #define I915_WRITE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4092 #define I915_READ_NOTRACE(reg) dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4093 #define I915_WRITE_NOTRACE(reg, val) dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4094
4095 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4096 * will be implemented using 2 32-bit writes in an arbitrary order with
4097 * an arbitrary delay between them. This can cause the hardware to
4098 * act upon the intermediate value, possibly leading to corruption and
4099 * machine death. For this reason we do not support I915_WRITE64, or
4100 * dev_priv->uncore.funcs.mmio_writeq.
4101 *
4102 * When reading a 64-bit value as two 32-bit values, the delay may cause
4103 * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4104 * occasionally a 64-bit register does not actualy support a full readq
4105 * and must be read using two 32-bit reads.
4106 *
4107 * You have been warned.
4108 */
4109 #define I915_READ64(reg) dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4110
4111 #define I915_READ64_2x32(lower_reg, upper_reg) ({ \
4112 u32 upper, lower, old_upper, loop = 0; \
4113 upper = I915_READ(upper_reg); \
4114 do { \
4115 old_upper = upper; \
4116 lower = I915_READ(lower_reg); \
4117 upper = I915_READ(upper_reg); \
4118 } while (upper != old_upper && loop++ < 2); \
4119 (u64)upper << 32 | lower; })
4120
4121 #define POSTING_READ(reg) (void)I915_READ_NOTRACE(reg)
4122 #define POSTING_READ16(reg) (void)I915_READ16_NOTRACE(reg)
4123
4124 #define __raw_read(x, s) \
4125 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4126 i915_reg_t reg) \
4127 { \
4128 return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4129 }
4130
4131 #define __raw_write(x, s) \
4132 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4133 i915_reg_t reg, uint##x##_t val) \
4134 { \
4135 write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4136 }
4137 __raw_read(8, b)
4138 __raw_read(16, w)
4139 __raw_read(32, l)
4140 __raw_read(64, q)
4141
4142 __raw_write(8, b)
4143 __raw_write(16, w)
4144 __raw_write(32, l)
4145 __raw_write(64, q)
4146
4147 #undef __raw_read
4148 #undef __raw_write
4149
4150 /* These are untraced mmio-accessors that are only valid to be used inside
4151 * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4152 * controlled.
4153 *
4154 * Think twice, and think again, before using these.
4155 *
4156 * As an example, these accessors can possibly be used between:
4157 *
4158 * spin_lock_irq(&dev_priv->uncore.lock);
4159 * intel_uncore_forcewake_get__locked();
4160 *
4161 * and
4162 *
4163 * intel_uncore_forcewake_put__locked();
4164 * spin_unlock_irq(&dev_priv->uncore.lock);
4165 *
4166 *
4167 * Note: some registers may not need forcewake held, so
4168 * intel_uncore_forcewake_{get,put} can be omitted, see
4169 * intel_uncore_forcewake_for_reg().
4170 *
4171 * Certain architectures will die if the same cacheline is concurrently accessed
4172 * by different clients (e.g. on Ivybridge). Access to registers should
4173 * therefore generally be serialised, by either the dev_priv->uncore.lock or
4174 * a more localised lock guarding all access to that bank of registers.
4175 */
4176 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4177 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4178 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4179 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4180
4181 /* "Broadcast RGB" property */
4182 #define INTEL_BROADCAST_RGB_AUTO 0
4183 #define INTEL_BROADCAST_RGB_FULL 1
4184 #define INTEL_BROADCAST_RGB_LIMITED 2
4185
i915_vgacntrl_reg(struct drm_i915_private * dev_priv)4186 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4187 {
4188 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4189 return VLV_VGACNTRL;
4190 else if (INTEL_GEN(dev_priv) >= 5)
4191 return CPU_VGACNTRL;
4192 else
4193 return VGACNTRL;
4194 }
4195
msecs_to_jiffies_timeout(const unsigned int m)4196 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4197 {
4198 unsigned long j = msecs_to_jiffies(m);
4199
4200 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4201 }
4202
nsecs_to_jiffies_timeout(const u64 n)4203 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4204 {
4205 /* nsecs_to_jiffies64() does not guard against overflow */
4206 if (NSEC_PER_SEC % HZ &&
4207 div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4208 return MAX_JIFFY_OFFSET;
4209
4210 return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4211 }
4212
4213 static inline unsigned long
timespec_to_jiffies_timeout(const struct timespec * value)4214 timespec_to_jiffies_timeout(const struct timespec *value)
4215 {
4216 unsigned long j = timespec_to_jiffies(value);
4217
4218 return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4219 }
4220
4221 /*
4222 * If you need to wait X milliseconds between events A and B, but event B
4223 * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4224 * when event A happened, then just before event B you call this function and
4225 * pass the timestamp as the first argument, and X as the second argument.
4226 */
4227 static inline void
wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies,int to_wait_ms)4228 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4229 {
4230 unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4231
4232 /*
4233 * Don't re-read the value of "jiffies" every time since it may change
4234 * behind our back and break the math.
4235 */
4236 tmp_jiffies = jiffies;
4237 target_jiffies = timestamp_jiffies +
4238 msecs_to_jiffies_timeout(to_wait_ms);
4239
4240 if (time_after(target_jiffies, tmp_jiffies)) {
4241 remaining_jiffies = target_jiffies - tmp_jiffies;
4242 while (remaining_jiffies)
4243 remaining_jiffies =
4244 schedule_timeout_uninterruptible(remaining_jiffies);
4245 }
4246 }
4247
4248 static inline bool
__i915_request_irq_complete(const struct drm_i915_gem_request * req)4249 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4250 {
4251 struct intel_engine_cs *engine = req->engine;
4252 u32 seqno;
4253
4254 /* Note that the engine may have wrapped around the seqno, and
4255 * so our request->global_seqno will be ahead of the hardware,
4256 * even though it completed the request before wrapping. We catch
4257 * this by kicking all the waiters before resetting the seqno
4258 * in hardware, and also signal the fence.
4259 */
4260 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4261 return true;
4262
4263 /* The request was dequeued before we were awoken. We check after
4264 * inspecting the hw to confirm that this was the same request
4265 * that generated the HWS update. The memory barriers within
4266 * the request execution are sufficient to ensure that a check
4267 * after reading the value from hw matches this request.
4268 */
4269 seqno = i915_gem_request_global_seqno(req);
4270 if (!seqno)
4271 return false;
4272
4273 /* Before we do the heavier coherent read of the seqno,
4274 * check the value (hopefully) in the CPU cacheline.
4275 */
4276 if (__i915_gem_request_completed(req, seqno))
4277 return true;
4278
4279 /* Ensure our read of the seqno is coherent so that we
4280 * do not "miss an interrupt" (i.e. if this is the last
4281 * request and the seqno write from the GPU is not visible
4282 * by the time the interrupt fires, we will see that the
4283 * request is incomplete and go back to sleep awaiting
4284 * another interrupt that will never come.)
4285 *
4286 * Strictly, we only need to do this once after an interrupt,
4287 * but it is easier and safer to do it every time the waiter
4288 * is woken.
4289 */
4290 if (engine->irq_seqno_barrier &&
4291 test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4292 struct intel_breadcrumbs *b = &engine->breadcrumbs;
4293
4294 /* The ordering of irq_posted versus applying the barrier
4295 * is crucial. The clearing of the current irq_posted must
4296 * be visible before we perform the barrier operation,
4297 * such that if a subsequent interrupt arrives, irq_posted
4298 * is reasserted and our task rewoken (which causes us to
4299 * do another __i915_request_irq_complete() immediately
4300 * and reapply the barrier). Conversely, if the clear
4301 * occurs after the barrier, then an interrupt that arrived
4302 * whilst we waited on the barrier would not trigger a
4303 * barrier on the next pass, and the read may not see the
4304 * seqno update.
4305 */
4306 engine->irq_seqno_barrier(engine);
4307
4308 /* If we consume the irq, but we are no longer the bottom-half,
4309 * the real bottom-half may not have serialised their own
4310 * seqno check with the irq-barrier (i.e. may have inspected
4311 * the seqno before we believe it coherent since they see
4312 * irq_posted == false but we are still running).
4313 */
4314 spin_lock_irq(&b->irq_lock);
4315 if (b->irq_wait && b->irq_wait->tsk != current)
4316 /* Note that if the bottom-half is changed as we
4317 * are sending the wake-up, the new bottom-half will
4318 * be woken by whomever made the change. We only have
4319 * to worry about when we steal the irq-posted for
4320 * ourself.
4321 */
4322 wake_up_process(b->irq_wait->tsk);
4323 spin_unlock_irq(&b->irq_lock);
4324
4325 if (__i915_gem_request_completed(req, seqno))
4326 return true;
4327 }
4328
4329 return false;
4330 }
4331
4332 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4333 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4334
4335 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4336 * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4337 * perform the operation. To check beforehand, pass in the parameters to
4338 * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4339 * you only need to pass in the minor offsets, page-aligned pointers are
4340 * always valid.
4341 *
4342 * For just checking for SSE4.1, in the foreknowledge that the future use
4343 * will be correctly aligned, just use i915_has_memcpy_from_wc().
4344 */
4345 #define i915_can_memcpy_from_wc(dst, src, len) \
4346 i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4347
4348 #define i915_has_memcpy_from_wc() \
4349 i915_memcpy_from_wc(NULL, NULL, 0)
4350
4351 /* i915_mm.c */
4352 int remap_io_mapping(struct vm_area_struct *vma,
4353 unsigned long addr, unsigned long pfn, unsigned long size,
4354 struct io_mapping *iomap);
4355
4356 static inline bool
intel_engine_can_store_dword(struct intel_engine_cs * engine)4357 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4358 {
4359 return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4360 engine->class);
4361 }
4362
4363 #endif
4364