• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* i915_drv.h -- Private header for the I915 driver -*- linux-c -*-
2  */
3 /*
4  *
5  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6  * All Rights Reserved.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the
10  * "Software"), to deal in the Software without restriction, including
11  * without limitation the rights to use, copy, modify, merge, publish,
12  * distribute, sub license, and/or sell copies of the Software, and to
13  * permit persons to whom the Software is furnished to do so, subject to
14  * the following conditions:
15  *
16  * The above copyright notice and this permission notice (including the
17  * next paragraph) shall be included in all copies or substantial portions
18  * of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27  *
28  */
29 
30 #ifndef _I915_DRV_H_
31 #define _I915_DRV_H_
32 
33 #include <uapi/drm/i915_drm.h>
34 #include <uapi/drm/drm_fourcc.h>
35 
36 #include <linux/io-mapping.h>
37 #include <linux/i2c.h>
38 #include <linux/i2c-algo-bit.h>
39 #include <linux/backlight.h>
40 #include <linux/hash.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/kref.h>
43 #include <linux/pm_qos.h>
44 #include <linux/reservation.h>
45 #include <linux/shmem_fs.h>
46 
47 #include <drm/drmP.h>
48 #include <drm/intel-gtt.h>
49 #include <drm/drm_legacy.h> /* for struct drm_dma_handle */
50 #include <drm/drm_gem.h>
51 #include <drm/drm_auth.h>
52 #include <drm/drm_cache.h>
53 
54 #include "i915_params.h"
55 #include "i915_reg.h"
56 #include "i915_utils.h"
57 
58 #include "intel_uncore.h"
59 #include "intel_bios.h"
60 #include "intel_dpll_mgr.h"
61 #include "intel_uc.h"
62 #include "intel_lrc.h"
63 #include "intel_ringbuffer.h"
64 
65 #include "i915_gem.h"
66 #include "i915_gem_context.h"
67 #include "i915_gem_fence_reg.h"
68 #include "i915_gem_object.h"
69 #include "i915_gem_gtt.h"
70 #include "i915_gem_render_state.h"
71 #include "i915_gem_request.h"
72 #include "i915_gem_timeline.h"
73 
74 #include "i915_vma.h"
75 
76 #include "intel_gvt.h"
77 
78 /* General customization:
79  */
80 
81 #define DRIVER_NAME		"i915"
82 #define DRIVER_DESC		"Intel Graphics"
83 #define DRIVER_DATE		"20170818"
84 #define DRIVER_TIMESTAMP	1503088845
85 
86 /* Use I915_STATE_WARN(x) and I915_STATE_WARN_ON() (rather than WARN() and
87  * WARN_ON()) for hw state sanity checks to check for unexpected conditions
88  * which may not necessarily be a user visible problem.  This will either
89  * WARN() or DRM_ERROR() depending on the verbose_checks moduleparam, to
90  * enable distros and users to tailor their preferred amount of i915 abrt
91  * spam.
92  */
93 #define I915_STATE_WARN(condition, format...) ({			\
94 	int __ret_warn_on = !!(condition);				\
95 	if (unlikely(__ret_warn_on))					\
96 		if (!WARN(i915.verbose_state_checks, format))		\
97 			DRM_ERROR(format);				\
98 	unlikely(__ret_warn_on);					\
99 })
100 
101 #define I915_STATE_WARN_ON(x)						\
102 	I915_STATE_WARN((x), "%s", "WARN_ON(" __stringify(x) ")")
103 
104 bool __i915_inject_load_failure(const char *func, int line);
105 #define i915_inject_load_failure() \
106 	__i915_inject_load_failure(__func__, __LINE__)
107 
108 typedef struct {
109 	uint32_t val;
110 } uint_fixed_16_16_t;
111 
112 #define FP_16_16_MAX ({ \
113 	uint_fixed_16_16_t fp; \
114 	fp.val = UINT_MAX; \
115 	fp; \
116 })
117 
is_fixed16_zero(uint_fixed_16_16_t val)118 static inline bool is_fixed16_zero(uint_fixed_16_16_t val)
119 {
120 	if (val.val == 0)
121 		return true;
122 	return false;
123 }
124 
u32_to_fixed16(uint32_t val)125 static inline uint_fixed_16_16_t u32_to_fixed16(uint32_t val)
126 {
127 	uint_fixed_16_16_t fp;
128 
129 	WARN_ON(val >> 16);
130 
131 	fp.val = val << 16;
132 	return fp;
133 }
134 
fixed16_to_u32_round_up(uint_fixed_16_16_t fp)135 static inline uint32_t fixed16_to_u32_round_up(uint_fixed_16_16_t fp)
136 {
137 	return DIV_ROUND_UP(fp.val, 1 << 16);
138 }
139 
fixed16_to_u32(uint_fixed_16_16_t fp)140 static inline uint32_t fixed16_to_u32(uint_fixed_16_16_t fp)
141 {
142 	return fp.val >> 16;
143 }
144 
min_fixed16(uint_fixed_16_16_t min1,uint_fixed_16_16_t min2)145 static inline uint_fixed_16_16_t min_fixed16(uint_fixed_16_16_t min1,
146 						 uint_fixed_16_16_t min2)
147 {
148 	uint_fixed_16_16_t min;
149 
150 	min.val = min(min1.val, min2.val);
151 	return min;
152 }
153 
max_fixed16(uint_fixed_16_16_t max1,uint_fixed_16_16_t max2)154 static inline uint_fixed_16_16_t max_fixed16(uint_fixed_16_16_t max1,
155 						 uint_fixed_16_16_t max2)
156 {
157 	uint_fixed_16_16_t max;
158 
159 	max.val = max(max1.val, max2.val);
160 	return max;
161 }
162 
clamp_u64_to_fixed16(uint64_t val)163 static inline uint_fixed_16_16_t clamp_u64_to_fixed16(uint64_t val)
164 {
165 	uint_fixed_16_16_t fp;
166 	WARN_ON(val >> 32);
167 	fp.val = clamp_t(uint32_t, val, 0, ~0);
168 	return fp;
169 }
170 
div_round_up_fixed16(uint_fixed_16_16_t val,uint_fixed_16_16_t d)171 static inline uint32_t div_round_up_fixed16(uint_fixed_16_16_t val,
172 					    uint_fixed_16_16_t d)
173 {
174 	return DIV_ROUND_UP(val.val, d.val);
175 }
176 
mul_round_up_u32_fixed16(uint32_t val,uint_fixed_16_16_t mul)177 static inline uint32_t mul_round_up_u32_fixed16(uint32_t val,
178 						uint_fixed_16_16_t mul)
179 {
180 	uint64_t intermediate_val;
181 
182 	intermediate_val = (uint64_t) val * mul.val;
183 	intermediate_val = DIV_ROUND_UP_ULL(intermediate_val, 1 << 16);
184 	WARN_ON(intermediate_val >> 32);
185 	return clamp_t(uint32_t, intermediate_val, 0, ~0);
186 }
187 
mul_fixed16(uint_fixed_16_16_t val,uint_fixed_16_16_t mul)188 static inline uint_fixed_16_16_t mul_fixed16(uint_fixed_16_16_t val,
189 					     uint_fixed_16_16_t mul)
190 {
191 	uint64_t intermediate_val;
192 
193 	intermediate_val = (uint64_t) val.val * mul.val;
194 	intermediate_val = intermediate_val >> 16;
195 	return clamp_u64_to_fixed16(intermediate_val);
196 }
197 
div_fixed16(uint32_t val,uint32_t d)198 static inline uint_fixed_16_16_t div_fixed16(uint32_t val, uint32_t d)
199 {
200 	uint64_t interm_val;
201 
202 	interm_val = (uint64_t)val << 16;
203 	interm_val = DIV_ROUND_UP_ULL(interm_val, d);
204 	return clamp_u64_to_fixed16(interm_val);
205 }
206 
div_round_up_u32_fixed16(uint32_t val,uint_fixed_16_16_t d)207 static inline uint32_t div_round_up_u32_fixed16(uint32_t val,
208 						uint_fixed_16_16_t d)
209 {
210 	uint64_t interm_val;
211 
212 	interm_val = (uint64_t)val << 16;
213 	interm_val = DIV_ROUND_UP_ULL(interm_val, d.val);
214 	WARN_ON(interm_val >> 32);
215 	return clamp_t(uint32_t, interm_val, 0, ~0);
216 }
217 
mul_u32_fixed16(uint32_t val,uint_fixed_16_16_t mul)218 static inline uint_fixed_16_16_t mul_u32_fixed16(uint32_t val,
219 						     uint_fixed_16_16_t mul)
220 {
221 	uint64_t intermediate_val;
222 
223 	intermediate_val = (uint64_t) val * mul.val;
224 	return clamp_u64_to_fixed16(intermediate_val);
225 }
226 
add_fixed16(uint_fixed_16_16_t add1,uint_fixed_16_16_t add2)227 static inline uint_fixed_16_16_t add_fixed16(uint_fixed_16_16_t add1,
228 					     uint_fixed_16_16_t add2)
229 {
230 	uint64_t interm_sum;
231 
232 	interm_sum = (uint64_t) add1.val + add2.val;
233 	return clamp_u64_to_fixed16(interm_sum);
234 }
235 
add_fixed16_u32(uint_fixed_16_16_t add1,uint32_t add2)236 static inline uint_fixed_16_16_t add_fixed16_u32(uint_fixed_16_16_t add1,
237 						 uint32_t add2)
238 {
239 	uint64_t interm_sum;
240 	uint_fixed_16_16_t interm_add2 = u32_to_fixed16(add2);
241 
242 	interm_sum = (uint64_t) add1.val + interm_add2.val;
243 	return clamp_u64_to_fixed16(interm_sum);
244 }
245 
yesno(bool v)246 static inline const char *yesno(bool v)
247 {
248 	return v ? "yes" : "no";
249 }
250 
onoff(bool v)251 static inline const char *onoff(bool v)
252 {
253 	return v ? "on" : "off";
254 }
255 
enableddisabled(bool v)256 static inline const char *enableddisabled(bool v)
257 {
258 	return v ? "enabled" : "disabled";
259 }
260 
261 enum pipe {
262 	INVALID_PIPE = -1,
263 	PIPE_A = 0,
264 	PIPE_B,
265 	PIPE_C,
266 	_PIPE_EDP,
267 	I915_MAX_PIPES = _PIPE_EDP
268 };
269 #define pipe_name(p) ((p) + 'A')
270 
271 enum transcoder {
272 	TRANSCODER_A = 0,
273 	TRANSCODER_B,
274 	TRANSCODER_C,
275 	TRANSCODER_EDP,
276 	TRANSCODER_DSI_A,
277 	TRANSCODER_DSI_C,
278 	I915_MAX_TRANSCODERS
279 };
280 
transcoder_name(enum transcoder transcoder)281 static inline const char *transcoder_name(enum transcoder transcoder)
282 {
283 	switch (transcoder) {
284 	case TRANSCODER_A:
285 		return "A";
286 	case TRANSCODER_B:
287 		return "B";
288 	case TRANSCODER_C:
289 		return "C";
290 	case TRANSCODER_EDP:
291 		return "EDP";
292 	case TRANSCODER_DSI_A:
293 		return "DSI A";
294 	case TRANSCODER_DSI_C:
295 		return "DSI C";
296 	default:
297 		return "<invalid>";
298 	}
299 }
300 
transcoder_is_dsi(enum transcoder transcoder)301 static inline bool transcoder_is_dsi(enum transcoder transcoder)
302 {
303 	return transcoder == TRANSCODER_DSI_A || transcoder == TRANSCODER_DSI_C;
304 }
305 
306 /*
307  * Global legacy plane identifier. Valid only for primary/sprite
308  * planes on pre-g4x, and only for primary planes on g4x+.
309  */
310 enum plane {
311 	PLANE_A,
312 	PLANE_B,
313 	PLANE_C,
314 };
315 #define plane_name(p) ((p) + 'A')
316 
317 #define sprite_name(p, s) ((p) * INTEL_INFO(dev_priv)->num_sprites[(p)] + (s) + 'A')
318 
319 /*
320  * Per-pipe plane identifier.
321  * I915_MAX_PLANES in the enum below is the maximum (across all platforms)
322  * number of planes per CRTC.  Not all platforms really have this many planes,
323  * which means some arrays of size I915_MAX_PLANES may have unused entries
324  * between the topmost sprite plane and the cursor plane.
325  *
326  * This is expected to be passed to various register macros
327  * (eg. PLANE_CTL(), PS_PLANE_SEL(), etc.) so adjust with care.
328  */
329 enum plane_id {
330 	PLANE_PRIMARY,
331 	PLANE_SPRITE0,
332 	PLANE_SPRITE1,
333 	PLANE_SPRITE2,
334 	PLANE_CURSOR,
335 	I915_MAX_PLANES,
336 };
337 
338 #define for_each_plane_id_on_crtc(__crtc, __p) \
339 	for ((__p) = PLANE_PRIMARY; (__p) < I915_MAX_PLANES; (__p)++) \
340 		for_each_if ((__crtc)->plane_ids_mask & BIT(__p))
341 
342 enum port {
343 	PORT_NONE = -1,
344 	PORT_A = 0,
345 	PORT_B,
346 	PORT_C,
347 	PORT_D,
348 	PORT_E,
349 	I915_MAX_PORTS
350 };
351 #define port_name(p) ((p) + 'A')
352 
353 #define I915_NUM_PHYS_VLV 2
354 
355 enum dpio_channel {
356 	DPIO_CH0,
357 	DPIO_CH1
358 };
359 
360 enum dpio_phy {
361 	DPIO_PHY0,
362 	DPIO_PHY1,
363 	DPIO_PHY2,
364 };
365 
366 enum intel_display_power_domain {
367 	POWER_DOMAIN_PIPE_A,
368 	POWER_DOMAIN_PIPE_B,
369 	POWER_DOMAIN_PIPE_C,
370 	POWER_DOMAIN_PIPE_A_PANEL_FITTER,
371 	POWER_DOMAIN_PIPE_B_PANEL_FITTER,
372 	POWER_DOMAIN_PIPE_C_PANEL_FITTER,
373 	POWER_DOMAIN_TRANSCODER_A,
374 	POWER_DOMAIN_TRANSCODER_B,
375 	POWER_DOMAIN_TRANSCODER_C,
376 	POWER_DOMAIN_TRANSCODER_EDP,
377 	POWER_DOMAIN_TRANSCODER_DSI_A,
378 	POWER_DOMAIN_TRANSCODER_DSI_C,
379 	POWER_DOMAIN_PORT_DDI_A_LANES,
380 	POWER_DOMAIN_PORT_DDI_B_LANES,
381 	POWER_DOMAIN_PORT_DDI_C_LANES,
382 	POWER_DOMAIN_PORT_DDI_D_LANES,
383 	POWER_DOMAIN_PORT_DDI_E_LANES,
384 	POWER_DOMAIN_PORT_DDI_A_IO,
385 	POWER_DOMAIN_PORT_DDI_B_IO,
386 	POWER_DOMAIN_PORT_DDI_C_IO,
387 	POWER_DOMAIN_PORT_DDI_D_IO,
388 	POWER_DOMAIN_PORT_DDI_E_IO,
389 	POWER_DOMAIN_PORT_DSI,
390 	POWER_DOMAIN_PORT_CRT,
391 	POWER_DOMAIN_PORT_OTHER,
392 	POWER_DOMAIN_VGA,
393 	POWER_DOMAIN_AUDIO,
394 	POWER_DOMAIN_PLLS,
395 	POWER_DOMAIN_AUX_A,
396 	POWER_DOMAIN_AUX_B,
397 	POWER_DOMAIN_AUX_C,
398 	POWER_DOMAIN_AUX_D,
399 	POWER_DOMAIN_GMBUS,
400 	POWER_DOMAIN_MODESET,
401 	POWER_DOMAIN_INIT,
402 
403 	POWER_DOMAIN_NUM,
404 };
405 
406 #define POWER_DOMAIN_PIPE(pipe) ((pipe) + POWER_DOMAIN_PIPE_A)
407 #define POWER_DOMAIN_PIPE_PANEL_FITTER(pipe) \
408 		((pipe) + POWER_DOMAIN_PIPE_A_PANEL_FITTER)
409 #define POWER_DOMAIN_TRANSCODER(tran) \
410 	((tran) == TRANSCODER_EDP ? POWER_DOMAIN_TRANSCODER_EDP : \
411 	 (tran) + POWER_DOMAIN_TRANSCODER_A)
412 
413 enum hpd_pin {
414 	HPD_NONE = 0,
415 	HPD_TV = HPD_NONE,     /* TV is known to be unreliable */
416 	HPD_CRT,
417 	HPD_SDVO_B,
418 	HPD_SDVO_C,
419 	HPD_PORT_A,
420 	HPD_PORT_B,
421 	HPD_PORT_C,
422 	HPD_PORT_D,
423 	HPD_PORT_E,
424 	HPD_NUM_PINS
425 };
426 
427 #define for_each_hpd_pin(__pin) \
428 	for ((__pin) = (HPD_NONE + 1); (__pin) < HPD_NUM_PINS; (__pin)++)
429 
430 #define HPD_STORM_DEFAULT_THRESHOLD 5
431 
432 struct i915_hotplug {
433 	struct work_struct hotplug_work;
434 
435 	struct {
436 		unsigned long last_jiffies;
437 		int count;
438 		enum {
439 			HPD_ENABLED = 0,
440 			HPD_DISABLED = 1,
441 			HPD_MARK_DISABLED = 2
442 		} state;
443 	} stats[HPD_NUM_PINS];
444 	u32 event_bits;
445 	struct delayed_work reenable_work;
446 
447 	struct intel_digital_port *irq_port[I915_MAX_PORTS];
448 	u32 long_port_mask;
449 	u32 short_port_mask;
450 	struct work_struct dig_port_work;
451 
452 	struct work_struct poll_init_work;
453 	bool poll_enabled;
454 
455 	unsigned int hpd_storm_threshold;
456 
457 	/*
458 	 * if we get a HPD irq from DP and a HPD irq from non-DP
459 	 * the non-DP HPD could block the workqueue on a mode config
460 	 * mutex getting, that userspace may have taken. However
461 	 * userspace is waiting on the DP workqueue to run which is
462 	 * blocked behind the non-DP one.
463 	 */
464 	struct workqueue_struct *dp_wq;
465 };
466 
467 #define I915_GEM_GPU_DOMAINS \
468 	(I915_GEM_DOMAIN_RENDER | \
469 	 I915_GEM_DOMAIN_SAMPLER | \
470 	 I915_GEM_DOMAIN_COMMAND | \
471 	 I915_GEM_DOMAIN_INSTRUCTION | \
472 	 I915_GEM_DOMAIN_VERTEX)
473 
474 #define for_each_pipe(__dev_priv, __p) \
475 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++)
476 #define for_each_pipe_masked(__dev_priv, __p, __mask) \
477 	for ((__p) = 0; (__p) < INTEL_INFO(__dev_priv)->num_pipes; (__p)++) \
478 		for_each_if ((__mask) & (1 << (__p)))
479 #define for_each_universal_plane(__dev_priv, __pipe, __p)		\
480 	for ((__p) = 0;							\
481 	     (__p) < INTEL_INFO(__dev_priv)->num_sprites[(__pipe)] + 1;	\
482 	     (__p)++)
483 #define for_each_sprite(__dev_priv, __p, __s)				\
484 	for ((__s) = 0;							\
485 	     (__s) < INTEL_INFO(__dev_priv)->num_sprites[(__p)];	\
486 	     (__s)++)
487 
488 #define for_each_port_masked(__port, __ports_mask) \
489 	for ((__port) = PORT_A; (__port) < I915_MAX_PORTS; (__port)++)	\
490 		for_each_if ((__ports_mask) & (1 << (__port)))
491 
492 #define for_each_crtc(dev, crtc) \
493 	list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
494 
495 #define for_each_intel_plane(dev, intel_plane) \
496 	list_for_each_entry(intel_plane,			\
497 			    &(dev)->mode_config.plane_list,	\
498 			    base.head)
499 
500 #define for_each_intel_plane_mask(dev, intel_plane, plane_mask)		\
501 	list_for_each_entry(intel_plane,				\
502 			    &(dev)->mode_config.plane_list,		\
503 			    base.head)					\
504 		for_each_if ((plane_mask) &				\
505 			     (1 << drm_plane_index(&intel_plane->base)))
506 
507 #define for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane)	\
508 	list_for_each_entry(intel_plane,				\
509 			    &(dev)->mode_config.plane_list,		\
510 			    base.head)					\
511 		for_each_if ((intel_plane)->pipe == (intel_crtc)->pipe)
512 
513 #define for_each_intel_crtc(dev, intel_crtc)				\
514 	list_for_each_entry(intel_crtc,					\
515 			    &(dev)->mode_config.crtc_list,		\
516 			    base.head)
517 
518 #define for_each_intel_crtc_mask(dev, intel_crtc, crtc_mask)		\
519 	list_for_each_entry(intel_crtc,					\
520 			    &(dev)->mode_config.crtc_list,		\
521 			    base.head)					\
522 		for_each_if ((crtc_mask) & (1 << drm_crtc_index(&intel_crtc->base)))
523 
524 #define for_each_intel_encoder(dev, intel_encoder)		\
525 	list_for_each_entry(intel_encoder,			\
526 			    &(dev)->mode_config.encoder_list,	\
527 			    base.head)
528 
529 #define for_each_intel_connector_iter(intel_connector, iter) \
530 	while ((intel_connector = to_intel_connector(drm_connector_list_iter_next(iter))))
531 
532 #define for_each_encoder_on_crtc(dev, __crtc, intel_encoder) \
533 	list_for_each_entry((intel_encoder), &(dev)->mode_config.encoder_list, base.head) \
534 		for_each_if ((intel_encoder)->base.crtc == (__crtc))
535 
536 #define for_each_connector_on_encoder(dev, __encoder, intel_connector) \
537 	list_for_each_entry((intel_connector), &(dev)->mode_config.connector_list, base.head) \
538 		for_each_if ((intel_connector)->base.encoder == (__encoder))
539 
540 #define for_each_power_domain(domain, mask)				\
541 	for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)	\
542 		for_each_if (BIT_ULL(domain) & (mask))
543 
544 #define for_each_power_well(__dev_priv, __power_well)				\
545 	for ((__power_well) = (__dev_priv)->power_domains.power_wells;	\
546 	     (__power_well) - (__dev_priv)->power_domains.power_wells <	\
547 		(__dev_priv)->power_domains.power_well_count;		\
548 	     (__power_well)++)
549 
550 #define for_each_power_well_rev(__dev_priv, __power_well)			\
551 	for ((__power_well) = (__dev_priv)->power_domains.power_wells +		\
552 			      (__dev_priv)->power_domains.power_well_count - 1;	\
553 	     (__power_well) - (__dev_priv)->power_domains.power_wells >= 0;	\
554 	     (__power_well)--)
555 
556 #define for_each_power_domain_well(__dev_priv, __power_well, __domain_mask)	\
557 	for_each_power_well(__dev_priv, __power_well)				\
558 		for_each_if ((__power_well)->domains & (__domain_mask))
559 
560 #define for_each_power_domain_well_rev(__dev_priv, __power_well, __domain_mask) \
561 	for_each_power_well_rev(__dev_priv, __power_well)		        \
562 		for_each_if ((__power_well)->domains & (__domain_mask))
563 
564 #define for_each_intel_plane_in_state(__state, plane, plane_state, __i) \
565 	for ((__i) = 0; \
566 	     (__i) < (__state)->base.dev->mode_config.num_total_plane && \
567 		     ((plane) = to_intel_plane((__state)->base.planes[__i].ptr), \
568 		      (plane_state) = to_intel_plane_state((__state)->base.planes[__i].state), 1); \
569 	     (__i)++) \
570 		for_each_if (plane_state)
571 
572 struct drm_i915_private;
573 struct i915_mm_struct;
574 struct i915_mmu_object;
575 
576 struct drm_i915_file_private {
577 	struct drm_i915_private *dev_priv;
578 	struct drm_file *file;
579 
580 	struct {
581 		spinlock_t lock;
582 		struct list_head request_list;
583 /* 20ms is a fairly arbitrary limit (greater than the average frame time)
584  * chosen to prevent the CPU getting more than a frame ahead of the GPU
585  * (when using lax throttling for the frontbuffer). We also use it to
586  * offer free GPU waitboosts for severely congested workloads.
587  */
588 #define DRM_I915_THROTTLE_JIFFIES msecs_to_jiffies(20)
589 	} mm;
590 	struct idr context_idr;
591 
592 	struct intel_rps_client {
593 		atomic_t boosts;
594 	} rps;
595 
596 	unsigned int bsd_engine;
597 
598 /* Client can have a maximum of 3 contexts banned before
599  * it is denied of creating new contexts. As one context
600  * ban needs 4 consecutive hangs, and more if there is
601  * progress in between, this is a last resort stop gap measure
602  * to limit the badly behaving clients access to gpu.
603  */
604 #define I915_MAX_CLIENT_CONTEXT_BANS 3
605 	atomic_t context_bans;
606 };
607 
608 /* Used by dp and fdi links */
609 struct intel_link_m_n {
610 	uint32_t	tu;
611 	uint32_t	gmch_m;
612 	uint32_t	gmch_n;
613 	uint32_t	link_m;
614 	uint32_t	link_n;
615 };
616 
617 void intel_link_compute_m_n(int bpp, int nlanes,
618 			    int pixel_clock, int link_clock,
619 			    struct intel_link_m_n *m_n,
620 			    bool reduce_m_n);
621 
622 /* Interface history:
623  *
624  * 1.1: Original.
625  * 1.2: Add Power Management
626  * 1.3: Add vblank support
627  * 1.4: Fix cmdbuffer path, add heap destroy
628  * 1.5: Add vblank pipe configuration
629  * 1.6: - New ioctl for scheduling buffer swaps on vertical blank
630  *      - Support vertical blank on secondary display pipe
631  */
632 #define DRIVER_MAJOR		1
633 #define DRIVER_MINOR		6
634 #define DRIVER_PATCHLEVEL	0
635 
636 struct opregion_header;
637 struct opregion_acpi;
638 struct opregion_swsci;
639 struct opregion_asle;
640 
641 struct intel_opregion {
642 	struct opregion_header *header;
643 	struct opregion_acpi *acpi;
644 	struct opregion_swsci *swsci;
645 	u32 swsci_gbda_sub_functions;
646 	u32 swsci_sbcb_sub_functions;
647 	struct opregion_asle *asle;
648 	void *rvda;
649 	void *vbt_firmware;
650 	const void *vbt;
651 	u32 vbt_size;
652 	u32 *lid_state;
653 	struct work_struct asle_work;
654 };
655 #define OPREGION_SIZE            (8*1024)
656 
657 struct intel_overlay;
658 struct intel_overlay_error_state;
659 
660 struct sdvo_device_mapping {
661 	u8 initialized;
662 	u8 dvo_port;
663 	u8 slave_addr;
664 	u8 dvo_wiring;
665 	u8 i2c_pin;
666 	u8 ddc_pin;
667 };
668 
669 struct intel_connector;
670 struct intel_encoder;
671 struct intel_atomic_state;
672 struct intel_crtc_state;
673 struct intel_initial_plane_config;
674 struct intel_crtc;
675 struct intel_limit;
676 struct dpll;
677 struct intel_cdclk_state;
678 
679 struct drm_i915_display_funcs {
680 	void (*get_cdclk)(struct drm_i915_private *dev_priv,
681 			  struct intel_cdclk_state *cdclk_state);
682 	void (*set_cdclk)(struct drm_i915_private *dev_priv,
683 			  const struct intel_cdclk_state *cdclk_state);
684 	int (*get_fifo_size)(struct drm_i915_private *dev_priv, int plane);
685 	int (*compute_pipe_wm)(struct intel_crtc_state *cstate);
686 	int (*compute_intermediate_wm)(struct drm_device *dev,
687 				       struct intel_crtc *intel_crtc,
688 				       struct intel_crtc_state *newstate);
689 	void (*initial_watermarks)(struct intel_atomic_state *state,
690 				   struct intel_crtc_state *cstate);
691 	void (*atomic_update_watermarks)(struct intel_atomic_state *state,
692 					 struct intel_crtc_state *cstate);
693 	void (*optimize_watermarks)(struct intel_atomic_state *state,
694 				    struct intel_crtc_state *cstate);
695 	int (*compute_global_watermarks)(struct drm_atomic_state *state);
696 	void (*update_wm)(struct intel_crtc *crtc);
697 	int (*modeset_calc_cdclk)(struct drm_atomic_state *state);
698 	/* Returns the active state of the crtc, and if the crtc is active,
699 	 * fills out the pipe-config with the hw state. */
700 	bool (*get_pipe_config)(struct intel_crtc *,
701 				struct intel_crtc_state *);
702 	void (*get_initial_plane_config)(struct intel_crtc *,
703 					 struct intel_initial_plane_config *);
704 	int (*crtc_compute_clock)(struct intel_crtc *crtc,
705 				  struct intel_crtc_state *crtc_state);
706 	void (*crtc_enable)(struct intel_crtc_state *pipe_config,
707 			    struct drm_atomic_state *old_state);
708 	void (*crtc_disable)(struct intel_crtc_state *old_crtc_state,
709 			     struct drm_atomic_state *old_state);
710 	void (*update_crtcs)(struct drm_atomic_state *state,
711 			     unsigned int *crtc_vblank_mask);
712 	void (*audio_codec_enable)(struct drm_connector *connector,
713 				   struct intel_encoder *encoder,
714 				   const struct drm_display_mode *adjusted_mode);
715 	void (*audio_codec_disable)(struct intel_encoder *encoder);
716 	void (*fdi_link_train)(struct intel_crtc *crtc,
717 			       const struct intel_crtc_state *crtc_state);
718 	void (*init_clock_gating)(struct drm_i915_private *dev_priv);
719 	void (*hpd_irq_setup)(struct drm_i915_private *dev_priv);
720 	/* clock updates for mode set */
721 	/* cursor updates */
722 	/* render clock increase/decrease */
723 	/* display clock increase/decrease */
724 	/* pll clock increase/decrease */
725 
726 	void (*load_csc_matrix)(struct drm_crtc_state *crtc_state);
727 	void (*load_luts)(struct drm_crtc_state *crtc_state);
728 };
729 
730 #define CSR_VERSION(major, minor)	((major) << 16 | (minor))
731 #define CSR_VERSION_MAJOR(version)	((version) >> 16)
732 #define CSR_VERSION_MINOR(version)	((version) & 0xffff)
733 
734 struct intel_csr {
735 	struct work_struct work;
736 	const char *fw_path;
737 	uint32_t *dmc_payload;
738 	uint32_t dmc_fw_size;
739 	uint32_t version;
740 	uint32_t mmio_count;
741 	i915_reg_t mmioaddr[8];
742 	uint32_t mmiodata[8];
743 	uint32_t dc_state;
744 	uint32_t allowed_dc_mask;
745 };
746 
747 #define DEV_INFO_FOR_EACH_FLAG(func) \
748 	func(is_mobile); \
749 	func(is_lp); \
750 	func(is_alpha_support); \
751 	/* Keep has_* in alphabetical order */ \
752 	func(has_64bit_reloc); \
753 	func(has_aliasing_ppgtt); \
754 	func(has_csr); \
755 	func(has_ddi); \
756 	func(has_dp_mst); \
757 	func(has_reset_engine); \
758 	func(has_fbc); \
759 	func(has_fpga_dbg); \
760 	func(has_full_ppgtt); \
761 	func(has_full_48bit_ppgtt); \
762 	func(has_gmbus_irq); \
763 	func(has_gmch_display); \
764 	func(has_guc); \
765 	func(has_guc_ct); \
766 	func(has_hotplug); \
767 	func(has_l3_dpf); \
768 	func(has_llc); \
769 	func(has_logical_ring_contexts); \
770 	func(has_overlay); \
771 	func(has_pipe_cxsr); \
772 	func(has_pooled_eu); \
773 	func(has_psr); \
774 	func(has_rc6); \
775 	func(has_rc6p); \
776 	func(has_resource_streamer); \
777 	func(has_runtime_pm); \
778 	func(has_snoop); \
779 	func(unfenced_needs_alignment); \
780 	func(cursor_needs_physical); \
781 	func(hws_needs_physical); \
782 	func(overlay_needs_physical); \
783 	func(supports_tv);
784 
785 struct sseu_dev_info {
786 	u8 slice_mask;
787 	u8 subslice_mask;
788 	u8 eu_total;
789 	u8 eu_per_subslice;
790 	u8 min_eu_in_pool;
791 	/* For each slice, which subslice(s) has(have) 7 EUs (bitfield)? */
792 	u8 subslice_7eu[3];
793 	u8 has_slice_pg:1;
794 	u8 has_subslice_pg:1;
795 	u8 has_eu_pg:1;
796 };
797 
sseu_subslice_total(const struct sseu_dev_info * sseu)798 static inline unsigned int sseu_subslice_total(const struct sseu_dev_info *sseu)
799 {
800 	return hweight8(sseu->slice_mask) * hweight8(sseu->subslice_mask);
801 }
802 
803 /* Keep in gen based order, and chronological order within a gen */
804 enum intel_platform {
805 	INTEL_PLATFORM_UNINITIALIZED = 0,
806 	INTEL_I830,
807 	INTEL_I845G,
808 	INTEL_I85X,
809 	INTEL_I865G,
810 	INTEL_I915G,
811 	INTEL_I915GM,
812 	INTEL_I945G,
813 	INTEL_I945GM,
814 	INTEL_G33,
815 	INTEL_PINEVIEW,
816 	INTEL_I965G,
817 	INTEL_I965GM,
818 	INTEL_G45,
819 	INTEL_GM45,
820 	INTEL_IRONLAKE,
821 	INTEL_SANDYBRIDGE,
822 	INTEL_IVYBRIDGE,
823 	INTEL_VALLEYVIEW,
824 	INTEL_HASWELL,
825 	INTEL_BROADWELL,
826 	INTEL_CHERRYVIEW,
827 	INTEL_SKYLAKE,
828 	INTEL_BROXTON,
829 	INTEL_KABYLAKE,
830 	INTEL_GEMINILAKE,
831 	INTEL_COFFEELAKE,
832 	INTEL_CANNONLAKE,
833 	INTEL_MAX_PLATFORMS
834 };
835 
836 struct intel_device_info {
837 	u32 display_mmio_offset;
838 	u16 device_id;
839 	u8 num_pipes;
840 	u8 num_sprites[I915_MAX_PIPES];
841 	u8 num_scalers[I915_MAX_PIPES];
842 	u8 gen;
843 	u16 gen_mask;
844 	enum intel_platform platform;
845 	u8 gt; /* GT number, 0 if undefined */
846 	u8 ring_mask; /* Rings supported by the HW */
847 	u8 num_rings;
848 #define DEFINE_FLAG(name) u8 name:1
849 	DEV_INFO_FOR_EACH_FLAG(DEFINE_FLAG);
850 #undef DEFINE_FLAG
851 	u16 ddb_size; /* in blocks */
852 	/* Register offsets for the various display pipes and transcoders */
853 	int pipe_offsets[I915_MAX_TRANSCODERS];
854 	int trans_offsets[I915_MAX_TRANSCODERS];
855 	int palette_offsets[I915_MAX_PIPES];
856 	int cursor_offsets[I915_MAX_PIPES];
857 
858 	/* Slice/subslice/EU info */
859 	struct sseu_dev_info sseu;
860 
861 	struct color_luts {
862 		u16 degamma_lut_size;
863 		u16 gamma_lut_size;
864 	} color;
865 };
866 
867 struct intel_display_error_state;
868 
869 struct i915_gpu_state {
870 	struct kref ref;
871 	struct timeval time;
872 	struct timeval boottime;
873 	struct timeval uptime;
874 
875 	struct drm_i915_private *i915;
876 
877 	char error_msg[128];
878 	bool simulated;
879 	bool awake;
880 	bool wakelock;
881 	bool suspended;
882 	int iommu;
883 	u32 reset_count;
884 	u32 suspend_count;
885 	struct intel_device_info device_info;
886 	struct i915_params params;
887 
888 	/* Generic register state */
889 	u32 eir;
890 	u32 pgtbl_er;
891 	u32 ier;
892 	u32 gtier[4], ngtier;
893 	u32 ccid;
894 	u32 derrmr;
895 	u32 forcewake;
896 	u32 error; /* gen6+ */
897 	u32 err_int; /* gen7 */
898 	u32 fault_data0; /* gen8, gen9 */
899 	u32 fault_data1; /* gen8, gen9 */
900 	u32 done_reg;
901 	u32 gac_eco;
902 	u32 gam_ecochk;
903 	u32 gab_ctl;
904 	u32 gfx_mode;
905 
906 	u32 nfence;
907 	u64 fence[I915_MAX_NUM_FENCES];
908 	struct intel_overlay_error_state *overlay;
909 	struct intel_display_error_state *display;
910 	struct drm_i915_error_object *semaphore;
911 	struct drm_i915_error_object *guc_log;
912 
913 	struct drm_i915_error_engine {
914 		int engine_id;
915 		/* Software tracked state */
916 		bool waiting;
917 		int num_waiters;
918 		unsigned long hangcheck_timestamp;
919 		bool hangcheck_stalled;
920 		enum intel_engine_hangcheck_action hangcheck_action;
921 		struct i915_address_space *vm;
922 		int num_requests;
923 		u32 reset_count;
924 
925 		/* position of active request inside the ring */
926 		u32 rq_head, rq_post, rq_tail;
927 
928 		/* our own tracking of ring head and tail */
929 		u32 cpu_ring_head;
930 		u32 cpu_ring_tail;
931 
932 		u32 last_seqno;
933 
934 		/* Register state */
935 		u32 start;
936 		u32 tail;
937 		u32 head;
938 		u32 ctl;
939 		u32 mode;
940 		u32 hws;
941 		u32 ipeir;
942 		u32 ipehr;
943 		u32 bbstate;
944 		u32 instpm;
945 		u32 instps;
946 		u32 seqno;
947 		u64 bbaddr;
948 		u64 acthd;
949 		u32 fault_reg;
950 		u64 faddr;
951 		u32 rc_psmi; /* sleep state */
952 		u32 semaphore_mboxes[I915_NUM_ENGINES - 1];
953 		struct intel_instdone instdone;
954 
955 		struct drm_i915_error_context {
956 			char comm[TASK_COMM_LEN];
957 			pid_t pid;
958 			u32 handle;
959 			u32 hw_id;
960 			int ban_score;
961 			int active;
962 			int guilty;
963 		} context;
964 
965 		struct drm_i915_error_object {
966 			u64 gtt_offset;
967 			u64 gtt_size;
968 			int page_count;
969 			int unused;
970 			u32 *pages[0];
971 		} *ringbuffer, *batchbuffer, *wa_batchbuffer, *ctx, *hws_page;
972 
973 		struct drm_i915_error_object **user_bo;
974 		long user_bo_count;
975 
976 		struct drm_i915_error_object *wa_ctx;
977 
978 		struct drm_i915_error_request {
979 			long jiffies;
980 			pid_t pid;
981 			u32 context;
982 			int ban_score;
983 			u32 seqno;
984 			u32 head;
985 			u32 tail;
986 		} *requests, execlist[2];
987 
988 		struct drm_i915_error_waiter {
989 			char comm[TASK_COMM_LEN];
990 			pid_t pid;
991 			u32 seqno;
992 		} *waiters;
993 
994 		struct {
995 			u32 gfx_mode;
996 			union {
997 				u64 pdp[4];
998 				u32 pp_dir_base;
999 			};
1000 		} vm_info;
1001 	} engine[I915_NUM_ENGINES];
1002 
1003 	struct drm_i915_error_buffer {
1004 		u32 size;
1005 		u32 name;
1006 		u32 rseqno[I915_NUM_ENGINES], wseqno;
1007 		u64 gtt_offset;
1008 		u32 read_domains;
1009 		u32 write_domain;
1010 		s32 fence_reg:I915_MAX_NUM_FENCE_BITS;
1011 		u32 tiling:2;
1012 		u32 dirty:1;
1013 		u32 purgeable:1;
1014 		u32 userptr:1;
1015 		s32 engine:4;
1016 		u32 cache_level:3;
1017 	} *active_bo[I915_NUM_ENGINES], *pinned_bo;
1018 	u32 active_bo_count[I915_NUM_ENGINES], pinned_bo_count;
1019 	struct i915_address_space *active_vm[I915_NUM_ENGINES];
1020 };
1021 
1022 enum i915_cache_level {
1023 	I915_CACHE_NONE = 0,
1024 	I915_CACHE_LLC, /* also used for snoopable memory on non-LLC */
1025 	I915_CACHE_L3_LLC, /* gen7+, L3 sits between the domain specifc
1026 			      caches, eg sampler/render caches, and the
1027 			      large Last-Level-Cache. LLC is coherent with
1028 			      the CPU, but L3 is only visible to the GPU. */
1029 	I915_CACHE_WT, /* hsw:gt3e WriteThrough for scanouts */
1030 };
1031 
1032 #define I915_COLOR_UNEVICTABLE (-1) /* a non-vma sharing the address space */
1033 
1034 enum fb_op_origin {
1035 	ORIGIN_GTT,
1036 	ORIGIN_CPU,
1037 	ORIGIN_CS,
1038 	ORIGIN_FLIP,
1039 	ORIGIN_DIRTYFB,
1040 };
1041 
1042 struct intel_fbc {
1043 	/* This is always the inner lock when overlapping with struct_mutex and
1044 	 * it's the outer lock when overlapping with stolen_lock. */
1045 	struct mutex lock;
1046 	unsigned threshold;
1047 	unsigned int possible_framebuffer_bits;
1048 	unsigned int busy_bits;
1049 	unsigned int visible_pipes_mask;
1050 	struct intel_crtc *crtc;
1051 
1052 	struct drm_mm_node compressed_fb;
1053 	struct drm_mm_node *compressed_llb;
1054 
1055 	bool false_color;
1056 
1057 	bool enabled;
1058 	bool active;
1059 
1060 	bool underrun_detected;
1061 	struct work_struct underrun_work;
1062 
1063 	/*
1064 	 * Due to the atomic rules we can't access some structures without the
1065 	 * appropriate locking, so we cache information here in order to avoid
1066 	 * these problems.
1067 	 */
1068 	struct intel_fbc_state_cache {
1069 		struct i915_vma *vma;
1070 
1071 		struct {
1072 			unsigned int mode_flags;
1073 			uint32_t hsw_bdw_pixel_rate;
1074 		} crtc;
1075 
1076 		struct {
1077 			unsigned int rotation;
1078 			int src_w;
1079 			int src_h;
1080 			bool visible;
1081 		} plane;
1082 
1083 		struct {
1084 			const struct drm_format_info *format;
1085 			unsigned int stride;
1086 		} fb;
1087 	} state_cache;
1088 
1089 	/*
1090 	 * This structure contains everything that's relevant to program the
1091 	 * hardware registers. When we want to figure out if we need to disable
1092 	 * and re-enable FBC for a new configuration we just check if there's
1093 	 * something different in the struct. The genx_fbc_activate functions
1094 	 * are supposed to read from it in order to program the registers.
1095 	 */
1096 	struct intel_fbc_reg_params {
1097 		struct i915_vma *vma;
1098 
1099 		struct {
1100 			enum pipe pipe;
1101 			enum plane plane;
1102 			unsigned int fence_y_offset;
1103 		} crtc;
1104 
1105 		struct {
1106 			const struct drm_format_info *format;
1107 			unsigned int stride;
1108 		} fb;
1109 
1110 		int cfb_size;
1111 	} params;
1112 
1113 	struct intel_fbc_work {
1114 		bool scheduled;
1115 		u32 scheduled_vblank;
1116 		struct work_struct work;
1117 	} work;
1118 
1119 	const char *no_fbc_reason;
1120 };
1121 
1122 /*
1123  * HIGH_RR is the highest eDP panel refresh rate read from EDID
1124  * LOW_RR is the lowest eDP panel refresh rate found from EDID
1125  * parsing for same resolution.
1126  */
1127 enum drrs_refresh_rate_type {
1128 	DRRS_HIGH_RR,
1129 	DRRS_LOW_RR,
1130 	DRRS_MAX_RR, /* RR count */
1131 };
1132 
1133 enum drrs_support_type {
1134 	DRRS_NOT_SUPPORTED = 0,
1135 	STATIC_DRRS_SUPPORT = 1,
1136 	SEAMLESS_DRRS_SUPPORT = 2
1137 };
1138 
1139 struct intel_dp;
1140 struct i915_drrs {
1141 	struct mutex mutex;
1142 	struct delayed_work work;
1143 	struct intel_dp *dp;
1144 	unsigned busy_frontbuffer_bits;
1145 	enum drrs_refresh_rate_type refresh_rate_type;
1146 	enum drrs_support_type type;
1147 };
1148 
1149 struct i915_psr {
1150 	struct mutex lock;
1151 	bool sink_support;
1152 	bool source_ok;
1153 	struct intel_dp *enabled;
1154 	bool active;
1155 	struct delayed_work work;
1156 	unsigned busy_frontbuffer_bits;
1157 	bool psr2_support;
1158 	bool aux_frame_sync;
1159 	bool link_standby;
1160 	bool y_cord_support;
1161 	bool colorimetry_support;
1162 	bool alpm;
1163 };
1164 
1165 enum intel_pch {
1166 	PCH_NONE = 0,	/* No PCH present */
1167 	PCH_IBX,	/* Ibexpeak PCH */
1168 	PCH_CPT,	/* Cougarpoint/Pantherpoint PCH */
1169 	PCH_LPT,	/* Lynxpoint/Wildcatpoint PCH */
1170 	PCH_SPT,        /* Sunrisepoint PCH */
1171 	PCH_KBP,        /* Kaby Lake PCH */
1172 	PCH_CNP,        /* Cannon Lake PCH */
1173 	PCH_NOP,
1174 };
1175 
1176 enum intel_sbi_destination {
1177 	SBI_ICLK,
1178 	SBI_MPHY,
1179 };
1180 
1181 #define QUIRK_LVDS_SSC_DISABLE (1<<1)
1182 #define QUIRK_INVERT_BRIGHTNESS (1<<2)
1183 #define QUIRK_BACKLIGHT_PRESENT (1<<3)
1184 #define QUIRK_PIN_SWIZZLED_PAGES (1<<5)
1185 #define QUIRK_INCREASE_T12_DELAY (1<<6)
1186 #define QUIRK_INCREASE_DDI_DISABLED_TIME (1<<7)
1187 
1188 struct intel_fbdev;
1189 struct intel_fbc_work;
1190 
1191 struct intel_gmbus {
1192 	struct i2c_adapter adapter;
1193 #define GMBUS_FORCE_BIT_RETRY (1U << 31)
1194 	u32 force_bit;
1195 	u32 reg0;
1196 	i915_reg_t gpio_reg;
1197 	struct i2c_algo_bit_data bit_algo;
1198 	struct drm_i915_private *dev_priv;
1199 };
1200 
1201 struct i915_suspend_saved_registers {
1202 	u32 saveDSPARB;
1203 	u32 saveFBC_CONTROL;
1204 	u32 saveCACHE_MODE_0;
1205 	u32 saveMI_ARB_STATE;
1206 	u32 saveSWF0[16];
1207 	u32 saveSWF1[16];
1208 	u32 saveSWF3[3];
1209 	uint64_t saveFENCE[I915_MAX_NUM_FENCES];
1210 	u32 savePCH_PORT_HOTPLUG;
1211 	u16 saveGCDGMBUS;
1212 };
1213 
1214 struct vlv_s0ix_state {
1215 	/* GAM */
1216 	u32 wr_watermark;
1217 	u32 gfx_prio_ctrl;
1218 	u32 arb_mode;
1219 	u32 gfx_pend_tlb0;
1220 	u32 gfx_pend_tlb1;
1221 	u32 lra_limits[GEN7_LRA_LIMITS_REG_NUM];
1222 	u32 media_max_req_count;
1223 	u32 gfx_max_req_count;
1224 	u32 render_hwsp;
1225 	u32 ecochk;
1226 	u32 bsd_hwsp;
1227 	u32 blt_hwsp;
1228 	u32 tlb_rd_addr;
1229 
1230 	/* MBC */
1231 	u32 g3dctl;
1232 	u32 gsckgctl;
1233 	u32 mbctl;
1234 
1235 	/* GCP */
1236 	u32 ucgctl1;
1237 	u32 ucgctl3;
1238 	u32 rcgctl1;
1239 	u32 rcgctl2;
1240 	u32 rstctl;
1241 	u32 misccpctl;
1242 
1243 	/* GPM */
1244 	u32 gfxpause;
1245 	u32 rpdeuhwtc;
1246 	u32 rpdeuc;
1247 	u32 ecobus;
1248 	u32 pwrdwnupctl;
1249 	u32 rp_down_timeout;
1250 	u32 rp_deucsw;
1251 	u32 rcubmabdtmr;
1252 	u32 rcedata;
1253 	u32 spare2gh;
1254 
1255 	/* Display 1 CZ domain */
1256 	u32 gt_imr;
1257 	u32 gt_ier;
1258 	u32 pm_imr;
1259 	u32 pm_ier;
1260 	u32 gt_scratch[GEN7_GT_SCRATCH_REG_NUM];
1261 
1262 	/* GT SA CZ domain */
1263 	u32 tilectl;
1264 	u32 gt_fifoctl;
1265 	u32 gtlc_wake_ctrl;
1266 	u32 gtlc_survive;
1267 	u32 pmwgicz;
1268 
1269 	/* Display 2 CZ domain */
1270 	u32 gu_ctl0;
1271 	u32 gu_ctl1;
1272 	u32 pcbr;
1273 	u32 clock_gate_dis2;
1274 };
1275 
1276 struct intel_rps_ei {
1277 	ktime_t ktime;
1278 	u32 render_c0;
1279 	u32 media_c0;
1280 };
1281 
1282 struct intel_gen6_power_mgmt {
1283 	/*
1284 	 * work, interrupts_enabled and pm_iir are protected by
1285 	 * dev_priv->irq_lock
1286 	 */
1287 	struct work_struct work;
1288 	bool interrupts_enabled;
1289 	u32 pm_iir;
1290 
1291 	/* PM interrupt bits that should never be masked */
1292 	u32 pm_intrmsk_mbz;
1293 
1294 	/* Frequencies are stored in potentially platform dependent multiples.
1295 	 * In other words, *_freq needs to be multiplied by X to be interesting.
1296 	 * Soft limits are those which are used for the dynamic reclocking done
1297 	 * by the driver (raise frequencies under heavy loads, and lower for
1298 	 * lighter loads). Hard limits are those imposed by the hardware.
1299 	 *
1300 	 * A distinction is made for overclocking, which is never enabled by
1301 	 * default, and is considered to be above the hard limit if it's
1302 	 * possible at all.
1303 	 */
1304 	u8 cur_freq;		/* Current frequency (cached, may not == HW) */
1305 	u8 min_freq_softlimit;	/* Minimum frequency permitted by the driver */
1306 	u8 max_freq_softlimit;	/* Max frequency permitted by the driver */
1307 	u8 max_freq;		/* Maximum frequency, RP0 if not overclocking */
1308 	u8 min_freq;		/* AKA RPn. Minimum frequency */
1309 	u8 boost_freq;		/* Frequency to request when wait boosting */
1310 	u8 idle_freq;		/* Frequency to request when we are idle */
1311 	u8 efficient_freq;	/* AKA RPe. Pre-determined balanced frequency */
1312 	u8 rp1_freq;		/* "less than" RP0 power/freqency */
1313 	u8 rp0_freq;		/* Non-overclocked max frequency. */
1314 	u16 gpll_ref_freq;	/* vlv/chv GPLL reference frequency */
1315 
1316 	u8 up_threshold; /* Current %busy required to uplock */
1317 	u8 down_threshold; /* Current %busy required to downclock */
1318 
1319 	int last_adj;
1320 	enum { LOW_POWER, BETWEEN, HIGH_POWER } power;
1321 
1322 	bool enabled;
1323 	bool ctx_corrupted;
1324 	struct delayed_work autoenable_work;
1325 	atomic_t num_waiters;
1326 	atomic_t boosts;
1327 
1328 	/* manual wa residency calculations */
1329 	struct intel_rps_ei ei;
1330 
1331 	/*
1332 	 * Protects RPS/RC6 register access and PCU communication.
1333 	 * Must be taken after struct_mutex if nested. Note that
1334 	 * this lock may be held for long periods of time when
1335 	 * talking to hw - so only take it when talking to hw!
1336 	 */
1337 	struct mutex hw_lock;
1338 };
1339 
1340 /* defined intel_pm.c */
1341 extern spinlock_t mchdev_lock;
1342 
1343 struct intel_ilk_power_mgmt {
1344 	u8 cur_delay;
1345 	u8 min_delay;
1346 	u8 max_delay;
1347 	u8 fmax;
1348 	u8 fstart;
1349 
1350 	u64 last_count1;
1351 	unsigned long last_time1;
1352 	unsigned long chipset_power;
1353 	u64 last_count2;
1354 	u64 last_time2;
1355 	unsigned long gfx_power;
1356 	u8 corr;
1357 
1358 	int c_m;
1359 	int r_t;
1360 };
1361 
1362 struct drm_i915_private;
1363 struct i915_power_well;
1364 
1365 struct i915_power_well_ops {
1366 	/*
1367 	 * Synchronize the well's hw state to match the current sw state, for
1368 	 * example enable/disable it based on the current refcount. Called
1369 	 * during driver init and resume time, possibly after first calling
1370 	 * the enable/disable handlers.
1371 	 */
1372 	void (*sync_hw)(struct drm_i915_private *dev_priv,
1373 			struct i915_power_well *power_well);
1374 	/*
1375 	 * Enable the well and resources that depend on it (for example
1376 	 * interrupts located on the well). Called after the 0->1 refcount
1377 	 * transition.
1378 	 */
1379 	void (*enable)(struct drm_i915_private *dev_priv,
1380 		       struct i915_power_well *power_well);
1381 	/*
1382 	 * Disable the well and resources that depend on it. Called after
1383 	 * the 1->0 refcount transition.
1384 	 */
1385 	void (*disable)(struct drm_i915_private *dev_priv,
1386 			struct i915_power_well *power_well);
1387 	/* Returns the hw enabled state. */
1388 	bool (*is_enabled)(struct drm_i915_private *dev_priv,
1389 			   struct i915_power_well *power_well);
1390 };
1391 
1392 /* Power well structure for haswell */
1393 struct i915_power_well {
1394 	const char *name;
1395 	bool always_on;
1396 	/* power well enable/disable usage count */
1397 	int count;
1398 	/* cached hw enabled state */
1399 	bool hw_enabled;
1400 	u64 domains;
1401 	/* unique identifier for this power well */
1402 	enum i915_power_well_id id;
1403 	/*
1404 	 * Arbitraty data associated with this power well. Platform and power
1405 	 * well specific.
1406 	 */
1407 	union {
1408 		struct {
1409 			enum dpio_phy phy;
1410 		} bxt;
1411 		struct {
1412 			/* Mask of pipes whose IRQ logic is backed by the pw */
1413 			u8 irq_pipe_mask;
1414 			/* The pw is backing the VGA functionality */
1415 			bool has_vga:1;
1416 			bool has_fuses:1;
1417 		} hsw;
1418 	};
1419 	const struct i915_power_well_ops *ops;
1420 };
1421 
1422 struct i915_power_domains {
1423 	/*
1424 	 * Power wells needed for initialization at driver init and suspend
1425 	 * time are on. They are kept on until after the first modeset.
1426 	 */
1427 	bool init_power_on;
1428 	bool initializing;
1429 	int power_well_count;
1430 
1431 	struct mutex lock;
1432 	int domain_use_count[POWER_DOMAIN_NUM];
1433 	struct i915_power_well *power_wells;
1434 };
1435 
1436 #define MAX_L3_SLICES 2
1437 struct intel_l3_parity {
1438 	u32 *remap_info[MAX_L3_SLICES];
1439 	struct work_struct error_work;
1440 	int which_slice;
1441 };
1442 
1443 struct i915_gem_mm {
1444 	/** Memory allocator for GTT stolen memory */
1445 	struct drm_mm stolen;
1446 	/** Protects the usage of the GTT stolen memory allocator. This is
1447 	 * always the inner lock when overlapping with struct_mutex. */
1448 	struct mutex stolen_lock;
1449 
1450 	/** List of all objects in gtt_space. Used to restore gtt
1451 	 * mappings on resume */
1452 	struct list_head bound_list;
1453 	/**
1454 	 * List of objects which are not bound to the GTT (thus
1455 	 * are idle and not used by the GPU). These objects may or may
1456 	 * not actually have any pages attached.
1457 	 */
1458 	struct list_head unbound_list;
1459 
1460 	/** List of all objects in gtt_space, currently mmaped by userspace.
1461 	 * All objects within this list must also be on bound_list.
1462 	 */
1463 	struct list_head userfault_list;
1464 
1465 	/**
1466 	 * List of objects which are pending destruction.
1467 	 */
1468 	struct llist_head free_list;
1469 	struct work_struct free_work;
1470 
1471 	/** Usable portion of the GTT for GEM */
1472 	dma_addr_t stolen_base; /* limited to low memory (32-bit) */
1473 
1474 	/** PPGTT used for aliasing the PPGTT with the GTT */
1475 	struct i915_hw_ppgtt *aliasing_ppgtt;
1476 
1477 	struct notifier_block oom_notifier;
1478 	struct notifier_block vmap_notifier;
1479 	struct shrinker shrinker;
1480 
1481 	/** LRU list of objects with fence regs on them. */
1482 	struct list_head fence_list;
1483 
1484 	/**
1485 	 * Workqueue to fault in userptr pages, flushed by the execbuf
1486 	 * when required but otherwise left to userspace to try again
1487 	 * on EAGAIN.
1488 	 */
1489 	struct workqueue_struct *userptr_wq;
1490 
1491 	u64 unordered_timeline;
1492 
1493 	/* the indicator for dispatch video commands on two BSD rings */
1494 	atomic_t bsd_engine_dispatch_index;
1495 
1496 	/** Bit 6 swizzling required for X tiling */
1497 	uint32_t bit_6_swizzle_x;
1498 	/** Bit 6 swizzling required for Y tiling */
1499 	uint32_t bit_6_swizzle_y;
1500 
1501 	/* accounting, useful for userland debugging */
1502 	spinlock_t object_stat_lock;
1503 	u64 object_memory;
1504 	u32 object_count;
1505 };
1506 
1507 struct drm_i915_error_state_buf {
1508 	struct drm_i915_private *i915;
1509 	unsigned bytes;
1510 	unsigned size;
1511 	int err;
1512 	u8 *buf;
1513 	loff_t start;
1514 	loff_t pos;
1515 };
1516 
1517 #define I915_RESET_TIMEOUT (10 * HZ) /* 10s */
1518 #define I915_FENCE_TIMEOUT (10 * HZ) /* 10s */
1519 
1520 #define I915_ENGINE_DEAD_TIMEOUT  (4 * HZ)  /* Seqno, head and subunits dead */
1521 #define I915_SEQNO_DEAD_TIMEOUT   (12 * HZ) /* Seqno dead with active head */
1522 
1523 struct i915_gpu_error {
1524 	/* For hangcheck timer */
1525 #define DRM_I915_HANGCHECK_PERIOD 1500 /* in ms */
1526 #define DRM_I915_HANGCHECK_JIFFIES msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD)
1527 
1528 	struct delayed_work hangcheck_work;
1529 
1530 	/* For reset and error_state handling. */
1531 	spinlock_t lock;
1532 	/* Protected by the above dev->gpu_error.lock. */
1533 	struct i915_gpu_state *first_error;
1534 
1535 	atomic_t pending_fb_pin;
1536 
1537 	unsigned long missed_irq_rings;
1538 
1539 	/**
1540 	 * State variable controlling the reset flow and count
1541 	 *
1542 	 * This is a counter which gets incremented when reset is triggered,
1543 	 *
1544 	 * Before the reset commences, the I915_RESET_BACKOFF bit is set
1545 	 * meaning that any waiters holding onto the struct_mutex should
1546 	 * relinquish the lock immediately in order for the reset to start.
1547 	 *
1548 	 * If reset is not completed succesfully, the I915_WEDGE bit is
1549 	 * set meaning that hardware is terminally sour and there is no
1550 	 * recovery. All waiters on the reset_queue will be woken when
1551 	 * that happens.
1552 	 *
1553 	 * This counter is used by the wait_seqno code to notice that reset
1554 	 * event happened and it needs to restart the entire ioctl (since most
1555 	 * likely the seqno it waited for won't ever signal anytime soon).
1556 	 *
1557 	 * This is important for lock-free wait paths, where no contended lock
1558 	 * naturally enforces the correct ordering between the bail-out of the
1559 	 * waiter and the gpu reset work code.
1560 	 */
1561 	unsigned long reset_count;
1562 
1563 	/**
1564 	 * flags: Control various stages of the GPU reset
1565 	 *
1566 	 * #I915_RESET_BACKOFF - When we start a reset, we want to stop any
1567 	 * other users acquiring the struct_mutex. To do this we set the
1568 	 * #I915_RESET_BACKOFF bit in the error flags when we detect a reset
1569 	 * and then check for that bit before acquiring the struct_mutex (in
1570 	 * i915_mutex_lock_interruptible()?). I915_RESET_BACKOFF serves a
1571 	 * secondary role in preventing two concurrent global reset attempts.
1572 	 *
1573 	 * #I915_RESET_HANDOFF - To perform the actual GPU reset, we need the
1574 	 * struct_mutex. We try to acquire the struct_mutex in the reset worker,
1575 	 * but it may be held by some long running waiter (that we cannot
1576 	 * interrupt without causing trouble). Once we are ready to do the GPU
1577 	 * reset, we set the I915_RESET_HANDOFF bit and wakeup any waiters. If
1578 	 * they already hold the struct_mutex and want to participate they can
1579 	 * inspect the bit and do the reset directly, otherwise the worker
1580 	 * waits for the struct_mutex.
1581 	 *
1582 	 * #I915_RESET_ENGINE[num_engines] - Since the driver doesn't need to
1583 	 * acquire the struct_mutex to reset an engine, we need an explicit
1584 	 * flag to prevent two concurrent reset attempts in the same engine.
1585 	 * As the number of engines continues to grow, allocate the flags from
1586 	 * the most significant bits.
1587 	 *
1588 	 * #I915_WEDGED - If reset fails and we can no longer use the GPU,
1589 	 * we set the #I915_WEDGED bit. Prior to command submission, e.g.
1590 	 * i915_gem_request_alloc(), this bit is checked and the sequence
1591 	 * aborted (with -EIO reported to userspace) if set.
1592 	 */
1593 	unsigned long flags;
1594 #define I915_RESET_BACKOFF	0
1595 #define I915_RESET_HANDOFF	1
1596 #define I915_RESET_MODESET	2
1597 #define I915_WEDGED		(BITS_PER_LONG - 1)
1598 #define I915_RESET_ENGINE	(I915_WEDGED - I915_NUM_ENGINES)
1599 
1600 	/** Number of times an engine has been reset */
1601 	u32 reset_engine_count[I915_NUM_ENGINES];
1602 
1603 	/**
1604 	 * Waitqueue to signal when a hang is detected. Used to for waiters
1605 	 * to release the struct_mutex for the reset to procede.
1606 	 */
1607 	wait_queue_head_t wait_queue;
1608 
1609 	/**
1610 	 * Waitqueue to signal when the reset has completed. Used by clients
1611 	 * that wait for dev_priv->mm.wedged to settle.
1612 	 */
1613 	wait_queue_head_t reset_queue;
1614 
1615 	/* For missed irq/seqno simulation. */
1616 	unsigned long test_irq_rings;
1617 };
1618 
1619 #define DP_AUX_A 0x40
1620 #define DP_AUX_B 0x10
1621 #define DP_AUX_C 0x20
1622 #define DP_AUX_D 0x30
1623 
1624 #define DDC_PIN_B  0x05
1625 #define DDC_PIN_C  0x04
1626 #define DDC_PIN_D  0x06
1627 
1628 struct ddi_vbt_port_info {
1629 	/*
1630 	 * This is an index in the HDMI/DVI DDI buffer translation table.
1631 	 * The special value HDMI_LEVEL_SHIFT_UNKNOWN means the VBT didn't
1632 	 * populate this field.
1633 	 */
1634 #define HDMI_LEVEL_SHIFT_UNKNOWN	0xff
1635 	uint8_t hdmi_level_shift;
1636 
1637 	uint8_t supports_dvi:1;
1638 	uint8_t supports_hdmi:1;
1639 	uint8_t supports_dp:1;
1640 	uint8_t supports_edp:1;
1641 
1642 	uint8_t alternate_aux_channel;
1643 	uint8_t alternate_ddc_pin;
1644 
1645 	uint8_t dp_boost_level;
1646 	uint8_t hdmi_boost_level;
1647 };
1648 
1649 enum psr_lines_to_wait {
1650 	PSR_0_LINES_TO_WAIT = 0,
1651 	PSR_1_LINE_TO_WAIT,
1652 	PSR_4_LINES_TO_WAIT,
1653 	PSR_8_LINES_TO_WAIT
1654 };
1655 
1656 struct intel_vbt_data {
1657 	struct drm_display_mode *lfp_lvds_vbt_mode; /* if any */
1658 	struct drm_display_mode *sdvo_lvds_vbt_mode; /* if any */
1659 
1660 	/* Feature bits */
1661 	unsigned int int_tv_support:1;
1662 	unsigned int lvds_dither:1;
1663 	unsigned int lvds_vbt:1;
1664 	unsigned int int_crt_support:1;
1665 	unsigned int lvds_use_ssc:1;
1666 	unsigned int display_clock_mode:1;
1667 	unsigned int fdi_rx_polarity_inverted:1;
1668 	unsigned int panel_type:4;
1669 	int lvds_ssc_freq;
1670 	unsigned int bios_lvds_val; /* initial [PCH_]LVDS reg val in VBIOS */
1671 
1672 	enum drrs_support_type drrs_type;
1673 
1674 	struct {
1675 		int rate;
1676 		int lanes;
1677 		int preemphasis;
1678 		int vswing;
1679 		bool low_vswing;
1680 		bool initialized;
1681 		bool support;
1682 		int bpp;
1683 		struct edp_power_seq pps;
1684 	} edp;
1685 
1686 	struct {
1687 		bool full_link;
1688 		bool require_aux_wakeup;
1689 		int idle_frames;
1690 		enum psr_lines_to_wait lines_to_wait;
1691 		int tp1_wakeup_time;
1692 		int tp2_tp3_wakeup_time;
1693 	} psr;
1694 
1695 	struct {
1696 		u16 pwm_freq_hz;
1697 		bool present;
1698 		bool active_low_pwm;
1699 		u8 min_brightness;	/* min_brightness/255 of max */
1700 		u8 controller;		/* brightness controller number */
1701 		enum intel_backlight_type type;
1702 	} backlight;
1703 
1704 	/* MIPI DSI */
1705 	struct {
1706 		u16 panel_id;
1707 		struct mipi_config *config;
1708 		struct mipi_pps_data *pps;
1709 		u8 seq_version;
1710 		u32 size;
1711 		u8 *data;
1712 		const u8 *sequence[MIPI_SEQ_MAX];
1713 	} dsi;
1714 
1715 	int crt_ddc_pin;
1716 
1717 	int child_dev_num;
1718 	union child_device_config *child_dev;
1719 
1720 	struct ddi_vbt_port_info ddi_port_info[I915_MAX_PORTS];
1721 	struct sdvo_device_mapping sdvo_mappings[2];
1722 };
1723 
1724 enum intel_ddb_partitioning {
1725 	INTEL_DDB_PART_1_2,
1726 	INTEL_DDB_PART_5_6, /* IVB+ */
1727 };
1728 
1729 struct intel_wm_level {
1730 	bool enable;
1731 	uint32_t pri_val;
1732 	uint32_t spr_val;
1733 	uint32_t cur_val;
1734 	uint32_t fbc_val;
1735 };
1736 
1737 struct ilk_wm_values {
1738 	uint32_t wm_pipe[3];
1739 	uint32_t wm_lp[3];
1740 	uint32_t wm_lp_spr[3];
1741 	uint32_t wm_linetime[3];
1742 	bool enable_fbc_wm;
1743 	enum intel_ddb_partitioning partitioning;
1744 };
1745 
1746 struct g4x_pipe_wm {
1747 	uint16_t plane[I915_MAX_PLANES];
1748 	uint16_t fbc;
1749 };
1750 
1751 struct g4x_sr_wm {
1752 	uint16_t plane;
1753 	uint16_t cursor;
1754 	uint16_t fbc;
1755 };
1756 
1757 struct vlv_wm_ddl_values {
1758 	uint8_t plane[I915_MAX_PLANES];
1759 };
1760 
1761 struct vlv_wm_values {
1762 	struct g4x_pipe_wm pipe[3];
1763 	struct g4x_sr_wm sr;
1764 	struct vlv_wm_ddl_values ddl[3];
1765 	uint8_t level;
1766 	bool cxsr;
1767 };
1768 
1769 struct g4x_wm_values {
1770 	struct g4x_pipe_wm pipe[2];
1771 	struct g4x_sr_wm sr;
1772 	struct g4x_sr_wm hpll;
1773 	bool cxsr;
1774 	bool hpll_en;
1775 	bool fbc_en;
1776 };
1777 
1778 struct skl_ddb_entry {
1779 	uint16_t start, end;	/* in number of blocks, 'end' is exclusive */
1780 };
1781 
skl_ddb_entry_size(const struct skl_ddb_entry * entry)1782 static inline uint16_t skl_ddb_entry_size(const struct skl_ddb_entry *entry)
1783 {
1784 	return entry->end - entry->start;
1785 }
1786 
skl_ddb_entry_equal(const struct skl_ddb_entry * e1,const struct skl_ddb_entry * e2)1787 static inline bool skl_ddb_entry_equal(const struct skl_ddb_entry *e1,
1788 				       const struct skl_ddb_entry *e2)
1789 {
1790 	if (e1->start == e2->start && e1->end == e2->end)
1791 		return true;
1792 
1793 	return false;
1794 }
1795 
1796 struct skl_ddb_allocation {
1797 	struct skl_ddb_entry plane[I915_MAX_PIPES][I915_MAX_PLANES]; /* packed/uv */
1798 	struct skl_ddb_entry y_plane[I915_MAX_PIPES][I915_MAX_PLANES];
1799 };
1800 
1801 struct skl_wm_values {
1802 	unsigned dirty_pipes;
1803 	struct skl_ddb_allocation ddb;
1804 };
1805 
1806 struct skl_wm_level {
1807 	bool plane_en;
1808 	uint16_t plane_res_b;
1809 	uint8_t plane_res_l;
1810 };
1811 
1812 /*
1813  * This struct helps tracking the state needed for runtime PM, which puts the
1814  * device in PCI D3 state. Notice that when this happens, nothing on the
1815  * graphics device works, even register access, so we don't get interrupts nor
1816  * anything else.
1817  *
1818  * Every piece of our code that needs to actually touch the hardware needs to
1819  * either call intel_runtime_pm_get or call intel_display_power_get with the
1820  * appropriate power domain.
1821  *
1822  * Our driver uses the autosuspend delay feature, which means we'll only really
1823  * suspend if we stay with zero refcount for a certain amount of time. The
1824  * default value is currently very conservative (see intel_runtime_pm_enable), but
1825  * it can be changed with the standard runtime PM files from sysfs.
1826  *
1827  * The irqs_disabled variable becomes true exactly after we disable the IRQs and
1828  * goes back to false exactly before we reenable the IRQs. We use this variable
1829  * to check if someone is trying to enable/disable IRQs while they're supposed
1830  * to be disabled. This shouldn't happen and we'll print some error messages in
1831  * case it happens.
1832  *
1833  * For more, read the Documentation/power/runtime_pm.txt.
1834  */
1835 struct i915_runtime_pm {
1836 	atomic_t wakeref_count;
1837 	bool suspended;
1838 	bool irqs_enabled;
1839 };
1840 
1841 enum intel_pipe_crc_source {
1842 	INTEL_PIPE_CRC_SOURCE_NONE,
1843 	INTEL_PIPE_CRC_SOURCE_PLANE1,
1844 	INTEL_PIPE_CRC_SOURCE_PLANE2,
1845 	INTEL_PIPE_CRC_SOURCE_PF,
1846 	INTEL_PIPE_CRC_SOURCE_PIPE,
1847 	/* TV/DP on pre-gen5/vlv can't use the pipe source. */
1848 	INTEL_PIPE_CRC_SOURCE_TV,
1849 	INTEL_PIPE_CRC_SOURCE_DP_B,
1850 	INTEL_PIPE_CRC_SOURCE_DP_C,
1851 	INTEL_PIPE_CRC_SOURCE_DP_D,
1852 	INTEL_PIPE_CRC_SOURCE_AUTO,
1853 	INTEL_PIPE_CRC_SOURCE_MAX,
1854 };
1855 
1856 struct intel_pipe_crc_entry {
1857 	uint32_t frame;
1858 	uint32_t crc[5];
1859 };
1860 
1861 #define INTEL_PIPE_CRC_ENTRIES_NR	128
1862 struct intel_pipe_crc {
1863 	spinlock_t lock;
1864 	bool opened;		/* exclusive access to the result file */
1865 	struct intel_pipe_crc_entry *entries;
1866 	enum intel_pipe_crc_source source;
1867 	int head, tail;
1868 	wait_queue_head_t wq;
1869 	int skipped;
1870 };
1871 
1872 struct i915_frontbuffer_tracking {
1873 	spinlock_t lock;
1874 
1875 	/*
1876 	 * Tracking bits for delayed frontbuffer flushing du to gpu activity or
1877 	 * scheduled flips.
1878 	 */
1879 	unsigned busy_bits;
1880 	unsigned flip_bits;
1881 };
1882 
1883 struct i915_wa_reg {
1884 	i915_reg_t addr;
1885 	u32 value;
1886 	/* bitmask representing WA bits */
1887 	u32 mask;
1888 };
1889 
1890 /*
1891  * RING_MAX_NONPRIV_SLOTS is per-engine but at this point we are only
1892  * allowing it for RCS as we don't foresee any requirement of having
1893  * a whitelist for other engines. When it is really required for
1894  * other engines then the limit need to be increased.
1895  */
1896 #define I915_MAX_WA_REGS (16 + RING_MAX_NONPRIV_SLOTS)
1897 
1898 struct i915_workarounds {
1899 	struct i915_wa_reg reg[I915_MAX_WA_REGS];
1900 	u32 count;
1901 	u32 hw_whitelist_count[I915_NUM_ENGINES];
1902 };
1903 
1904 struct i915_virtual_gpu {
1905 	bool active;
1906 	u32 caps;
1907 };
1908 
1909 /* used in computing the new watermarks state */
1910 struct intel_wm_config {
1911 	unsigned int num_pipes_active;
1912 	bool sprites_enabled;
1913 	bool sprites_scaled;
1914 };
1915 
1916 struct i915_oa_format {
1917 	u32 format;
1918 	int size;
1919 };
1920 
1921 struct i915_oa_reg {
1922 	i915_reg_t addr;
1923 	u32 value;
1924 };
1925 
1926 struct i915_oa_config {
1927 	char uuid[UUID_STRING_LEN + 1];
1928 	int id;
1929 
1930 	const struct i915_oa_reg *mux_regs;
1931 	u32 mux_regs_len;
1932 	const struct i915_oa_reg *b_counter_regs;
1933 	u32 b_counter_regs_len;
1934 	const struct i915_oa_reg *flex_regs;
1935 	u32 flex_regs_len;
1936 
1937 	struct attribute_group sysfs_metric;
1938 	struct attribute *attrs[2];
1939 	struct device_attribute sysfs_metric_id;
1940 
1941 	atomic_t ref_count;
1942 };
1943 
1944 struct i915_perf_stream;
1945 
1946 /**
1947  * struct i915_perf_stream_ops - the OPs to support a specific stream type
1948  */
1949 struct i915_perf_stream_ops {
1950 	/**
1951 	 * @enable: Enables the collection of HW samples, either in response to
1952 	 * `I915_PERF_IOCTL_ENABLE` or implicitly called when stream is opened
1953 	 * without `I915_PERF_FLAG_DISABLED`.
1954 	 */
1955 	void (*enable)(struct i915_perf_stream *stream);
1956 
1957 	/**
1958 	 * @disable: Disables the collection of HW samples, either in response
1959 	 * to `I915_PERF_IOCTL_DISABLE` or implicitly called before destroying
1960 	 * the stream.
1961 	 */
1962 	void (*disable)(struct i915_perf_stream *stream);
1963 
1964 	/**
1965 	 * @poll_wait: Call poll_wait, passing a wait queue that will be woken
1966 	 * once there is something ready to read() for the stream
1967 	 */
1968 	void (*poll_wait)(struct i915_perf_stream *stream,
1969 			  struct file *file,
1970 			  poll_table *wait);
1971 
1972 	/**
1973 	 * @wait_unlocked: For handling a blocking read, wait until there is
1974 	 * something to ready to read() for the stream. E.g. wait on the same
1975 	 * wait queue that would be passed to poll_wait().
1976 	 */
1977 	int (*wait_unlocked)(struct i915_perf_stream *stream);
1978 
1979 	/**
1980 	 * @read: Copy buffered metrics as records to userspace
1981 	 * **buf**: the userspace, destination buffer
1982 	 * **count**: the number of bytes to copy, requested by userspace
1983 	 * **offset**: zero at the start of the read, updated as the read
1984 	 * proceeds, it represents how many bytes have been copied so far and
1985 	 * the buffer offset for copying the next record.
1986 	 *
1987 	 * Copy as many buffered i915 perf samples and records for this stream
1988 	 * to userspace as will fit in the given buffer.
1989 	 *
1990 	 * Only write complete records; returning -%ENOSPC if there isn't room
1991 	 * for a complete record.
1992 	 *
1993 	 * Return any error condition that results in a short read such as
1994 	 * -%ENOSPC or -%EFAULT, even though these may be squashed before
1995 	 * returning to userspace.
1996 	 */
1997 	int (*read)(struct i915_perf_stream *stream,
1998 		    char __user *buf,
1999 		    size_t count,
2000 		    size_t *offset);
2001 
2002 	/**
2003 	 * @destroy: Cleanup any stream specific resources.
2004 	 *
2005 	 * The stream will always be disabled before this is called.
2006 	 */
2007 	void (*destroy)(struct i915_perf_stream *stream);
2008 };
2009 
2010 /**
2011  * struct i915_perf_stream - state for a single open stream FD
2012  */
2013 struct i915_perf_stream {
2014 	/**
2015 	 * @dev_priv: i915 drm device
2016 	 */
2017 	struct drm_i915_private *dev_priv;
2018 
2019 	/**
2020 	 * @link: Links the stream into ``&drm_i915_private->streams``
2021 	 */
2022 	struct list_head link;
2023 
2024 	/**
2025 	 * @sample_flags: Flags representing the `DRM_I915_PERF_PROP_SAMPLE_*`
2026 	 * properties given when opening a stream, representing the contents
2027 	 * of a single sample as read() by userspace.
2028 	 */
2029 	u32 sample_flags;
2030 
2031 	/**
2032 	 * @sample_size: Considering the configured contents of a sample
2033 	 * combined with the required header size, this is the total size
2034 	 * of a single sample record.
2035 	 */
2036 	int sample_size;
2037 
2038 	/**
2039 	 * @ctx: %NULL if measuring system-wide across all contexts or a
2040 	 * specific context that is being monitored.
2041 	 */
2042 	struct i915_gem_context *ctx;
2043 
2044 	/**
2045 	 * @enabled: Whether the stream is currently enabled, considering
2046 	 * whether the stream was opened in a disabled state and based
2047 	 * on `I915_PERF_IOCTL_ENABLE` and `I915_PERF_IOCTL_DISABLE` calls.
2048 	 */
2049 	bool enabled;
2050 
2051 	/**
2052 	 * @ops: The callbacks providing the implementation of this specific
2053 	 * type of configured stream.
2054 	 */
2055 	const struct i915_perf_stream_ops *ops;
2056 
2057 	/**
2058 	 * @oa_config: The OA configuration used by the stream.
2059 	 */
2060 	struct i915_oa_config *oa_config;
2061 };
2062 
2063 /**
2064  * struct i915_oa_ops - Gen specific implementation of an OA unit stream
2065  */
2066 struct i915_oa_ops {
2067 	/**
2068 	 * @is_valid_b_counter_reg: Validates register's address for
2069 	 * programming boolean counters for a particular platform.
2070 	 */
2071 	bool (*is_valid_b_counter_reg)(struct drm_i915_private *dev_priv,
2072 				       u32 addr);
2073 
2074 	/**
2075 	 * @is_valid_mux_reg: Validates register's address for programming mux
2076 	 * for a particular platform.
2077 	 */
2078 	bool (*is_valid_mux_reg)(struct drm_i915_private *dev_priv, u32 addr);
2079 
2080 	/**
2081 	 * @is_valid_flex_reg: Validates register's address for programming
2082 	 * flex EU filtering for a particular platform.
2083 	 */
2084 	bool (*is_valid_flex_reg)(struct drm_i915_private *dev_priv, u32 addr);
2085 
2086 	/**
2087 	 * @init_oa_buffer: Resets the head and tail pointers of the
2088 	 * circular buffer for periodic OA reports.
2089 	 *
2090 	 * Called when first opening a stream for OA metrics, but also may be
2091 	 * called in response to an OA buffer overflow or other error
2092 	 * condition.
2093 	 *
2094 	 * Note it may be necessary to clear the full OA buffer here as part of
2095 	 * maintaining the invariable that new reports must be written to
2096 	 * zeroed memory for us to be able to reliable detect if an expected
2097 	 * report has not yet landed in memory.  (At least on Haswell the OA
2098 	 * buffer tail pointer is not synchronized with reports being visible
2099 	 * to the CPU)
2100 	 */
2101 	void (*init_oa_buffer)(struct drm_i915_private *dev_priv);
2102 
2103 	/**
2104 	 * @enable_metric_set: Selects and applies any MUX configuration to set
2105 	 * up the Boolean and Custom (B/C) counters that are part of the
2106 	 * counter reports being sampled. May apply system constraints such as
2107 	 * disabling EU clock gating as required.
2108 	 */
2109 	int (*enable_metric_set)(struct drm_i915_private *dev_priv,
2110 				 const struct i915_oa_config *oa_config);
2111 
2112 	/**
2113 	 * @disable_metric_set: Remove system constraints associated with using
2114 	 * the OA unit.
2115 	 */
2116 	void (*disable_metric_set)(struct drm_i915_private *dev_priv);
2117 
2118 	/**
2119 	 * @oa_enable: Enable periodic sampling
2120 	 */
2121 	void (*oa_enable)(struct drm_i915_private *dev_priv);
2122 
2123 	/**
2124 	 * @oa_disable: Disable periodic sampling
2125 	 */
2126 	void (*oa_disable)(struct drm_i915_private *dev_priv);
2127 
2128 	/**
2129 	 * @read: Copy data from the circular OA buffer into a given userspace
2130 	 * buffer.
2131 	 */
2132 	int (*read)(struct i915_perf_stream *stream,
2133 		    char __user *buf,
2134 		    size_t count,
2135 		    size_t *offset);
2136 
2137 	/**
2138 	 * @oa_hw_tail_read: read the OA tail pointer register
2139 	 *
2140 	 * In particular this enables us to share all the fiddly code for
2141 	 * handling the OA unit tail pointer race that affects multiple
2142 	 * generations.
2143 	 */
2144 	u32 (*oa_hw_tail_read)(struct drm_i915_private *dev_priv);
2145 };
2146 
2147 struct intel_cdclk_state {
2148 	unsigned int cdclk, vco, ref;
2149 };
2150 
2151 struct drm_i915_private {
2152 	struct drm_device drm;
2153 
2154 	struct kmem_cache *objects;
2155 	struct kmem_cache *vmas;
2156 	struct kmem_cache *luts;
2157 	struct kmem_cache *requests;
2158 	struct kmem_cache *dependencies;
2159 	struct kmem_cache *priorities;
2160 
2161 	const struct intel_device_info info;
2162 
2163 	void __iomem *regs;
2164 
2165 	struct intel_uncore uncore;
2166 
2167 	struct i915_virtual_gpu vgpu;
2168 
2169 	struct intel_gvt *gvt;
2170 
2171 	struct intel_huc huc;
2172 	struct intel_guc guc;
2173 
2174 	struct intel_csr csr;
2175 
2176 	struct intel_gmbus gmbus[GMBUS_NUM_PINS];
2177 
2178 	/** gmbus_mutex protects against concurrent usage of the single hw gmbus
2179 	 * controller on different i2c buses. */
2180 	struct mutex gmbus_mutex;
2181 
2182 	/**
2183 	 * Base address of the gmbus and gpio block.
2184 	 */
2185 	uint32_t gpio_mmio_base;
2186 
2187 	/* MMIO base address for MIPI regs */
2188 	uint32_t mipi_mmio_base;
2189 
2190 	uint32_t psr_mmio_base;
2191 
2192 	uint32_t pps_mmio_base;
2193 
2194 	wait_queue_head_t gmbus_wait_queue;
2195 
2196 	struct pci_dev *bridge_dev;
2197 	struct i915_gem_context *kernel_context;
2198 	struct intel_engine_cs *engine[I915_NUM_ENGINES];
2199 	struct i915_vma *semaphore;
2200 
2201 	struct drm_dma_handle *status_page_dmah;
2202 	struct resource mch_res;
2203 
2204 	/* protects the irq masks */
2205 	spinlock_t irq_lock;
2206 
2207 	bool display_irqs_enabled;
2208 
2209 	/* To control wakeup latency, e.g. for irq-driven dp aux transfers. */
2210 	struct pm_qos_request pm_qos;
2211 
2212 	/* Sideband mailbox protection */
2213 	struct mutex sb_lock;
2214 
2215 	/** Cached value of IMR to avoid reads in updating the bitfield */
2216 	union {
2217 		u32 irq_mask;
2218 		u32 de_irq_mask[I915_MAX_PIPES];
2219 	};
2220 	u32 gt_irq_mask;
2221 	u32 pm_imr;
2222 	u32 pm_ier;
2223 	u32 pm_rps_events;
2224 	u32 pm_guc_events;
2225 	u32 pipestat_irq_mask[I915_MAX_PIPES];
2226 
2227 	struct i915_hotplug hotplug;
2228 	struct intel_fbc fbc;
2229 	struct i915_drrs drrs;
2230 	struct intel_opregion opregion;
2231 	struct intel_vbt_data vbt;
2232 
2233 	bool preserve_bios_swizzle;
2234 
2235 	/* overlay */
2236 	struct intel_overlay *overlay;
2237 
2238 	/* backlight registers and fields in struct intel_panel */
2239 	struct mutex backlight_lock;
2240 
2241 	/* LVDS info */
2242 	bool no_aux_handshake;
2243 
2244 	/* protects panel power sequencer state */
2245 	struct mutex pps_mutex;
2246 
2247 	struct drm_i915_fence_reg fence_regs[I915_MAX_NUM_FENCES]; /* assume 965 */
2248 	int num_fence_regs; /* 8 on pre-965, 16 otherwise */
2249 
2250 	unsigned int fsb_freq, mem_freq, is_ddr3;
2251 	unsigned int skl_preferred_vco_freq;
2252 	unsigned int max_cdclk_freq;
2253 
2254 	unsigned int max_dotclk_freq;
2255 	unsigned int rawclk_freq;
2256 	unsigned int hpll_freq;
2257 	unsigned int czclk_freq;
2258 
2259 	struct {
2260 		/*
2261 		 * The current logical cdclk state.
2262 		 * See intel_atomic_state.cdclk.logical
2263 		 *
2264 		 * For reading holding any crtc lock is sufficient,
2265 		 * for writing must hold all of them.
2266 		 */
2267 		struct intel_cdclk_state logical;
2268 		/*
2269 		 * The current actual cdclk state.
2270 		 * See intel_atomic_state.cdclk.actual
2271 		 */
2272 		struct intel_cdclk_state actual;
2273 		/* The current hardware cdclk state */
2274 		struct intel_cdclk_state hw;
2275 	} cdclk;
2276 
2277 	/**
2278 	 * wq - Driver workqueue for GEM.
2279 	 *
2280 	 * NOTE: Work items scheduled here are not allowed to grab any modeset
2281 	 * locks, for otherwise the flushing done in the pageflip code will
2282 	 * result in deadlocks.
2283 	 */
2284 	struct workqueue_struct *wq;
2285 
2286 	/* Display functions */
2287 	struct drm_i915_display_funcs display;
2288 
2289 	/* PCH chipset type */
2290 	enum intel_pch pch_type;
2291 	unsigned short pch_id;
2292 
2293 	unsigned long quirks;
2294 
2295 	struct drm_atomic_state *modeset_restore_state;
2296 	struct drm_modeset_acquire_ctx reset_ctx;
2297 
2298 	struct list_head vm_list; /* Global list of all address spaces */
2299 	struct i915_ggtt ggtt; /* VM representing the global address space */
2300 
2301 	struct i915_gem_mm mm;
2302 	DECLARE_HASHTABLE(mm_structs, 7);
2303 	struct mutex mm_lock;
2304 
2305 	/* Kernel Modesetting */
2306 
2307 	struct intel_crtc *plane_to_crtc_mapping[I915_MAX_PIPES];
2308 	struct intel_crtc *pipe_to_crtc_mapping[I915_MAX_PIPES];
2309 
2310 #ifdef CONFIG_DEBUG_FS
2311 	struct intel_pipe_crc pipe_crc[I915_MAX_PIPES];
2312 #endif
2313 
2314 	/* dpll and cdclk state is protected by connection_mutex */
2315 	int num_shared_dpll;
2316 	struct intel_shared_dpll shared_dplls[I915_NUM_PLLS];
2317 	const struct intel_dpll_mgr *dpll_mgr;
2318 
2319 	/*
2320 	 * dpll_lock serializes intel_{prepare,enable,disable}_shared_dpll.
2321 	 * Must be global rather than per dpll, because on some platforms
2322 	 * plls share registers.
2323 	 */
2324 	struct mutex dpll_lock;
2325 
2326 	unsigned int active_crtcs;
2327 	unsigned int min_pixclk[I915_MAX_PIPES];
2328 
2329 	int dpio_phy_iosf_port[I915_NUM_PHYS_VLV];
2330 
2331 	struct i915_workarounds workarounds;
2332 
2333 	struct i915_frontbuffer_tracking fb_tracking;
2334 
2335 	struct intel_atomic_helper {
2336 		struct llist_head free_list;
2337 		struct work_struct free_work;
2338 	} atomic_helper;
2339 
2340 	u16 orig_clock;
2341 
2342 	bool mchbar_need_disable;
2343 
2344 	struct intel_l3_parity l3_parity;
2345 
2346 	/* Cannot be determined by PCIID. You must always read a register. */
2347 	u32 edram_cap;
2348 
2349 	/* gen6+ rps state */
2350 	struct intel_gen6_power_mgmt rps;
2351 
2352 	/* ilk-only ips/rps state. Everything in here is protected by the global
2353 	 * mchdev_lock in intel_pm.c */
2354 	struct intel_ilk_power_mgmt ips;
2355 
2356 	struct i915_power_domains power_domains;
2357 
2358 	struct i915_psr psr;
2359 
2360 	struct i915_gpu_error gpu_error;
2361 
2362 	struct drm_i915_gem_object *vlv_pctx;
2363 
2364 	/* list of fbdev register on this device */
2365 	struct intel_fbdev *fbdev;
2366 	struct work_struct fbdev_suspend_work;
2367 
2368 	struct drm_property *broadcast_rgb_property;
2369 	struct drm_property *force_audio_property;
2370 
2371 	/* hda/i915 audio component */
2372 	struct i915_audio_component *audio_component;
2373 	bool audio_component_registered;
2374 	/**
2375 	 * av_mutex - mutex for audio/video sync
2376 	 *
2377 	 */
2378 	struct mutex av_mutex;
2379 
2380 	struct {
2381 		struct list_head list;
2382 		struct llist_head free_list;
2383 		struct work_struct free_work;
2384 
2385 		/* The hw wants to have a stable context identifier for the
2386 		 * lifetime of the context (for OA, PASID, faults, etc).
2387 		 * This is limited in execlists to 21 bits.
2388 		 */
2389 		struct ida hw_ida;
2390 #define MAX_CONTEXT_HW_ID (1<<21) /* exclusive */
2391 	} contexts;
2392 
2393 	u32 fdi_rx_config;
2394 
2395 	/* Shadow for DISPLAY_PHY_CONTROL which can't be safely read */
2396 	u32 chv_phy_control;
2397 	/*
2398 	 * Shadows for CHV DPLL_MD regs to keep the state
2399 	 * checker somewhat working in the presence hardware
2400 	 * crappiness (can't read out DPLL_MD for pipes B & C).
2401 	 */
2402 	u32 chv_dpll_md[I915_MAX_PIPES];
2403 	u32 bxt_phy_grc;
2404 
2405 	u32 suspend_count;
2406 	bool suspended_to_idle;
2407 	struct i915_suspend_saved_registers regfile;
2408 	struct vlv_s0ix_state vlv_s0ix_state;
2409 
2410 	enum {
2411 		I915_SAGV_UNKNOWN = 0,
2412 		I915_SAGV_DISABLED,
2413 		I915_SAGV_ENABLED,
2414 		I915_SAGV_NOT_CONTROLLED
2415 	} sagv_status;
2416 
2417 	struct {
2418 		/*
2419 		 * Raw watermark latency values:
2420 		 * in 0.1us units for WM0,
2421 		 * in 0.5us units for WM1+.
2422 		 */
2423 		/* primary */
2424 		uint16_t pri_latency[5];
2425 		/* sprite */
2426 		uint16_t spr_latency[5];
2427 		/* cursor */
2428 		uint16_t cur_latency[5];
2429 		/*
2430 		 * Raw watermark memory latency values
2431 		 * for SKL for all 8 levels
2432 		 * in 1us units.
2433 		 */
2434 		uint16_t skl_latency[8];
2435 
2436 		/* current hardware state */
2437 		union {
2438 			struct ilk_wm_values hw;
2439 			struct skl_wm_values skl_hw;
2440 			struct vlv_wm_values vlv;
2441 			struct g4x_wm_values g4x;
2442 		};
2443 
2444 		uint8_t max_level;
2445 
2446 		/*
2447 		 * Should be held around atomic WM register writing; also
2448 		 * protects * intel_crtc->wm.active and
2449 		 * cstate->wm.need_postvbl_update.
2450 		 */
2451 		struct mutex wm_mutex;
2452 
2453 		/*
2454 		 * Set during HW readout of watermarks/DDB.  Some platforms
2455 		 * need to know when we're still using BIOS-provided values
2456 		 * (which we don't fully trust).
2457 		 */
2458 		bool distrust_bios_wm;
2459 	} wm;
2460 
2461 	struct i915_runtime_pm pm;
2462 
2463 	struct {
2464 		bool initialized;
2465 
2466 		struct kobject *metrics_kobj;
2467 		struct ctl_table_header *sysctl_header;
2468 
2469 		/*
2470 		 * Lock associated with adding/modifying/removing OA configs
2471 		 * in dev_priv->perf.metrics_idr.
2472 		 */
2473 		struct mutex metrics_lock;
2474 
2475 		/*
2476 		 * List of dynamic configurations, you need to hold
2477 		 * dev_priv->perf.metrics_lock to access it.
2478 		 */
2479 		struct idr metrics_idr;
2480 
2481 		/*
2482 		 * Lock associated with anything below within this structure
2483 		 * except exclusive_stream.
2484 		 */
2485 		struct mutex lock;
2486 		struct list_head streams;
2487 
2488 		struct {
2489 			/*
2490 			 * The stream currently using the OA unit. If accessed
2491 			 * outside a syscall associated to its file
2492 			 * descriptor, you need to hold
2493 			 * dev_priv->drm.struct_mutex.
2494 			 */
2495 			struct i915_perf_stream *exclusive_stream;
2496 
2497 			u32 specific_ctx_id;
2498 
2499 			struct hrtimer poll_check_timer;
2500 			wait_queue_head_t poll_wq;
2501 			bool pollin;
2502 
2503 			/**
2504 			 * For rate limiting any notifications of spurious
2505 			 * invalid OA reports
2506 			 */
2507 			struct ratelimit_state spurious_report_rs;
2508 
2509 			bool periodic;
2510 			int period_exponent;
2511 			int timestamp_frequency;
2512 
2513 			struct i915_oa_config test_config;
2514 
2515 			struct {
2516 				struct i915_vma *vma;
2517 				u8 *vaddr;
2518 				u32 last_ctx_id;
2519 				int format;
2520 				int format_size;
2521 
2522 				/**
2523 				 * Locks reads and writes to all head/tail state
2524 				 *
2525 				 * Consider: the head and tail pointer state
2526 				 * needs to be read consistently from a hrtimer
2527 				 * callback (atomic context) and read() fop
2528 				 * (user context) with tail pointer updates
2529 				 * happening in atomic context and head updates
2530 				 * in user context and the (unlikely)
2531 				 * possibility of read() errors needing to
2532 				 * reset all head/tail state.
2533 				 *
2534 				 * Note: Contention or performance aren't
2535 				 * currently a significant concern here
2536 				 * considering the relatively low frequency of
2537 				 * hrtimer callbacks (5ms period) and that
2538 				 * reads typically only happen in response to a
2539 				 * hrtimer event and likely complete before the
2540 				 * next callback.
2541 				 *
2542 				 * Note: This lock is not held *while* reading
2543 				 * and copying data to userspace so the value
2544 				 * of head observed in htrimer callbacks won't
2545 				 * represent any partial consumption of data.
2546 				 */
2547 				spinlock_t ptr_lock;
2548 
2549 				/**
2550 				 * One 'aging' tail pointer and one 'aged'
2551 				 * tail pointer ready to used for reading.
2552 				 *
2553 				 * Initial values of 0xffffffff are invalid
2554 				 * and imply that an update is required
2555 				 * (and should be ignored by an attempted
2556 				 * read)
2557 				 */
2558 				struct {
2559 					u32 offset;
2560 				} tails[2];
2561 
2562 				/**
2563 				 * Index for the aged tail ready to read()
2564 				 * data up to.
2565 				 */
2566 				unsigned int aged_tail_idx;
2567 
2568 				/**
2569 				 * A monotonic timestamp for when the current
2570 				 * aging tail pointer was read; used to
2571 				 * determine when it is old enough to trust.
2572 				 */
2573 				u64 aging_timestamp;
2574 
2575 				/**
2576 				 * Although we can always read back the head
2577 				 * pointer register, we prefer to avoid
2578 				 * trusting the HW state, just to avoid any
2579 				 * risk that some hardware condition could
2580 				 * somehow bump the head pointer unpredictably
2581 				 * and cause us to forward the wrong OA buffer
2582 				 * data to userspace.
2583 				 */
2584 				u32 head;
2585 			} oa_buffer;
2586 
2587 			u32 gen7_latched_oastatus1;
2588 			u32 ctx_oactxctrl_offset;
2589 			u32 ctx_flexeu0_offset;
2590 
2591 			/**
2592 			 * The RPT_ID/reason field for Gen8+ includes a bit
2593 			 * to determine if the CTX ID in the report is valid
2594 			 * but the specific bit differs between Gen 8 and 9
2595 			 */
2596 			u32 gen8_valid_ctx_bit;
2597 
2598 			struct i915_oa_ops ops;
2599 			const struct i915_oa_format *oa_formats;
2600 		} oa;
2601 	} perf;
2602 
2603 	/* Abstract the submission mechanism (legacy ringbuffer or execlists) away */
2604 	struct {
2605 		void (*resume)(struct drm_i915_private *);
2606 		void (*cleanup_engine)(struct intel_engine_cs *engine);
2607 
2608 		struct list_head timelines;
2609 		struct i915_gem_timeline global_timeline;
2610 		u32 active_requests;
2611 
2612 		/**
2613 		 * Is the GPU currently considered idle, or busy executing
2614 		 * userspace requests? Whilst idle, we allow runtime power
2615 		 * management to power down the hardware and display clocks.
2616 		 * In order to reduce the effect on performance, there
2617 		 * is a slight delay before we do so.
2618 		 */
2619 		bool awake;
2620 
2621 		/**
2622 		 * We leave the user IRQ off as much as possible,
2623 		 * but this means that requests will finish and never
2624 		 * be retired once the system goes idle. Set a timer to
2625 		 * fire periodically while the ring is running. When it
2626 		 * fires, go retire requests.
2627 		 */
2628 		struct delayed_work retire_work;
2629 
2630 		/**
2631 		 * When we detect an idle GPU, we want to turn on
2632 		 * powersaving features. So once we see that there
2633 		 * are no more requests outstanding and no more
2634 		 * arrive within a small period of time, we fire
2635 		 * off the idle_work.
2636 		 */
2637 		struct delayed_work idle_work;
2638 
2639 		ktime_t last_init_time;
2640 	} gt;
2641 
2642 	/* perform PHY state sanity checks? */
2643 	bool chv_phy_assert[2];
2644 
2645 	bool ipc_enabled;
2646 
2647 	/* Used to save the pipe-to-encoder mapping for audio */
2648 	struct intel_encoder *av_enc_map[I915_MAX_PIPES];
2649 
2650 	/* necessary resource sharing with HDMI LPE audio driver. */
2651 	struct {
2652 		struct platform_device *platdev;
2653 		int	irq;
2654 	} lpe_audio;
2655 
2656 	/*
2657 	 * NOTE: This is the dri1/ums dungeon, don't add stuff here. Your patch
2658 	 * will be rejected. Instead look for a better place.
2659 	 */
2660 };
2661 
to_i915(const struct drm_device * dev)2662 static inline struct drm_i915_private *to_i915(const struct drm_device *dev)
2663 {
2664 	return container_of(dev, struct drm_i915_private, drm);
2665 }
2666 
kdev_to_i915(struct device * kdev)2667 static inline struct drm_i915_private *kdev_to_i915(struct device *kdev)
2668 {
2669 	return to_i915(dev_get_drvdata(kdev));
2670 }
2671 
guc_to_i915(struct intel_guc * guc)2672 static inline struct drm_i915_private *guc_to_i915(struct intel_guc *guc)
2673 {
2674 	return container_of(guc, struct drm_i915_private, guc);
2675 }
2676 
huc_to_i915(struct intel_huc * huc)2677 static inline struct drm_i915_private *huc_to_i915(struct intel_huc *huc)
2678 {
2679 	return container_of(huc, struct drm_i915_private, huc);
2680 }
2681 
2682 /* Simple iterator over all initialised engines */
2683 #define for_each_engine(engine__, dev_priv__, id__) \
2684 	for ((id__) = 0; \
2685 	     (id__) < I915_NUM_ENGINES; \
2686 	     (id__)++) \
2687 		for_each_if ((engine__) = (dev_priv__)->engine[(id__)])
2688 
2689 /* Iterator over subset of engines selected by mask */
2690 #define for_each_engine_masked(engine__, dev_priv__, mask__, tmp__) \
2691 	for (tmp__ = mask__ & INTEL_INFO(dev_priv__)->ring_mask;	\
2692 	     tmp__ ? (engine__ = (dev_priv__)->engine[__mask_next_bit(tmp__)]), 1 : 0; )
2693 
2694 enum hdmi_force_audio {
2695 	HDMI_AUDIO_OFF_DVI = -2,	/* no aux data for HDMI-DVI converter */
2696 	HDMI_AUDIO_OFF,			/* force turn off HDMI audio */
2697 	HDMI_AUDIO_AUTO,		/* trust EDID */
2698 	HDMI_AUDIO_ON,			/* force turn on HDMI audio */
2699 };
2700 
2701 #define I915_GTT_OFFSET_NONE ((u32)-1)
2702 
2703 /*
2704  * Frontbuffer tracking bits. Set in obj->frontbuffer_bits while a gem bo is
2705  * considered to be the frontbuffer for the given plane interface-wise. This
2706  * doesn't mean that the hw necessarily already scans it out, but that any
2707  * rendering (by the cpu or gpu) will land in the frontbuffer eventually.
2708  *
2709  * We have one bit per pipe and per scanout plane type.
2710  */
2711 #define INTEL_MAX_SPRITE_BITS_PER_PIPE 5
2712 #define INTEL_FRONTBUFFER_BITS_PER_PIPE 8
2713 #define INTEL_FRONTBUFFER_PRIMARY(pipe) \
2714 	(1 << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2715 #define INTEL_FRONTBUFFER_CURSOR(pipe) \
2716 	(1 << (1 + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2717 #define INTEL_FRONTBUFFER_SPRITE(pipe, plane) \
2718 	(1 << (2 + plane + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2719 #define INTEL_FRONTBUFFER_OVERLAY(pipe) \
2720 	(1 << (2 + INTEL_MAX_SPRITE_BITS_PER_PIPE + (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe))))
2721 #define INTEL_FRONTBUFFER_ALL_MASK(pipe) \
2722 	(0xff << (INTEL_FRONTBUFFER_BITS_PER_PIPE * (pipe)))
2723 
2724 /*
2725  * Optimised SGL iterator for GEM objects
2726  */
2727 static __always_inline struct sgt_iter {
2728 	struct scatterlist *sgp;
2729 	union {
2730 		unsigned long pfn;
2731 		dma_addr_t dma;
2732 	};
2733 	unsigned int curr;
2734 	unsigned int max;
__sgt_iter(struct scatterlist * sgl,bool dma)2735 } __sgt_iter(struct scatterlist *sgl, bool dma) {
2736 	struct sgt_iter s = { .sgp = sgl };
2737 
2738 	if (s.sgp) {
2739 		s.max = s.curr = s.sgp->offset;
2740 		s.max += s.sgp->length;
2741 		if (dma)
2742 			s.dma = sg_dma_address(s.sgp);
2743 		else
2744 			s.pfn = page_to_pfn(sg_page(s.sgp));
2745 	}
2746 
2747 	return s;
2748 }
2749 
____sg_next(struct scatterlist * sg)2750 static inline struct scatterlist *____sg_next(struct scatterlist *sg)
2751 {
2752 	++sg;
2753 	if (unlikely(sg_is_chain(sg)))
2754 		sg = sg_chain_ptr(sg);
2755 	return sg;
2756 }
2757 
2758 /**
2759  * __sg_next - return the next scatterlist entry in a list
2760  * @sg:		The current sg entry
2761  *
2762  * Description:
2763  *   If the entry is the last, return NULL; otherwise, step to the next
2764  *   element in the array (@sg@+1). If that's a chain pointer, follow it;
2765  *   otherwise just return the pointer to the current element.
2766  **/
__sg_next(struct scatterlist * sg)2767 static inline struct scatterlist *__sg_next(struct scatterlist *sg)
2768 {
2769 #ifdef CONFIG_DEBUG_SG
2770 	BUG_ON(sg->sg_magic != SG_MAGIC);
2771 #endif
2772 	return sg_is_last(sg) ? NULL : ____sg_next(sg);
2773 }
2774 
2775 /**
2776  * for_each_sgt_dma - iterate over the DMA addresses of the given sg_table
2777  * @__dmap:	DMA address (output)
2778  * @__iter:	'struct sgt_iter' (iterator state, internal)
2779  * @__sgt:	sg_table to iterate over (input)
2780  */
2781 #define for_each_sgt_dma(__dmap, __iter, __sgt)				\
2782 	for ((__iter) = __sgt_iter((__sgt)->sgl, true);			\
2783 	     ((__dmap) = (__iter).dma + (__iter).curr);			\
2784 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2785 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), true), 0))
2786 
2787 /**
2788  * for_each_sgt_page - iterate over the pages of the given sg_table
2789  * @__pp:	page pointer (output)
2790  * @__iter:	'struct sgt_iter' (iterator state, internal)
2791  * @__sgt:	sg_table to iterate over (input)
2792  */
2793 #define for_each_sgt_page(__pp, __iter, __sgt)				\
2794 	for ((__iter) = __sgt_iter((__sgt)->sgl, false);		\
2795 	     ((__pp) = (__iter).pfn == 0 ? NULL :			\
2796 	      pfn_to_page((__iter).pfn + ((__iter).curr >> PAGE_SHIFT))); \
2797 	     (((__iter).curr += PAGE_SIZE) < (__iter).max) ||		\
2798 	     ((__iter) = __sgt_iter(__sg_next((__iter).sgp), false), 0))
2799 
2800 static inline const struct intel_device_info *
intel_info(const struct drm_i915_private * dev_priv)2801 intel_info(const struct drm_i915_private *dev_priv)
2802 {
2803 	return &dev_priv->info;
2804 }
2805 
2806 #define INTEL_INFO(dev_priv)	intel_info((dev_priv))
2807 
2808 #define INTEL_GEN(dev_priv)	((dev_priv)->info.gen)
2809 #define INTEL_DEVID(dev_priv)	((dev_priv)->info.device_id)
2810 
2811 #define REVID_FOREVER		0xff
2812 #define INTEL_REVID(dev_priv)	((dev_priv)->drm.pdev->revision)
2813 
2814 #define GEN_FOREVER (0)
2815 /*
2816  * Returns true if Gen is in inclusive range [Start, End].
2817  *
2818  * Use GEN_FOREVER for unbound start and or end.
2819  */
2820 #define IS_GEN(dev_priv, s, e) ({ \
2821 	unsigned int __s = (s), __e = (e); \
2822 	BUILD_BUG_ON(!__builtin_constant_p(s)); \
2823 	BUILD_BUG_ON(!__builtin_constant_p(e)); \
2824 	if ((__s) != GEN_FOREVER) \
2825 		__s = (s) - 1; \
2826 	if ((__e) == GEN_FOREVER) \
2827 		__e = BITS_PER_LONG - 1; \
2828 	else \
2829 		__e = (e) - 1; \
2830 	!!((dev_priv)->info.gen_mask & GENMASK((__e), (__s))); \
2831 })
2832 
2833 /*
2834  * Return true if revision is in range [since,until] inclusive.
2835  *
2836  * Use 0 for open-ended since, and REVID_FOREVER for open-ended until.
2837  */
2838 #define IS_REVID(p, since, until) \
2839 	(INTEL_REVID(p) >= (since) && INTEL_REVID(p) <= (until))
2840 
2841 #define IS_I830(dev_priv)	((dev_priv)->info.platform == INTEL_I830)
2842 #define IS_I845G(dev_priv)	((dev_priv)->info.platform == INTEL_I845G)
2843 #define IS_I85X(dev_priv)	((dev_priv)->info.platform == INTEL_I85X)
2844 #define IS_I865G(dev_priv)	((dev_priv)->info.platform == INTEL_I865G)
2845 #define IS_I915G(dev_priv)	((dev_priv)->info.platform == INTEL_I915G)
2846 #define IS_I915GM(dev_priv)	((dev_priv)->info.platform == INTEL_I915GM)
2847 #define IS_I945G(dev_priv)	((dev_priv)->info.platform == INTEL_I945G)
2848 #define IS_I945GM(dev_priv)	((dev_priv)->info.platform == INTEL_I945GM)
2849 #define IS_I965G(dev_priv)	((dev_priv)->info.platform == INTEL_I965G)
2850 #define IS_I965GM(dev_priv)	((dev_priv)->info.platform == INTEL_I965GM)
2851 #define IS_G45(dev_priv)	((dev_priv)->info.platform == INTEL_G45)
2852 #define IS_GM45(dev_priv)	((dev_priv)->info.platform == INTEL_GM45)
2853 #define IS_G4X(dev_priv)	(IS_G45(dev_priv) || IS_GM45(dev_priv))
2854 #define IS_PINEVIEW_G(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa001)
2855 #define IS_PINEVIEW_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0xa011)
2856 #define IS_PINEVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_PINEVIEW)
2857 #define IS_G33(dev_priv)	((dev_priv)->info.platform == INTEL_G33)
2858 #define IS_IRONLAKE_M(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0046)
2859 #define IS_IVYBRIDGE(dev_priv)	((dev_priv)->info.platform == INTEL_IVYBRIDGE)
2860 #define IS_IVB_GT1(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0156 || \
2861 				 INTEL_DEVID(dev_priv) == 0x0152 || \
2862 				 INTEL_DEVID(dev_priv) == 0x015a)
2863 #define IS_VALLEYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_VALLEYVIEW)
2864 #define IS_CHERRYVIEW(dev_priv)	((dev_priv)->info.platform == INTEL_CHERRYVIEW)
2865 #define IS_HASWELL(dev_priv)	((dev_priv)->info.platform == INTEL_HASWELL)
2866 #define IS_BROADWELL(dev_priv)	((dev_priv)->info.platform == INTEL_BROADWELL)
2867 #define IS_SKYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_SKYLAKE)
2868 #define IS_BROXTON(dev_priv)	((dev_priv)->info.platform == INTEL_BROXTON)
2869 #define IS_KABYLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_KABYLAKE)
2870 #define IS_GEMINILAKE(dev_priv)	((dev_priv)->info.platform == INTEL_GEMINILAKE)
2871 #define IS_COFFEELAKE(dev_priv)	((dev_priv)->info.platform == INTEL_COFFEELAKE)
2872 #define IS_CANNONLAKE(dev_priv)	((dev_priv)->info.platform == INTEL_CANNONLAKE)
2873 #define IS_MOBILE(dev_priv)	((dev_priv)->info.is_mobile)
2874 #define IS_HSW_EARLY_SDV(dev_priv) (IS_HASWELL(dev_priv) && \
2875 				    (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0C00)
2876 #define IS_BDW_ULT(dev_priv)	(IS_BROADWELL(dev_priv) && \
2877 				 ((INTEL_DEVID(dev_priv) & 0xf) == 0x6 ||	\
2878 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xb ||	\
2879 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe))
2880 /* ULX machines are also considered ULT. */
2881 #define IS_BDW_ULX(dev_priv)	(IS_BROADWELL(dev_priv) && \
2882 				 (INTEL_DEVID(dev_priv) & 0xf) == 0xe)
2883 #define IS_BDW_GT3(dev_priv)	(IS_BROADWELL(dev_priv) && \
2884 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2885 #define IS_HSW_ULT(dev_priv)	(IS_HASWELL(dev_priv) && \
2886 				 (INTEL_DEVID(dev_priv) & 0xFF00) == 0x0A00)
2887 #define IS_HSW_GT3(dev_priv)	(IS_HASWELL(dev_priv) && \
2888 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2889 /* ULX machines are also considered ULT. */
2890 #define IS_HSW_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x0A0E || \
2891 				 INTEL_DEVID(dev_priv) == 0x0A1E)
2892 #define IS_SKL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x1906 || \
2893 				 INTEL_DEVID(dev_priv) == 0x1913 || \
2894 				 INTEL_DEVID(dev_priv) == 0x1916 || \
2895 				 INTEL_DEVID(dev_priv) == 0x1921 || \
2896 				 INTEL_DEVID(dev_priv) == 0x1926)
2897 #define IS_SKL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x190E || \
2898 				 INTEL_DEVID(dev_priv) == 0x1915 || \
2899 				 INTEL_DEVID(dev_priv) == 0x191E)
2900 #define IS_KBL_ULT(dev_priv)	(INTEL_DEVID(dev_priv) == 0x5906 || \
2901 				 INTEL_DEVID(dev_priv) == 0x5913 || \
2902 				 INTEL_DEVID(dev_priv) == 0x5916 || \
2903 				 INTEL_DEVID(dev_priv) == 0x5921 || \
2904 				 INTEL_DEVID(dev_priv) == 0x5926)
2905 #define IS_KBL_ULX(dev_priv)	(INTEL_DEVID(dev_priv) == 0x590E || \
2906 				 INTEL_DEVID(dev_priv) == 0x5915 || \
2907 				 INTEL_DEVID(dev_priv) == 0x591E)
2908 #define IS_SKL_GT2(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2909 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2910 #define IS_SKL_GT3(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2911 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2912 #define IS_SKL_GT4(dev_priv)	(IS_SKYLAKE(dev_priv) && \
2913 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0030)
2914 #define IS_KBL_GT2(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2915 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0010)
2916 #define IS_KBL_GT3(dev_priv)	(IS_KABYLAKE(dev_priv) && \
2917 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x0020)
2918 #define IS_CFL_ULT(dev_priv)	(IS_COFFEELAKE(dev_priv) && \
2919 				 (INTEL_DEVID(dev_priv) & 0x00F0) == 0x00A0)
2920 
2921 #define IS_ALPHA_SUPPORT(intel_info) ((intel_info)->is_alpha_support)
2922 
2923 #define SKL_REVID_A0		0x0
2924 #define SKL_REVID_B0		0x1
2925 #define SKL_REVID_C0		0x2
2926 #define SKL_REVID_D0		0x3
2927 #define SKL_REVID_E0		0x4
2928 #define SKL_REVID_F0		0x5
2929 #define SKL_REVID_G0		0x6
2930 #define SKL_REVID_H0		0x7
2931 
2932 #define IS_SKL_REVID(p, since, until) (IS_SKYLAKE(p) && IS_REVID(p, since, until))
2933 
2934 #define BXT_REVID_A0		0x0
2935 #define BXT_REVID_A1		0x1
2936 #define BXT_REVID_B0		0x3
2937 #define BXT_REVID_B_LAST	0x8
2938 #define BXT_REVID_C0		0x9
2939 
2940 #define IS_BXT_REVID(dev_priv, since, until) \
2941 	(IS_BROXTON(dev_priv) && IS_REVID(dev_priv, since, until))
2942 
2943 #define KBL_REVID_A0		0x0
2944 #define KBL_REVID_B0		0x1
2945 #define KBL_REVID_C0		0x2
2946 #define KBL_REVID_D0		0x3
2947 #define KBL_REVID_E0		0x4
2948 
2949 #define IS_KBL_REVID(dev_priv, since, until) \
2950 	(IS_KABYLAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2951 
2952 #define GLK_REVID_A0		0x0
2953 #define GLK_REVID_A1		0x1
2954 
2955 #define IS_GLK_REVID(dev_priv, since, until) \
2956 	(IS_GEMINILAKE(dev_priv) && IS_REVID(dev_priv, since, until))
2957 
2958 #define CNL_REVID_A0		0x0
2959 #define CNL_REVID_B0		0x1
2960 
2961 #define IS_CNL_REVID(p, since, until) \
2962 	(IS_CANNONLAKE(p) && IS_REVID(p, since, until))
2963 
2964 /*
2965  * The genX designation typically refers to the render engine, so render
2966  * capability related checks should use IS_GEN, while display and other checks
2967  * have their own (e.g. HAS_PCH_SPLIT for ILK+ display, IS_foo for particular
2968  * chips, etc.).
2969  */
2970 #define IS_GEN2(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(1)))
2971 #define IS_GEN3(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(2)))
2972 #define IS_GEN4(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(3)))
2973 #define IS_GEN5(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(4)))
2974 #define IS_GEN6(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(5)))
2975 #define IS_GEN7(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(6)))
2976 #define IS_GEN8(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(7)))
2977 #define IS_GEN9(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(8)))
2978 #define IS_GEN10(dev_priv)	(!!((dev_priv)->info.gen_mask & BIT(9)))
2979 
2980 #define IS_LP(dev_priv)	(INTEL_INFO(dev_priv)->is_lp)
2981 #define IS_GEN9_LP(dev_priv)	(IS_GEN9(dev_priv) && IS_LP(dev_priv))
2982 #define IS_GEN9_BC(dev_priv)	(IS_GEN9(dev_priv) && !IS_LP(dev_priv))
2983 
2984 /*
2985  * The Gen7 cmdparser copies the scanned buffer to the ggtt for execution
2986  * All later gens can run the final buffer from the ppgtt
2987  */
2988 #define CMDPARSER_USES_GGTT(dev_priv) IS_GEN7(dev_priv)
2989 
2990 #define ENGINE_MASK(id)	BIT(id)
2991 #define RENDER_RING	ENGINE_MASK(RCS)
2992 #define BSD_RING	ENGINE_MASK(VCS)
2993 #define BLT_RING	ENGINE_MASK(BCS)
2994 #define VEBOX_RING	ENGINE_MASK(VECS)
2995 #define BSD2_RING	ENGINE_MASK(VCS2)
2996 #define ALL_ENGINES	(~0)
2997 
2998 #define HAS_ENGINE(dev_priv, id) \
2999 	(!!((dev_priv)->info.ring_mask & ENGINE_MASK(id)))
3000 
3001 #define HAS_BSD(dev_priv)	HAS_ENGINE(dev_priv, VCS)
3002 #define HAS_BSD2(dev_priv)	HAS_ENGINE(dev_priv, VCS2)
3003 #define HAS_BLT(dev_priv)	HAS_ENGINE(dev_priv, BCS)
3004 #define HAS_VEBOX(dev_priv)	HAS_ENGINE(dev_priv, VECS)
3005 
3006 #define HAS_SECURE_BATCHES(dev_priv) (INTEL_GEN(dev_priv) < 6)
3007 
3008 #define HAS_LLC(dev_priv)	((dev_priv)->info.has_llc)
3009 #define HAS_SNOOP(dev_priv)	((dev_priv)->info.has_snoop)
3010 #define HAS_EDRAM(dev_priv)	(!!((dev_priv)->edram_cap & EDRAM_ENABLED))
3011 #define HAS_WT(dev_priv)	((IS_HASWELL(dev_priv) || \
3012 				 IS_BROADWELL(dev_priv)) && HAS_EDRAM(dev_priv))
3013 
3014 #define HWS_NEEDS_PHYSICAL(dev_priv)	((dev_priv)->info.hws_needs_physical)
3015 
3016 #define HAS_LOGICAL_RING_CONTEXTS(dev_priv) \
3017 		((dev_priv)->info.has_logical_ring_contexts)
3018 #define USES_PPGTT(dev_priv)		(i915.enable_ppgtt)
3019 #define USES_FULL_PPGTT(dev_priv)	(i915.enable_ppgtt >= 2)
3020 #define USES_FULL_48BIT_PPGTT(dev_priv)	(i915.enable_ppgtt == 3)
3021 
3022 #define HAS_OVERLAY(dev_priv)		 ((dev_priv)->info.has_overlay)
3023 #define OVERLAY_NEEDS_PHYSICAL(dev_priv) \
3024 		((dev_priv)->info.overlay_needs_physical)
3025 
3026 /* Early gen2 have a totally busted CS tlb and require pinned batches. */
3027 #define HAS_BROKEN_CS_TLB(dev_priv)	(IS_I830(dev_priv) || IS_I845G(dev_priv))
3028 
3029 #define NEEDS_RC6_CTX_CORRUPTION_WA(dev_priv)	\
3030 	(IS_BROADWELL(dev_priv) || INTEL_GEN(dev_priv) == 9)
3031 
3032 /* WaRsDisableCoarsePowerGating:skl,bxt */
3033 #define NEEDS_WaRsDisableCoarsePowerGating(dev_priv) \
3034 	(INTEL_GEN(dev_priv) == 9)
3035 
3036 /*
3037  * dp aux and gmbus irq on gen4 seems to be able to generate legacy interrupts
3038  * even when in MSI mode. This results in spurious interrupt warnings if the
3039  * legacy irq no. is shared with another device. The kernel then disables that
3040  * interrupt source and so prevents the other device from working properly.
3041  */
3042 #define HAS_AUX_IRQ(dev_priv)   ((dev_priv)->info.gen >= 5)
3043 #define HAS_GMBUS_IRQ(dev_priv) ((dev_priv)->info.has_gmbus_irq)
3044 
3045 /* With the 945 and later, Y tiling got adjusted so that it was 32 128-byte
3046  * rows, which changed the alignment requirements and fence programming.
3047  */
3048 #define HAS_128_BYTE_Y_TILING(dev_priv) (!IS_GEN2(dev_priv) && \
3049 					 !(IS_I915G(dev_priv) || \
3050 					 IS_I915GM(dev_priv)))
3051 #define SUPPORTS_TV(dev_priv)		((dev_priv)->info.supports_tv)
3052 #define I915_HAS_HOTPLUG(dev_priv)	((dev_priv)->info.has_hotplug)
3053 
3054 #define HAS_FW_BLC(dev_priv) 	(INTEL_GEN(dev_priv) > 2)
3055 #define HAS_PIPE_CXSR(dev_priv) ((dev_priv)->info.has_pipe_cxsr)
3056 #define HAS_FBC(dev_priv)	((dev_priv)->info.has_fbc)
3057 #define HAS_CUR_FBC(dev_priv)	(!HAS_GMCH_DISPLAY(dev_priv) && INTEL_INFO(dev_priv)->gen >= 7)
3058 
3059 #define HAS_IPS(dev_priv)	(IS_HSW_ULT(dev_priv) || IS_BROADWELL(dev_priv))
3060 
3061 #define HAS_DP_MST(dev_priv)	((dev_priv)->info.has_dp_mst)
3062 
3063 #define HAS_DDI(dev_priv)		 ((dev_priv)->info.has_ddi)
3064 #define HAS_FPGA_DBG_UNCLAIMED(dev_priv) ((dev_priv)->info.has_fpga_dbg)
3065 #define HAS_PSR(dev_priv)		 ((dev_priv)->info.has_psr)
3066 #define HAS_RC6(dev_priv)		 ((dev_priv)->info.has_rc6)
3067 #define HAS_RC6p(dev_priv)		 ((dev_priv)->info.has_rc6p)
3068 
3069 #define HAS_CSR(dev_priv)	((dev_priv)->info.has_csr)
3070 
3071 #define HAS_RUNTIME_PM(dev_priv) ((dev_priv)->info.has_runtime_pm)
3072 #define HAS_64BIT_RELOC(dev_priv) ((dev_priv)->info.has_64bit_reloc)
3073 
3074 /*
3075  * For now, anything with a GuC requires uCode loading, and then supports
3076  * command submission once loaded. But these are logically independent
3077  * properties, so we have separate macros to test them.
3078  */
3079 #define HAS_GUC(dev_priv)	((dev_priv)->info.has_guc)
3080 #define HAS_GUC_CT(dev_priv)	((dev_priv)->info.has_guc_ct)
3081 #define HAS_GUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3082 #define HAS_GUC_SCHED(dev_priv)	(HAS_GUC(dev_priv))
3083 #define HAS_HUC_UCODE(dev_priv)	(HAS_GUC(dev_priv))
3084 
3085 #define HAS_RESOURCE_STREAMER(dev_priv) ((dev_priv)->info.has_resource_streamer)
3086 
3087 #define HAS_POOLED_EU(dev_priv)	((dev_priv)->info.has_pooled_eu)
3088 
3089 #define INTEL_PCH_DEVICE_ID_MASK		0xff80
3090 #define INTEL_PCH_IBX_DEVICE_ID_TYPE		0x3b00
3091 #define INTEL_PCH_CPT_DEVICE_ID_TYPE		0x1c00
3092 #define INTEL_PCH_PPT_DEVICE_ID_TYPE		0x1e00
3093 #define INTEL_PCH_LPT_DEVICE_ID_TYPE		0x8c00
3094 #define INTEL_PCH_LPT_LP_DEVICE_ID_TYPE		0x9c00
3095 #define INTEL_PCH_WPT_DEVICE_ID_TYPE		0x8c80
3096 #define INTEL_PCH_WPT_LP_DEVICE_ID_TYPE		0x9c80
3097 #define INTEL_PCH_SPT_DEVICE_ID_TYPE		0xA100
3098 #define INTEL_PCH_SPT_LP_DEVICE_ID_TYPE		0x9D00
3099 #define INTEL_PCH_KBP_DEVICE_ID_TYPE		0xA280
3100 #define INTEL_PCH_CNP_DEVICE_ID_TYPE		0xA300
3101 #define INTEL_PCH_CNP_LP_DEVICE_ID_TYPE		0x9D80
3102 #define INTEL_PCH_P2X_DEVICE_ID_TYPE		0x7100
3103 #define INTEL_PCH_P3X_DEVICE_ID_TYPE		0x7000
3104 #define INTEL_PCH_QEMU_DEVICE_ID_TYPE		0x2900 /* qemu q35 has 2918 */
3105 
3106 #define INTEL_PCH_TYPE(dev_priv) ((dev_priv)->pch_type)
3107 #define HAS_PCH_CNP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CNP)
3108 #define HAS_PCH_CNP_LP(dev_priv) \
3109 	((dev_priv)->pch_id == INTEL_PCH_CNP_LP_DEVICE_ID_TYPE)
3110 #define HAS_PCH_KBP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_KBP)
3111 #define HAS_PCH_SPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_SPT)
3112 #define HAS_PCH_LPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_LPT)
3113 #define HAS_PCH_LPT_LP(dev_priv) \
3114 	((dev_priv)->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE || \
3115 	 (dev_priv)->pch_id == INTEL_PCH_WPT_LP_DEVICE_ID_TYPE)
3116 #define HAS_PCH_LPT_H(dev_priv) \
3117 	((dev_priv)->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE || \
3118 	 (dev_priv)->pch_id == INTEL_PCH_WPT_DEVICE_ID_TYPE)
3119 #define HAS_PCH_CPT(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_CPT)
3120 #define HAS_PCH_IBX(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_IBX)
3121 #define HAS_PCH_NOP(dev_priv) (INTEL_PCH_TYPE(dev_priv) == PCH_NOP)
3122 #define HAS_PCH_SPLIT(dev_priv) (INTEL_PCH_TYPE(dev_priv) != PCH_NONE)
3123 
3124 #define HAS_GMCH_DISPLAY(dev_priv) ((dev_priv)->info.has_gmch_display)
3125 
3126 #define HAS_LSPCON(dev_priv) (INTEL_GEN(dev_priv) >= 9)
3127 
3128 /* DPF == dynamic parity feature */
3129 #define HAS_L3_DPF(dev_priv) ((dev_priv)->info.has_l3_dpf)
3130 #define NUM_L3_SLICES(dev_priv) (IS_HSW_GT3(dev_priv) ? \
3131 				 2 : HAS_L3_DPF(dev_priv))
3132 
3133 #define GT_FREQUENCY_MULTIPLIER 50
3134 #define GEN9_FREQ_SCALER 3
3135 
3136 #include "i915_trace.h"
3137 
intel_vtd_active(void)3138 static inline bool intel_vtd_active(void)
3139 {
3140 #ifdef CONFIG_INTEL_IOMMU
3141 	if (intel_iommu_gfx_mapped)
3142 		return true;
3143 #endif
3144 	return false;
3145 }
3146 
intel_scanout_needs_vtd_wa(struct drm_i915_private * dev_priv)3147 static inline bool intel_scanout_needs_vtd_wa(struct drm_i915_private *dev_priv)
3148 {
3149 	return INTEL_GEN(dev_priv) >= 6 && intel_vtd_active();
3150 }
3151 
3152 static inline bool
intel_ggtt_update_needs_vtd_wa(struct drm_i915_private * dev_priv)3153 intel_ggtt_update_needs_vtd_wa(struct drm_i915_private *dev_priv)
3154 {
3155 	return IS_BROXTON(dev_priv) && intel_vtd_active();
3156 }
3157 
3158 int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv,
3159 				int enable_ppgtt);
3160 
3161 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value);
3162 
3163 /* i915_drv.c */
3164 void __printf(3, 4)
3165 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
3166 	      const char *fmt, ...);
3167 
3168 #define i915_report_error(dev_priv, fmt, ...)				   \
3169 	__i915_printk(dev_priv, KERN_ERR, fmt, ##__VA_ARGS__)
3170 
3171 #ifdef CONFIG_COMPAT
3172 extern long i915_compat_ioctl(struct file *filp, unsigned int cmd,
3173 			      unsigned long arg);
3174 #else
3175 #define i915_compat_ioctl NULL
3176 #endif
3177 extern const struct dev_pm_ops i915_pm_ops;
3178 
3179 extern int i915_driver_load(struct pci_dev *pdev,
3180 			    const struct pci_device_id *ent);
3181 extern void i915_driver_unload(struct drm_device *dev);
3182 extern int intel_gpu_reset(struct drm_i915_private *dev_priv, u32 engine_mask);
3183 extern bool intel_has_gpu_reset(struct drm_i915_private *dev_priv);
3184 
3185 #define I915_RESET_QUIET BIT(0)
3186 extern void i915_reset(struct drm_i915_private *i915, unsigned int flags);
3187 extern int i915_reset_engine(struct intel_engine_cs *engine,
3188 			     unsigned int flags);
3189 
3190 extern bool intel_has_reset_engine(struct drm_i915_private *dev_priv);
3191 extern int intel_guc_reset(struct drm_i915_private *dev_priv);
3192 extern void intel_engine_init_hangcheck(struct intel_engine_cs *engine);
3193 extern void intel_hangcheck_init(struct drm_i915_private *dev_priv);
3194 extern unsigned long i915_chipset_val(struct drm_i915_private *dev_priv);
3195 extern unsigned long i915_mch_val(struct drm_i915_private *dev_priv);
3196 extern unsigned long i915_gfx_val(struct drm_i915_private *dev_priv);
3197 extern void i915_update_gfx_val(struct drm_i915_private *dev_priv);
3198 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool on);
3199 
3200 int intel_engines_init_mmio(struct drm_i915_private *dev_priv);
3201 int intel_engines_init(struct drm_i915_private *dev_priv);
3202 
3203 /* intel_hotplug.c */
3204 void intel_hpd_irq_handler(struct drm_i915_private *dev_priv,
3205 			   u32 pin_mask, u32 long_mask);
3206 void intel_hpd_init(struct drm_i915_private *dev_priv);
3207 void intel_hpd_init_work(struct drm_i915_private *dev_priv);
3208 void intel_hpd_cancel_work(struct drm_i915_private *dev_priv);
3209 enum port intel_hpd_pin_to_port(enum hpd_pin pin);
3210 enum hpd_pin intel_hpd_pin(enum port port);
3211 bool intel_hpd_disable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3212 void intel_hpd_enable(struct drm_i915_private *dev_priv, enum hpd_pin pin);
3213 
3214 /* i915_irq.c */
i915_queue_hangcheck(struct drm_i915_private * dev_priv)3215 static inline void i915_queue_hangcheck(struct drm_i915_private *dev_priv)
3216 {
3217 	unsigned long delay;
3218 
3219 	if (unlikely(!i915.enable_hangcheck))
3220 		return;
3221 
3222 	/* Don't continually defer the hangcheck so that it is always run at
3223 	 * least once after work has been scheduled on any ring. Otherwise,
3224 	 * we will ignore a hung ring if a second ring is kept busy.
3225 	 */
3226 
3227 	delay = round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES);
3228 	queue_delayed_work(system_long_wq,
3229 			   &dev_priv->gpu_error.hangcheck_work, delay);
3230 }
3231 
3232 __printf(3, 4)
3233 void i915_handle_error(struct drm_i915_private *dev_priv,
3234 		       u32 engine_mask,
3235 		       const char *fmt, ...);
3236 
3237 extern void intel_irq_init(struct drm_i915_private *dev_priv);
3238 extern void intel_irq_fini(struct drm_i915_private *dev_priv);
3239 int intel_irq_install(struct drm_i915_private *dev_priv);
3240 void intel_irq_uninstall(struct drm_i915_private *dev_priv);
3241 
intel_gvt_active(struct drm_i915_private * dev_priv)3242 static inline bool intel_gvt_active(struct drm_i915_private *dev_priv)
3243 {
3244 	return dev_priv->gvt;
3245 }
3246 
intel_vgpu_active(struct drm_i915_private * dev_priv)3247 static inline bool intel_vgpu_active(struct drm_i915_private *dev_priv)
3248 {
3249 	return dev_priv->vgpu.active;
3250 }
3251 
3252 void
3253 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3254 		     u32 status_mask);
3255 
3256 void
3257 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
3258 		      u32 status_mask);
3259 
3260 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv);
3261 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv);
3262 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
3263 				   uint32_t mask,
3264 				   uint32_t bits);
3265 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
3266 			    uint32_t interrupt_mask,
3267 			    uint32_t enabled_irq_mask);
3268 static inline void
ilk_enable_display_irq(struct drm_i915_private * dev_priv,uint32_t bits)3269 ilk_enable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3270 {
3271 	ilk_update_display_irq(dev_priv, bits, bits);
3272 }
3273 static inline void
ilk_disable_display_irq(struct drm_i915_private * dev_priv,uint32_t bits)3274 ilk_disable_display_irq(struct drm_i915_private *dev_priv, uint32_t bits)
3275 {
3276 	ilk_update_display_irq(dev_priv, bits, 0);
3277 }
3278 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
3279 			 enum pipe pipe,
3280 			 uint32_t interrupt_mask,
3281 			 uint32_t enabled_irq_mask);
bdw_enable_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t bits)3282 static inline void bdw_enable_pipe_irq(struct drm_i915_private *dev_priv,
3283 				       enum pipe pipe, uint32_t bits)
3284 {
3285 	bdw_update_pipe_irq(dev_priv, pipe, bits, bits);
3286 }
bdw_disable_pipe_irq(struct drm_i915_private * dev_priv,enum pipe pipe,uint32_t bits)3287 static inline void bdw_disable_pipe_irq(struct drm_i915_private *dev_priv,
3288 					enum pipe pipe, uint32_t bits)
3289 {
3290 	bdw_update_pipe_irq(dev_priv, pipe, bits, 0);
3291 }
3292 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
3293 				  uint32_t interrupt_mask,
3294 				  uint32_t enabled_irq_mask);
3295 static inline void
ibx_enable_display_interrupt(struct drm_i915_private * dev_priv,uint32_t bits)3296 ibx_enable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3297 {
3298 	ibx_display_interrupt_update(dev_priv, bits, bits);
3299 }
3300 static inline void
ibx_disable_display_interrupt(struct drm_i915_private * dev_priv,uint32_t bits)3301 ibx_disable_display_interrupt(struct drm_i915_private *dev_priv, uint32_t bits)
3302 {
3303 	ibx_display_interrupt_update(dev_priv, bits, 0);
3304 }
3305 
3306 /* i915_gem.c */
3307 int i915_gem_create_ioctl(struct drm_device *dev, void *data,
3308 			  struct drm_file *file_priv);
3309 int i915_gem_pread_ioctl(struct drm_device *dev, void *data,
3310 			 struct drm_file *file_priv);
3311 int i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
3312 			  struct drm_file *file_priv);
3313 int i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
3314 			struct drm_file *file_priv);
3315 int i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
3316 			struct drm_file *file_priv);
3317 int i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
3318 			      struct drm_file *file_priv);
3319 int i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
3320 			     struct drm_file *file_priv);
3321 int i915_gem_execbuffer(struct drm_device *dev, void *data,
3322 			struct drm_file *file_priv);
3323 int i915_gem_execbuffer2(struct drm_device *dev, void *data,
3324 			 struct drm_file *file_priv);
3325 int i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3326 			struct drm_file *file_priv);
3327 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3328 			       struct drm_file *file);
3329 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3330 			       struct drm_file *file);
3331 int i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3332 			    struct drm_file *file_priv);
3333 int i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3334 			   struct drm_file *file_priv);
3335 int i915_gem_set_tiling_ioctl(struct drm_device *dev, void *data,
3336 			      struct drm_file *file_priv);
3337 int i915_gem_get_tiling_ioctl(struct drm_device *dev, void *data,
3338 			      struct drm_file *file_priv);
3339 int i915_gem_init_userptr(struct drm_i915_private *dev_priv);
3340 void i915_gem_cleanup_userptr(struct drm_i915_private *dev_priv);
3341 int i915_gem_userptr_ioctl(struct drm_device *dev, void *data,
3342 			   struct drm_file *file);
3343 int i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
3344 				struct drm_file *file_priv);
3345 int i915_gem_wait_ioctl(struct drm_device *dev, void *data,
3346 			struct drm_file *file_priv);
3347 void i915_gem_sanitize(struct drm_i915_private *i915);
3348 int i915_gem_load_init(struct drm_i915_private *dev_priv);
3349 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv);
3350 void i915_gem_load_init_fences(struct drm_i915_private *dev_priv);
3351 int i915_gem_freeze(struct drm_i915_private *dev_priv);
3352 int i915_gem_freeze_late(struct drm_i915_private *dev_priv);
3353 
3354 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv);
3355 void i915_gem_object_free(struct drm_i915_gem_object *obj);
3356 void i915_gem_object_init(struct drm_i915_gem_object *obj,
3357 			 const struct drm_i915_gem_object_ops *ops);
3358 struct drm_i915_gem_object *
3359 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size);
3360 struct drm_i915_gem_object *
3361 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
3362 				 const void *data, size_t size);
3363 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file);
3364 void i915_gem_free_object(struct drm_gem_object *obj);
3365 
i915_gem_drain_freed_objects(struct drm_i915_private * i915)3366 static inline void i915_gem_drain_freed_objects(struct drm_i915_private *i915)
3367 {
3368 	/* A single pass should suffice to release all the freed objects (along
3369 	 * most call paths) , but be a little more paranoid in that freeing
3370 	 * the objects does take a little amount of time, during which the rcu
3371 	 * callbacks could have added new objects into the freed list, and
3372 	 * armed the work again.
3373 	 */
3374 	do {
3375 		rcu_barrier();
3376 	} while (flush_work(&i915->mm.free_work));
3377 }
3378 
i915_gem_drain_workqueue(struct drm_i915_private * i915)3379 static inline void i915_gem_drain_workqueue(struct drm_i915_private *i915)
3380 {
3381 	/*
3382 	 * Similar to objects above (see i915_gem_drain_freed-objects), in
3383 	 * general we have workers that are armed by RCU and then rearm
3384 	 * themselves in their callbacks. To be paranoid, we need to
3385 	 * drain the workqueue a second time after waiting for the RCU
3386 	 * grace period so that we catch work queued via RCU from the first
3387 	 * pass. As neither drain_workqueue() nor flush_workqueue() report
3388 	 * a result, we make an assumption that we only don't require more
3389 	 * than 2 passes to catch all recursive RCU delayed work.
3390 	 *
3391 	 */
3392 	int pass = 2;
3393 	do {
3394 		rcu_barrier();
3395 		drain_workqueue(i915->wq);
3396 	} while (--pass);
3397 }
3398 
3399 struct i915_vma * __must_check
3400 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3401 			 const struct i915_ggtt_view *view,
3402 			 u64 size,
3403 			 u64 alignment,
3404 			 u64 flags);
3405 
3406 struct i915_vma * __must_check
3407 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3408 		    struct i915_address_space *vm,
3409 		    const struct i915_ggtt_view *view,
3410 		    u64 size,
3411 		    u64 alignment,
3412 		    u64 flags);
3413 
3414 int i915_gem_object_unbind(struct drm_i915_gem_object *obj);
3415 void i915_gem_release_mmap(struct drm_i915_gem_object *obj);
3416 
3417 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv);
3418 
__sg_page_count(const struct scatterlist * sg)3419 static inline int __sg_page_count(const struct scatterlist *sg)
3420 {
3421 	return sg->length >> PAGE_SHIFT;
3422 }
3423 
3424 struct scatterlist *
3425 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
3426 		       unsigned int n, unsigned int *offset);
3427 
3428 struct page *
3429 i915_gem_object_get_page(struct drm_i915_gem_object *obj,
3430 			 unsigned int n);
3431 
3432 struct page *
3433 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
3434 			       unsigned int n);
3435 
3436 dma_addr_t
3437 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
3438 				unsigned long n);
3439 
3440 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
3441 				 struct sg_table *pages);
3442 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj);
3443 
3444 static inline int __must_check
i915_gem_object_pin_pages(struct drm_i915_gem_object * obj)3445 i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3446 {
3447 	might_lock(&obj->mm.lock);
3448 
3449 	if (atomic_inc_not_zero(&obj->mm.pages_pin_count))
3450 		return 0;
3451 
3452 	return __i915_gem_object_get_pages(obj);
3453 }
3454 
3455 static inline void
__i915_gem_object_pin_pages(struct drm_i915_gem_object * obj)3456 __i915_gem_object_pin_pages(struct drm_i915_gem_object *obj)
3457 {
3458 	GEM_BUG_ON(!obj->mm.pages);
3459 
3460 	atomic_inc(&obj->mm.pages_pin_count);
3461 }
3462 
3463 static inline bool
i915_gem_object_has_pinned_pages(struct drm_i915_gem_object * obj)3464 i915_gem_object_has_pinned_pages(struct drm_i915_gem_object *obj)
3465 {
3466 	return atomic_read(&obj->mm.pages_pin_count);
3467 }
3468 
3469 static inline void
__i915_gem_object_unpin_pages(struct drm_i915_gem_object * obj)3470 __i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3471 {
3472 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
3473 	GEM_BUG_ON(!obj->mm.pages);
3474 
3475 	atomic_dec(&obj->mm.pages_pin_count);
3476 }
3477 
3478 static inline void
i915_gem_object_unpin_pages(struct drm_i915_gem_object * obj)3479 i915_gem_object_unpin_pages(struct drm_i915_gem_object *obj)
3480 {
3481 	__i915_gem_object_unpin_pages(obj);
3482 }
3483 
3484 enum i915_mm_subclass { /* lockdep subclass for obj->mm.lock */
3485 	I915_MM_NORMAL = 0,
3486 	I915_MM_SHRINKER
3487 };
3488 
3489 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
3490 				 enum i915_mm_subclass subclass);
3491 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj);
3492 
3493 enum i915_map_type {
3494 	I915_MAP_WB = 0,
3495 	I915_MAP_WC,
3496 #define I915_MAP_OVERRIDE BIT(31)
3497 	I915_MAP_FORCE_WB = I915_MAP_WB | I915_MAP_OVERRIDE,
3498 	I915_MAP_FORCE_WC = I915_MAP_WC | I915_MAP_OVERRIDE,
3499 };
3500 
3501 /**
3502  * i915_gem_object_pin_map - return a contiguous mapping of the entire object
3503  * @obj: the object to map into kernel address space
3504  * @type: the type of mapping, used to select pgprot_t
3505  *
3506  * Calls i915_gem_object_pin_pages() to prevent reaping of the object's
3507  * pages and then returns a contiguous mapping of the backing storage into
3508  * the kernel address space. Based on the @type of mapping, the PTE will be
3509  * set to either WriteBack or WriteCombine (via pgprot_t).
3510  *
3511  * The caller is responsible for calling i915_gem_object_unpin_map() when the
3512  * mapping is no longer required.
3513  *
3514  * Returns the pointer through which to access the mapped object, or an
3515  * ERR_PTR() on error.
3516  */
3517 void *__must_check i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
3518 					   enum i915_map_type type);
3519 
3520 /**
3521  * i915_gem_object_unpin_map - releases an earlier mapping
3522  * @obj: the object to unmap
3523  *
3524  * After pinning the object and mapping its pages, once you are finished
3525  * with your access, call i915_gem_object_unpin_map() to release the pin
3526  * upon the mapping. Once the pin count reaches zero, that mapping may be
3527  * removed.
3528  */
i915_gem_object_unpin_map(struct drm_i915_gem_object * obj)3529 static inline void i915_gem_object_unpin_map(struct drm_i915_gem_object *obj)
3530 {
3531 	i915_gem_object_unpin_pages(obj);
3532 }
3533 
3534 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
3535 				    unsigned int *needs_clflush);
3536 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
3537 				     unsigned int *needs_clflush);
3538 #define CLFLUSH_BEFORE	BIT(0)
3539 #define CLFLUSH_AFTER	BIT(1)
3540 #define CLFLUSH_FLAGS	(CLFLUSH_BEFORE | CLFLUSH_AFTER)
3541 
3542 static inline void
i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object * obj)3543 i915_gem_obj_finish_shmem_access(struct drm_i915_gem_object *obj)
3544 {
3545 	i915_gem_object_unpin_pages(obj);
3546 }
3547 
3548 int __must_check i915_mutex_lock_interruptible(struct drm_device *dev);
3549 void i915_vma_move_to_active(struct i915_vma *vma,
3550 			     struct drm_i915_gem_request *req,
3551 			     unsigned int flags);
3552 int i915_gem_dumb_create(struct drm_file *file_priv,
3553 			 struct drm_device *dev,
3554 			 struct drm_mode_create_dumb *args);
3555 int i915_gem_mmap_gtt(struct drm_file *file_priv, struct drm_device *dev,
3556 		      uint32_t handle, uint64_t *offset);
3557 int i915_gem_mmap_gtt_version(void);
3558 
3559 void i915_gem_track_fb(struct drm_i915_gem_object *old,
3560 		       struct drm_i915_gem_object *new,
3561 		       unsigned frontbuffer_bits);
3562 
3563 int __must_check i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno);
3564 
3565 struct drm_i915_gem_request *
3566 i915_gem_find_active_request(struct intel_engine_cs *engine);
3567 
3568 void i915_gem_retire_requests(struct drm_i915_private *dev_priv);
3569 
i915_reset_backoff(struct i915_gpu_error * error)3570 static inline bool i915_reset_backoff(struct i915_gpu_error *error)
3571 {
3572 	return unlikely(test_bit(I915_RESET_BACKOFF, &error->flags));
3573 }
3574 
i915_reset_handoff(struct i915_gpu_error * error)3575 static inline bool i915_reset_handoff(struct i915_gpu_error *error)
3576 {
3577 	return unlikely(test_bit(I915_RESET_HANDOFF, &error->flags));
3578 }
3579 
i915_terminally_wedged(struct i915_gpu_error * error)3580 static inline bool i915_terminally_wedged(struct i915_gpu_error *error)
3581 {
3582 	return unlikely(test_bit(I915_WEDGED, &error->flags));
3583 }
3584 
i915_reset_backoff_or_wedged(struct i915_gpu_error * error)3585 static inline bool i915_reset_backoff_or_wedged(struct i915_gpu_error *error)
3586 {
3587 	return i915_reset_backoff(error) | i915_terminally_wedged(error);
3588 }
3589 
i915_reset_count(struct i915_gpu_error * error)3590 static inline u32 i915_reset_count(struct i915_gpu_error *error)
3591 {
3592 	return READ_ONCE(error->reset_count);
3593 }
3594 
i915_reset_engine_count(struct i915_gpu_error * error,struct intel_engine_cs * engine)3595 static inline u32 i915_reset_engine_count(struct i915_gpu_error *error,
3596 					  struct intel_engine_cs *engine)
3597 {
3598 	return READ_ONCE(error->reset_engine_count[engine->id]);
3599 }
3600 
3601 struct drm_i915_gem_request *
3602 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine);
3603 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv);
3604 void i915_gem_reset(struct drm_i915_private *dev_priv);
3605 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine);
3606 void i915_gem_reset_finish(struct drm_i915_private *dev_priv);
3607 void i915_gem_set_wedged(struct drm_i915_private *dev_priv);
3608 bool i915_gem_unset_wedged(struct drm_i915_private *dev_priv);
3609 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3610 			   struct drm_i915_gem_request *request);
3611 
3612 void i915_gem_init_mmio(struct drm_i915_private *i915);
3613 int __must_check i915_gem_init(struct drm_i915_private *dev_priv);
3614 int __must_check i915_gem_init_hw(struct drm_i915_private *dev_priv);
3615 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv);
3616 void i915_gem_cleanup_engines(struct drm_i915_private *dev_priv);
3617 int i915_gem_wait_for_idle(struct drm_i915_private *dev_priv,
3618 			   unsigned int flags);
3619 int __must_check i915_gem_suspend(struct drm_i915_private *dev_priv);
3620 void i915_gem_resume(struct drm_i915_private *dev_priv);
3621 int i915_gem_fault(struct vm_fault *vmf);
3622 int i915_gem_object_wait(struct drm_i915_gem_object *obj,
3623 			 unsigned int flags,
3624 			 long timeout,
3625 			 struct intel_rps_client *rps);
3626 int i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
3627 				  unsigned int flags,
3628 				  int priority);
3629 #define I915_PRIORITY_DISPLAY I915_PRIORITY_MAX
3630 
3631 int __must_check
3632 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write);
3633 int __must_check
3634 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write);
3635 int __must_check
3636 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write);
3637 struct i915_vma * __must_check
3638 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3639 				     u32 alignment,
3640 				     const struct i915_ggtt_view *view);
3641 void i915_gem_object_unpin_from_display_plane(struct i915_vma *vma);
3642 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
3643 				int align);
3644 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file);
3645 void i915_gem_release(struct drm_device *dev, struct drm_file *file);
3646 
3647 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3648 				    enum i915_cache_level cache_level);
3649 
3650 struct drm_gem_object *i915_gem_prime_import(struct drm_device *dev,
3651 				struct dma_buf *dma_buf);
3652 
3653 struct dma_buf *i915_gem_prime_export(struct drm_device *dev,
3654 				struct drm_gem_object *gem_obj, int flags);
3655 
3656 static inline struct i915_hw_ppgtt *
i915_vm_to_ppgtt(struct i915_address_space * vm)3657 i915_vm_to_ppgtt(struct i915_address_space *vm)
3658 {
3659 	return container_of(vm, struct i915_hw_ppgtt, base);
3660 }
3661 
3662 /* i915_gem_fence_reg.c */
3663 int __must_check i915_vma_get_fence(struct i915_vma *vma);
3664 int __must_check i915_vma_put_fence(struct i915_vma *vma);
3665 
3666 void i915_gem_revoke_fences(struct drm_i915_private *dev_priv);
3667 void i915_gem_restore_fences(struct drm_i915_private *dev_priv);
3668 
3669 void i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv);
3670 void i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
3671 				       struct sg_table *pages);
3672 void i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
3673 					 struct sg_table *pages);
3674 
3675 static inline struct i915_gem_context *
__i915_gem_context_lookup_rcu(struct drm_i915_file_private * file_priv,u32 id)3676 __i915_gem_context_lookup_rcu(struct drm_i915_file_private *file_priv, u32 id)
3677 {
3678 	return idr_find(&file_priv->context_idr, id);
3679 }
3680 
3681 static inline struct i915_gem_context *
i915_gem_context_lookup(struct drm_i915_file_private * file_priv,u32 id)3682 i915_gem_context_lookup(struct drm_i915_file_private *file_priv, u32 id)
3683 {
3684 	struct i915_gem_context *ctx;
3685 
3686 	rcu_read_lock();
3687 	ctx = __i915_gem_context_lookup_rcu(file_priv, id);
3688 	if (ctx && !kref_get_unless_zero(&ctx->ref))
3689 		ctx = NULL;
3690 	rcu_read_unlock();
3691 
3692 	return ctx;
3693 }
3694 
3695 static inline struct intel_timeline *
i915_gem_context_lookup_timeline(struct i915_gem_context * ctx,struct intel_engine_cs * engine)3696 i915_gem_context_lookup_timeline(struct i915_gem_context *ctx,
3697 				 struct intel_engine_cs *engine)
3698 {
3699 	struct i915_address_space *vm;
3700 
3701 	vm = ctx->ppgtt ? &ctx->ppgtt->base : &ctx->i915->ggtt.base;
3702 	return &vm->timeline.engine[engine->id];
3703 }
3704 
3705 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3706 			 struct drm_file *file);
3707 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
3708 			       struct drm_file *file);
3709 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
3710 				  struct drm_file *file);
3711 void i915_oa_init_reg_state(struct intel_engine_cs *engine,
3712 			    struct i915_gem_context *ctx,
3713 			    uint32_t *reg_state);
3714 
3715 /* i915_gem_evict.c */
3716 int __must_check i915_gem_evict_something(struct i915_address_space *vm,
3717 					  u64 min_size, u64 alignment,
3718 					  unsigned cache_level,
3719 					  u64 start, u64 end,
3720 					  unsigned flags);
3721 int __must_check i915_gem_evict_for_node(struct i915_address_space *vm,
3722 					 struct drm_mm_node *node,
3723 					 unsigned int flags);
3724 int i915_gem_evict_vm(struct i915_address_space *vm);
3725 
3726 /* belongs in i915_gem_gtt.h */
i915_gem_chipset_flush(struct drm_i915_private * dev_priv)3727 static inline void i915_gem_chipset_flush(struct drm_i915_private *dev_priv)
3728 {
3729 	wmb();
3730 	if (INTEL_GEN(dev_priv) < 6)
3731 		intel_gtt_chipset_flush();
3732 }
3733 
3734 /* i915_gem_stolen.c */
3735 int i915_gem_stolen_insert_node(struct drm_i915_private *dev_priv,
3736 				struct drm_mm_node *node, u64 size,
3737 				unsigned alignment);
3738 int i915_gem_stolen_insert_node_in_range(struct drm_i915_private *dev_priv,
3739 					 struct drm_mm_node *node, u64 size,
3740 					 unsigned alignment, u64 start,
3741 					 u64 end);
3742 void i915_gem_stolen_remove_node(struct drm_i915_private *dev_priv,
3743 				 struct drm_mm_node *node);
3744 int i915_gem_init_stolen(struct drm_i915_private *dev_priv);
3745 void i915_gem_cleanup_stolen(struct drm_device *dev);
3746 struct drm_i915_gem_object *
3747 i915_gem_object_create_stolen(struct drm_i915_private *dev_priv, u32 size);
3748 struct drm_i915_gem_object *
3749 i915_gem_object_create_stolen_for_preallocated(struct drm_i915_private *dev_priv,
3750 					       u32 stolen_offset,
3751 					       u32 gtt_offset,
3752 					       u32 size);
3753 
3754 /* i915_gem_internal.c */
3755 struct drm_i915_gem_object *
3756 i915_gem_object_create_internal(struct drm_i915_private *dev_priv,
3757 				phys_addr_t size);
3758 
3759 /* i915_gem_shrinker.c */
3760 unsigned long i915_gem_shrink(struct drm_i915_private *dev_priv,
3761 			      unsigned long target,
3762 			      unsigned long *nr_scanned,
3763 			      unsigned flags);
3764 #define I915_SHRINK_PURGEABLE 0x1
3765 #define I915_SHRINK_UNBOUND 0x2
3766 #define I915_SHRINK_BOUND 0x4
3767 #define I915_SHRINK_ACTIVE 0x8
3768 #define I915_SHRINK_VMAPS 0x10
3769 unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
3770 void i915_gem_shrinker_init(struct drm_i915_private *dev_priv);
3771 void i915_gem_shrinker_cleanup(struct drm_i915_private *dev_priv);
3772 
3773 
3774 /* i915_gem_tiling.c */
i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object * obj)3775 static inline bool i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
3776 {
3777 	struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3778 
3779 	return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
3780 		i915_gem_object_is_tiled(obj);
3781 }
3782 
3783 u32 i915_gem_fence_size(struct drm_i915_private *dev_priv, u32 size,
3784 			unsigned int tiling, unsigned int stride);
3785 u32 i915_gem_fence_alignment(struct drm_i915_private *dev_priv, u32 size,
3786 			     unsigned int tiling, unsigned int stride);
3787 
3788 /* i915_debugfs.c */
3789 #ifdef CONFIG_DEBUG_FS
3790 int i915_debugfs_register(struct drm_i915_private *dev_priv);
3791 int i915_debugfs_connector_add(struct drm_connector *connector);
3792 void intel_display_crc_init(struct drm_i915_private *dev_priv);
3793 #else
i915_debugfs_register(struct drm_i915_private * dev_priv)3794 static inline int i915_debugfs_register(struct drm_i915_private *dev_priv) {return 0;}
i915_debugfs_connector_add(struct drm_connector * connector)3795 static inline int i915_debugfs_connector_add(struct drm_connector *connector)
3796 { return 0; }
intel_display_crc_init(struct drm_i915_private * dev_priv)3797 static inline void intel_display_crc_init(struct drm_i915_private *dev_priv) {}
3798 #endif
3799 
3800 /* i915_gpu_error.c */
3801 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
3802 
3803 __printf(2, 3)
3804 void i915_error_printf(struct drm_i915_error_state_buf *e, const char *f, ...);
3805 int i915_error_state_to_str(struct drm_i915_error_state_buf *estr,
3806 			    const struct i915_gpu_state *gpu);
3807 int i915_error_state_buf_init(struct drm_i915_error_state_buf *eb,
3808 			      struct drm_i915_private *i915,
3809 			      size_t count, loff_t pos);
i915_error_state_buf_release(struct drm_i915_error_state_buf * eb)3810 static inline void i915_error_state_buf_release(
3811 	struct drm_i915_error_state_buf *eb)
3812 {
3813 	kfree(eb->buf);
3814 }
3815 
3816 struct i915_gpu_state *i915_capture_gpu_state(struct drm_i915_private *i915);
3817 void i915_capture_error_state(struct drm_i915_private *dev_priv,
3818 			      u32 engine_mask,
3819 			      const char *error_msg);
3820 
3821 static inline struct i915_gpu_state *
i915_gpu_state_get(struct i915_gpu_state * gpu)3822 i915_gpu_state_get(struct i915_gpu_state *gpu)
3823 {
3824 	kref_get(&gpu->ref);
3825 	return gpu;
3826 }
3827 
3828 void __i915_gpu_state_free(struct kref *kref);
i915_gpu_state_put(struct i915_gpu_state * gpu)3829 static inline void i915_gpu_state_put(struct i915_gpu_state *gpu)
3830 {
3831 	if (gpu)
3832 		kref_put(&gpu->ref, __i915_gpu_state_free);
3833 }
3834 
3835 struct i915_gpu_state *i915_first_error_state(struct drm_i915_private *i915);
3836 void i915_reset_error_state(struct drm_i915_private *i915);
3837 
3838 #else
3839 
i915_capture_error_state(struct drm_i915_private * dev_priv,u32 engine_mask,const char * error_msg)3840 static inline void i915_capture_error_state(struct drm_i915_private *dev_priv,
3841 					    u32 engine_mask,
3842 					    const char *error_msg)
3843 {
3844 }
3845 
3846 static inline struct i915_gpu_state *
i915_first_error_state(struct drm_i915_private * i915)3847 i915_first_error_state(struct drm_i915_private *i915)
3848 {
3849 	return NULL;
3850 }
3851 
i915_reset_error_state(struct drm_i915_private * i915)3852 static inline void i915_reset_error_state(struct drm_i915_private *i915)
3853 {
3854 }
3855 
3856 #endif
3857 
3858 const char *i915_cache_level_str(struct drm_i915_private *i915, int type);
3859 
3860 /* i915_cmd_parser.c */
3861 int i915_cmd_parser_get_version(struct drm_i915_private *dev_priv);
3862 void intel_engine_init_cmd_parser(struct intel_engine_cs *engine);
3863 void intel_engine_cleanup_cmd_parser(struct intel_engine_cs *engine);
3864 int intel_engine_cmd_parser(struct i915_gem_context *cxt,
3865 			    struct intel_engine_cs *engine,
3866 			    struct drm_i915_gem_object *batch_obj,
3867 			    u64 user_batch_start,
3868 			    u32 batch_start_offset,
3869 			    u32 batch_len,
3870 			    struct drm_i915_gem_object *shadow_batch_obj,
3871 			    u64 shadow_batch_start);
3872 
3873 /* i915_perf.c */
3874 extern void i915_perf_init(struct drm_i915_private *dev_priv);
3875 extern void i915_perf_fini(struct drm_i915_private *dev_priv);
3876 extern void i915_perf_register(struct drm_i915_private *dev_priv);
3877 extern void i915_perf_unregister(struct drm_i915_private *dev_priv);
3878 
3879 /* i915_suspend.c */
3880 extern int i915_save_state(struct drm_i915_private *dev_priv);
3881 extern int i915_restore_state(struct drm_i915_private *dev_priv);
3882 
3883 /* i915_sysfs.c */
3884 void i915_setup_sysfs(struct drm_i915_private *dev_priv);
3885 void i915_teardown_sysfs(struct drm_i915_private *dev_priv);
3886 
3887 /* intel_lpe_audio.c */
3888 int  intel_lpe_audio_init(struct drm_i915_private *dev_priv);
3889 void intel_lpe_audio_teardown(struct drm_i915_private *dev_priv);
3890 void intel_lpe_audio_irq_handler(struct drm_i915_private *dev_priv);
3891 void intel_lpe_audio_notify(struct drm_i915_private *dev_priv,
3892 			    enum pipe pipe, enum port port,
3893 			    const void *eld, int ls_clock, bool dp_output);
3894 
3895 /* intel_i2c.c */
3896 extern int intel_setup_gmbus(struct drm_i915_private *dev_priv);
3897 extern void intel_teardown_gmbus(struct drm_i915_private *dev_priv);
3898 extern bool intel_gmbus_is_valid_pin(struct drm_i915_private *dev_priv,
3899 				     unsigned int pin);
3900 
3901 extern struct i2c_adapter *
3902 intel_gmbus_get_adapter(struct drm_i915_private *dev_priv, unsigned int pin);
3903 extern void intel_gmbus_set_speed(struct i2c_adapter *adapter, int speed);
3904 extern void intel_gmbus_force_bit(struct i2c_adapter *adapter, bool force_bit);
intel_gmbus_is_forced_bit(struct i2c_adapter * adapter)3905 static inline bool intel_gmbus_is_forced_bit(struct i2c_adapter *adapter)
3906 {
3907 	return container_of(adapter, struct intel_gmbus, adapter)->force_bit;
3908 }
3909 extern void intel_i2c_reset(struct drm_i915_private *dev_priv);
3910 
3911 /* intel_bios.c */
3912 void intel_bios_init(struct drm_i915_private *dev_priv);
3913 bool intel_bios_is_valid_vbt(const void *buf, size_t size);
3914 bool intel_bios_is_tv_present(struct drm_i915_private *dev_priv);
3915 bool intel_bios_is_lvds_present(struct drm_i915_private *dev_priv, u8 *i2c_pin);
3916 bool intel_bios_is_port_present(struct drm_i915_private *dev_priv, enum port port);
3917 bool intel_bios_is_port_edp(struct drm_i915_private *dev_priv, enum port port);
3918 bool intel_bios_is_port_dp_dual_mode(struct drm_i915_private *dev_priv, enum port port);
3919 bool intel_bios_is_dsi_present(struct drm_i915_private *dev_priv, enum port *port);
3920 bool intel_bios_is_port_hpd_inverted(struct drm_i915_private *dev_priv,
3921 				     enum port port);
3922 bool intel_bios_is_lspcon_present(struct drm_i915_private *dev_priv,
3923 				enum port port);
3924 
3925 
3926 /* intel_opregion.c */
3927 #ifdef CONFIG_ACPI
3928 extern int intel_opregion_setup(struct drm_i915_private *dev_priv);
3929 extern void intel_opregion_register(struct drm_i915_private *dev_priv);
3930 extern void intel_opregion_unregister(struct drm_i915_private *dev_priv);
3931 extern void intel_opregion_asle_intr(struct drm_i915_private *dev_priv);
3932 extern int intel_opregion_notify_encoder(struct intel_encoder *intel_encoder,
3933 					 bool enable);
3934 extern int intel_opregion_notify_adapter(struct drm_i915_private *dev_priv,
3935 					 pci_power_t state);
3936 extern int intel_opregion_get_panel_type(struct drm_i915_private *dev_priv);
3937 #else
intel_opregion_setup(struct drm_i915_private * dev)3938 static inline int intel_opregion_setup(struct drm_i915_private *dev) { return 0; }
intel_opregion_register(struct drm_i915_private * dev_priv)3939 static inline void intel_opregion_register(struct drm_i915_private *dev_priv) { }
intel_opregion_unregister(struct drm_i915_private * dev_priv)3940 static inline void intel_opregion_unregister(struct drm_i915_private *dev_priv) { }
intel_opregion_asle_intr(struct drm_i915_private * dev_priv)3941 static inline void intel_opregion_asle_intr(struct drm_i915_private *dev_priv)
3942 {
3943 }
3944 static inline int
intel_opregion_notify_encoder(struct intel_encoder * intel_encoder,bool enable)3945 intel_opregion_notify_encoder(struct intel_encoder *intel_encoder, bool enable)
3946 {
3947 	return 0;
3948 }
3949 static inline int
intel_opregion_notify_adapter(struct drm_i915_private * dev,pci_power_t state)3950 intel_opregion_notify_adapter(struct drm_i915_private *dev, pci_power_t state)
3951 {
3952 	return 0;
3953 }
intel_opregion_get_panel_type(struct drm_i915_private * dev)3954 static inline int intel_opregion_get_panel_type(struct drm_i915_private *dev)
3955 {
3956 	return -ENODEV;
3957 }
3958 #endif
3959 
3960 /* intel_acpi.c */
3961 #ifdef CONFIG_ACPI
3962 extern void intel_register_dsm_handler(void);
3963 extern void intel_unregister_dsm_handler(void);
3964 #else
intel_register_dsm_handler(void)3965 static inline void intel_register_dsm_handler(void) { return; }
intel_unregister_dsm_handler(void)3966 static inline void intel_unregister_dsm_handler(void) { return; }
3967 #endif /* CONFIG_ACPI */
3968 
3969 /* intel_device_info.c */
3970 static inline struct intel_device_info *
mkwrite_device_info(struct drm_i915_private * dev_priv)3971 mkwrite_device_info(struct drm_i915_private *dev_priv)
3972 {
3973 	return (struct intel_device_info *)&dev_priv->info;
3974 }
3975 
3976 const char *intel_platform_name(enum intel_platform platform);
3977 void intel_device_info_runtime_init(struct drm_i915_private *dev_priv);
3978 void intel_device_info_dump(struct drm_i915_private *dev_priv);
3979 
3980 /* modesetting */
3981 extern void intel_modeset_init_hw(struct drm_device *dev);
3982 extern int intel_modeset_init(struct drm_device *dev);
3983 extern void intel_modeset_gem_init(struct drm_device *dev);
3984 extern void intel_modeset_cleanup(struct drm_device *dev);
3985 extern int intel_connector_register(struct drm_connector *);
3986 extern void intel_connector_unregister(struct drm_connector *);
3987 extern int intel_modeset_vga_set_state(struct drm_i915_private *dev_priv,
3988 				       bool state);
3989 extern void intel_display_resume(struct drm_device *dev);
3990 extern void i915_redisable_vga(struct drm_i915_private *dev_priv);
3991 extern void i915_redisable_vga_power_on(struct drm_i915_private *dev_priv);
3992 extern bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val);
3993 extern void intel_init_pch_refclk(struct drm_i915_private *dev_priv);
3994 extern int intel_set_rps(struct drm_i915_private *dev_priv, u8 val);
3995 extern bool intel_set_memory_cxsr(struct drm_i915_private *dev_priv,
3996 				  bool enable);
3997 
3998 int i915_reg_read_ioctl(struct drm_device *dev, void *data,
3999 			struct drm_file *file);
4000 
4001 /* overlay */
4002 extern struct intel_overlay_error_state *
4003 intel_overlay_capture_error_state(struct drm_i915_private *dev_priv);
4004 extern void intel_overlay_print_error_state(struct drm_i915_error_state_buf *e,
4005 					    struct intel_overlay_error_state *error);
4006 
4007 extern struct intel_display_error_state *
4008 intel_display_capture_error_state(struct drm_i915_private *dev_priv);
4009 extern void intel_display_print_error_state(struct drm_i915_error_state_buf *e,
4010 					    struct intel_display_error_state *error);
4011 
4012 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val);
4013 int sandybridge_pcode_write_timeout(struct drm_i915_private *dev_priv, u32 mbox,
4014 				    u32 val, int timeout_us);
4015 #define sandybridge_pcode_write(dev_priv, mbox, val)	\
4016 	sandybridge_pcode_write_timeout(dev_priv, mbox, val, 500)
4017 
4018 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
4019 		      u32 reply_mask, u32 reply, int timeout_base_ms);
4020 
4021 /* intel_sideband.c */
4022 u32 vlv_punit_read(struct drm_i915_private *dev_priv, u32 addr);
4023 int vlv_punit_write(struct drm_i915_private *dev_priv, u32 addr, u32 val);
4024 u32 vlv_nc_read(struct drm_i915_private *dev_priv, u8 addr);
4025 u32 vlv_iosf_sb_read(struct drm_i915_private *dev_priv, u8 port, u32 reg);
4026 void vlv_iosf_sb_write(struct drm_i915_private *dev_priv, u8 port, u32 reg, u32 val);
4027 u32 vlv_cck_read(struct drm_i915_private *dev_priv, u32 reg);
4028 void vlv_cck_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4029 u32 vlv_ccu_read(struct drm_i915_private *dev_priv, u32 reg);
4030 void vlv_ccu_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4031 u32 vlv_bunit_read(struct drm_i915_private *dev_priv, u32 reg);
4032 void vlv_bunit_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4033 u32 vlv_dpio_read(struct drm_i915_private *dev_priv, enum pipe pipe, int reg);
4034 void vlv_dpio_write(struct drm_i915_private *dev_priv, enum pipe pipe, int reg, u32 val);
4035 u32 intel_sbi_read(struct drm_i915_private *dev_priv, u16 reg,
4036 		   enum intel_sbi_destination destination);
4037 void intel_sbi_write(struct drm_i915_private *dev_priv, u16 reg, u32 value,
4038 		     enum intel_sbi_destination destination);
4039 u32 vlv_flisdsi_read(struct drm_i915_private *dev_priv, u32 reg);
4040 void vlv_flisdsi_write(struct drm_i915_private *dev_priv, u32 reg, u32 val);
4041 
4042 /* intel_dpio_phy.c */
4043 void bxt_port_to_phy_channel(struct drm_i915_private *dev_priv, enum port port,
4044 			     enum dpio_phy *phy, enum dpio_channel *ch);
4045 void bxt_ddi_phy_set_signal_level(struct drm_i915_private *dev_priv,
4046 				  enum port port, u32 margin, u32 scale,
4047 				  u32 enable, u32 deemphasis);
4048 void bxt_ddi_phy_init(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4049 void bxt_ddi_phy_uninit(struct drm_i915_private *dev_priv, enum dpio_phy phy);
4050 bool bxt_ddi_phy_is_enabled(struct drm_i915_private *dev_priv,
4051 			    enum dpio_phy phy);
4052 bool bxt_ddi_phy_verify_state(struct drm_i915_private *dev_priv,
4053 			      enum dpio_phy phy);
4054 uint8_t bxt_ddi_phy_calc_lane_lat_optim_mask(struct intel_encoder *encoder,
4055 					     uint8_t lane_count);
4056 void bxt_ddi_phy_set_lane_optim_mask(struct intel_encoder *encoder,
4057 				     uint8_t lane_lat_optim_mask);
4058 uint8_t bxt_ddi_phy_get_lane_lat_optim_mask(struct intel_encoder *encoder);
4059 
4060 void chv_set_phy_signal_level(struct intel_encoder *encoder,
4061 			      u32 deemph_reg_value, u32 margin_reg_value,
4062 			      bool uniq_trans_scale);
4063 void chv_data_lane_soft_reset(struct intel_encoder *encoder,
4064 			      bool reset);
4065 void chv_phy_pre_pll_enable(struct intel_encoder *encoder);
4066 void chv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4067 void chv_phy_release_cl2_override(struct intel_encoder *encoder);
4068 void chv_phy_post_pll_disable(struct intel_encoder *encoder);
4069 
4070 void vlv_set_phy_signal_level(struct intel_encoder *encoder,
4071 			      u32 demph_reg_value, u32 preemph_reg_value,
4072 			      u32 uniqtranscale_reg_value, u32 tx3_demph);
4073 void vlv_phy_pre_pll_enable(struct intel_encoder *encoder);
4074 void vlv_phy_pre_encoder_enable(struct intel_encoder *encoder);
4075 void vlv_phy_reset_lanes(struct intel_encoder *encoder);
4076 
4077 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val);
4078 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val);
4079 u64 intel_rc6_residency_us(struct drm_i915_private *dev_priv,
4080 			   const i915_reg_t reg);
4081 
4082 #define I915_READ8(reg)		dev_priv->uncore.funcs.mmio_readb(dev_priv, (reg), true)
4083 #define I915_WRITE8(reg, val)	dev_priv->uncore.funcs.mmio_writeb(dev_priv, (reg), (val), true)
4084 
4085 #define I915_READ16(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), true)
4086 #define I915_WRITE16(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), true)
4087 #define I915_READ16_NOTRACE(reg)	dev_priv->uncore.funcs.mmio_readw(dev_priv, (reg), false)
4088 #define I915_WRITE16_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writew(dev_priv, (reg), (val), false)
4089 
4090 #define I915_READ(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), true)
4091 #define I915_WRITE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), true)
4092 #define I915_READ_NOTRACE(reg)		dev_priv->uncore.funcs.mmio_readl(dev_priv, (reg), false)
4093 #define I915_WRITE_NOTRACE(reg, val)	dev_priv->uncore.funcs.mmio_writel(dev_priv, (reg), (val), false)
4094 
4095 /* Be very careful with read/write 64-bit values. On 32-bit machines, they
4096  * will be implemented using 2 32-bit writes in an arbitrary order with
4097  * an arbitrary delay between them. This can cause the hardware to
4098  * act upon the intermediate value, possibly leading to corruption and
4099  * machine death. For this reason we do not support I915_WRITE64, or
4100  * dev_priv->uncore.funcs.mmio_writeq.
4101  *
4102  * When reading a 64-bit value as two 32-bit values, the delay may cause
4103  * the two reads to mismatch, e.g. a timestamp overflowing. Also note that
4104  * occasionally a 64-bit register does not actualy support a full readq
4105  * and must be read using two 32-bit reads.
4106  *
4107  * You have been warned.
4108  */
4109 #define I915_READ64(reg)	dev_priv->uncore.funcs.mmio_readq(dev_priv, (reg), true)
4110 
4111 #define I915_READ64_2x32(lower_reg, upper_reg) ({			\
4112 	u32 upper, lower, old_upper, loop = 0;				\
4113 	upper = I915_READ(upper_reg);					\
4114 	do {								\
4115 		old_upper = upper;					\
4116 		lower = I915_READ(lower_reg);				\
4117 		upper = I915_READ(upper_reg);				\
4118 	} while (upper != old_upper && loop++ < 2);			\
4119 	(u64)upper << 32 | lower; })
4120 
4121 #define POSTING_READ(reg)	(void)I915_READ_NOTRACE(reg)
4122 #define POSTING_READ16(reg)	(void)I915_READ16_NOTRACE(reg)
4123 
4124 #define __raw_read(x, s) \
4125 static inline uint##x##_t __raw_i915_read##x(const struct drm_i915_private *dev_priv, \
4126 					     i915_reg_t reg) \
4127 { \
4128 	return read##s(dev_priv->regs + i915_mmio_reg_offset(reg)); \
4129 }
4130 
4131 #define __raw_write(x, s) \
4132 static inline void __raw_i915_write##x(const struct drm_i915_private *dev_priv, \
4133 				       i915_reg_t reg, uint##x##_t val) \
4134 { \
4135 	write##s(val, dev_priv->regs + i915_mmio_reg_offset(reg)); \
4136 }
4137 __raw_read(8, b)
4138 __raw_read(16, w)
4139 __raw_read(32, l)
4140 __raw_read(64, q)
4141 
4142 __raw_write(8, b)
4143 __raw_write(16, w)
4144 __raw_write(32, l)
4145 __raw_write(64, q)
4146 
4147 #undef __raw_read
4148 #undef __raw_write
4149 
4150 /* These are untraced mmio-accessors that are only valid to be used inside
4151  * critical sections, such as inside IRQ handlers, where forcewake is explicitly
4152  * controlled.
4153  *
4154  * Think twice, and think again, before using these.
4155  *
4156  * As an example, these accessors can possibly be used between:
4157  *
4158  * spin_lock_irq(&dev_priv->uncore.lock);
4159  * intel_uncore_forcewake_get__locked();
4160  *
4161  * and
4162  *
4163  * intel_uncore_forcewake_put__locked();
4164  * spin_unlock_irq(&dev_priv->uncore.lock);
4165  *
4166  *
4167  * Note: some registers may not need forcewake held, so
4168  * intel_uncore_forcewake_{get,put} can be omitted, see
4169  * intel_uncore_forcewake_for_reg().
4170  *
4171  * Certain architectures will die if the same cacheline is concurrently accessed
4172  * by different clients (e.g. on Ivybridge). Access to registers should
4173  * therefore generally be serialised, by either the dev_priv->uncore.lock or
4174  * a more localised lock guarding all access to that bank of registers.
4175  */
4176 #define I915_READ_FW(reg__) __raw_i915_read32(dev_priv, (reg__))
4177 #define I915_WRITE_FW(reg__, val__) __raw_i915_write32(dev_priv, (reg__), (val__))
4178 #define I915_WRITE64_FW(reg__, val__) __raw_i915_write64(dev_priv, (reg__), (val__))
4179 #define POSTING_READ_FW(reg__) (void)I915_READ_FW(reg__)
4180 
4181 /* "Broadcast RGB" property */
4182 #define INTEL_BROADCAST_RGB_AUTO 0
4183 #define INTEL_BROADCAST_RGB_FULL 1
4184 #define INTEL_BROADCAST_RGB_LIMITED 2
4185 
i915_vgacntrl_reg(struct drm_i915_private * dev_priv)4186 static inline i915_reg_t i915_vgacntrl_reg(struct drm_i915_private *dev_priv)
4187 {
4188 	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4189 		return VLV_VGACNTRL;
4190 	else if (INTEL_GEN(dev_priv) >= 5)
4191 		return CPU_VGACNTRL;
4192 	else
4193 		return VGACNTRL;
4194 }
4195 
msecs_to_jiffies_timeout(const unsigned int m)4196 static inline unsigned long msecs_to_jiffies_timeout(const unsigned int m)
4197 {
4198 	unsigned long j = msecs_to_jiffies(m);
4199 
4200 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4201 }
4202 
nsecs_to_jiffies_timeout(const u64 n)4203 static inline unsigned long nsecs_to_jiffies_timeout(const u64 n)
4204 {
4205 	/* nsecs_to_jiffies64() does not guard against overflow */
4206 	if (NSEC_PER_SEC % HZ &&
4207 	    div_u64(n, NSEC_PER_SEC) >= MAX_JIFFY_OFFSET / HZ)
4208 		return MAX_JIFFY_OFFSET;
4209 
4210         return min_t(u64, MAX_JIFFY_OFFSET, nsecs_to_jiffies64(n) + 1);
4211 }
4212 
4213 static inline unsigned long
timespec_to_jiffies_timeout(const struct timespec * value)4214 timespec_to_jiffies_timeout(const struct timespec *value)
4215 {
4216 	unsigned long j = timespec_to_jiffies(value);
4217 
4218 	return min_t(unsigned long, MAX_JIFFY_OFFSET, j + 1);
4219 }
4220 
4221 /*
4222  * If you need to wait X milliseconds between events A and B, but event B
4223  * doesn't happen exactly after event A, you record the timestamp (jiffies) of
4224  * when event A happened, then just before event B you call this function and
4225  * pass the timestamp as the first argument, and X as the second argument.
4226  */
4227 static inline void
wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies,int to_wait_ms)4228 wait_remaining_ms_from_jiffies(unsigned long timestamp_jiffies, int to_wait_ms)
4229 {
4230 	unsigned long target_jiffies, tmp_jiffies, remaining_jiffies;
4231 
4232 	/*
4233 	 * Don't re-read the value of "jiffies" every time since it may change
4234 	 * behind our back and break the math.
4235 	 */
4236 	tmp_jiffies = jiffies;
4237 	target_jiffies = timestamp_jiffies +
4238 			 msecs_to_jiffies_timeout(to_wait_ms);
4239 
4240 	if (time_after(target_jiffies, tmp_jiffies)) {
4241 		remaining_jiffies = target_jiffies - tmp_jiffies;
4242 		while (remaining_jiffies)
4243 			remaining_jiffies =
4244 			    schedule_timeout_uninterruptible(remaining_jiffies);
4245 	}
4246 }
4247 
4248 static inline bool
__i915_request_irq_complete(const struct drm_i915_gem_request * req)4249 __i915_request_irq_complete(const struct drm_i915_gem_request *req)
4250 {
4251 	struct intel_engine_cs *engine = req->engine;
4252 	u32 seqno;
4253 
4254 	/* Note that the engine may have wrapped around the seqno, and
4255 	 * so our request->global_seqno will be ahead of the hardware,
4256 	 * even though it completed the request before wrapping. We catch
4257 	 * this by kicking all the waiters before resetting the seqno
4258 	 * in hardware, and also signal the fence.
4259 	 */
4260 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &req->fence.flags))
4261 		return true;
4262 
4263 	/* The request was dequeued before we were awoken. We check after
4264 	 * inspecting the hw to confirm that this was the same request
4265 	 * that generated the HWS update. The memory barriers within
4266 	 * the request execution are sufficient to ensure that a check
4267 	 * after reading the value from hw matches this request.
4268 	 */
4269 	seqno = i915_gem_request_global_seqno(req);
4270 	if (!seqno)
4271 		return false;
4272 
4273 	/* Before we do the heavier coherent read of the seqno,
4274 	 * check the value (hopefully) in the CPU cacheline.
4275 	 */
4276 	if (__i915_gem_request_completed(req, seqno))
4277 		return true;
4278 
4279 	/* Ensure our read of the seqno is coherent so that we
4280 	 * do not "miss an interrupt" (i.e. if this is the last
4281 	 * request and the seqno write from the GPU is not visible
4282 	 * by the time the interrupt fires, we will see that the
4283 	 * request is incomplete and go back to sleep awaiting
4284 	 * another interrupt that will never come.)
4285 	 *
4286 	 * Strictly, we only need to do this once after an interrupt,
4287 	 * but it is easier and safer to do it every time the waiter
4288 	 * is woken.
4289 	 */
4290 	if (engine->irq_seqno_barrier &&
4291 	    test_and_clear_bit(ENGINE_IRQ_BREADCRUMB, &engine->irq_posted)) {
4292 		struct intel_breadcrumbs *b = &engine->breadcrumbs;
4293 
4294 		/* The ordering of irq_posted versus applying the barrier
4295 		 * is crucial. The clearing of the current irq_posted must
4296 		 * be visible before we perform the barrier operation,
4297 		 * such that if a subsequent interrupt arrives, irq_posted
4298 		 * is reasserted and our task rewoken (which causes us to
4299 		 * do another __i915_request_irq_complete() immediately
4300 		 * and reapply the barrier). Conversely, if the clear
4301 		 * occurs after the barrier, then an interrupt that arrived
4302 		 * whilst we waited on the barrier would not trigger a
4303 		 * barrier on the next pass, and the read may not see the
4304 		 * seqno update.
4305 		 */
4306 		engine->irq_seqno_barrier(engine);
4307 
4308 		/* If we consume the irq, but we are no longer the bottom-half,
4309 		 * the real bottom-half may not have serialised their own
4310 		 * seqno check with the irq-barrier (i.e. may have inspected
4311 		 * the seqno before we believe it coherent since they see
4312 		 * irq_posted == false but we are still running).
4313 		 */
4314 		spin_lock_irq(&b->irq_lock);
4315 		if (b->irq_wait && b->irq_wait->tsk != current)
4316 			/* Note that if the bottom-half is changed as we
4317 			 * are sending the wake-up, the new bottom-half will
4318 			 * be woken by whomever made the change. We only have
4319 			 * to worry about when we steal the irq-posted for
4320 			 * ourself.
4321 			 */
4322 			wake_up_process(b->irq_wait->tsk);
4323 		spin_unlock_irq(&b->irq_lock);
4324 
4325 		if (__i915_gem_request_completed(req, seqno))
4326 			return true;
4327 	}
4328 
4329 	return false;
4330 }
4331 
4332 void i915_memcpy_init_early(struct drm_i915_private *dev_priv);
4333 bool i915_memcpy_from_wc(void *dst, const void *src, unsigned long len);
4334 
4335 /* The movntdqa instructions used for memcpy-from-wc require 16-byte alignment,
4336  * as well as SSE4.1 support. i915_memcpy_from_wc() will report if it cannot
4337  * perform the operation. To check beforehand, pass in the parameters to
4338  * to i915_can_memcpy_from_wc() - since we only care about the low 4 bits,
4339  * you only need to pass in the minor offsets, page-aligned pointers are
4340  * always valid.
4341  *
4342  * For just checking for SSE4.1, in the foreknowledge that the future use
4343  * will be correctly aligned, just use i915_has_memcpy_from_wc().
4344  */
4345 #define i915_can_memcpy_from_wc(dst, src, len) \
4346 	i915_memcpy_from_wc((void *)((unsigned long)(dst) | (unsigned long)(src) | (len)), NULL, 0)
4347 
4348 #define i915_has_memcpy_from_wc() \
4349 	i915_memcpy_from_wc(NULL, NULL, 0)
4350 
4351 /* i915_mm.c */
4352 int remap_io_mapping(struct vm_area_struct *vma,
4353 		     unsigned long addr, unsigned long pfn, unsigned long size,
4354 		     struct io_mapping *iomap);
4355 
4356 static inline bool
intel_engine_can_store_dword(struct intel_engine_cs * engine)4357 intel_engine_can_store_dword(struct intel_engine_cs *engine)
4358 {
4359 	return __intel_engine_can_store_dword(INTEL_GEN(engine->i915),
4360 					      engine->class);
4361 }
4362 
4363 #endif
4364