• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1Virtual Routing and Forwarding (VRF)
2====================================
3The VRF device combined with ip rules provides the ability to create virtual
4routing and forwarding domains (aka VRFs, VRF-lite to be specific) in the
5Linux network stack. One use case is the multi-tenancy problem where each
6tenant has their own unique routing tables and in the very least need
7different default gateways.
8
9Processes can be "VRF aware" by binding a socket to the VRF device. Packets
10through the socket then use the routing table associated with the VRF
11device. An important feature of the VRF device implementation is that it
12impacts only Layer 3 and above so L2 tools (e.g., LLDP) are not affected
13(ie., they do not need to be run in each VRF). The design also allows
14the use of higher priority ip rules (Policy Based Routing, PBR) to take
15precedence over the VRF device rules directing specific traffic as desired.
16
17In addition, VRF devices allow VRFs to be nested within namespaces. For
18example network namespaces provide separation of network interfaces at the
19device layer, VLANs on the interfaces within a namespace provide L2 separation
20and then VRF devices provide L3 separation.
21
22Design
23------
24A VRF device is created with an associated route table. Network interfaces
25are then enslaved to a VRF device:
26
27         +-----------------------------+
28         |           vrf-blue          |  ===> route table 10
29         +-----------------------------+
30            |        |            |
31         +------+ +------+     +-------------+
32         | eth1 | | eth2 | ... |    bond1    |
33         +------+ +------+     +-------------+
34                                  |       |
35                              +------+ +------+
36                              | eth8 | | eth9 |
37                              +------+ +------+
38
39Packets received on an enslaved device and are switched to the VRF device
40in the IPv4 and IPv6 processing stacks giving the impression that packets
41flow through the VRF device. Similarly on egress routing rules are used to
42send packets to the VRF device driver before getting sent out the actual
43interface. This allows tcpdump on a VRF device to capture all packets into
44and out of the VRF as a whole.[1] Similarly, netfilter[2] and tc rules can be
45applied using the VRF device to specify rules that apply to the VRF domain
46as a whole.
47
48[1] Packets in the forwarded state do not flow through the device, so those
49    packets are not seen by tcpdump. Will revisit this limitation in a
50    future release.
51
52[2] Iptables on ingress supports PREROUTING with skb->dev set to the real
53    ingress device and both INPUT and PREROUTING rules with skb->dev set to
54    the VRF device. For egress POSTROUTING and OUTPUT rules can be written
55    using either the VRF device or real egress device.
56
57Setup
58-----
591. VRF device is created with an association to a FIB table.
60   e.g, ip link add vrf-blue type vrf table 10
61        ip link set dev vrf-blue up
62
632. An l3mdev FIB rule directs lookups to the table associated with the device.
64   A single l3mdev rule is sufficient for all VRFs. The VRF device adds the
65   l3mdev rule for IPv4 and IPv6 when the first device is created with a
66   default preference of 1000. Users may delete the rule if desired and add
67   with a different priority or install per-VRF rules.
68
69   Prior to the v4.8 kernel iif and oif rules are needed for each VRF device:
70       ip ru add oif vrf-blue table 10
71       ip ru add iif vrf-blue table 10
72
733. Set the default route for the table (and hence default route for the VRF).
74       ip route add table 10 unreachable default
75
764. Enslave L3 interfaces to a VRF device.
77       ip link set dev eth1 master vrf-blue
78
79   Local and connected routes for enslaved devices are automatically moved to
80   the table associated with VRF device. Any additional routes depending on
81   the enslaved device are dropped and will need to be reinserted to the VRF
82   FIB table following the enslavement.
83
84   The IPv6 sysctl option keep_addr_on_down can be enabled to keep IPv6 global
85   addresses as VRF enslavement changes.
86       sysctl -w net.ipv6.conf.all.keep_addr_on_down=1
87
885. Additional VRF routes are added to associated table.
89       ip route add table 10 ...
90
91
92Applications
93------------
94Applications that are to work within a VRF need to bind their socket to the
95VRF device:
96
97    setsockopt(sd, SOL_SOCKET, SO_BINDTODEVICE, dev, strlen(dev)+1);
98
99or to specify the output device using cmsg and IP_PKTINFO.
100
101TCP & UDP services running in the default VRF context (ie., not bound
102to any VRF device) can work across all VRF domains by enabling the
103tcp_l3mdev_accept and udp_l3mdev_accept sysctl options:
104    sysctl -w net.ipv4.tcp_l3mdev_accept=1
105    sysctl -w net.ipv4.udp_l3mdev_accept=1
106
107netfilter rules on the VRF device can be used to limit access to services
108running in the default VRF context as well.
109
110The default VRF does not have limited scope with respect to port bindings.
111That is, if a process does a wildcard bind to a port in the default VRF it
112owns the port across all VRF domains within the network namespace.
113
114################################################################################
115
116Using iproute2 for VRFs
117=======================
118iproute2 supports the vrf keyword as of v4.7. For backwards compatibility this
119section lists both commands where appropriate -- with the vrf keyword and the
120older form without it.
121
1221. Create a VRF
123
124   To instantiate a VRF device and associate it with a table:
125       $ ip link add dev NAME type vrf table ID
126
127   As of v4.8 the kernel supports the l3mdev FIB rule where a single rule
128   covers all VRFs. The l3mdev rule is created for IPv4 and IPv6 on first
129   device create.
130
1312. List VRFs
132
133   To list VRFs that have been created:
134       $ ip [-d] link show type vrf
135         NOTE: The -d option is needed to show the table id
136
137   For example:
138   $ ip -d link show type vrf
139   11: mgmt: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
140       link/ether 72:b3:ba:91:e2:24 brd ff:ff:ff:ff:ff:ff promiscuity 0
141       vrf table 1 addrgenmode eui64
142   12: red: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
143       link/ether b6:6f:6e:f6:da:73 brd ff:ff:ff:ff:ff:ff promiscuity 0
144       vrf table 10 addrgenmode eui64
145   13: blue: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
146       link/ether 36:62:e8:7d:bb:8c brd ff:ff:ff:ff:ff:ff promiscuity 0
147       vrf table 66 addrgenmode eui64
148   14: green: <NOARP,MASTER,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mode DEFAULT group default qlen 1000
149       link/ether e6:28:b8:63:70:bb brd ff:ff:ff:ff:ff:ff promiscuity 0
150       vrf table 81 addrgenmode eui64
151
152
153   Or in brief output:
154
155   $ ip -br link show type vrf
156   mgmt         UP             72:b3:ba:91:e2:24 <NOARP,MASTER,UP,LOWER_UP>
157   red          UP             b6:6f:6e:f6:da:73 <NOARP,MASTER,UP,LOWER_UP>
158   blue         UP             36:62:e8:7d:bb:8c <NOARP,MASTER,UP,LOWER_UP>
159   green        UP             e6:28:b8:63:70:bb <NOARP,MASTER,UP,LOWER_UP>
160
161
1623. Assign a Network Interface to a VRF
163
164   Network interfaces are assigned to a VRF by enslaving the netdevice to a
165   VRF device:
166       $ ip link set dev NAME master NAME
167
168   On enslavement connected and local routes are automatically moved to the
169   table associated with the VRF device.
170
171   For example:
172   $ ip link set dev eth0 master mgmt
173
174
1754. Show Devices Assigned to a VRF
176
177   To show devices that have been assigned to a specific VRF add the master
178   option to the ip command:
179       $ ip link show vrf NAME
180       $ ip link show master NAME
181
182   For example:
183   $ ip link show vrf red
184   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
185       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
186   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP mode DEFAULT group default qlen 1000
187       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
188   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN mode DEFAULT group default qlen 1000
189       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
190
191
192   Or using the brief output:
193   $ ip -br link show vrf red
194   eth1             UP             02:00:00:00:02:02 <BROADCAST,MULTICAST,UP,LOWER_UP>
195   eth2             UP             02:00:00:00:02:03 <BROADCAST,MULTICAST,UP,LOWER_UP>
196   eth5             DOWN           02:00:00:00:02:06 <BROADCAST,MULTICAST>
197
198
1995. Show Neighbor Entries for a VRF
200
201   To list neighbor entries associated with devices enslaved to a VRF device
202   add the master option to the ip command:
203       $ ip [-6] neigh show vrf NAME
204       $ ip [-6] neigh show master NAME
205
206   For example:
207   $  ip neigh show vrf red
208   10.2.1.254 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
209   10.2.2.254 dev eth2 lladdr 5e:54:01:6a:ee:80 REACHABLE
210
211   $ ip -6 neigh show vrf red
212   2002:1::64 dev eth1 lladdr a6:d9:c7:4f:06:23 REACHABLE
213
214
2156. Show Addresses for a VRF
216
217   To show addresses for interfaces associated with a VRF add the master
218   option to the ip command:
219       $ ip addr show vrf NAME
220       $ ip addr show master NAME
221
222   For example:
223   $ ip addr show vrf red
224   3: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
225       link/ether 02:00:00:00:02:02 brd ff:ff:ff:ff:ff:ff
226       inet 10.2.1.2/24 brd 10.2.1.255 scope global eth1
227          valid_lft forever preferred_lft forever
228       inet6 2002:1::2/120 scope global
229          valid_lft forever preferred_lft forever
230       inet6 fe80::ff:fe00:202/64 scope link
231          valid_lft forever preferred_lft forever
232   4: eth2: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast master red state UP group default qlen 1000
233       link/ether 02:00:00:00:02:03 brd ff:ff:ff:ff:ff:ff
234       inet 10.2.2.2/24 brd 10.2.2.255 scope global eth2
235          valid_lft forever preferred_lft forever
236       inet6 2002:2::2/120 scope global
237          valid_lft forever preferred_lft forever
238       inet6 fe80::ff:fe00:203/64 scope link
239          valid_lft forever preferred_lft forever
240   7: eth5: <BROADCAST,MULTICAST> mtu 1500 qdisc noop master red state DOWN group default qlen 1000
241       link/ether 02:00:00:00:02:06 brd ff:ff:ff:ff:ff:ff
242
243   Or in brief format:
244   $ ip -br addr show vrf red
245   eth1             UP             10.2.1.2/24 2002:1::2/120 fe80::ff:fe00:202/64
246   eth2             UP             10.2.2.2/24 2002:2::2/120 fe80::ff:fe00:203/64
247   eth5             DOWN
248
249
2507. Show Routes for a VRF
251
252   To show routes for a VRF use the ip command to display the table associated
253   with the VRF device:
254       $ ip [-6] route show vrf NAME
255       $ ip [-6] route show table ID
256
257   For example:
258   $ ip route show vrf red
259   prohibit default
260   broadcast 10.2.1.0 dev eth1  proto kernel  scope link  src 10.2.1.2
261   10.2.1.0/24 dev eth1  proto kernel  scope link  src 10.2.1.2
262   local 10.2.1.2 dev eth1  proto kernel  scope host  src 10.2.1.2
263   broadcast 10.2.1.255 dev eth1  proto kernel  scope link  src 10.2.1.2
264   broadcast 10.2.2.0 dev eth2  proto kernel  scope link  src 10.2.2.2
265   10.2.2.0/24 dev eth2  proto kernel  scope link  src 10.2.2.2
266   local 10.2.2.2 dev eth2  proto kernel  scope host  src 10.2.2.2
267   broadcast 10.2.2.255 dev eth2  proto kernel  scope link  src 10.2.2.2
268
269   $ ip -6 route show vrf red
270   local 2002:1:: dev lo  proto none  metric 0  pref medium
271   local 2002:1::2 dev lo  proto none  metric 0  pref medium
272   2002:1::/120 dev eth1  proto kernel  metric 256  pref medium
273   local 2002:2:: dev lo  proto none  metric 0  pref medium
274   local 2002:2::2 dev lo  proto none  metric 0  pref medium
275   2002:2::/120 dev eth2  proto kernel  metric 256  pref medium
276   local fe80:: dev lo  proto none  metric 0  pref medium
277   local fe80:: dev lo  proto none  metric 0  pref medium
278   local fe80::ff:fe00:202 dev lo  proto none  metric 0  pref medium
279   local fe80::ff:fe00:203 dev lo  proto none  metric 0  pref medium
280   fe80::/64 dev eth1  proto kernel  metric 256  pref medium
281   fe80::/64 dev eth2  proto kernel  metric 256  pref medium
282   ff00::/8 dev red  metric 256  pref medium
283   ff00::/8 dev eth1  metric 256  pref medium
284   ff00::/8 dev eth2  metric 256  pref medium
285
286
2878. Route Lookup for a VRF
288
289   A test route lookup can be done for a VRF:
290       $ ip [-6] route get vrf NAME ADDRESS
291       $ ip [-6] route get oif NAME ADDRESS
292
293   For example:
294   $ ip route get 10.2.1.40 vrf red
295   10.2.1.40 dev eth1  table red  src 10.2.1.2
296       cache
297
298   $ ip -6 route get 2002:1::32 vrf red
299   2002:1::32 from :: dev eth1  table red  proto kernel  src 2002:1::2  metric 256  pref medium
300
301
3029. Removing Network Interface from a VRF
303
304   Network interfaces are removed from a VRF by breaking the enslavement to
305   the VRF device:
306       $ ip link set dev NAME nomaster
307
308   Connected routes are moved back to the default table and local entries are
309   moved to the local table.
310
311   For example:
312   $ ip link set dev eth0 nomaster
313
314--------------------------------------------------------------------------------
315
316Commands used in this example:
317
318cat >> /etc/iproute2/rt_tables.d/vrf.conf <<EOF
3191  mgmt
32010 red
32166 blue
32281 green
323EOF
324
325function vrf_create
326{
327    VRF=$1
328    TBID=$2
329
330    # create VRF device
331    ip link add ${VRF} type vrf table ${TBID}
332
333    if [ "${VRF}" != "mgmt" ]; then
334        ip route add table ${TBID} unreachable default
335    fi
336    ip link set dev ${VRF} up
337}
338
339vrf_create mgmt 1
340ip link set dev eth0 master mgmt
341
342vrf_create red 10
343ip link set dev eth1 master red
344ip link set dev eth2 master red
345ip link set dev eth5 master red
346
347vrf_create blue 66
348ip link set dev eth3 master blue
349
350vrf_create green 81
351ip link set dev eth4 master green
352
353
354Interface addresses from /etc/network/interfaces:
355auto eth0
356iface eth0 inet static
357      address 10.0.0.2
358      netmask 255.255.255.0
359      gateway 10.0.0.254
360
361iface eth0 inet6 static
362      address 2000:1::2
363      netmask 120
364
365auto eth1
366iface eth1 inet static
367      address 10.2.1.2
368      netmask 255.255.255.0
369
370iface eth1 inet6 static
371      address 2002:1::2
372      netmask 120
373
374auto eth2
375iface eth2 inet static
376      address 10.2.2.2
377      netmask 255.255.255.0
378
379iface eth2 inet6 static
380      address 2002:2::2
381      netmask 120
382
383auto eth3
384iface eth3 inet static
385      address 10.2.3.2
386      netmask 255.255.255.0
387
388iface eth3 inet6 static
389      address 2002:3::2
390      netmask 120
391
392auto eth4
393iface eth4 inet static
394      address 10.2.4.2
395      netmask 255.255.255.0
396
397iface eth4 inet6 static
398      address 2002:4::2
399      netmask 120
400