1 /*
2 * linux/arch/arm/kernel/ptrace.c
3 *
4 * By Ross Biro 1/23/92
5 * edited by Linus Torvalds
6 * ARM modifications Copyright (C) 2000 Russell King
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12 #include <linux/kernel.h>
13 #include <linux/sched/signal.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/elf.h>
17 #include <linux/smp.h>
18 #include <linux/ptrace.h>
19 #include <linux/user.h>
20 #include <linux/security.h>
21 #include <linux/init.h>
22 #include <linux/signal.h>
23 #include <linux/uaccess.h>
24 #include <linux/perf_event.h>
25 #include <linux/hw_breakpoint.h>
26 #include <linux/regset.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/unistd.h>
30
31 #include <asm/pgtable.h>
32 #include <asm/traps.h>
33
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/syscalls.h>
36
37 #define REG_PC 15
38 #define REG_PSR 16
39 /*
40 * does not yet catch signals sent when the child dies.
41 * in exit.c or in signal.c.
42 */
43
44 #if 0
45 /*
46 * Breakpoint SWI instruction: SWI &9F0001
47 */
48 #define BREAKINST_ARM 0xef9f0001
49 #define BREAKINST_THUMB 0xdf00 /* fill this in later */
50 #else
51 /*
52 * New breakpoints - use an undefined instruction. The ARM architecture
53 * reference manual guarantees that the following instruction space
54 * will produce an undefined instruction exception on all CPUs:
55 *
56 * ARM: xxxx 0111 1111 xxxx xxxx xxxx 1111 xxxx
57 * Thumb: 1101 1110 xxxx xxxx
58 */
59 #define BREAKINST_ARM 0xe7f001f0
60 #define BREAKINST_THUMB 0xde01
61 #endif
62
63 struct pt_regs_offset {
64 const char *name;
65 int offset;
66 };
67
68 #define REG_OFFSET_NAME(r) \
69 {.name = #r, .offset = offsetof(struct pt_regs, ARM_##r)}
70 #define REG_OFFSET_END {.name = NULL, .offset = 0}
71
72 static const struct pt_regs_offset regoffset_table[] = {
73 REG_OFFSET_NAME(r0),
74 REG_OFFSET_NAME(r1),
75 REG_OFFSET_NAME(r2),
76 REG_OFFSET_NAME(r3),
77 REG_OFFSET_NAME(r4),
78 REG_OFFSET_NAME(r5),
79 REG_OFFSET_NAME(r6),
80 REG_OFFSET_NAME(r7),
81 REG_OFFSET_NAME(r8),
82 REG_OFFSET_NAME(r9),
83 REG_OFFSET_NAME(r10),
84 REG_OFFSET_NAME(fp),
85 REG_OFFSET_NAME(ip),
86 REG_OFFSET_NAME(sp),
87 REG_OFFSET_NAME(lr),
88 REG_OFFSET_NAME(pc),
89 REG_OFFSET_NAME(cpsr),
90 REG_OFFSET_NAME(ORIG_r0),
91 REG_OFFSET_END,
92 };
93
94 /**
95 * regs_query_register_offset() - query register offset from its name
96 * @name: the name of a register
97 *
98 * regs_query_register_offset() returns the offset of a register in struct
99 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
100 */
regs_query_register_offset(const char * name)101 int regs_query_register_offset(const char *name)
102 {
103 const struct pt_regs_offset *roff;
104 for (roff = regoffset_table; roff->name != NULL; roff++)
105 if (!strcmp(roff->name, name))
106 return roff->offset;
107 return -EINVAL;
108 }
109
110 /**
111 * regs_query_register_name() - query register name from its offset
112 * @offset: the offset of a register in struct pt_regs.
113 *
114 * regs_query_register_name() returns the name of a register from its
115 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
116 */
regs_query_register_name(unsigned int offset)117 const char *regs_query_register_name(unsigned int offset)
118 {
119 const struct pt_regs_offset *roff;
120 for (roff = regoffset_table; roff->name != NULL; roff++)
121 if (roff->offset == offset)
122 return roff->name;
123 return NULL;
124 }
125
126 /**
127 * regs_within_kernel_stack() - check the address in the stack
128 * @regs: pt_regs which contains kernel stack pointer.
129 * @addr: address which is checked.
130 *
131 * regs_within_kernel_stack() checks @addr is within the kernel stack page(s).
132 * If @addr is within the kernel stack, it returns true. If not, returns false.
133 */
regs_within_kernel_stack(struct pt_regs * regs,unsigned long addr)134 bool regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
135 {
136 return ((addr & ~(THREAD_SIZE - 1)) ==
137 (kernel_stack_pointer(regs) & ~(THREAD_SIZE - 1)));
138 }
139
140 /**
141 * regs_get_kernel_stack_nth() - get Nth entry of the stack
142 * @regs: pt_regs which contains kernel stack pointer.
143 * @n: stack entry number.
144 *
145 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
146 * is specified by @regs. If the @n th entry is NOT in the kernel stack,
147 * this returns 0.
148 */
regs_get_kernel_stack_nth(struct pt_regs * regs,unsigned int n)149 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
150 {
151 unsigned long *addr = (unsigned long *)kernel_stack_pointer(regs);
152 addr += n;
153 if (regs_within_kernel_stack(regs, (unsigned long)addr))
154 return *addr;
155 else
156 return 0;
157 }
158
159 /*
160 * this routine will get a word off of the processes privileged stack.
161 * the offset is how far from the base addr as stored in the THREAD.
162 * this routine assumes that all the privileged stacks are in our
163 * data space.
164 */
get_user_reg(struct task_struct * task,int offset)165 static inline long get_user_reg(struct task_struct *task, int offset)
166 {
167 return task_pt_regs(task)->uregs[offset];
168 }
169
170 /*
171 * this routine will put a word on the processes privileged stack.
172 * the offset is how far from the base addr as stored in the THREAD.
173 * this routine assumes that all the privileged stacks are in our
174 * data space.
175 */
176 static inline int
put_user_reg(struct task_struct * task,int offset,long data)177 put_user_reg(struct task_struct *task, int offset, long data)
178 {
179 struct pt_regs newregs, *regs = task_pt_regs(task);
180 int ret = -EINVAL;
181
182 newregs = *regs;
183 newregs.uregs[offset] = data;
184
185 if (valid_user_regs(&newregs)) {
186 regs->uregs[offset] = data;
187 ret = 0;
188 }
189
190 return ret;
191 }
192
193 /*
194 * Called by kernel/ptrace.c when detaching..
195 */
ptrace_disable(struct task_struct * child)196 void ptrace_disable(struct task_struct *child)
197 {
198 /* Nothing to do. */
199 }
200
201 /*
202 * Handle hitting a breakpoint.
203 */
ptrace_break(struct task_struct * tsk,struct pt_regs * regs)204 void ptrace_break(struct task_struct *tsk, struct pt_regs *regs)
205 {
206 siginfo_t info;
207
208 info.si_signo = SIGTRAP;
209 info.si_errno = 0;
210 info.si_code = TRAP_BRKPT;
211 info.si_addr = (void __user *)instruction_pointer(regs);
212
213 force_sig_info(SIGTRAP, &info, tsk);
214 }
215
break_trap(struct pt_regs * regs,unsigned int instr)216 static int break_trap(struct pt_regs *regs, unsigned int instr)
217 {
218 ptrace_break(current, regs);
219 return 0;
220 }
221
222 static struct undef_hook arm_break_hook = {
223 .instr_mask = 0x0fffffff,
224 .instr_val = 0x07f001f0,
225 .cpsr_mask = PSR_T_BIT,
226 .cpsr_val = 0,
227 .fn = break_trap,
228 };
229
230 static struct undef_hook thumb_break_hook = {
231 .instr_mask = 0xffff,
232 .instr_val = 0xde01,
233 .cpsr_mask = PSR_T_BIT,
234 .cpsr_val = PSR_T_BIT,
235 .fn = break_trap,
236 };
237
238 static struct undef_hook thumb2_break_hook = {
239 .instr_mask = 0xffffffff,
240 .instr_val = 0xf7f0a000,
241 .cpsr_mask = PSR_T_BIT,
242 .cpsr_val = PSR_T_BIT,
243 .fn = break_trap,
244 };
245
ptrace_break_init(void)246 static int __init ptrace_break_init(void)
247 {
248 register_undef_hook(&arm_break_hook);
249 register_undef_hook(&thumb_break_hook);
250 register_undef_hook(&thumb2_break_hook);
251 return 0;
252 }
253
254 core_initcall(ptrace_break_init);
255
256 /*
257 * Read the word at offset "off" into the "struct user". We
258 * actually access the pt_regs stored on the kernel stack.
259 */
ptrace_read_user(struct task_struct * tsk,unsigned long off,unsigned long __user * ret)260 static int ptrace_read_user(struct task_struct *tsk, unsigned long off,
261 unsigned long __user *ret)
262 {
263 unsigned long tmp;
264
265 if (off & 3)
266 return -EIO;
267
268 tmp = 0;
269 if (off == PT_TEXT_ADDR)
270 tmp = tsk->mm->start_code;
271 else if (off == PT_DATA_ADDR)
272 tmp = tsk->mm->start_data;
273 else if (off == PT_TEXT_END_ADDR)
274 tmp = tsk->mm->end_code;
275 else if (off < sizeof(struct pt_regs))
276 tmp = get_user_reg(tsk, off >> 2);
277 else if (off >= sizeof(struct user))
278 return -EIO;
279
280 return put_user(tmp, ret);
281 }
282
283 /*
284 * Write the word at offset "off" into "struct user". We
285 * actually access the pt_regs stored on the kernel stack.
286 */
ptrace_write_user(struct task_struct * tsk,unsigned long off,unsigned long val)287 static int ptrace_write_user(struct task_struct *tsk, unsigned long off,
288 unsigned long val)
289 {
290 if (off & 3 || off >= sizeof(struct user))
291 return -EIO;
292
293 if (off >= sizeof(struct pt_regs))
294 return 0;
295
296 return put_user_reg(tsk, off >> 2, val);
297 }
298
299 #ifdef CONFIG_IWMMXT
300
301 /*
302 * Get the child iWMMXt state.
303 */
ptrace_getwmmxregs(struct task_struct * tsk,void __user * ufp)304 static int ptrace_getwmmxregs(struct task_struct *tsk, void __user *ufp)
305 {
306 struct thread_info *thread = task_thread_info(tsk);
307
308 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
309 return -ENODATA;
310 iwmmxt_task_disable(thread); /* force it to ram */
311 return copy_to_user(ufp, &thread->fpstate.iwmmxt, IWMMXT_SIZE)
312 ? -EFAULT : 0;
313 }
314
315 /*
316 * Set the child iWMMXt state.
317 */
ptrace_setwmmxregs(struct task_struct * tsk,void __user * ufp)318 static int ptrace_setwmmxregs(struct task_struct *tsk, void __user *ufp)
319 {
320 struct thread_info *thread = task_thread_info(tsk);
321
322 if (!test_ti_thread_flag(thread, TIF_USING_IWMMXT))
323 return -EACCES;
324 iwmmxt_task_release(thread); /* force a reload */
325 return copy_from_user(&thread->fpstate.iwmmxt, ufp, IWMMXT_SIZE)
326 ? -EFAULT : 0;
327 }
328
329 #endif
330
331 #ifdef CONFIG_CRUNCH
332 /*
333 * Get the child Crunch state.
334 */
ptrace_getcrunchregs(struct task_struct * tsk,void __user * ufp)335 static int ptrace_getcrunchregs(struct task_struct *tsk, void __user *ufp)
336 {
337 struct thread_info *thread = task_thread_info(tsk);
338
339 crunch_task_disable(thread); /* force it to ram */
340 return copy_to_user(ufp, &thread->crunchstate, CRUNCH_SIZE)
341 ? -EFAULT : 0;
342 }
343
344 /*
345 * Set the child Crunch state.
346 */
ptrace_setcrunchregs(struct task_struct * tsk,void __user * ufp)347 static int ptrace_setcrunchregs(struct task_struct *tsk, void __user *ufp)
348 {
349 struct thread_info *thread = task_thread_info(tsk);
350
351 crunch_task_release(thread); /* force a reload */
352 return copy_from_user(&thread->crunchstate, ufp, CRUNCH_SIZE)
353 ? -EFAULT : 0;
354 }
355 #endif
356
357 #ifdef CONFIG_HAVE_HW_BREAKPOINT
358 /*
359 * Convert a virtual register number into an index for a thread_info
360 * breakpoint array. Breakpoints are identified using positive numbers
361 * whilst watchpoints are negative. The registers are laid out as pairs
362 * of (address, control), each pair mapping to a unique hw_breakpoint struct.
363 * Register 0 is reserved for describing resource information.
364 */
ptrace_hbp_num_to_idx(long num)365 static int ptrace_hbp_num_to_idx(long num)
366 {
367 if (num < 0)
368 num = (ARM_MAX_BRP << 1) - num;
369 return (num - 1) >> 1;
370 }
371
372 /*
373 * Returns the virtual register number for the address of the
374 * breakpoint at index idx.
375 */
ptrace_hbp_idx_to_num(int idx)376 static long ptrace_hbp_idx_to_num(int idx)
377 {
378 long mid = ARM_MAX_BRP << 1;
379 long num = (idx << 1) + 1;
380 return num > mid ? mid - num : num;
381 }
382
383 /*
384 * Handle hitting a HW-breakpoint.
385 */
ptrace_hbptriggered(struct perf_event * bp,struct perf_sample_data * data,struct pt_regs * regs)386 static void ptrace_hbptriggered(struct perf_event *bp,
387 struct perf_sample_data *data,
388 struct pt_regs *regs)
389 {
390 struct arch_hw_breakpoint *bkpt = counter_arch_bp(bp);
391 long num;
392 int i;
393 siginfo_t info;
394
395 for (i = 0; i < ARM_MAX_HBP_SLOTS; ++i)
396 if (current->thread.debug.hbp[i] == bp)
397 break;
398
399 num = (i == ARM_MAX_HBP_SLOTS) ? 0 : ptrace_hbp_idx_to_num(i);
400
401 info.si_signo = SIGTRAP;
402 info.si_errno = (int)num;
403 info.si_code = TRAP_HWBKPT;
404 info.si_addr = (void __user *)(bkpt->trigger);
405
406 force_sig_info(SIGTRAP, &info, current);
407 }
408
409 /*
410 * Set ptrace breakpoint pointers to zero for this task.
411 * This is required in order to prevent child processes from unregistering
412 * breakpoints held by their parent.
413 */
clear_ptrace_hw_breakpoint(struct task_struct * tsk)414 void clear_ptrace_hw_breakpoint(struct task_struct *tsk)
415 {
416 memset(tsk->thread.debug.hbp, 0, sizeof(tsk->thread.debug.hbp));
417 }
418
419 /*
420 * Unregister breakpoints from this task and reset the pointers in
421 * the thread_struct.
422 */
flush_ptrace_hw_breakpoint(struct task_struct * tsk)423 void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
424 {
425 int i;
426 struct thread_struct *t = &tsk->thread;
427
428 for (i = 0; i < ARM_MAX_HBP_SLOTS; i++) {
429 if (t->debug.hbp[i]) {
430 unregister_hw_breakpoint(t->debug.hbp[i]);
431 t->debug.hbp[i] = NULL;
432 }
433 }
434 }
435
ptrace_get_hbp_resource_info(void)436 static u32 ptrace_get_hbp_resource_info(void)
437 {
438 u8 num_brps, num_wrps, debug_arch, wp_len;
439 u32 reg = 0;
440
441 num_brps = hw_breakpoint_slots(TYPE_INST);
442 num_wrps = hw_breakpoint_slots(TYPE_DATA);
443 debug_arch = arch_get_debug_arch();
444 wp_len = arch_get_max_wp_len();
445
446 reg |= debug_arch;
447 reg <<= 8;
448 reg |= wp_len;
449 reg <<= 8;
450 reg |= num_wrps;
451 reg <<= 8;
452 reg |= num_brps;
453
454 return reg;
455 }
456
ptrace_hbp_create(struct task_struct * tsk,int type)457 static struct perf_event *ptrace_hbp_create(struct task_struct *tsk, int type)
458 {
459 struct perf_event_attr attr;
460
461 ptrace_breakpoint_init(&attr);
462
463 /* Initialise fields to sane defaults. */
464 attr.bp_addr = 0;
465 attr.bp_len = HW_BREAKPOINT_LEN_4;
466 attr.bp_type = type;
467 attr.disabled = 1;
468
469 return register_user_hw_breakpoint(&attr, ptrace_hbptriggered, NULL,
470 tsk);
471 }
472
ptrace_gethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)473 static int ptrace_gethbpregs(struct task_struct *tsk, long num,
474 unsigned long __user *data)
475 {
476 u32 reg;
477 int idx, ret = 0;
478 struct perf_event *bp;
479 struct arch_hw_breakpoint_ctrl arch_ctrl;
480
481 if (num == 0) {
482 reg = ptrace_get_hbp_resource_info();
483 } else {
484 idx = ptrace_hbp_num_to_idx(num);
485 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
486 ret = -EINVAL;
487 goto out;
488 }
489
490 bp = tsk->thread.debug.hbp[idx];
491 if (!bp) {
492 reg = 0;
493 goto put;
494 }
495
496 arch_ctrl = counter_arch_bp(bp)->ctrl;
497
498 /*
499 * Fix up the len because we may have adjusted it
500 * to compensate for an unaligned address.
501 */
502 while (!(arch_ctrl.len & 0x1))
503 arch_ctrl.len >>= 1;
504
505 if (num & 0x1)
506 reg = bp->attr.bp_addr;
507 else
508 reg = encode_ctrl_reg(arch_ctrl);
509 }
510
511 put:
512 if (put_user(reg, data))
513 ret = -EFAULT;
514
515 out:
516 return ret;
517 }
518
ptrace_sethbpregs(struct task_struct * tsk,long num,unsigned long __user * data)519 static int ptrace_sethbpregs(struct task_struct *tsk, long num,
520 unsigned long __user *data)
521 {
522 int idx, gen_len, gen_type, implied_type, ret = 0;
523 u32 user_val;
524 struct perf_event *bp;
525 struct arch_hw_breakpoint_ctrl ctrl;
526 struct perf_event_attr attr;
527
528 if (num == 0)
529 goto out;
530 else if (num < 0)
531 implied_type = HW_BREAKPOINT_RW;
532 else
533 implied_type = HW_BREAKPOINT_X;
534
535 idx = ptrace_hbp_num_to_idx(num);
536 if (idx < 0 || idx >= ARM_MAX_HBP_SLOTS) {
537 ret = -EINVAL;
538 goto out;
539 }
540
541 if (get_user(user_val, data)) {
542 ret = -EFAULT;
543 goto out;
544 }
545
546 bp = tsk->thread.debug.hbp[idx];
547 if (!bp) {
548 bp = ptrace_hbp_create(tsk, implied_type);
549 if (IS_ERR(bp)) {
550 ret = PTR_ERR(bp);
551 goto out;
552 }
553 tsk->thread.debug.hbp[idx] = bp;
554 }
555
556 attr = bp->attr;
557
558 if (num & 0x1) {
559 /* Address */
560 attr.bp_addr = user_val;
561 } else {
562 /* Control */
563 decode_ctrl_reg(user_val, &ctrl);
564 ret = arch_bp_generic_fields(ctrl, &gen_len, &gen_type);
565 if (ret)
566 goto out;
567
568 if ((gen_type & implied_type) != gen_type) {
569 ret = -EINVAL;
570 goto out;
571 }
572
573 attr.bp_len = gen_len;
574 attr.bp_type = gen_type;
575 attr.disabled = !ctrl.enabled;
576 }
577
578 ret = modify_user_hw_breakpoint(bp, &attr);
579 out:
580 return ret;
581 }
582 #endif
583
584 /* regset get/set implementations */
585
gpr_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)586 static int gpr_get(struct task_struct *target,
587 const struct user_regset *regset,
588 unsigned int pos, unsigned int count,
589 void *kbuf, void __user *ubuf)
590 {
591 struct pt_regs *regs = task_pt_regs(target);
592
593 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
594 regs,
595 0, sizeof(*regs));
596 }
597
gpr_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)598 static int gpr_set(struct task_struct *target,
599 const struct user_regset *regset,
600 unsigned int pos, unsigned int count,
601 const void *kbuf, const void __user *ubuf)
602 {
603 int ret;
604 struct pt_regs newregs = *task_pt_regs(target);
605
606 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
607 &newregs,
608 0, sizeof(newregs));
609 if (ret)
610 return ret;
611
612 if (!valid_user_regs(&newregs))
613 return -EINVAL;
614
615 *task_pt_regs(target) = newregs;
616 return 0;
617 }
618
fpa_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)619 static int fpa_get(struct task_struct *target,
620 const struct user_regset *regset,
621 unsigned int pos, unsigned int count,
622 void *kbuf, void __user *ubuf)
623 {
624 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
625 &task_thread_info(target)->fpstate,
626 0, sizeof(struct user_fp));
627 }
628
fpa_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)629 static int fpa_set(struct task_struct *target,
630 const struct user_regset *regset,
631 unsigned int pos, unsigned int count,
632 const void *kbuf, const void __user *ubuf)
633 {
634 struct thread_info *thread = task_thread_info(target);
635
636 thread->used_cp[1] = thread->used_cp[2] = 1;
637
638 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
639 &thread->fpstate,
640 0, sizeof(struct user_fp));
641 }
642
643 #ifdef CONFIG_VFP
644 /*
645 * VFP register get/set implementations.
646 *
647 * With respect to the kernel, struct user_fp is divided into three chunks:
648 * 16 or 32 real VFP registers (d0-d15 or d0-31)
649 * These are transferred to/from the real registers in the task's
650 * vfp_hard_struct. The number of registers depends on the kernel
651 * configuration.
652 *
653 * 16 or 0 fake VFP registers (d16-d31 or empty)
654 * i.e., the user_vfp structure has space for 32 registers even if
655 * the kernel doesn't have them all.
656 *
657 * vfp_get() reads this chunk as zero where applicable
658 * vfp_set() ignores this chunk
659 *
660 * 1 word for the FPSCR
661 *
662 * The bounds-checking logic built into user_regset_copyout and friends
663 * means that we can make a simple sequence of calls to map the relevant data
664 * to/from the specified slice of the user regset structure.
665 */
vfp_get(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,void * kbuf,void __user * ubuf)666 static int vfp_get(struct task_struct *target,
667 const struct user_regset *regset,
668 unsigned int pos, unsigned int count,
669 void *kbuf, void __user *ubuf)
670 {
671 int ret;
672 struct thread_info *thread = task_thread_info(target);
673 struct vfp_hard_struct const *vfp = &thread->vfpstate.hard;
674 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
675 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
676
677 vfp_sync_hwstate(thread);
678
679 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
680 &vfp->fpregs,
681 user_fpregs_offset,
682 user_fpregs_offset + sizeof(vfp->fpregs));
683 if (ret)
684 return ret;
685
686 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
687 user_fpregs_offset + sizeof(vfp->fpregs),
688 user_fpscr_offset);
689 if (ret)
690 return ret;
691
692 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
693 &vfp->fpscr,
694 user_fpscr_offset,
695 user_fpscr_offset + sizeof(vfp->fpscr));
696 }
697
698 /*
699 * For vfp_set() a read-modify-write is done on the VFP registers,
700 * in order to avoid writing back a half-modified set of registers on
701 * failure.
702 */
vfp_set(struct task_struct * target,const struct user_regset * regset,unsigned int pos,unsigned int count,const void * kbuf,const void __user * ubuf)703 static int vfp_set(struct task_struct *target,
704 const struct user_regset *regset,
705 unsigned int pos, unsigned int count,
706 const void *kbuf, const void __user *ubuf)
707 {
708 int ret;
709 struct thread_info *thread = task_thread_info(target);
710 struct vfp_hard_struct new_vfp;
711 const size_t user_fpregs_offset = offsetof(struct user_vfp, fpregs);
712 const size_t user_fpscr_offset = offsetof(struct user_vfp, fpscr);
713
714 vfp_sync_hwstate(thread);
715 new_vfp = thread->vfpstate.hard;
716
717 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
718 &new_vfp.fpregs,
719 user_fpregs_offset,
720 user_fpregs_offset + sizeof(new_vfp.fpregs));
721 if (ret)
722 return ret;
723
724 ret = user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
725 user_fpregs_offset + sizeof(new_vfp.fpregs),
726 user_fpscr_offset);
727 if (ret)
728 return ret;
729
730 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
731 &new_vfp.fpscr,
732 user_fpscr_offset,
733 user_fpscr_offset + sizeof(new_vfp.fpscr));
734 if (ret)
735 return ret;
736
737 thread->vfpstate.hard = new_vfp;
738 vfp_flush_hwstate(thread);
739
740 return 0;
741 }
742 #endif /* CONFIG_VFP */
743
744 enum arm_regset {
745 REGSET_GPR,
746 REGSET_FPR,
747 #ifdef CONFIG_VFP
748 REGSET_VFP,
749 #endif
750 };
751
752 static const struct user_regset arm_regsets[] = {
753 [REGSET_GPR] = {
754 .core_note_type = NT_PRSTATUS,
755 .n = ELF_NGREG,
756 .size = sizeof(u32),
757 .align = sizeof(u32),
758 .get = gpr_get,
759 .set = gpr_set
760 },
761 [REGSET_FPR] = {
762 /*
763 * For the FPA regs in fpstate, the real fields are a mixture
764 * of sizes, so pretend that the registers are word-sized:
765 */
766 .core_note_type = NT_PRFPREG,
767 .n = sizeof(struct user_fp) / sizeof(u32),
768 .size = sizeof(u32),
769 .align = sizeof(u32),
770 .get = fpa_get,
771 .set = fpa_set
772 },
773 #ifdef CONFIG_VFP
774 [REGSET_VFP] = {
775 /*
776 * Pretend that the VFP regs are word-sized, since the FPSCR is
777 * a single word dangling at the end of struct user_vfp:
778 */
779 .core_note_type = NT_ARM_VFP,
780 .n = ARM_VFPREGS_SIZE / sizeof(u32),
781 .size = sizeof(u32),
782 .align = sizeof(u32),
783 .get = vfp_get,
784 .set = vfp_set
785 },
786 #endif /* CONFIG_VFP */
787 };
788
789 static const struct user_regset_view user_arm_view = {
790 .name = "arm", .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
791 .regsets = arm_regsets, .n = ARRAY_SIZE(arm_regsets)
792 };
793
task_user_regset_view(struct task_struct * task)794 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
795 {
796 return &user_arm_view;
797 }
798
arch_ptrace(struct task_struct * child,long request,unsigned long addr,unsigned long data)799 long arch_ptrace(struct task_struct *child, long request,
800 unsigned long addr, unsigned long data)
801 {
802 int ret;
803 unsigned long __user *datap = (unsigned long __user *) data;
804
805 switch (request) {
806 case PTRACE_PEEKUSR:
807 ret = ptrace_read_user(child, addr, datap);
808 break;
809
810 case PTRACE_POKEUSR:
811 ret = ptrace_write_user(child, addr, data);
812 break;
813
814 case PTRACE_GETREGS:
815 ret = copy_regset_to_user(child,
816 &user_arm_view, REGSET_GPR,
817 0, sizeof(struct pt_regs),
818 datap);
819 break;
820
821 case PTRACE_SETREGS:
822 ret = copy_regset_from_user(child,
823 &user_arm_view, REGSET_GPR,
824 0, sizeof(struct pt_regs),
825 datap);
826 break;
827
828 case PTRACE_GETFPREGS:
829 ret = copy_regset_to_user(child,
830 &user_arm_view, REGSET_FPR,
831 0, sizeof(union fp_state),
832 datap);
833 break;
834
835 case PTRACE_SETFPREGS:
836 ret = copy_regset_from_user(child,
837 &user_arm_view, REGSET_FPR,
838 0, sizeof(union fp_state),
839 datap);
840 break;
841
842 #ifdef CONFIG_IWMMXT
843 case PTRACE_GETWMMXREGS:
844 ret = ptrace_getwmmxregs(child, datap);
845 break;
846
847 case PTRACE_SETWMMXREGS:
848 ret = ptrace_setwmmxregs(child, datap);
849 break;
850 #endif
851
852 case PTRACE_GET_THREAD_AREA:
853 ret = put_user(task_thread_info(child)->tp_value[0],
854 datap);
855 break;
856
857 case PTRACE_SET_SYSCALL:
858 task_thread_info(child)->syscall = data;
859 ret = 0;
860 break;
861
862 #ifdef CONFIG_CRUNCH
863 case PTRACE_GETCRUNCHREGS:
864 ret = ptrace_getcrunchregs(child, datap);
865 break;
866
867 case PTRACE_SETCRUNCHREGS:
868 ret = ptrace_setcrunchregs(child, datap);
869 break;
870 #endif
871
872 #ifdef CONFIG_VFP
873 case PTRACE_GETVFPREGS:
874 ret = copy_regset_to_user(child,
875 &user_arm_view, REGSET_VFP,
876 0, ARM_VFPREGS_SIZE,
877 datap);
878 break;
879
880 case PTRACE_SETVFPREGS:
881 ret = copy_regset_from_user(child,
882 &user_arm_view, REGSET_VFP,
883 0, ARM_VFPREGS_SIZE,
884 datap);
885 break;
886 #endif
887
888 #ifdef CONFIG_HAVE_HW_BREAKPOINT
889 case PTRACE_GETHBPREGS:
890 ret = ptrace_gethbpregs(child, addr,
891 (unsigned long __user *)data);
892 break;
893 case PTRACE_SETHBPREGS:
894 ret = ptrace_sethbpregs(child, addr,
895 (unsigned long __user *)data);
896 break;
897 #endif
898
899 default:
900 ret = ptrace_request(child, request, addr, data);
901 break;
902 }
903
904 return ret;
905 }
906
907 enum ptrace_syscall_dir {
908 PTRACE_SYSCALL_ENTER = 0,
909 PTRACE_SYSCALL_EXIT,
910 };
911
tracehook_report_syscall(struct pt_regs * regs,enum ptrace_syscall_dir dir)912 static void tracehook_report_syscall(struct pt_regs *regs,
913 enum ptrace_syscall_dir dir)
914 {
915 unsigned long ip;
916
917 /*
918 * IP is used to denote syscall entry/exit:
919 * IP = 0 -> entry, =1 -> exit
920 */
921 ip = regs->ARM_ip;
922 regs->ARM_ip = dir;
923
924 if (dir == PTRACE_SYSCALL_EXIT)
925 tracehook_report_syscall_exit(regs, 0);
926 else if (tracehook_report_syscall_entry(regs))
927 current_thread_info()->syscall = -1;
928
929 regs->ARM_ip = ip;
930 }
931
syscall_trace_enter(struct pt_regs * regs,int scno)932 asmlinkage int syscall_trace_enter(struct pt_regs *regs, int scno)
933 {
934 current_thread_info()->syscall = scno;
935
936 if (test_thread_flag(TIF_SYSCALL_TRACE))
937 tracehook_report_syscall(regs, PTRACE_SYSCALL_ENTER);
938
939 /* Do seccomp after ptrace; syscall may have changed. */
940 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
941 if (secure_computing(NULL) == -1)
942 return -1;
943 #else
944 /* XXX: remove this once OABI gets fixed */
945 secure_computing_strict(current_thread_info()->syscall);
946 #endif
947
948 /* Tracer or seccomp may have changed syscall. */
949 scno = current_thread_info()->syscall;
950
951 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
952 trace_sys_enter(regs, scno);
953
954 audit_syscall_entry(scno, regs->ARM_r0, regs->ARM_r1, regs->ARM_r2,
955 regs->ARM_r3);
956
957 return scno;
958 }
959
syscall_trace_exit(struct pt_regs * regs)960 asmlinkage void syscall_trace_exit(struct pt_regs *regs)
961 {
962 /*
963 * Audit the syscall before anything else, as a debugger may
964 * come in and change the current registers.
965 */
966 audit_syscall_exit(regs);
967
968 /*
969 * Note that we haven't updated the ->syscall field for the
970 * current thread. This isn't a problem because it will have
971 * been set on syscall entry and there hasn't been an opportunity
972 * for a PTRACE_SET_SYSCALL since then.
973 */
974 if (test_thread_flag(TIF_SYSCALL_TRACEPOINT))
975 trace_sys_exit(regs, regs_return_value(regs));
976
977 if (test_thread_flag(TIF_SYSCALL_TRACE))
978 tracehook_report_syscall(regs, PTRACE_SYSCALL_EXIT);
979 }
980