• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  linux/arch/arm/kernel/smp.c
3  *
4  *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/hotplug.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/interrupt.h>
18 #include <linux/cache.h>
19 #include <linux/profile.h>
20 #include <linux/errno.h>
21 #include <linux/mm.h>
22 #include <linux/err.h>
23 #include <linux/cpu.h>
24 #include <linux/seq_file.h>
25 #include <linux/irq.h>
26 #include <linux/nmi.h>
27 #include <linux/percpu.h>
28 #include <linux/clockchips.h>
29 #include <linux/completion.h>
30 #include <linux/cpufreq.h>
31 #include <linux/irq_work.h>
32 
33 #include <linux/atomic.h>
34 #include <asm/bugs.h>
35 #include <asm/smp.h>
36 #include <asm/cacheflush.h>
37 #include <asm/cpu.h>
38 #include <asm/cputype.h>
39 #include <asm/exception.h>
40 #include <asm/idmap.h>
41 #include <asm/topology.h>
42 #include <asm/mmu_context.h>
43 #include <asm/pgtable.h>
44 #include <asm/pgalloc.h>
45 #include <asm/procinfo.h>
46 #include <asm/processor.h>
47 #include <asm/sections.h>
48 #include <asm/tlbflush.h>
49 #include <asm/ptrace.h>
50 #include <asm/smp_plat.h>
51 #include <asm/virt.h>
52 #include <asm/mach/arch.h>
53 #include <asm/mpu.h>
54 
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/ipi.h>
57 
58 /*
59  * as from 2.5, kernels no longer have an init_tasks structure
60  * so we need some other way of telling a new secondary core
61  * where to place its SVC stack
62  */
63 struct secondary_data secondary_data;
64 
65 /*
66  * control for which core is the next to come out of the secondary
67  * boot "holding pen"
68  */
69 volatile int pen_release = -1;
70 
71 enum ipi_msg_type {
72 	IPI_WAKEUP,
73 	IPI_TIMER,
74 	IPI_RESCHEDULE,
75 	IPI_CALL_FUNC,
76 	IPI_CPU_STOP,
77 	IPI_IRQ_WORK,
78 	IPI_COMPLETION,
79 	/*
80 	 * CPU_BACKTRACE is special and not included in NR_IPI
81 	 * or tracable with trace_ipi_*
82 	 */
83 	IPI_CPU_BACKTRACE,
84 	/*
85 	 * SGI8-15 can be reserved by secure firmware, and thus may
86 	 * not be usable by the kernel. Please keep the above limited
87 	 * to at most 8 entries.
88 	 */
89 };
90 
91 static DECLARE_COMPLETION(cpu_running);
92 
93 static struct smp_operations smp_ops __ro_after_init;
94 
smp_set_ops(const struct smp_operations * ops)95 void __init smp_set_ops(const struct smp_operations *ops)
96 {
97 	if (ops)
98 		smp_ops = *ops;
99 };
100 
get_arch_pgd(pgd_t * pgd)101 static unsigned long get_arch_pgd(pgd_t *pgd)
102 {
103 #ifdef CONFIG_ARM_LPAE
104 	return __phys_to_pfn(virt_to_phys(pgd));
105 #else
106 	return virt_to_phys(pgd);
107 #endif
108 }
109 
110 #if defined(CONFIG_BIG_LITTLE) && defined(CONFIG_HARDEN_BRANCH_PREDICTOR)
secondary_biglittle_prepare(unsigned int cpu)111 static int secondary_biglittle_prepare(unsigned int cpu)
112 {
113 	if (!cpu_vtable[cpu])
114 		cpu_vtable[cpu] = kzalloc(sizeof(*cpu_vtable[cpu]), GFP_KERNEL);
115 
116 	return cpu_vtable[cpu] ? 0 : -ENOMEM;
117 }
118 
secondary_biglittle_init(void)119 static void secondary_biglittle_init(void)
120 {
121 	init_proc_vtable(lookup_processor(read_cpuid_id())->proc);
122 }
123 #else
secondary_biglittle_prepare(unsigned int cpu)124 static int secondary_biglittle_prepare(unsigned int cpu)
125 {
126 	return 0;
127 }
128 
secondary_biglittle_init(void)129 static void secondary_biglittle_init(void)
130 {
131 }
132 #endif
133 
__cpu_up(unsigned int cpu,struct task_struct * idle)134 int __cpu_up(unsigned int cpu, struct task_struct *idle)
135 {
136 	int ret;
137 
138 	if (!smp_ops.smp_boot_secondary)
139 		return -ENOSYS;
140 
141 	ret = secondary_biglittle_prepare(cpu);
142 	if (ret)
143 		return ret;
144 
145 	/*
146 	 * We need to tell the secondary core where to find
147 	 * its stack and the page tables.
148 	 */
149 	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
150 #ifdef CONFIG_ARM_MPU
151 	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
152 #endif
153 
154 #ifdef CONFIG_MMU
155 	secondary_data.pgdir = virt_to_phys(idmap_pgd);
156 	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
157 #endif
158 	sync_cache_w(&secondary_data);
159 
160 	/*
161 	 * Now bring the CPU into our world.
162 	 */
163 	ret = smp_ops.smp_boot_secondary(cpu, idle);
164 	if (ret == 0) {
165 		/*
166 		 * CPU was successfully started, wait for it
167 		 * to come online or time out.
168 		 */
169 		wait_for_completion_timeout(&cpu_running,
170 						 msecs_to_jiffies(1000));
171 
172 		if (!cpu_online(cpu)) {
173 			pr_crit("CPU%u: failed to come online\n", cpu);
174 			ret = -EIO;
175 		}
176 	} else {
177 		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
178 	}
179 
180 
181 	memset(&secondary_data, 0, sizeof(secondary_data));
182 	return ret;
183 }
184 
185 /* platform specific SMP operations */
smp_init_cpus(void)186 void __init smp_init_cpus(void)
187 {
188 	if (smp_ops.smp_init_cpus)
189 		smp_ops.smp_init_cpus();
190 }
191 
platform_can_secondary_boot(void)192 int platform_can_secondary_boot(void)
193 {
194 	return !!smp_ops.smp_boot_secondary;
195 }
196 
platform_can_cpu_hotplug(void)197 int platform_can_cpu_hotplug(void)
198 {
199 #ifdef CONFIG_HOTPLUG_CPU
200 	if (smp_ops.cpu_kill)
201 		return 1;
202 #endif
203 
204 	return 0;
205 }
206 
207 #ifdef CONFIG_HOTPLUG_CPU
platform_cpu_kill(unsigned int cpu)208 static int platform_cpu_kill(unsigned int cpu)
209 {
210 	if (smp_ops.cpu_kill)
211 		return smp_ops.cpu_kill(cpu);
212 	return 1;
213 }
214 
platform_cpu_disable(unsigned int cpu)215 static int platform_cpu_disable(unsigned int cpu)
216 {
217 	if (smp_ops.cpu_disable)
218 		return smp_ops.cpu_disable(cpu);
219 
220 	return 0;
221 }
222 
platform_can_hotplug_cpu(unsigned int cpu)223 int platform_can_hotplug_cpu(unsigned int cpu)
224 {
225 	/* cpu_die must be specified to support hotplug */
226 	if (!smp_ops.cpu_die)
227 		return 0;
228 
229 	if (smp_ops.cpu_can_disable)
230 		return smp_ops.cpu_can_disable(cpu);
231 
232 	/*
233 	 * By default, allow disabling all CPUs except the first one,
234 	 * since this is special on a lot of platforms, e.g. because
235 	 * of clock tick interrupts.
236 	 */
237 	return cpu != 0;
238 }
239 
240 /*
241  * __cpu_disable runs on the processor to be shutdown.
242  */
__cpu_disable(void)243 int __cpu_disable(void)
244 {
245 	unsigned int cpu = smp_processor_id();
246 	int ret;
247 
248 	ret = platform_cpu_disable(cpu);
249 	if (ret)
250 		return ret;
251 
252 	/*
253 	 * Take this CPU offline.  Once we clear this, we can't return,
254 	 * and we must not schedule until we're ready to give up the cpu.
255 	 */
256 	set_cpu_online(cpu, false);
257 
258 	/*
259 	 * OK - migrate IRQs away from this CPU
260 	 */
261 	irq_migrate_all_off_this_cpu();
262 
263 	/*
264 	 * Flush user cache and TLB mappings, and then remove this CPU
265 	 * from the vm mask set of all processes.
266 	 *
267 	 * Caches are flushed to the Level of Unification Inner Shareable
268 	 * to write-back dirty lines to unified caches shared by all CPUs.
269 	 */
270 	flush_cache_louis();
271 	local_flush_tlb_all();
272 
273 	clear_tasks_mm_cpumask(cpu);
274 
275 	return 0;
276 }
277 
278 static DECLARE_COMPLETION(cpu_died);
279 
280 /*
281  * called on the thread which is asking for a CPU to be shutdown -
282  * waits until shutdown has completed, or it is timed out.
283  */
__cpu_die(unsigned int cpu)284 void __cpu_die(unsigned int cpu)
285 {
286 	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
287 		pr_err("CPU%u: cpu didn't die\n", cpu);
288 		return;
289 	}
290 	pr_debug("CPU%u: shutdown\n", cpu);
291 
292 	/*
293 	 * platform_cpu_kill() is generally expected to do the powering off
294 	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
295 	 * be done by the CPU which is dying in preference to supporting
296 	 * this call, but that means there is _no_ synchronisation between
297 	 * the requesting CPU and the dying CPU actually losing power.
298 	 */
299 	if (!platform_cpu_kill(cpu))
300 		pr_err("CPU%u: unable to kill\n", cpu);
301 }
302 
303 /*
304  * Called from the idle thread for the CPU which has been shutdown.
305  *
306  * Note that we disable IRQs here, but do not re-enable them
307  * before returning to the caller. This is also the behaviour
308  * of the other hotplug-cpu capable cores, so presumably coming
309  * out of idle fixes this.
310  */
arch_cpu_idle_dead(void)311 void arch_cpu_idle_dead(void)
312 {
313 	unsigned int cpu = smp_processor_id();
314 
315 	idle_task_exit();
316 
317 	local_irq_disable();
318 
319 	/*
320 	 * Flush the data out of the L1 cache for this CPU.  This must be
321 	 * before the completion to ensure that data is safely written out
322 	 * before platform_cpu_kill() gets called - which may disable
323 	 * *this* CPU and power down its cache.
324 	 */
325 	flush_cache_louis();
326 
327 	/*
328 	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
329 	 * this returns, power and/or clocks can be removed at any point
330 	 * from this CPU and its cache by platform_cpu_kill().
331 	 */
332 	complete(&cpu_died);
333 
334 	/*
335 	 * Ensure that the cache lines associated with that completion are
336 	 * written out.  This covers the case where _this_ CPU is doing the
337 	 * powering down, to ensure that the completion is visible to the
338 	 * CPU waiting for this one.
339 	 */
340 	flush_cache_louis();
341 
342 	/*
343 	 * The actual CPU shutdown procedure is at least platform (if not
344 	 * CPU) specific.  This may remove power, or it may simply spin.
345 	 *
346 	 * Platforms are generally expected *NOT* to return from this call,
347 	 * although there are some which do because they have no way to
348 	 * power down the CPU.  These platforms are the _only_ reason we
349 	 * have a return path which uses the fragment of assembly below.
350 	 *
351 	 * The return path should not be used for platforms which can
352 	 * power off the CPU.
353 	 */
354 	if (smp_ops.cpu_die)
355 		smp_ops.cpu_die(cpu);
356 
357 	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
358 		cpu);
359 
360 	/*
361 	 * Do not return to the idle loop - jump back to the secondary
362 	 * cpu initialisation.  There's some initialisation which needs
363 	 * to be repeated to undo the effects of taking the CPU offline.
364 	 */
365 	__asm__("mov	sp, %0\n"
366 	"	mov	fp, #0\n"
367 	"	b	secondary_start_kernel"
368 		:
369 		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
370 }
371 #endif /* CONFIG_HOTPLUG_CPU */
372 
373 /*
374  * Called by both boot and secondaries to move global data into
375  * per-processor storage.
376  */
smp_store_cpu_info(unsigned int cpuid)377 static void smp_store_cpu_info(unsigned int cpuid)
378 {
379 	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
380 
381 	cpu_info->loops_per_jiffy = loops_per_jiffy;
382 	cpu_info->cpuid = read_cpuid_id();
383 
384 	store_cpu_topology(cpuid);
385 }
386 
387 /*
388  * This is the secondary CPU boot entry.  We're using this CPUs
389  * idle thread stack, but a set of temporary page tables.
390  */
secondary_start_kernel(void)391 asmlinkage void secondary_start_kernel(void)
392 {
393 	struct mm_struct *mm = &init_mm;
394 	unsigned int cpu;
395 
396 	secondary_biglittle_init();
397 
398 	/*
399 	 * The identity mapping is uncached (strongly ordered), so
400 	 * switch away from it before attempting any exclusive accesses.
401 	 */
402 	cpu_switch_mm(mm->pgd, mm);
403 	local_flush_bp_all();
404 	enter_lazy_tlb(mm, current);
405 	local_flush_tlb_all();
406 
407 	/*
408 	 * All kernel threads share the same mm context; grab a
409 	 * reference and switch to it.
410 	 */
411 	cpu = smp_processor_id();
412 	mmgrab(mm);
413 	current->active_mm = mm;
414 	cpumask_set_cpu(cpu, mm_cpumask(mm));
415 
416 	cpu_init();
417 
418 	pr_debug("CPU%u: Booted secondary processor\n", cpu);
419 
420 	preempt_disable();
421 	trace_hardirqs_off();
422 
423 	/*
424 	 * Give the platform a chance to do its own initialisation.
425 	 */
426 	if (smp_ops.smp_secondary_init)
427 		smp_ops.smp_secondary_init(cpu);
428 
429 	notify_cpu_starting(cpu);
430 
431 	calibrate_delay();
432 
433 	smp_store_cpu_info(cpu);
434 
435 	/*
436 	 * OK, now it's safe to let the boot CPU continue.  Wait for
437 	 * the CPU migration code to notice that the CPU is online
438 	 * before we continue - which happens after __cpu_up returns.
439 	 */
440 	set_cpu_online(cpu, true);
441 
442 	check_other_bugs();
443 
444 	complete(&cpu_running);
445 
446 	local_irq_enable();
447 	local_fiq_enable();
448 	local_abt_enable();
449 
450 	/*
451 	 * OK, it's off to the idle thread for us
452 	 */
453 	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
454 }
455 
smp_cpus_done(unsigned int max_cpus)456 void __init smp_cpus_done(unsigned int max_cpus)
457 {
458 	int cpu;
459 	unsigned long bogosum = 0;
460 
461 	for_each_online_cpu(cpu)
462 		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
463 
464 	printk(KERN_INFO "SMP: Total of %d processors activated "
465 	       "(%lu.%02lu BogoMIPS).\n",
466 	       num_online_cpus(),
467 	       bogosum / (500000/HZ),
468 	       (bogosum / (5000/HZ)) % 100);
469 
470 	hyp_mode_check();
471 }
472 
smp_prepare_boot_cpu(void)473 void __init smp_prepare_boot_cpu(void)
474 {
475 	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
476 }
477 
smp_prepare_cpus(unsigned int max_cpus)478 void __init smp_prepare_cpus(unsigned int max_cpus)
479 {
480 	unsigned int ncores = num_possible_cpus();
481 
482 	init_cpu_topology();
483 
484 	smp_store_cpu_info(smp_processor_id());
485 
486 	/*
487 	 * are we trying to boot more cores than exist?
488 	 */
489 	if (max_cpus > ncores)
490 		max_cpus = ncores;
491 	if (ncores > 1 && max_cpus) {
492 		/*
493 		 * Initialise the present map, which describes the set of CPUs
494 		 * actually populated at the present time. A platform should
495 		 * re-initialize the map in the platforms smp_prepare_cpus()
496 		 * if present != possible (e.g. physical hotplug).
497 		 */
498 		init_cpu_present(cpu_possible_mask);
499 
500 		/*
501 		 * Initialise the SCU if there are more than one CPU
502 		 * and let them know where to start.
503 		 */
504 		if (smp_ops.smp_prepare_cpus)
505 			smp_ops.smp_prepare_cpus(max_cpus);
506 	}
507 }
508 
509 static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
510 
set_smp_cross_call(void (* fn)(const struct cpumask *,unsigned int))511 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
512 {
513 	if (!__smp_cross_call)
514 		__smp_cross_call = fn;
515 }
516 
517 static const char *ipi_types[NR_IPI] __tracepoint_string = {
518 #define S(x,s)	[x] = s
519 	S(IPI_WAKEUP, "CPU wakeup interrupts"),
520 	S(IPI_TIMER, "Timer broadcast interrupts"),
521 	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
522 	S(IPI_CALL_FUNC, "Function call interrupts"),
523 	S(IPI_CPU_STOP, "CPU stop interrupts"),
524 	S(IPI_IRQ_WORK, "IRQ work interrupts"),
525 	S(IPI_COMPLETION, "completion interrupts"),
526 };
527 
smp_cross_call(const struct cpumask * target,unsigned int ipinr)528 static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
529 {
530 	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
531 	__smp_cross_call(target, ipinr);
532 }
533 
show_ipi_list(struct seq_file * p,int prec)534 void show_ipi_list(struct seq_file *p, int prec)
535 {
536 	unsigned int cpu, i;
537 
538 	for (i = 0; i < NR_IPI; i++) {
539 		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
540 
541 		for_each_online_cpu(cpu)
542 			seq_printf(p, "%10u ",
543 				   __get_irq_stat(cpu, ipi_irqs[i]));
544 
545 		seq_printf(p, " %s\n", ipi_types[i]);
546 	}
547 }
548 
smp_irq_stat_cpu(unsigned int cpu)549 u64 smp_irq_stat_cpu(unsigned int cpu)
550 {
551 	u64 sum = 0;
552 	int i;
553 
554 	for (i = 0; i < NR_IPI; i++)
555 		sum += __get_irq_stat(cpu, ipi_irqs[i]);
556 
557 	return sum;
558 }
559 
arch_send_call_function_ipi_mask(const struct cpumask * mask)560 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
561 {
562 	smp_cross_call(mask, IPI_CALL_FUNC);
563 }
564 
arch_send_wakeup_ipi_mask(const struct cpumask * mask)565 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
566 {
567 	smp_cross_call(mask, IPI_WAKEUP);
568 }
569 
arch_send_call_function_single_ipi(int cpu)570 void arch_send_call_function_single_ipi(int cpu)
571 {
572 	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
573 }
574 
575 #ifdef CONFIG_IRQ_WORK
arch_irq_work_raise(void)576 void arch_irq_work_raise(void)
577 {
578 	if (arch_irq_work_has_interrupt())
579 		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
580 }
581 #endif
582 
583 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
tick_broadcast(const struct cpumask * mask)584 void tick_broadcast(const struct cpumask *mask)
585 {
586 	smp_cross_call(mask, IPI_TIMER);
587 }
588 #endif
589 
590 static DEFINE_RAW_SPINLOCK(stop_lock);
591 
592 /*
593  * ipi_cpu_stop - handle IPI from smp_send_stop()
594  */
ipi_cpu_stop(unsigned int cpu)595 static void ipi_cpu_stop(unsigned int cpu)
596 {
597 	if (system_state <= SYSTEM_RUNNING) {
598 		raw_spin_lock(&stop_lock);
599 		pr_crit("CPU%u: stopping\n", cpu);
600 		dump_stack();
601 		raw_spin_unlock(&stop_lock);
602 	}
603 
604 	set_cpu_online(cpu, false);
605 
606 	local_fiq_disable();
607 	local_irq_disable();
608 
609 	while (1) {
610 		cpu_relax();
611 		wfe();
612 	}
613 }
614 
615 static DEFINE_PER_CPU(struct completion *, cpu_completion);
616 
register_ipi_completion(struct completion * completion,int cpu)617 int register_ipi_completion(struct completion *completion, int cpu)
618 {
619 	per_cpu(cpu_completion, cpu) = completion;
620 	return IPI_COMPLETION;
621 }
622 
ipi_complete(unsigned int cpu)623 static void ipi_complete(unsigned int cpu)
624 {
625 	complete(per_cpu(cpu_completion, cpu));
626 }
627 
628 /*
629  * Main handler for inter-processor interrupts
630  */
do_IPI(int ipinr,struct pt_regs * regs)631 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
632 {
633 	handle_IPI(ipinr, regs);
634 }
635 
handle_IPI(int ipinr,struct pt_regs * regs)636 void handle_IPI(int ipinr, struct pt_regs *regs)
637 {
638 	unsigned int cpu = smp_processor_id();
639 	struct pt_regs *old_regs = set_irq_regs(regs);
640 
641 	if ((unsigned)ipinr < NR_IPI) {
642 		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
643 		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
644 	}
645 
646 	switch (ipinr) {
647 	case IPI_WAKEUP:
648 		break;
649 
650 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
651 	case IPI_TIMER:
652 		irq_enter();
653 		tick_receive_broadcast();
654 		irq_exit();
655 		break;
656 #endif
657 
658 	case IPI_RESCHEDULE:
659 		scheduler_ipi();
660 		break;
661 
662 	case IPI_CALL_FUNC:
663 		irq_enter();
664 		generic_smp_call_function_interrupt();
665 		irq_exit();
666 		break;
667 
668 	case IPI_CPU_STOP:
669 		irq_enter();
670 		ipi_cpu_stop(cpu);
671 		irq_exit();
672 		break;
673 
674 #ifdef CONFIG_IRQ_WORK
675 	case IPI_IRQ_WORK:
676 		irq_enter();
677 		irq_work_run();
678 		irq_exit();
679 		break;
680 #endif
681 
682 	case IPI_COMPLETION:
683 		irq_enter();
684 		ipi_complete(cpu);
685 		irq_exit();
686 		break;
687 
688 	case IPI_CPU_BACKTRACE:
689 		printk_nmi_enter();
690 		irq_enter();
691 		nmi_cpu_backtrace(regs);
692 		irq_exit();
693 		printk_nmi_exit();
694 		break;
695 
696 	default:
697 		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
698 		        cpu, ipinr);
699 		break;
700 	}
701 
702 	if ((unsigned)ipinr < NR_IPI)
703 		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
704 	set_irq_regs(old_regs);
705 }
706 
smp_send_reschedule(int cpu)707 void smp_send_reschedule(int cpu)
708 {
709 	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
710 }
711 
smp_send_stop(void)712 void smp_send_stop(void)
713 {
714 	unsigned long timeout;
715 	struct cpumask mask;
716 
717 	cpumask_copy(&mask, cpu_online_mask);
718 	cpumask_clear_cpu(smp_processor_id(), &mask);
719 	if (!cpumask_empty(&mask))
720 		smp_cross_call(&mask, IPI_CPU_STOP);
721 
722 	/* Wait up to one second for other CPUs to stop */
723 	timeout = USEC_PER_SEC;
724 	while (num_online_cpus() > 1 && timeout--)
725 		udelay(1);
726 
727 	if (num_online_cpus() > 1)
728 		pr_warn("SMP: failed to stop secondary CPUs\n");
729 }
730 
731 /* In case panic() and panic() called at the same time on CPU1 and CPU2,
732  * and CPU 1 calls panic_smp_self_stop() before crash_smp_send_stop()
733  * CPU1 can't receive the ipi irqs from CPU2, CPU1 will be always online,
734  * kdump fails. So split out the panic_smp_self_stop() and add
735  * set_cpu_online(smp_processor_id(), false).
736  */
panic_smp_self_stop(void)737 void panic_smp_self_stop(void)
738 {
739 	pr_debug("CPU %u will stop doing anything useful since another CPU has paniced\n",
740 	         smp_processor_id());
741 	set_cpu_online(smp_processor_id(), false);
742 	while (1)
743 		cpu_relax();
744 }
745 
746 /*
747  * not supported here
748  */
setup_profiling_timer(unsigned int multiplier)749 int setup_profiling_timer(unsigned int multiplier)
750 {
751 	return -EINVAL;
752 }
753 
754 #ifdef CONFIG_CPU_FREQ
755 
756 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
757 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
758 static unsigned long global_l_p_j_ref;
759 static unsigned long global_l_p_j_ref_freq;
760 
cpufreq_callback(struct notifier_block * nb,unsigned long val,void * data)761 static int cpufreq_callback(struct notifier_block *nb,
762 					unsigned long val, void *data)
763 {
764 	struct cpufreq_freqs *freq = data;
765 	int cpu = freq->cpu;
766 
767 	if (freq->flags & CPUFREQ_CONST_LOOPS)
768 		return NOTIFY_OK;
769 
770 	if (!per_cpu(l_p_j_ref, cpu)) {
771 		per_cpu(l_p_j_ref, cpu) =
772 			per_cpu(cpu_data, cpu).loops_per_jiffy;
773 		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
774 		if (!global_l_p_j_ref) {
775 			global_l_p_j_ref = loops_per_jiffy;
776 			global_l_p_j_ref_freq = freq->old;
777 		}
778 	}
779 
780 	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
781 	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
782 		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
783 						global_l_p_j_ref_freq,
784 						freq->new);
785 		per_cpu(cpu_data, cpu).loops_per_jiffy =
786 			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
787 					per_cpu(l_p_j_ref_freq, cpu),
788 					freq->new);
789 	}
790 	return NOTIFY_OK;
791 }
792 
793 static struct notifier_block cpufreq_notifier = {
794 	.notifier_call  = cpufreq_callback,
795 };
796 
register_cpufreq_notifier(void)797 static int __init register_cpufreq_notifier(void)
798 {
799 	return cpufreq_register_notifier(&cpufreq_notifier,
800 						CPUFREQ_TRANSITION_NOTIFIER);
801 }
802 core_initcall(register_cpufreq_notifier);
803 
804 #endif
805 
raise_nmi(cpumask_t * mask)806 static void raise_nmi(cpumask_t *mask)
807 {
808 	__smp_cross_call(mask, IPI_CPU_BACKTRACE);
809 }
810 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,bool exclude_self)811 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
812 {
813 	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
814 }
815