• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * arch/arm/kernel/topology.c
3  *
4  * Copyright (C) 2011 Linaro Limited.
5  * Written by: Vincent Guittot
6  *
7  * based on arch/sh/kernel/topology.c
8  *
9  * This file is subject to the terms and conditions of the GNU General Public
10  * License.  See the file "COPYING" in the main directory of this archive
11  * for more details.
12  */
13 
14 #include <linux/arch_topology.h>
15 #include <linux/cpu.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpumask.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/percpu.h>
21 #include <linux/node.h>
22 #include <linux/nodemask.h>
23 #include <linux/of.h>
24 #include <linux/sched.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/energy.h>
27 #include <linux/slab.h>
28 #include <linux/string.h>
29 
30 #include <asm/cpu.h>
31 #include <asm/cputype.h>
32 #include <asm/topology.h>
33 
34 static inline
cpu_core_energy(int cpu)35 const struct sched_group_energy * const cpu_core_energy(int cpu)
36 {
37 	return sge_array[cpu][SD_LEVEL0];
38 }
39 
40 static inline
cpu_cluster_energy(int cpu)41 const struct sched_group_energy * const cpu_cluster_energy(int cpu)
42 {
43 	return sge_array[cpu][SD_LEVEL1];
44 }
45 
46 /*
47  * cpu capacity scale management
48  */
49 
50 /*
51  * cpu capacity table
52  * This per cpu data structure describes the relative capacity of each core.
53  * On a heteregenous system, cores don't have the same computation capacity
54  * and we reflect that difference in the cpu_capacity field so the scheduler
55  * can take this difference into account during load balance. A per cpu
56  * structure is preferred because each CPU updates its own cpu_capacity field
57  * during the load balance except for idle cores. One idle core is selected
58  * to run the rebalance_domains for all idle cores and the cpu_capacity can be
59  * updated during this sequence.
60  */
61 
62 #ifdef CONFIG_OF
63 struct cpu_efficiency {
64 	const char *compatible;
65 	unsigned long efficiency;
66 };
67 
68 /*
69  * Table of relative efficiency of each processors
70  * The efficiency value must fit in 20bit and the final
71  * cpu_scale value must be in the range
72  *   0 < cpu_scale < 3*SCHED_CAPACITY_SCALE/2
73  * in order to return at most 1 when DIV_ROUND_CLOSEST
74  * is used to compute the capacity of a CPU.
75  * Processors that are not defined in the table,
76  * use the default SCHED_CAPACITY_SCALE value for cpu_scale.
77  */
78 static const struct cpu_efficiency table_efficiency[] = {
79 	{"arm,cortex-a15", 3891},
80 	{"arm,cortex-a7",  2048},
81 	{NULL, },
82 };
83 
84 static unsigned long *__cpu_capacity;
85 #define cpu_capacity(cpu)	__cpu_capacity[cpu]
86 
87 static unsigned long middle_capacity = 1;
88 static bool cap_from_dt = true;
89 
90 /*
91  * Iterate all CPUs' descriptor in DT and compute the efficiency
92  * (as per table_efficiency). Also calculate a middle efficiency
93  * as close as possible to  (max{eff_i} - min{eff_i}) / 2
94  * This is later used to scale the cpu_capacity field such that an
95  * 'average' CPU is of middle capacity. Also see the comments near
96  * table_efficiency[] and update_cpu_capacity().
97  */
parse_dt_topology(void)98 static void __init parse_dt_topology(void)
99 {
100 	const struct cpu_efficiency *cpu_eff;
101 	struct device_node *cn = NULL;
102 	unsigned long min_capacity = ULONG_MAX;
103 	unsigned long max_capacity = 0;
104 	unsigned long capacity = 0;
105 	int cpu = 0;
106 
107 	__cpu_capacity = kcalloc(nr_cpu_ids, sizeof(*__cpu_capacity),
108 				 GFP_NOWAIT);
109 
110 	cn = of_find_node_by_path("/cpus");
111 	if (!cn) {
112 		pr_err("No CPU information found in DT\n");
113 		return;
114 	}
115 
116 	for_each_possible_cpu(cpu) {
117 		const u32 *rate;
118 		int len;
119 
120 		/* too early to use cpu->of_node */
121 		cn = of_get_cpu_node(cpu, NULL);
122 		if (!cn) {
123 			pr_err("missing device node for CPU %d\n", cpu);
124 			continue;
125 		}
126 
127 		if (topology_parse_cpu_capacity(cn, cpu)) {
128 			of_node_put(cn);
129 			continue;
130 		}
131 
132 		cap_from_dt = false;
133 
134 		for (cpu_eff = table_efficiency; cpu_eff->compatible; cpu_eff++)
135 			if (of_device_is_compatible(cn, cpu_eff->compatible))
136 				break;
137 
138 		if (cpu_eff->compatible == NULL)
139 			continue;
140 
141 		rate = of_get_property(cn, "clock-frequency", &len);
142 		if (!rate || len != 4) {
143 			pr_err("%pOF missing clock-frequency property\n", cn);
144 			continue;
145 		}
146 
147 		capacity = ((be32_to_cpup(rate)) >> 20) * cpu_eff->efficiency;
148 
149 		/* Save min capacity of the system */
150 		if (capacity < min_capacity)
151 			min_capacity = capacity;
152 
153 		/* Save max capacity of the system */
154 		if (capacity > max_capacity)
155 			max_capacity = capacity;
156 
157 		cpu_capacity(cpu) = capacity;
158 	}
159 
160 	/* If min and max capacities are equals, we bypass the update of the
161 	 * cpu_scale because all CPUs have the same capacity. Otherwise, we
162 	 * compute a middle_capacity factor that will ensure that the capacity
163 	 * of an 'average' CPU of the system will be as close as possible to
164 	 * SCHED_CAPACITY_SCALE, which is the default value, but with the
165 	 * constraint explained near table_efficiency[].
166 	 */
167 	if (4*max_capacity < (3*(max_capacity + min_capacity)))
168 		middle_capacity = (min_capacity + max_capacity)
169 				>> (SCHED_CAPACITY_SHIFT+1);
170 	else
171 		middle_capacity = ((max_capacity / 3)
172 				>> (SCHED_CAPACITY_SHIFT-1)) + 1;
173 
174 	if (cap_from_dt)
175 		topology_normalize_cpu_scale();
176 }
177 
178 /*
179  * Look for a customed capacity of a CPU in the cpu_capacity table during the
180  * boot. The update of all CPUs is in O(n^2) for heteregeneous system but the
181  * function returns directly for SMP system.
182  */
update_cpu_capacity(unsigned int cpu)183 static void update_cpu_capacity(unsigned int cpu)
184 {
185 	if (!cpu_capacity(cpu) || cap_from_dt)
186 		return;
187 
188 	topology_set_cpu_scale(cpu, cpu_capacity(cpu) / middle_capacity);
189 
190 	pr_info("CPU%u: update cpu_capacity %lu\n",
191 		cpu, topology_get_cpu_scale(NULL, cpu));
192 }
193 
194 #else
parse_dt_topology(void)195 static inline void parse_dt_topology(void) {}
update_cpu_capacity(unsigned int cpuid)196 static inline void update_cpu_capacity(unsigned int cpuid) {}
197 #endif
198 
199  /*
200  * cpu topology table
201  */
202 struct cputopo_arm cpu_topology[NR_CPUS];
203 EXPORT_SYMBOL_GPL(cpu_topology);
204 
cpu_coregroup_mask(int cpu)205 const struct cpumask *cpu_coregroup_mask(int cpu)
206 {
207 	return &cpu_topology[cpu].core_sibling;
208 }
209 
210 /*
211  * The current assumption is that we can power gate each core independently.
212  * This will be superseded by DT binding once available.
213  */
cpu_corepower_mask(int cpu)214 const struct cpumask *cpu_corepower_mask(int cpu)
215 {
216 	return &cpu_topology[cpu].thread_sibling;
217 }
218 
update_siblings_masks(unsigned int cpuid)219 static void update_siblings_masks(unsigned int cpuid)
220 {
221 	struct cputopo_arm *cpu_topo, *cpuid_topo = &cpu_topology[cpuid];
222 	int cpu;
223 
224 	/* update core and thread sibling masks */
225 	for_each_possible_cpu(cpu) {
226 		cpu_topo = &cpu_topology[cpu];
227 
228 		if (cpuid_topo->socket_id != cpu_topo->socket_id)
229 			continue;
230 
231 		cpumask_set_cpu(cpuid, &cpu_topo->core_sibling);
232 		if (cpu != cpuid)
233 			cpumask_set_cpu(cpu, &cpuid_topo->core_sibling);
234 
235 		if (cpuid_topo->core_id != cpu_topo->core_id)
236 			continue;
237 
238 		cpumask_set_cpu(cpuid, &cpu_topo->thread_sibling);
239 		if (cpu != cpuid)
240 			cpumask_set_cpu(cpu, &cpuid_topo->thread_sibling);
241 	}
242 	smp_wmb();
243 }
244 
245 /*
246  * store_cpu_topology is called at boot when only one cpu is running
247  * and with the mutex cpu_hotplug.lock locked, when several cpus have booted,
248  * which prevents simultaneous write access to cpu_topology array
249  */
store_cpu_topology(unsigned int cpuid)250 void store_cpu_topology(unsigned int cpuid)
251 {
252 	struct cputopo_arm *cpuid_topo = &cpu_topology[cpuid];
253 	unsigned int mpidr;
254 
255 	/* If the cpu topology has been already set, just return */
256 	if (cpuid_topo->core_id != -1)
257 		return;
258 
259 	mpidr = read_cpuid_mpidr();
260 
261 	/* create cpu topology mapping */
262 	if ((mpidr & MPIDR_SMP_BITMASK) == MPIDR_SMP_VALUE) {
263 		/*
264 		 * This is a multiprocessor system
265 		 * multiprocessor format & multiprocessor mode field are set
266 		 */
267 
268 		if (mpidr & MPIDR_MT_BITMASK) {
269 			/* core performance interdependency */
270 			cpuid_topo->thread_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
271 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
272 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
273 		} else {
274 			/* largely independent cores */
275 			cpuid_topo->thread_id = -1;
276 			cpuid_topo->core_id = MPIDR_AFFINITY_LEVEL(mpidr, 0);
277 			cpuid_topo->socket_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
278 		}
279 	} else {
280 		/*
281 		 * This is an uniprocessor system
282 		 * we are in multiprocessor format but uniprocessor system
283 		 * or in the old uniprocessor format
284 		 */
285 		cpuid_topo->thread_id = -1;
286 		cpuid_topo->core_id = 0;
287 		cpuid_topo->socket_id = -1;
288 	}
289 
290 	update_siblings_masks(cpuid);
291 
292 	update_cpu_capacity(cpuid);
293 
294 	topology_detect_flags();
295 
296 	pr_info("CPU%u: thread %d, cpu %d, socket %d, mpidr %x\n",
297 		cpuid, cpu_topology[cpuid].thread_id,
298 		cpu_topology[cpuid].core_id,
299 		cpu_topology[cpuid].socket_id, mpidr);
300 }
301 
302 #ifdef CONFIG_SCHED_MC
core_flags(void)303 static int core_flags(void)
304 {
305 	return cpu_core_flags() | topology_core_flags();
306 }
307 
cpu_corepower_flags(void)308 static inline int cpu_corepower_flags(void)
309 {
310 	return topology_core_flags()
311 		| SD_SHARE_PKG_RESOURCES | SD_SHARE_POWERDOMAIN;
312 }
313 #endif
314 
cpu_flags(void)315 static int cpu_flags(void)
316 {
317 	return topology_cpu_flags();
318 }
319 
320 static struct sched_domain_topology_level arm_topology[] = {
321 #ifdef CONFIG_SCHED_MC
322 	{ cpu_coregroup_mask, core_flags, cpu_core_energy, SD_INIT_NAME(MC) },
323 #endif
324 	{ cpu_cpu_mask, cpu_flags, cpu_cluster_energy, SD_INIT_NAME(DIE) },
325 	{ NULL, },
326 };
327 
328 /*
329  * init_cpu_topology is called at boot when only one cpu is running
330  * which prevent simultaneous write access to cpu_topology array
331  */
init_cpu_topology(void)332 void __init init_cpu_topology(void)
333 {
334 	unsigned int cpu;
335 
336 	/* init core mask and capacity */
337 	for_each_possible_cpu(cpu) {
338 		struct cputopo_arm *cpu_topo = &(cpu_topology[cpu]);
339 
340 		cpu_topo->thread_id = -1;
341 		cpu_topo->core_id =  -1;
342 		cpu_topo->socket_id = -1;
343 		cpumask_clear(&cpu_topo->core_sibling);
344 		cpumask_clear(&cpu_topo->thread_sibling);
345 	}
346 	smp_wmb();
347 
348 	parse_dt_topology();
349 
350 	/* Set scheduler topology descriptor */
351 	set_sched_topology(arm_topology);
352 }
353