• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Authors: Rusty Russell <rusty@rustcorp.com.au>
4  *          Christoffer Dall <c.dall@virtualopensystems.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License, version 2, as
8  * published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
18  */
19 
20 #include <linux/bsearch.h>
21 #include <linux/mm.h>
22 #include <linux/kvm_host.h>
23 #include <linux/uaccess.h>
24 #include <asm/kvm_arm.h>
25 #include <asm/kvm_host.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_coproc.h>
28 #include <asm/kvm_mmu.h>
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <trace/events/kvm.h>
32 #include <asm/vfp.h>
33 #include "../vfp/vfpinstr.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include "trace.h"
37 #include "coproc.h"
38 
39 
40 /******************************************************************************
41  * Co-processor emulation
42  *****************************************************************************/
43 
write_to_read_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)44 static bool write_to_read_only(struct kvm_vcpu *vcpu,
45 			       const struct coproc_params *params)
46 {
47 	WARN_ONCE(1, "CP15 write to read-only register\n");
48 	print_cp_instr(params);
49 	kvm_inject_undefined(vcpu);
50 	return false;
51 }
52 
read_from_write_only(struct kvm_vcpu * vcpu,const struct coproc_params * params)53 static bool read_from_write_only(struct kvm_vcpu *vcpu,
54 				 const struct coproc_params *params)
55 {
56 	WARN_ONCE(1, "CP15 read to write-only register\n");
57 	print_cp_instr(params);
58 	kvm_inject_undefined(vcpu);
59 	return false;
60 }
61 
62 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
63 static u32 cache_levels;
64 
65 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
66 #define CSSELR_MAX 12
67 
68 /*
69  * kvm_vcpu_arch.cp15 holds cp15 registers as an array of u32, but some
70  * of cp15 registers can be viewed either as couple of two u32 registers
71  * or one u64 register. Current u64 register encoding is that least
72  * significant u32 word is followed by most significant u32 word.
73  */
vcpu_cp15_reg64_set(struct kvm_vcpu * vcpu,const struct coproc_reg * r,u64 val)74 static inline void vcpu_cp15_reg64_set(struct kvm_vcpu *vcpu,
75 				       const struct coproc_reg *r,
76 				       u64 val)
77 {
78 	vcpu_cp15(vcpu, r->reg) = val & 0xffffffff;
79 	vcpu_cp15(vcpu, r->reg + 1) = val >> 32;
80 }
81 
vcpu_cp15_reg64_get(struct kvm_vcpu * vcpu,const struct coproc_reg * r)82 static inline u64 vcpu_cp15_reg64_get(struct kvm_vcpu *vcpu,
83 				      const struct coproc_reg *r)
84 {
85 	u64 val;
86 
87 	val = vcpu_cp15(vcpu, r->reg + 1);
88 	val = val << 32;
89 	val = val | vcpu_cp15(vcpu, r->reg);
90 	return val;
91 }
92 
kvm_handle_cp10_id(struct kvm_vcpu * vcpu,struct kvm_run * run)93 int kvm_handle_cp10_id(struct kvm_vcpu *vcpu, struct kvm_run *run)
94 {
95 	kvm_inject_undefined(vcpu);
96 	return 1;
97 }
98 
kvm_handle_cp_0_13_access(struct kvm_vcpu * vcpu,struct kvm_run * run)99 int kvm_handle_cp_0_13_access(struct kvm_vcpu *vcpu, struct kvm_run *run)
100 {
101 	/*
102 	 * We can get here, if the host has been built without VFPv3 support,
103 	 * but the guest attempted a floating point operation.
104 	 */
105 	kvm_inject_undefined(vcpu);
106 	return 1;
107 }
108 
kvm_handle_cp14_load_store(struct kvm_vcpu * vcpu,struct kvm_run * run)109 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
110 {
111 	kvm_inject_undefined(vcpu);
112 	return 1;
113 }
114 
reset_mpidr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)115 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
116 {
117 	/*
118 	 * Compute guest MPIDR. We build a virtual cluster out of the
119 	 * vcpu_id, but we read the 'U' bit from the underlying
120 	 * hardware directly.
121 	 */
122 	vcpu_cp15(vcpu, c0_MPIDR) = ((read_cpuid_mpidr() & MPIDR_SMP_BITMASK) |
123 				     ((vcpu->vcpu_id >> 2) << MPIDR_LEVEL_BITS) |
124 				     (vcpu->vcpu_id & 3));
125 }
126 
127 /* TRM entries A7:4.3.31 A15:4.3.28 - RO WI */
access_actlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)128 static bool access_actlr(struct kvm_vcpu *vcpu,
129 			 const struct coproc_params *p,
130 			 const struct coproc_reg *r)
131 {
132 	if (p->is_write)
133 		return ignore_write(vcpu, p);
134 
135 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c1_ACTLR);
136 	return true;
137 }
138 
139 /* TRM entries A7:4.3.56, A15:4.3.60 - R/O. */
access_cbar(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)140 static bool access_cbar(struct kvm_vcpu *vcpu,
141 			const struct coproc_params *p,
142 			const struct coproc_reg *r)
143 {
144 	if (p->is_write)
145 		return write_to_read_only(vcpu, p);
146 	return read_zero(vcpu, p);
147 }
148 
149 /* TRM entries A7:4.3.49, A15:4.3.48 - R/O WI */
access_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)150 static bool access_l2ctlr(struct kvm_vcpu *vcpu,
151 			  const struct coproc_params *p,
152 			  const struct coproc_reg *r)
153 {
154 	if (p->is_write)
155 		return ignore_write(vcpu, p);
156 
157 	*vcpu_reg(vcpu, p->Rt1) = vcpu_cp15(vcpu, c9_L2CTLR);
158 	return true;
159 }
160 
reset_l2ctlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)161 static void reset_l2ctlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
162 {
163 	u32 l2ctlr, ncores;
164 
165 	asm volatile("mrc p15, 1, %0, c9, c0, 2\n" : "=r" (l2ctlr));
166 	l2ctlr &= ~(3 << 24);
167 	ncores = atomic_read(&vcpu->kvm->online_vcpus) - 1;
168 	/* How many cores in the current cluster and the next ones */
169 	ncores -= (vcpu->vcpu_id & ~3);
170 	/* Cap it to the maximum number of cores in a single cluster */
171 	ncores = min(ncores, 3U);
172 	l2ctlr |= (ncores & 3) << 24;
173 
174 	vcpu_cp15(vcpu, c9_L2CTLR) = l2ctlr;
175 }
176 
reset_actlr(struct kvm_vcpu * vcpu,const struct coproc_reg * r)177 static void reset_actlr(struct kvm_vcpu *vcpu, const struct coproc_reg *r)
178 {
179 	u32 actlr;
180 
181 	/* ACTLR contains SMP bit: make sure you create all cpus first! */
182 	asm volatile("mrc p15, 0, %0, c1, c0, 1\n" : "=r" (actlr));
183 	/* Make the SMP bit consistent with the guest configuration */
184 	if (atomic_read(&vcpu->kvm->online_vcpus) > 1)
185 		actlr |= 1U << 6;
186 	else
187 		actlr &= ~(1U << 6);
188 
189 	vcpu_cp15(vcpu, c1_ACTLR) = actlr;
190 }
191 
192 /*
193  * TRM entries: A7:4.3.50, A15:4.3.49
194  * R/O WI (even if NSACR.NS_L2ERR, a write of 1 is ignored).
195  */
access_l2ectlr(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)196 static bool access_l2ectlr(struct kvm_vcpu *vcpu,
197 			   const struct coproc_params *p,
198 			   const struct coproc_reg *r)
199 {
200 	if (p->is_write)
201 		return ignore_write(vcpu, p);
202 
203 	*vcpu_reg(vcpu, p->Rt1) = 0;
204 	return true;
205 }
206 
207 /*
208  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
209  */
access_dcsw(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)210 static bool access_dcsw(struct kvm_vcpu *vcpu,
211 			const struct coproc_params *p,
212 			const struct coproc_reg *r)
213 {
214 	if (!p->is_write)
215 		return read_from_write_only(vcpu, p);
216 
217 	kvm_set_way_flush(vcpu);
218 	return true;
219 }
220 
221 /*
222  * Generic accessor for VM registers. Only called as long as HCR_TVM
223  * is set.  If the guest enables the MMU, we stop trapping the VM
224  * sys_regs and leave it in complete control of the caches.
225  *
226  * Used by the cpu-specific code.
227  */
access_vm_reg(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)228 bool access_vm_reg(struct kvm_vcpu *vcpu,
229 		   const struct coproc_params *p,
230 		   const struct coproc_reg *r)
231 {
232 	bool was_enabled = vcpu_has_cache_enabled(vcpu);
233 
234 	BUG_ON(!p->is_write);
235 
236 	vcpu_cp15(vcpu, r->reg) = *vcpu_reg(vcpu, p->Rt1);
237 	if (p->is_64bit)
238 		vcpu_cp15(vcpu, r->reg + 1) = *vcpu_reg(vcpu, p->Rt2);
239 
240 	kvm_toggle_cache(vcpu, was_enabled);
241 	return true;
242 }
243 
access_gic_sgi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)244 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
245 			   const struct coproc_params *p,
246 			   const struct coproc_reg *r)
247 {
248 	u64 reg;
249 
250 	if (!p->is_write)
251 		return read_from_write_only(vcpu, p);
252 
253 	reg = (u64)*vcpu_reg(vcpu, p->Rt2) << 32;
254 	reg |= *vcpu_reg(vcpu, p->Rt1) ;
255 
256 	vgic_v3_dispatch_sgi(vcpu, reg);
257 
258 	return true;
259 }
260 
access_gic_sre(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)261 static bool access_gic_sre(struct kvm_vcpu *vcpu,
262 			   const struct coproc_params *p,
263 			   const struct coproc_reg *r)
264 {
265 	if (p->is_write)
266 		return ignore_write(vcpu, p);
267 
268 	*vcpu_reg(vcpu, p->Rt1) = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
269 
270 	return true;
271 }
272 
273 /*
274  * We could trap ID_DFR0 and tell the guest we don't support performance
275  * monitoring.  Unfortunately the patch to make the kernel check ID_DFR0 was
276  * NAKed, so it will read the PMCR anyway.
277  *
278  * Therefore we tell the guest we have 0 counters.  Unfortunately, we
279  * must always support PMCCNTR (the cycle counter): we just RAZ/WI for
280  * all PM registers, which doesn't crash the guest kernel at least.
281  */
trap_raz_wi(struct kvm_vcpu * vcpu,const struct coproc_params * p,const struct coproc_reg * r)282 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
283 		    const struct coproc_params *p,
284 		    const struct coproc_reg *r)
285 {
286 	if (p->is_write)
287 		return ignore_write(vcpu, p);
288 	else
289 		return read_zero(vcpu, p);
290 }
291 
292 #define access_pmcr trap_raz_wi
293 #define access_pmcntenset trap_raz_wi
294 #define access_pmcntenclr trap_raz_wi
295 #define access_pmovsr trap_raz_wi
296 #define access_pmselr trap_raz_wi
297 #define access_pmceid0 trap_raz_wi
298 #define access_pmceid1 trap_raz_wi
299 #define access_pmccntr trap_raz_wi
300 #define access_pmxevtyper trap_raz_wi
301 #define access_pmxevcntr trap_raz_wi
302 #define access_pmuserenr trap_raz_wi
303 #define access_pmintenset trap_raz_wi
304 #define access_pmintenclr trap_raz_wi
305 
306 /* Architected CP15 registers.
307  * CRn denotes the primary register number, but is copied to the CRm in the
308  * user space API for 64-bit register access in line with the terminology used
309  * in the ARM ARM.
310  * Important: Must be sorted ascending by CRn, CRM, Op1, Op2 and with 64-bit
311  *            registers preceding 32-bit ones.
312  */
313 static const struct coproc_reg cp15_regs[] = {
314 	/* MPIDR: we use VMPIDR for guest access. */
315 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 5), is32,
316 			NULL, reset_mpidr, c0_MPIDR },
317 
318 	/* CSSELR: swapped by interrupt.S. */
319 	{ CRn( 0), CRm( 0), Op1( 2), Op2( 0), is32,
320 			NULL, reset_unknown, c0_CSSELR },
321 
322 	/* ACTLR: trapped by HCR.TAC bit. */
323 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 1), is32,
324 			access_actlr, reset_actlr, c1_ACTLR },
325 
326 	/* CPACR: swapped by interrupt.S. */
327 	{ CRn( 1), CRm( 0), Op1( 0), Op2( 2), is32,
328 			NULL, reset_val, c1_CPACR, 0x00000000 },
329 
330 	/* TTBR0/TTBR1/TTBCR: swapped by interrupt.S. */
331 	{ CRm64( 2), Op1( 0), is64, access_vm_reg, reset_unknown64, c2_TTBR0 },
332 	{ CRn(2), CRm( 0), Op1( 0), Op2( 0), is32,
333 			access_vm_reg, reset_unknown, c2_TTBR0 },
334 	{ CRn(2), CRm( 0), Op1( 0), Op2( 1), is32,
335 			access_vm_reg, reset_unknown, c2_TTBR1 },
336 	{ CRn( 2), CRm( 0), Op1( 0), Op2( 2), is32,
337 			access_vm_reg, reset_val, c2_TTBCR, 0x00000000 },
338 	{ CRm64( 2), Op1( 1), is64, access_vm_reg, reset_unknown64, c2_TTBR1 },
339 
340 
341 	/* DACR: swapped by interrupt.S. */
342 	{ CRn( 3), CRm( 0), Op1( 0), Op2( 0), is32,
343 			access_vm_reg, reset_unknown, c3_DACR },
344 
345 	/* DFSR/IFSR/ADFSR/AIFSR: swapped by interrupt.S. */
346 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 0), is32,
347 			access_vm_reg, reset_unknown, c5_DFSR },
348 	{ CRn( 5), CRm( 0), Op1( 0), Op2( 1), is32,
349 			access_vm_reg, reset_unknown, c5_IFSR },
350 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 0), is32,
351 			access_vm_reg, reset_unknown, c5_ADFSR },
352 	{ CRn( 5), CRm( 1), Op1( 0), Op2( 1), is32,
353 			access_vm_reg, reset_unknown, c5_AIFSR },
354 
355 	/* DFAR/IFAR: swapped by interrupt.S. */
356 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 0), is32,
357 			access_vm_reg, reset_unknown, c6_DFAR },
358 	{ CRn( 6), CRm( 0), Op1( 0), Op2( 2), is32,
359 			access_vm_reg, reset_unknown, c6_IFAR },
360 
361 	/* PAR swapped by interrupt.S */
362 	{ CRm64( 7), Op1( 0), is64, NULL, reset_unknown64, c7_PAR },
363 
364 	/*
365 	 * DC{C,I,CI}SW operations:
366 	 */
367 	{ CRn( 7), CRm( 6), Op1( 0), Op2( 2), is32, access_dcsw},
368 	{ CRn( 7), CRm(10), Op1( 0), Op2( 2), is32, access_dcsw},
369 	{ CRn( 7), CRm(14), Op1( 0), Op2( 2), is32, access_dcsw},
370 	/*
371 	 * L2CTLR access (guest wants to know #CPUs).
372 	 */
373 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 2), is32,
374 			access_l2ctlr, reset_l2ctlr, c9_L2CTLR },
375 	{ CRn( 9), CRm( 0), Op1( 1), Op2( 3), is32, access_l2ectlr},
376 
377 	/*
378 	 * Dummy performance monitor implementation.
379 	 */
380 	{ CRn( 9), CRm(12), Op1( 0), Op2( 0), is32, access_pmcr},
381 	{ CRn( 9), CRm(12), Op1( 0), Op2( 1), is32, access_pmcntenset},
382 	{ CRn( 9), CRm(12), Op1( 0), Op2( 2), is32, access_pmcntenclr},
383 	{ CRn( 9), CRm(12), Op1( 0), Op2( 3), is32, access_pmovsr},
384 	{ CRn( 9), CRm(12), Op1( 0), Op2( 5), is32, access_pmselr},
385 	{ CRn( 9), CRm(12), Op1( 0), Op2( 6), is32, access_pmceid0},
386 	{ CRn( 9), CRm(12), Op1( 0), Op2( 7), is32, access_pmceid1},
387 	{ CRn( 9), CRm(13), Op1( 0), Op2( 0), is32, access_pmccntr},
388 	{ CRn( 9), CRm(13), Op1( 0), Op2( 1), is32, access_pmxevtyper},
389 	{ CRn( 9), CRm(13), Op1( 0), Op2( 2), is32, access_pmxevcntr},
390 	{ CRn( 9), CRm(14), Op1( 0), Op2( 0), is32, access_pmuserenr},
391 	{ CRn( 9), CRm(14), Op1( 0), Op2( 1), is32, access_pmintenset},
392 	{ CRn( 9), CRm(14), Op1( 0), Op2( 2), is32, access_pmintenclr},
393 
394 	/* PRRR/NMRR (aka MAIR0/MAIR1): swapped by interrupt.S. */
395 	{ CRn(10), CRm( 2), Op1( 0), Op2( 0), is32,
396 			access_vm_reg, reset_unknown, c10_PRRR},
397 	{ CRn(10), CRm( 2), Op1( 0), Op2( 1), is32,
398 			access_vm_reg, reset_unknown, c10_NMRR},
399 
400 	/* AMAIR0/AMAIR1: swapped by interrupt.S. */
401 	{ CRn(10), CRm( 3), Op1( 0), Op2( 0), is32,
402 			access_vm_reg, reset_unknown, c10_AMAIR0},
403 	{ CRn(10), CRm( 3), Op1( 0), Op2( 1), is32,
404 			access_vm_reg, reset_unknown, c10_AMAIR1},
405 
406 	/* ICC_SGI1R */
407 	{ CRm64(12), Op1( 0), is64, access_gic_sgi},
408 
409 	/* VBAR: swapped by interrupt.S. */
410 	{ CRn(12), CRm( 0), Op1( 0), Op2( 0), is32,
411 			NULL, reset_val, c12_VBAR, 0x00000000 },
412 
413 	/* ICC_SRE */
414 	{ CRn(12), CRm(12), Op1( 0), Op2(5), is32, access_gic_sre },
415 
416 	/* CONTEXTIDR/TPIDRURW/TPIDRURO/TPIDRPRW: swapped by interrupt.S. */
417 	{ CRn(13), CRm( 0), Op1( 0), Op2( 1), is32,
418 			access_vm_reg, reset_val, c13_CID, 0x00000000 },
419 	{ CRn(13), CRm( 0), Op1( 0), Op2( 2), is32,
420 			NULL, reset_unknown, c13_TID_URW },
421 	{ CRn(13), CRm( 0), Op1( 0), Op2( 3), is32,
422 			NULL, reset_unknown, c13_TID_URO },
423 	{ CRn(13), CRm( 0), Op1( 0), Op2( 4), is32,
424 			NULL, reset_unknown, c13_TID_PRIV },
425 
426 	/* CNTKCTL: swapped by interrupt.S. */
427 	{ CRn(14), CRm( 1), Op1( 0), Op2( 0), is32,
428 			NULL, reset_val, c14_CNTKCTL, 0x00000000 },
429 
430 	/* The Configuration Base Address Register. */
431 	{ CRn(15), CRm( 0), Op1( 4), Op2( 0), is32, access_cbar},
432 };
433 
check_reg_table(const struct coproc_reg * table,unsigned int n)434 static int check_reg_table(const struct coproc_reg *table, unsigned int n)
435 {
436 	unsigned int i;
437 
438 	for (i = 1; i < n; i++) {
439 		if (cmp_reg(&table[i-1], &table[i]) >= 0) {
440 			kvm_err("reg table %p out of order (%d)\n", table, i - 1);
441 			return 1;
442 		}
443 	}
444 
445 	return 0;
446 }
447 
448 /* Target specific emulation tables */
449 static struct kvm_coproc_target_table *target_tables[KVM_ARM_NUM_TARGETS];
450 
kvm_register_target_coproc_table(struct kvm_coproc_target_table * table)451 void kvm_register_target_coproc_table(struct kvm_coproc_target_table *table)
452 {
453 	BUG_ON(check_reg_table(table->table, table->num));
454 	target_tables[table->target] = table;
455 }
456 
457 /* Get specific register table for this target. */
get_target_table(unsigned target,size_t * num)458 static const struct coproc_reg *get_target_table(unsigned target, size_t *num)
459 {
460 	struct kvm_coproc_target_table *table;
461 
462 	table = target_tables[target];
463 	*num = table->num;
464 	return table->table;
465 }
466 
467 #define reg_to_match_value(x)						\
468 	({								\
469 		unsigned long val;					\
470 		val  = (x)->CRn << 11;					\
471 		val |= (x)->CRm << 7;					\
472 		val |= (x)->Op1 << 4;					\
473 		val |= (x)->Op2 << 1;					\
474 		val |= !(x)->is_64bit;					\
475 		val;							\
476 	 })
477 
match_reg(const void * key,const void * elt)478 static int match_reg(const void *key, const void *elt)
479 {
480 	const unsigned long pval = (unsigned long)key;
481 	const struct coproc_reg *r = elt;
482 
483 	return pval - reg_to_match_value(r);
484 }
485 
find_reg(const struct coproc_params * params,const struct coproc_reg table[],unsigned int num)486 static const struct coproc_reg *find_reg(const struct coproc_params *params,
487 					 const struct coproc_reg table[],
488 					 unsigned int num)
489 {
490 	unsigned long pval = reg_to_match_value(params);
491 
492 	return bsearch((void *)pval, table, num, sizeof(table[0]), match_reg);
493 }
494 
emulate_cp15(struct kvm_vcpu * vcpu,const struct coproc_params * params)495 static int emulate_cp15(struct kvm_vcpu *vcpu,
496 			const struct coproc_params *params)
497 {
498 	size_t num;
499 	const struct coproc_reg *table, *r;
500 
501 	trace_kvm_emulate_cp15_imp(params->Op1, params->Rt1, params->CRn,
502 				   params->CRm, params->Op2, params->is_write);
503 
504 	table = get_target_table(vcpu->arch.target, &num);
505 
506 	/* Search target-specific then generic table. */
507 	r = find_reg(params, table, num);
508 	if (!r)
509 		r = find_reg(params, cp15_regs, ARRAY_SIZE(cp15_regs));
510 
511 	if (likely(r)) {
512 		/* If we don't have an accessor, we should never get here! */
513 		BUG_ON(!r->access);
514 
515 		if (likely(r->access(vcpu, params, r))) {
516 			/* Skip instruction, since it was emulated */
517 			kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
518 		}
519 	} else {
520 		/* If access function fails, it should complain. */
521 		kvm_err("Unsupported guest CP15 access at: %08lx\n",
522 			*vcpu_pc(vcpu));
523 		print_cp_instr(params);
524 		kvm_inject_undefined(vcpu);
525 	}
526 
527 	return 1;
528 }
529 
decode_64bit_hsr(struct kvm_vcpu * vcpu)530 static struct coproc_params decode_64bit_hsr(struct kvm_vcpu *vcpu)
531 {
532 	struct coproc_params params;
533 
534 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
535 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
536 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
537 	params.is_64bit = true;
538 
539 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 16) & 0xf;
540 	params.Op2 = 0;
541 	params.Rt2 = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
542 	params.CRm = 0;
543 
544 	return params;
545 }
546 
547 /**
548  * kvm_handle_cp15_64 -- handles a mrrc/mcrr trap on a guest CP15 access
549  * @vcpu: The VCPU pointer
550  * @run:  The kvm_run struct
551  */
kvm_handle_cp15_64(struct kvm_vcpu * vcpu,struct kvm_run * run)552 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
553 {
554 	struct coproc_params params = decode_64bit_hsr(vcpu);
555 
556 	return emulate_cp15(vcpu, &params);
557 }
558 
559 /**
560  * kvm_handle_cp14_64 -- handles a mrrc/mcrr trap on a guest CP14 access
561  * @vcpu: The VCPU pointer
562  * @run:  The kvm_run struct
563  */
kvm_handle_cp14_64(struct kvm_vcpu * vcpu,struct kvm_run * run)564 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
565 {
566 	struct coproc_params params = decode_64bit_hsr(vcpu);
567 
568 	/* raz_wi cp14 */
569 	trap_raz_wi(vcpu, &params, NULL);
570 
571 	/* handled */
572 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
573 	return 1;
574 }
575 
reset_coproc_regs(struct kvm_vcpu * vcpu,const struct coproc_reg * table,size_t num)576 static void reset_coproc_regs(struct kvm_vcpu *vcpu,
577 			      const struct coproc_reg *table, size_t num)
578 {
579 	unsigned long i;
580 
581 	for (i = 0; i < num; i++)
582 		if (table[i].reset)
583 			table[i].reset(vcpu, &table[i]);
584 }
585 
decode_32bit_hsr(struct kvm_vcpu * vcpu)586 static struct coproc_params decode_32bit_hsr(struct kvm_vcpu *vcpu)
587 {
588 	struct coproc_params params;
589 
590 	params.CRm = (kvm_vcpu_get_hsr(vcpu) >> 1) & 0xf;
591 	params.Rt1 = (kvm_vcpu_get_hsr(vcpu) >> 5) & 0xf;
592 	params.is_write = ((kvm_vcpu_get_hsr(vcpu) & 1) == 0);
593 	params.is_64bit = false;
594 
595 	params.CRn = (kvm_vcpu_get_hsr(vcpu) >> 10) & 0xf;
596 	params.Op1 = (kvm_vcpu_get_hsr(vcpu) >> 14) & 0x7;
597 	params.Op2 = (kvm_vcpu_get_hsr(vcpu) >> 17) & 0x7;
598 	params.Rt2 = 0;
599 
600 	return params;
601 }
602 
603 /**
604  * kvm_handle_cp15_32 -- handles a mrc/mcr trap on a guest CP15 access
605  * @vcpu: The VCPU pointer
606  * @run:  The kvm_run struct
607  */
kvm_handle_cp15_32(struct kvm_vcpu * vcpu,struct kvm_run * run)608 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
609 {
610 	struct coproc_params params = decode_32bit_hsr(vcpu);
611 	return emulate_cp15(vcpu, &params);
612 }
613 
614 /**
615  * kvm_handle_cp14_32 -- handles a mrc/mcr trap on a guest CP14 access
616  * @vcpu: The VCPU pointer
617  * @run:  The kvm_run struct
618  */
kvm_handle_cp14_32(struct kvm_vcpu * vcpu,struct kvm_run * run)619 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
620 {
621 	struct coproc_params params = decode_32bit_hsr(vcpu);
622 
623 	/* raz_wi cp14 */
624 	trap_raz_wi(vcpu, &params, NULL);
625 
626 	/* handled */
627 	kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
628 	return 1;
629 }
630 
631 /******************************************************************************
632  * Userspace API
633  *****************************************************************************/
634 
index_to_params(u64 id,struct coproc_params * params)635 static bool index_to_params(u64 id, struct coproc_params *params)
636 {
637 	switch (id & KVM_REG_SIZE_MASK) {
638 	case KVM_REG_SIZE_U32:
639 		/* Any unused index bits means it's not valid. */
640 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
641 			   | KVM_REG_ARM_COPROC_MASK
642 			   | KVM_REG_ARM_32_CRN_MASK
643 			   | KVM_REG_ARM_CRM_MASK
644 			   | KVM_REG_ARM_OPC1_MASK
645 			   | KVM_REG_ARM_32_OPC2_MASK))
646 			return false;
647 
648 		params->is_64bit = false;
649 		params->CRn = ((id & KVM_REG_ARM_32_CRN_MASK)
650 			       >> KVM_REG_ARM_32_CRN_SHIFT);
651 		params->CRm = ((id & KVM_REG_ARM_CRM_MASK)
652 			       >> KVM_REG_ARM_CRM_SHIFT);
653 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
654 			       >> KVM_REG_ARM_OPC1_SHIFT);
655 		params->Op2 = ((id & KVM_REG_ARM_32_OPC2_MASK)
656 			       >> KVM_REG_ARM_32_OPC2_SHIFT);
657 		return true;
658 	case KVM_REG_SIZE_U64:
659 		/* Any unused index bits means it's not valid. */
660 		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
661 			      | KVM_REG_ARM_COPROC_MASK
662 			      | KVM_REG_ARM_CRM_MASK
663 			      | KVM_REG_ARM_OPC1_MASK))
664 			return false;
665 		params->is_64bit = true;
666 		/* CRm to CRn: see cp15_to_index for details */
667 		params->CRn = ((id & KVM_REG_ARM_CRM_MASK)
668 			       >> KVM_REG_ARM_CRM_SHIFT);
669 		params->Op1 = ((id & KVM_REG_ARM_OPC1_MASK)
670 			       >> KVM_REG_ARM_OPC1_SHIFT);
671 		params->Op2 = 0;
672 		params->CRm = 0;
673 		return true;
674 	default:
675 		return false;
676 	}
677 }
678 
679 /* Decode an index value, and find the cp15 coproc_reg entry. */
index_to_coproc_reg(struct kvm_vcpu * vcpu,u64 id)680 static const struct coproc_reg *index_to_coproc_reg(struct kvm_vcpu *vcpu,
681 						    u64 id)
682 {
683 	size_t num;
684 	const struct coproc_reg *table, *r;
685 	struct coproc_params params;
686 
687 	/* We only do cp15 for now. */
688 	if ((id & KVM_REG_ARM_COPROC_MASK) >> KVM_REG_ARM_COPROC_SHIFT != 15)
689 		return NULL;
690 
691 	if (!index_to_params(id, &params))
692 		return NULL;
693 
694 	table = get_target_table(vcpu->arch.target, &num);
695 	r = find_reg(&params, table, num);
696 	if (!r)
697 		r = find_reg(&params, cp15_regs, ARRAY_SIZE(cp15_regs));
698 
699 	/* Not saved in the cp15 array? */
700 	if (r && !r->reg)
701 		r = NULL;
702 
703 	return r;
704 }
705 
706 /*
707  * These are the invariant cp15 registers: we let the guest see the host
708  * versions of these, so they're part of the guest state.
709  *
710  * A future CPU may provide a mechanism to present different values to
711  * the guest, or a future kvm may trap them.
712  */
713 /* Unfortunately, there's no register-argument for mrc, so generate. */
714 #define FUNCTION_FOR32(crn, crm, op1, op2, name)			\
715 	static void get_##name(struct kvm_vcpu *v,			\
716 			       const struct coproc_reg *r)		\
717 	{								\
718 		u32 val;						\
719 									\
720 		asm volatile("mrc p15, " __stringify(op1)		\
721 			     ", %0, c" __stringify(crn)			\
722 			     ", c" __stringify(crm)			\
723 			     ", " __stringify(op2) "\n" : "=r" (val));	\
724 		((struct coproc_reg *)r)->val = val;			\
725 	}
726 
727 FUNCTION_FOR32(0, 0, 0, 0, MIDR)
728 FUNCTION_FOR32(0, 0, 0, 1, CTR)
729 FUNCTION_FOR32(0, 0, 0, 2, TCMTR)
730 FUNCTION_FOR32(0, 0, 0, 3, TLBTR)
731 FUNCTION_FOR32(0, 0, 0, 6, REVIDR)
732 FUNCTION_FOR32(0, 1, 0, 0, ID_PFR0)
733 FUNCTION_FOR32(0, 1, 0, 1, ID_PFR1)
734 FUNCTION_FOR32(0, 1, 0, 2, ID_DFR0)
735 FUNCTION_FOR32(0, 1, 0, 3, ID_AFR0)
736 FUNCTION_FOR32(0, 1, 0, 4, ID_MMFR0)
737 FUNCTION_FOR32(0, 1, 0, 5, ID_MMFR1)
738 FUNCTION_FOR32(0, 1, 0, 6, ID_MMFR2)
739 FUNCTION_FOR32(0, 1, 0, 7, ID_MMFR3)
740 FUNCTION_FOR32(0, 2, 0, 0, ID_ISAR0)
741 FUNCTION_FOR32(0, 2, 0, 1, ID_ISAR1)
742 FUNCTION_FOR32(0, 2, 0, 2, ID_ISAR2)
743 FUNCTION_FOR32(0, 2, 0, 3, ID_ISAR3)
744 FUNCTION_FOR32(0, 2, 0, 4, ID_ISAR4)
745 FUNCTION_FOR32(0, 2, 0, 5, ID_ISAR5)
746 FUNCTION_FOR32(0, 0, 1, 1, CLIDR)
747 FUNCTION_FOR32(0, 0, 1, 7, AIDR)
748 
749 /* ->val is filled in by kvm_invariant_coproc_table_init() */
750 static struct coproc_reg invariant_cp15[] = {
751 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 0), is32, NULL, get_MIDR },
752 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 1), is32, NULL, get_CTR },
753 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 2), is32, NULL, get_TCMTR },
754 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 3), is32, NULL, get_TLBTR },
755 	{ CRn( 0), CRm( 0), Op1( 0), Op2( 6), is32, NULL, get_REVIDR },
756 
757 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 1), is32, NULL, get_CLIDR },
758 	{ CRn( 0), CRm( 0), Op1( 1), Op2( 7), is32, NULL, get_AIDR },
759 
760 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 0), is32, NULL, get_ID_PFR0 },
761 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 1), is32, NULL, get_ID_PFR1 },
762 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 2), is32, NULL, get_ID_DFR0 },
763 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 3), is32, NULL, get_ID_AFR0 },
764 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 4), is32, NULL, get_ID_MMFR0 },
765 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 5), is32, NULL, get_ID_MMFR1 },
766 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 6), is32, NULL, get_ID_MMFR2 },
767 	{ CRn( 0), CRm( 1), Op1( 0), Op2( 7), is32, NULL, get_ID_MMFR3 },
768 
769 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 0), is32, NULL, get_ID_ISAR0 },
770 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 1), is32, NULL, get_ID_ISAR1 },
771 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 2), is32, NULL, get_ID_ISAR2 },
772 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 3), is32, NULL, get_ID_ISAR3 },
773 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 4), is32, NULL, get_ID_ISAR4 },
774 	{ CRn( 0), CRm( 2), Op1( 0), Op2( 5), is32, NULL, get_ID_ISAR5 },
775 };
776 
777 /*
778  * Reads a register value from a userspace address to a kernel
779  * variable. Make sure that register size matches sizeof(*__val).
780  */
reg_from_user(void * val,const void __user * uaddr,u64 id)781 static int reg_from_user(void *val, const void __user *uaddr, u64 id)
782 {
783 	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
784 		return -EFAULT;
785 	return 0;
786 }
787 
788 /*
789  * Writes a register value to a userspace address from a kernel variable.
790  * Make sure that register size matches sizeof(*__val).
791  */
reg_to_user(void __user * uaddr,const void * val,u64 id)792 static int reg_to_user(void __user *uaddr, const void *val, u64 id)
793 {
794 	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
795 		return -EFAULT;
796 	return 0;
797 }
798 
get_invariant_cp15(u64 id,void __user * uaddr)799 static int get_invariant_cp15(u64 id, void __user *uaddr)
800 {
801 	struct coproc_params params;
802 	const struct coproc_reg *r;
803 	int ret;
804 
805 	if (!index_to_params(id, &params))
806 		return -ENOENT;
807 
808 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
809 	if (!r)
810 		return -ENOENT;
811 
812 	ret = -ENOENT;
813 	if (KVM_REG_SIZE(id) == 4) {
814 		u32 val = r->val;
815 
816 		ret = reg_to_user(uaddr, &val, id);
817 	} else if (KVM_REG_SIZE(id) == 8) {
818 		ret = reg_to_user(uaddr, &r->val, id);
819 	}
820 	return ret;
821 }
822 
set_invariant_cp15(u64 id,void __user * uaddr)823 static int set_invariant_cp15(u64 id, void __user *uaddr)
824 {
825 	struct coproc_params params;
826 	const struct coproc_reg *r;
827 	int err;
828 	u64 val;
829 
830 	if (!index_to_params(id, &params))
831 		return -ENOENT;
832 	r = find_reg(&params, invariant_cp15, ARRAY_SIZE(invariant_cp15));
833 	if (!r)
834 		return -ENOENT;
835 
836 	err = -ENOENT;
837 	if (KVM_REG_SIZE(id) == 4) {
838 		u32 val32;
839 
840 		err = reg_from_user(&val32, uaddr, id);
841 		if (!err)
842 			val = val32;
843 	} else if (KVM_REG_SIZE(id) == 8) {
844 		err = reg_from_user(&val, uaddr, id);
845 	}
846 	if (err)
847 		return err;
848 
849 	/* This is what we mean by invariant: you can't change it. */
850 	if (r->val != val)
851 		return -EINVAL;
852 
853 	return 0;
854 }
855 
is_valid_cache(u32 val)856 static bool is_valid_cache(u32 val)
857 {
858 	u32 level, ctype;
859 
860 	if (val >= CSSELR_MAX)
861 		return false;
862 
863 	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
864         level = (val >> 1);
865         ctype = (cache_levels >> (level * 3)) & 7;
866 
867 	switch (ctype) {
868 	case 0: /* No cache */
869 		return false;
870 	case 1: /* Instruction cache only */
871 		return (val & 1);
872 	case 2: /* Data cache only */
873 	case 4: /* Unified cache */
874 		return !(val & 1);
875 	case 3: /* Separate instruction and data caches */
876 		return true;
877 	default: /* Reserved: we can't know instruction or data. */
878 		return false;
879 	}
880 }
881 
882 /* Which cache CCSIDR represents depends on CSSELR value. */
get_ccsidr(u32 csselr)883 static u32 get_ccsidr(u32 csselr)
884 {
885 	u32 ccsidr;
886 
887 	/* Make sure noone else changes CSSELR during this! */
888 	local_irq_disable();
889 	/* Put value into CSSELR */
890 	asm volatile("mcr p15, 2, %0, c0, c0, 0" : : "r" (csselr));
891 	isb();
892 	/* Read result out of CCSIDR */
893 	asm volatile("mrc p15, 1, %0, c0, c0, 0" : "=r" (ccsidr));
894 	local_irq_enable();
895 
896 	return ccsidr;
897 }
898 
demux_c15_get(u64 id,void __user * uaddr)899 static int demux_c15_get(u64 id, void __user *uaddr)
900 {
901 	u32 val;
902 	u32 __user *uval = uaddr;
903 
904 	/* Fail if we have unknown bits set. */
905 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
906 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
907 		return -ENOENT;
908 
909 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
910 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
911 		if (KVM_REG_SIZE(id) != 4)
912 			return -ENOENT;
913 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
914 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
915 		if (!is_valid_cache(val))
916 			return -ENOENT;
917 
918 		return put_user(get_ccsidr(val), uval);
919 	default:
920 		return -ENOENT;
921 	}
922 }
923 
demux_c15_set(u64 id,void __user * uaddr)924 static int demux_c15_set(u64 id, void __user *uaddr)
925 {
926 	u32 val, newval;
927 	u32 __user *uval = uaddr;
928 
929 	/* Fail if we have unknown bits set. */
930 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
931 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
932 		return -ENOENT;
933 
934 	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
935 	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
936 		if (KVM_REG_SIZE(id) != 4)
937 			return -ENOENT;
938 		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
939 			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
940 		if (!is_valid_cache(val))
941 			return -ENOENT;
942 
943 		if (get_user(newval, uval))
944 			return -EFAULT;
945 
946 		/* This is also invariant: you can't change it. */
947 		if (newval != get_ccsidr(val))
948 			return -EINVAL;
949 		return 0;
950 	default:
951 		return -ENOENT;
952 	}
953 }
954 
955 #ifdef CONFIG_VFPv3
956 static const int vfp_sysregs[] = { KVM_REG_ARM_VFP_FPEXC,
957 				   KVM_REG_ARM_VFP_FPSCR,
958 				   KVM_REG_ARM_VFP_FPINST,
959 				   KVM_REG_ARM_VFP_FPINST2,
960 				   KVM_REG_ARM_VFP_MVFR0,
961 				   KVM_REG_ARM_VFP_MVFR1,
962 				   KVM_REG_ARM_VFP_FPSID };
963 
num_fp_regs(void)964 static unsigned int num_fp_regs(void)
965 {
966 	if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK) >> MVFR0_A_SIMD_BIT) == 2)
967 		return 32;
968 	else
969 		return 16;
970 }
971 
num_vfp_regs(void)972 static unsigned int num_vfp_regs(void)
973 {
974 	/* Normal FP regs + control regs. */
975 	return num_fp_regs() + ARRAY_SIZE(vfp_sysregs);
976 }
977 
copy_vfp_regids(u64 __user * uindices)978 static int copy_vfp_regids(u64 __user *uindices)
979 {
980 	unsigned int i;
981 	const u64 u32reg = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP;
982 	const u64 u64reg = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
983 
984 	for (i = 0; i < num_fp_regs(); i++) {
985 		if (put_user((u64reg | KVM_REG_ARM_VFP_BASE_REG) + i,
986 			     uindices))
987 			return -EFAULT;
988 		uindices++;
989 	}
990 
991 	for (i = 0; i < ARRAY_SIZE(vfp_sysregs); i++) {
992 		if (put_user(u32reg | vfp_sysregs[i], uindices))
993 			return -EFAULT;
994 		uindices++;
995 	}
996 
997 	return num_vfp_regs();
998 }
999 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1000 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1001 {
1002 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1003 	u32 val;
1004 
1005 	/* Fail if we have unknown bits set. */
1006 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1007 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1008 		return -ENOENT;
1009 
1010 	if (vfpid < num_fp_regs()) {
1011 		if (KVM_REG_SIZE(id) != 8)
1012 			return -ENOENT;
1013 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpregs[vfpid],
1014 				   id);
1015 	}
1016 
1017 	/* FP control registers are all 32 bit. */
1018 	if (KVM_REG_SIZE(id) != 4)
1019 		return -ENOENT;
1020 
1021 	switch (vfpid) {
1022 	case KVM_REG_ARM_VFP_FPEXC:
1023 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpexc, id);
1024 	case KVM_REG_ARM_VFP_FPSCR:
1025 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpscr, id);
1026 	case KVM_REG_ARM_VFP_FPINST:
1027 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst, id);
1028 	case KVM_REG_ARM_VFP_FPINST2:
1029 		return reg_to_user(uaddr, &vcpu->arch.ctxt.vfp.fpinst2, id);
1030 	case KVM_REG_ARM_VFP_MVFR0:
1031 		val = fmrx(MVFR0);
1032 		return reg_to_user(uaddr, &val, id);
1033 	case KVM_REG_ARM_VFP_MVFR1:
1034 		val = fmrx(MVFR1);
1035 		return reg_to_user(uaddr, &val, id);
1036 	case KVM_REG_ARM_VFP_FPSID:
1037 		val = fmrx(FPSID);
1038 		return reg_to_user(uaddr, &val, id);
1039 	default:
1040 		return -ENOENT;
1041 	}
1042 }
1043 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1044 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1045 {
1046 	u32 vfpid = (id & KVM_REG_ARM_VFP_MASK);
1047 	u32 val;
1048 
1049 	/* Fail if we have unknown bits set. */
1050 	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1051 		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1052 		return -ENOENT;
1053 
1054 	if (vfpid < num_fp_regs()) {
1055 		if (KVM_REG_SIZE(id) != 8)
1056 			return -ENOENT;
1057 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpregs[vfpid],
1058 				     uaddr, id);
1059 	}
1060 
1061 	/* FP control registers are all 32 bit. */
1062 	if (KVM_REG_SIZE(id) != 4)
1063 		return -ENOENT;
1064 
1065 	switch (vfpid) {
1066 	case KVM_REG_ARM_VFP_FPEXC:
1067 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpexc, uaddr, id);
1068 	case KVM_REG_ARM_VFP_FPSCR:
1069 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpscr, uaddr, id);
1070 	case KVM_REG_ARM_VFP_FPINST:
1071 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst, uaddr, id);
1072 	case KVM_REG_ARM_VFP_FPINST2:
1073 		return reg_from_user(&vcpu->arch.ctxt.vfp.fpinst2, uaddr, id);
1074 	/* These are invariant. */
1075 	case KVM_REG_ARM_VFP_MVFR0:
1076 		if (reg_from_user(&val, uaddr, id))
1077 			return -EFAULT;
1078 		if (val != fmrx(MVFR0))
1079 			return -EINVAL;
1080 		return 0;
1081 	case KVM_REG_ARM_VFP_MVFR1:
1082 		if (reg_from_user(&val, uaddr, id))
1083 			return -EFAULT;
1084 		if (val != fmrx(MVFR1))
1085 			return -EINVAL;
1086 		return 0;
1087 	case KVM_REG_ARM_VFP_FPSID:
1088 		if (reg_from_user(&val, uaddr, id))
1089 			return -EFAULT;
1090 		if (val != fmrx(FPSID))
1091 			return -EINVAL;
1092 		return 0;
1093 	default:
1094 		return -ENOENT;
1095 	}
1096 }
1097 #else /* !CONFIG_VFPv3 */
num_vfp_regs(void)1098 static unsigned int num_vfp_regs(void)
1099 {
1100 	return 0;
1101 }
1102 
copy_vfp_regids(u64 __user * uindices)1103 static int copy_vfp_regids(u64 __user *uindices)
1104 {
1105 	return 0;
1106 }
1107 
vfp_get_reg(const struct kvm_vcpu * vcpu,u64 id,void __user * uaddr)1108 static int vfp_get_reg(const struct kvm_vcpu *vcpu, u64 id, void __user *uaddr)
1109 {
1110 	return -ENOENT;
1111 }
1112 
vfp_set_reg(struct kvm_vcpu * vcpu,u64 id,const void __user * uaddr)1113 static int vfp_set_reg(struct kvm_vcpu *vcpu, u64 id, const void __user *uaddr)
1114 {
1115 	return -ENOENT;
1116 }
1117 #endif /* !CONFIG_VFPv3 */
1118 
kvm_arm_coproc_get_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1119 int kvm_arm_coproc_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1120 {
1121 	const struct coproc_reg *r;
1122 	void __user *uaddr = (void __user *)(long)reg->addr;
1123 	int ret;
1124 
1125 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1126 		return demux_c15_get(reg->id, uaddr);
1127 
1128 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1129 		return vfp_get_reg(vcpu, reg->id, uaddr);
1130 
1131 	r = index_to_coproc_reg(vcpu, reg->id);
1132 	if (!r)
1133 		return get_invariant_cp15(reg->id, uaddr);
1134 
1135 	ret = -ENOENT;
1136 	if (KVM_REG_SIZE(reg->id) == 8) {
1137 		u64 val;
1138 
1139 		val = vcpu_cp15_reg64_get(vcpu, r);
1140 		ret = reg_to_user(uaddr, &val, reg->id);
1141 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1142 		ret = reg_to_user(uaddr, &vcpu_cp15(vcpu, r->reg), reg->id);
1143 	}
1144 
1145 	return ret;
1146 }
1147 
kvm_arm_coproc_set_reg(struct kvm_vcpu * vcpu,const struct kvm_one_reg * reg)1148 int kvm_arm_coproc_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
1149 {
1150 	const struct coproc_reg *r;
1151 	void __user *uaddr = (void __user *)(long)reg->addr;
1152 	int ret;
1153 
1154 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
1155 		return demux_c15_set(reg->id, uaddr);
1156 
1157 	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_VFP)
1158 		return vfp_set_reg(vcpu, reg->id, uaddr);
1159 
1160 	r = index_to_coproc_reg(vcpu, reg->id);
1161 	if (!r)
1162 		return set_invariant_cp15(reg->id, uaddr);
1163 
1164 	ret = -ENOENT;
1165 	if (KVM_REG_SIZE(reg->id) == 8) {
1166 		u64 val;
1167 
1168 		ret = reg_from_user(&val, uaddr, reg->id);
1169 		if (!ret)
1170 			vcpu_cp15_reg64_set(vcpu, r, val);
1171 	} else if (KVM_REG_SIZE(reg->id) == 4) {
1172 		ret = reg_from_user(&vcpu_cp15(vcpu, r->reg), uaddr, reg->id);
1173 	}
1174 
1175 	return ret;
1176 }
1177 
num_demux_regs(void)1178 static unsigned int num_demux_regs(void)
1179 {
1180 	unsigned int i, count = 0;
1181 
1182 	for (i = 0; i < CSSELR_MAX; i++)
1183 		if (is_valid_cache(i))
1184 			count++;
1185 
1186 	return count;
1187 }
1188 
write_demux_regids(u64 __user * uindices)1189 static int write_demux_regids(u64 __user *uindices)
1190 {
1191 	u64 val = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
1192 	unsigned int i;
1193 
1194 	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
1195 	for (i = 0; i < CSSELR_MAX; i++) {
1196 		if (!is_valid_cache(i))
1197 			continue;
1198 		if (put_user(val | i, uindices))
1199 			return -EFAULT;
1200 		uindices++;
1201 	}
1202 	return 0;
1203 }
1204 
cp15_to_index(const struct coproc_reg * reg)1205 static u64 cp15_to_index(const struct coproc_reg *reg)
1206 {
1207 	u64 val = KVM_REG_ARM | (15 << KVM_REG_ARM_COPROC_SHIFT);
1208 	if (reg->is_64bit) {
1209 		val |= KVM_REG_SIZE_U64;
1210 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1211 		/*
1212 		 * CRn always denotes the primary coproc. reg. nr. for the
1213 		 * in-kernel representation, but the user space API uses the
1214 		 * CRm for the encoding, because it is modelled after the
1215 		 * MRRC/MCRR instructions: see the ARM ARM rev. c page
1216 		 * B3-1445
1217 		 */
1218 		val |= (reg->CRn << KVM_REG_ARM_CRM_SHIFT);
1219 	} else {
1220 		val |= KVM_REG_SIZE_U32;
1221 		val |= (reg->Op1 << KVM_REG_ARM_OPC1_SHIFT);
1222 		val |= (reg->Op2 << KVM_REG_ARM_32_OPC2_SHIFT);
1223 		val |= (reg->CRm << KVM_REG_ARM_CRM_SHIFT);
1224 		val |= (reg->CRn << KVM_REG_ARM_32_CRN_SHIFT);
1225 	}
1226 	return val;
1227 }
1228 
copy_reg_to_user(const struct coproc_reg * reg,u64 __user ** uind)1229 static bool copy_reg_to_user(const struct coproc_reg *reg, u64 __user **uind)
1230 {
1231 	if (!*uind)
1232 		return true;
1233 
1234 	if (put_user(cp15_to_index(reg), *uind))
1235 		return false;
1236 
1237 	(*uind)++;
1238 	return true;
1239 }
1240 
1241 /* Assumed ordered tables, see kvm_coproc_table_init. */
walk_cp15(struct kvm_vcpu * vcpu,u64 __user * uind)1242 static int walk_cp15(struct kvm_vcpu *vcpu, u64 __user *uind)
1243 {
1244 	const struct coproc_reg *i1, *i2, *end1, *end2;
1245 	unsigned int total = 0;
1246 	size_t num;
1247 
1248 	/* We check for duplicates here, to allow arch-specific overrides. */
1249 	i1 = get_target_table(vcpu->arch.target, &num);
1250 	end1 = i1 + num;
1251 	i2 = cp15_regs;
1252 	end2 = cp15_regs + ARRAY_SIZE(cp15_regs);
1253 
1254 	BUG_ON(i1 == end1 || i2 == end2);
1255 
1256 	/* Walk carefully, as both tables may refer to the same register. */
1257 	while (i1 || i2) {
1258 		int cmp = cmp_reg(i1, i2);
1259 		/* target-specific overrides generic entry. */
1260 		if (cmp <= 0) {
1261 			/* Ignore registers we trap but don't save. */
1262 			if (i1->reg) {
1263 				if (!copy_reg_to_user(i1, &uind))
1264 					return -EFAULT;
1265 				total++;
1266 			}
1267 		} else {
1268 			/* Ignore registers we trap but don't save. */
1269 			if (i2->reg) {
1270 				if (!copy_reg_to_user(i2, &uind))
1271 					return -EFAULT;
1272 				total++;
1273 			}
1274 		}
1275 
1276 		if (cmp <= 0 && ++i1 == end1)
1277 			i1 = NULL;
1278 		if (cmp >= 0 && ++i2 == end2)
1279 			i2 = NULL;
1280 	}
1281 	return total;
1282 }
1283 
kvm_arm_num_coproc_regs(struct kvm_vcpu * vcpu)1284 unsigned long kvm_arm_num_coproc_regs(struct kvm_vcpu *vcpu)
1285 {
1286 	return ARRAY_SIZE(invariant_cp15)
1287 		+ num_demux_regs()
1288 		+ num_vfp_regs()
1289 		+ walk_cp15(vcpu, (u64 __user *)NULL);
1290 }
1291 
kvm_arm_copy_coproc_indices(struct kvm_vcpu * vcpu,u64 __user * uindices)1292 int kvm_arm_copy_coproc_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
1293 {
1294 	unsigned int i;
1295 	int err;
1296 
1297 	/* Then give them all the invariant registers' indices. */
1298 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++) {
1299 		if (put_user(cp15_to_index(&invariant_cp15[i]), uindices))
1300 			return -EFAULT;
1301 		uindices++;
1302 	}
1303 
1304 	err = walk_cp15(vcpu, uindices);
1305 	if (err < 0)
1306 		return err;
1307 	uindices += err;
1308 
1309 	err = copy_vfp_regids(uindices);
1310 	if (err < 0)
1311 		return err;
1312 	uindices += err;
1313 
1314 	return write_demux_regids(uindices);
1315 }
1316 
kvm_coproc_table_init(void)1317 void kvm_coproc_table_init(void)
1318 {
1319 	unsigned int i;
1320 
1321 	/* Make sure tables are unique and in order. */
1322 	BUG_ON(check_reg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
1323 	BUG_ON(check_reg_table(invariant_cp15, ARRAY_SIZE(invariant_cp15)));
1324 
1325 	/* We abuse the reset function to overwrite the table itself. */
1326 	for (i = 0; i < ARRAY_SIZE(invariant_cp15); i++)
1327 		invariant_cp15[i].reset(NULL, &invariant_cp15[i]);
1328 
1329 	/*
1330 	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
1331 	 *
1332 	 *   If software reads the Cache Type fields from Ctype1
1333 	 *   upwards, once it has seen a value of 0b000, no caches
1334 	 *   exist at further-out levels of the hierarchy. So, for
1335 	 *   example, if Ctype3 is the first Cache Type field with a
1336 	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
1337 	 *   ignored.
1338 	 */
1339 	asm volatile("mrc p15, 1, %0, c0, c0, 1" : "=r" (cache_levels));
1340 	for (i = 0; i < 7; i++)
1341 		if (((cache_levels >> (i*3)) & 7) == 0)
1342 			break;
1343 	/* Clear all higher bits. */
1344 	cache_levels &= (1 << (i*3))-1;
1345 }
1346 
1347 /**
1348  * kvm_reset_coprocs - sets cp15 registers to reset value
1349  * @vcpu: The VCPU pointer
1350  *
1351  * This function finds the right table above and sets the registers on the
1352  * virtual CPU struct to their architecturally defined reset values.
1353  */
kvm_reset_coprocs(struct kvm_vcpu * vcpu)1354 void kvm_reset_coprocs(struct kvm_vcpu *vcpu)
1355 {
1356 	size_t num;
1357 	const struct coproc_reg *table;
1358 
1359 	/* Catch someone adding a register without putting in reset entry. */
1360 	memset(vcpu->arch.ctxt.cp15, 0x42, sizeof(vcpu->arch.ctxt.cp15));
1361 
1362 	/* Generic chip reset first (so target could override). */
1363 	reset_coproc_regs(vcpu, cp15_regs, ARRAY_SIZE(cp15_regs));
1364 
1365 	table = get_target_table(vcpu->arch.target, &num);
1366 	reset_coproc_regs(vcpu, table, num);
1367 
1368 	for (num = 1; num < NR_CP15_REGS; num++)
1369 		if (vcpu_cp15(vcpu, num) == 0x42424242)
1370 			panic("Didn't reset vcpu_cp15(vcpu, %zi)", num);
1371 }
1372