• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES
3  *
4  * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <asm/neon.h>
12 #include <asm/hwcap.h>
13 #include <asm/simd.h>
14 #include <crypto/aes.h>
15 #include <crypto/internal/hash.h>
16 #include <crypto/internal/simd.h>
17 #include <crypto/internal/skcipher.h>
18 #include <linux/module.h>
19 #include <linux/cpufeature.h>
20 #include <crypto/xts.h>
21 
22 #include "aes-ce-setkey.h"
23 #include "aes-ctr-fallback.h"
24 
25 #ifdef USE_V8_CRYPTO_EXTENSIONS
26 #define MODE			"ce"
27 #define PRIO			300
28 #define aes_setkey		ce_aes_setkey
29 #define aes_expandkey		ce_aes_expandkey
30 #define aes_ecb_encrypt		ce_aes_ecb_encrypt
31 #define aes_ecb_decrypt		ce_aes_ecb_decrypt
32 #define aes_cbc_encrypt		ce_aes_cbc_encrypt
33 #define aes_cbc_decrypt		ce_aes_cbc_decrypt
34 #define aes_ctr_encrypt		ce_aes_ctr_encrypt
35 #define aes_xts_encrypt		ce_aes_xts_encrypt
36 #define aes_xts_decrypt		ce_aes_xts_decrypt
37 #define aes_mac_update		ce_aes_mac_update
38 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions");
39 #else
40 #define MODE			"neon"
41 #define PRIO			200
42 #define aes_setkey		crypto_aes_set_key
43 #define aes_expandkey		crypto_aes_expand_key
44 #define aes_ecb_encrypt		neon_aes_ecb_encrypt
45 #define aes_ecb_decrypt		neon_aes_ecb_decrypt
46 #define aes_cbc_encrypt		neon_aes_cbc_encrypt
47 #define aes_cbc_decrypt		neon_aes_cbc_decrypt
48 #define aes_ctr_encrypt		neon_aes_ctr_encrypt
49 #define aes_xts_encrypt		neon_aes_xts_encrypt
50 #define aes_xts_decrypt		neon_aes_xts_decrypt
51 #define aes_mac_update		neon_aes_mac_update
52 MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON");
53 MODULE_ALIAS_CRYPTO("ecb(aes)");
54 MODULE_ALIAS_CRYPTO("cbc(aes)");
55 MODULE_ALIAS_CRYPTO("ctr(aes)");
56 MODULE_ALIAS_CRYPTO("xts(aes)");
57 MODULE_ALIAS_CRYPTO("cmac(aes)");
58 MODULE_ALIAS_CRYPTO("xcbc(aes)");
59 MODULE_ALIAS_CRYPTO("cbcmac(aes)");
60 #endif
61 
62 MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
63 MODULE_LICENSE("GPL v2");
64 
65 /* defined in aes-modes.S */
66 asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u8 const rk[],
67 				int rounds, int blocks, int first);
68 asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u8 const rk[],
69 				int rounds, int blocks, int first);
70 
71 asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u8 const rk[],
72 				int rounds, int blocks, u8 iv[], int first);
73 asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u8 const rk[],
74 				int rounds, int blocks, u8 iv[], int first);
75 
76 asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u8 const rk[],
77 				int rounds, int blocks, u8 ctr[], int first);
78 
79 asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u8 const rk1[],
80 				int rounds, int blocks, u8 const rk2[], u8 iv[],
81 				int first);
82 asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u8 const rk1[],
83 				int rounds, int blocks, u8 const rk2[], u8 iv[],
84 				int first);
85 
86 asmlinkage void aes_mac_update(u8 const in[], u32 const rk[], int rounds,
87 			       int blocks, u8 dg[], int enc_before,
88 			       int enc_after);
89 
90 struct crypto_aes_xts_ctx {
91 	struct crypto_aes_ctx key1;
92 	struct crypto_aes_ctx __aligned(8) key2;
93 };
94 
95 struct mac_tfm_ctx {
96 	struct crypto_aes_ctx key;
97 	u8 __aligned(8) consts[];
98 };
99 
100 struct mac_desc_ctx {
101 	unsigned int len;
102 	u8 dg[AES_BLOCK_SIZE];
103 };
104 
skcipher_aes_setkey(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)105 static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
106 			       unsigned int key_len)
107 {
108 	return aes_setkey(crypto_skcipher_tfm(tfm), in_key, key_len);
109 }
110 
xts_set_key(struct crypto_skcipher * tfm,const u8 * in_key,unsigned int key_len)111 static int xts_set_key(struct crypto_skcipher *tfm, const u8 *in_key,
112 		       unsigned int key_len)
113 {
114 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
115 	int ret;
116 
117 	ret = xts_verify_key(tfm, in_key, key_len);
118 	if (ret)
119 		return ret;
120 
121 	ret = aes_expandkey(&ctx->key1, in_key, key_len / 2);
122 	if (!ret)
123 		ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2],
124 				    key_len / 2);
125 	if (!ret)
126 		return 0;
127 
128 	crypto_skcipher_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
129 	return -EINVAL;
130 }
131 
ecb_encrypt(struct skcipher_request * req)132 static int ecb_encrypt(struct skcipher_request *req)
133 {
134 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
135 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
136 	int err, first, rounds = 6 + ctx->key_length / 4;
137 	struct skcipher_walk walk;
138 	unsigned int blocks;
139 
140 	err = skcipher_walk_virt(&walk, req, true);
141 
142 	kernel_neon_begin();
143 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
144 		aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
145 				(u8 *)ctx->key_enc, rounds, blocks, first);
146 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
147 	}
148 	kernel_neon_end();
149 	return err;
150 }
151 
ecb_decrypt(struct skcipher_request * req)152 static int ecb_decrypt(struct skcipher_request *req)
153 {
154 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
155 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
156 	int err, first, rounds = 6 + ctx->key_length / 4;
157 	struct skcipher_walk walk;
158 	unsigned int blocks;
159 
160 	err = skcipher_walk_virt(&walk, req, true);
161 
162 	kernel_neon_begin();
163 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
164 		aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
165 				(u8 *)ctx->key_dec, rounds, blocks, first);
166 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
167 	}
168 	kernel_neon_end();
169 	return err;
170 }
171 
cbc_encrypt(struct skcipher_request * req)172 static int cbc_encrypt(struct skcipher_request *req)
173 {
174 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
175 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
176 	int err, first, rounds = 6 + ctx->key_length / 4;
177 	struct skcipher_walk walk;
178 	unsigned int blocks;
179 
180 	err = skcipher_walk_virt(&walk, req, true);
181 
182 	kernel_neon_begin();
183 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
184 		aes_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
185 				(u8 *)ctx->key_enc, rounds, blocks, walk.iv,
186 				first);
187 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
188 	}
189 	kernel_neon_end();
190 	return err;
191 }
192 
cbc_decrypt(struct skcipher_request * req)193 static int cbc_decrypt(struct skcipher_request *req)
194 {
195 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
196 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
197 	int err, first, rounds = 6 + ctx->key_length / 4;
198 	struct skcipher_walk walk;
199 	unsigned int blocks;
200 
201 	err = skcipher_walk_virt(&walk, req, true);
202 
203 	kernel_neon_begin();
204 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
205 		aes_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
206 				(u8 *)ctx->key_dec, rounds, blocks, walk.iv,
207 				first);
208 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
209 	}
210 	kernel_neon_end();
211 	return err;
212 }
213 
ctr_encrypt(struct skcipher_request * req)214 static int ctr_encrypt(struct skcipher_request *req)
215 {
216 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
217 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
218 	int err, first, rounds = 6 + ctx->key_length / 4;
219 	struct skcipher_walk walk;
220 	int blocks;
221 
222 	err = skcipher_walk_virt(&walk, req, true);
223 
224 	first = 1;
225 	kernel_neon_begin();
226 	while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) {
227 		aes_ctr_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
228 				(u8 *)ctx->key_enc, rounds, blocks, walk.iv,
229 				first);
230 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
231 		first = 0;
232 	}
233 	if (walk.nbytes) {
234 		u8 __aligned(8) tail[AES_BLOCK_SIZE];
235 		unsigned int nbytes = walk.nbytes;
236 		u8 *tdst = walk.dst.virt.addr;
237 		u8 *tsrc = walk.src.virt.addr;
238 
239 		/*
240 		 * Tell aes_ctr_encrypt() to process a tail block.
241 		 */
242 		blocks = -1;
243 
244 		aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc, rounds,
245 				blocks, walk.iv, first);
246 		crypto_xor_cpy(tdst, tsrc, tail, nbytes);
247 		err = skcipher_walk_done(&walk, 0);
248 	}
249 	kernel_neon_end();
250 
251 	return err;
252 }
253 
ctr_encrypt_sync(struct skcipher_request * req)254 static int ctr_encrypt_sync(struct skcipher_request *req)
255 {
256 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
257 	struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
258 
259 	if (!may_use_simd())
260 		return aes_ctr_encrypt_fallback(ctx, req);
261 
262 	return ctr_encrypt(req);
263 }
264 
xts_encrypt(struct skcipher_request * req)265 static int xts_encrypt(struct skcipher_request *req)
266 {
267 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
268 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
269 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
270 	struct skcipher_walk walk;
271 	unsigned int blocks;
272 
273 	err = skcipher_walk_virt(&walk, req, true);
274 
275 	kernel_neon_begin();
276 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
277 		aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
278 				(u8 *)ctx->key1.key_enc, rounds, blocks,
279 				(u8 *)ctx->key2.key_enc, walk.iv, first);
280 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
281 	}
282 	kernel_neon_end();
283 
284 	return err;
285 }
286 
xts_decrypt(struct skcipher_request * req)287 static int xts_decrypt(struct skcipher_request *req)
288 {
289 	struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
290 	struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm);
291 	int err, first, rounds = 6 + ctx->key1.key_length / 4;
292 	struct skcipher_walk walk;
293 	unsigned int blocks;
294 
295 	err = skcipher_walk_virt(&walk, req, true);
296 
297 	kernel_neon_begin();
298 	for (first = 1; (blocks = (walk.nbytes / AES_BLOCK_SIZE)); first = 0) {
299 		aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
300 				(u8 *)ctx->key1.key_dec, rounds, blocks,
301 				(u8 *)ctx->key2.key_enc, walk.iv, first);
302 		err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE);
303 	}
304 	kernel_neon_end();
305 
306 	return err;
307 }
308 
309 static struct skcipher_alg aes_algs[] = { {
310 	.base = {
311 		.cra_name		= "__ecb(aes)",
312 		.cra_driver_name	= "__ecb-aes-" MODE,
313 		.cra_priority		= PRIO,
314 		.cra_flags		= CRYPTO_ALG_INTERNAL,
315 		.cra_blocksize		= AES_BLOCK_SIZE,
316 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
317 		.cra_module		= THIS_MODULE,
318 	},
319 	.min_keysize	= AES_MIN_KEY_SIZE,
320 	.max_keysize	= AES_MAX_KEY_SIZE,
321 	.setkey		= skcipher_aes_setkey,
322 	.encrypt	= ecb_encrypt,
323 	.decrypt	= ecb_decrypt,
324 }, {
325 	.base = {
326 		.cra_name		= "__cbc(aes)",
327 		.cra_driver_name	= "__cbc-aes-" MODE,
328 		.cra_priority		= PRIO,
329 		.cra_flags		= CRYPTO_ALG_INTERNAL,
330 		.cra_blocksize		= AES_BLOCK_SIZE,
331 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
332 		.cra_module		= THIS_MODULE,
333 	},
334 	.min_keysize	= AES_MIN_KEY_SIZE,
335 	.max_keysize	= AES_MAX_KEY_SIZE,
336 	.ivsize		= AES_BLOCK_SIZE,
337 	.setkey		= skcipher_aes_setkey,
338 	.encrypt	= cbc_encrypt,
339 	.decrypt	= cbc_decrypt,
340 }, {
341 	.base = {
342 		.cra_name		= "__ctr(aes)",
343 		.cra_driver_name	= "__ctr-aes-" MODE,
344 		.cra_priority		= PRIO,
345 		.cra_flags		= CRYPTO_ALG_INTERNAL,
346 		.cra_blocksize		= 1,
347 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
348 		.cra_module		= THIS_MODULE,
349 	},
350 	.min_keysize	= AES_MIN_KEY_SIZE,
351 	.max_keysize	= AES_MAX_KEY_SIZE,
352 	.ivsize		= AES_BLOCK_SIZE,
353 	.chunksize	= AES_BLOCK_SIZE,
354 	.setkey		= skcipher_aes_setkey,
355 	.encrypt	= ctr_encrypt,
356 	.decrypt	= ctr_encrypt,
357 }, {
358 	.base = {
359 		.cra_name		= "ctr(aes)",
360 		.cra_driver_name	= "ctr-aes-" MODE,
361 		.cra_priority		= PRIO - 1,
362 		.cra_blocksize		= 1,
363 		.cra_ctxsize		= sizeof(struct crypto_aes_ctx),
364 		.cra_module		= THIS_MODULE,
365 	},
366 	.min_keysize	= AES_MIN_KEY_SIZE,
367 	.max_keysize	= AES_MAX_KEY_SIZE,
368 	.ivsize		= AES_BLOCK_SIZE,
369 	.chunksize	= AES_BLOCK_SIZE,
370 	.setkey		= skcipher_aes_setkey,
371 	.encrypt	= ctr_encrypt_sync,
372 	.decrypt	= ctr_encrypt_sync,
373 }, {
374 	.base = {
375 		.cra_name		= "__xts(aes)",
376 		.cra_driver_name	= "__xts-aes-" MODE,
377 		.cra_priority		= PRIO,
378 		.cra_flags		= CRYPTO_ALG_INTERNAL,
379 		.cra_blocksize		= AES_BLOCK_SIZE,
380 		.cra_ctxsize		= sizeof(struct crypto_aes_xts_ctx),
381 		.cra_module		= THIS_MODULE,
382 	},
383 	.min_keysize	= 2 * AES_MIN_KEY_SIZE,
384 	.max_keysize	= 2 * AES_MAX_KEY_SIZE,
385 	.ivsize		= AES_BLOCK_SIZE,
386 	.setkey		= xts_set_key,
387 	.encrypt	= xts_encrypt,
388 	.decrypt	= xts_decrypt,
389 } };
390 
cbcmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)391 static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
392 			 unsigned int key_len)
393 {
394 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
395 	int err;
396 
397 	err = aes_expandkey(&ctx->key, in_key, key_len);
398 	if (err)
399 		crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
400 
401 	return err;
402 }
403 
cmac_gf128_mul_by_x(be128 * y,const be128 * x)404 static void cmac_gf128_mul_by_x(be128 *y, const be128 *x)
405 {
406 	u64 a = be64_to_cpu(x->a);
407 	u64 b = be64_to_cpu(x->b);
408 
409 	y->a = cpu_to_be64((a << 1) | (b >> 63));
410 	y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0));
411 }
412 
cmac_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)413 static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key,
414 		       unsigned int key_len)
415 {
416 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
417 	be128 *consts = (be128 *)ctx->consts;
418 	u8 *rk = (u8 *)ctx->key.key_enc;
419 	int rounds = 6 + key_len / 4;
420 	int err;
421 
422 	err = cbcmac_setkey(tfm, in_key, key_len);
423 	if (err)
424 		return err;
425 
426 	/* encrypt the zero vector */
427 	kernel_neon_begin();
428 	aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, rk, rounds, 1, 1);
429 	kernel_neon_end();
430 
431 	cmac_gf128_mul_by_x(consts, consts);
432 	cmac_gf128_mul_by_x(consts + 1, consts);
433 
434 	return 0;
435 }
436 
xcbc_setkey(struct crypto_shash * tfm,const u8 * in_key,unsigned int key_len)437 static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key,
438 		       unsigned int key_len)
439 {
440 	static u8 const ks[3][AES_BLOCK_SIZE] = {
441 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x1 },
442 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x2 },
443 		{ [0 ... AES_BLOCK_SIZE - 1] = 0x3 },
444 	};
445 
446 	struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm);
447 	u8 *rk = (u8 *)ctx->key.key_enc;
448 	int rounds = 6 + key_len / 4;
449 	u8 key[AES_BLOCK_SIZE];
450 	int err;
451 
452 	err = cbcmac_setkey(tfm, in_key, key_len);
453 	if (err)
454 		return err;
455 
456 	kernel_neon_begin();
457 	aes_ecb_encrypt(key, ks[0], rk, rounds, 1, 1);
458 	aes_ecb_encrypt(ctx->consts, ks[1], rk, rounds, 2, 0);
459 	kernel_neon_end();
460 
461 	return cbcmac_setkey(tfm, key, sizeof(key));
462 }
463 
mac_init(struct shash_desc * desc)464 static int mac_init(struct shash_desc *desc)
465 {
466 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
467 
468 	memset(ctx->dg, 0, AES_BLOCK_SIZE);
469 	ctx->len = 0;
470 
471 	return 0;
472 }
473 
mac_do_update(struct crypto_aes_ctx * ctx,u8 const in[],int blocks,u8 dg[],int enc_before,int enc_after)474 static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
475 			  u8 dg[], int enc_before, int enc_after)
476 {
477 	int rounds = 6 + ctx->key_length / 4;
478 
479 	if (may_use_simd()) {
480 		kernel_neon_begin();
481 		aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
482 			       enc_after);
483 		kernel_neon_end();
484 	} else {
485 		if (enc_before)
486 			__aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
487 
488 		while (blocks--) {
489 			crypto_xor(dg, in, AES_BLOCK_SIZE);
490 			in += AES_BLOCK_SIZE;
491 
492 			if (blocks || enc_after)
493 				__aes_arm64_encrypt(ctx->key_enc, dg, dg,
494 						    rounds);
495 		}
496 	}
497 }
498 
mac_update(struct shash_desc * desc,const u8 * p,unsigned int len)499 static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
500 {
501 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
502 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
503 
504 	while (len > 0) {
505 		unsigned int l;
506 
507 		if ((ctx->len % AES_BLOCK_SIZE) == 0 &&
508 		    (ctx->len + len) > AES_BLOCK_SIZE) {
509 
510 			int blocks = len / AES_BLOCK_SIZE;
511 
512 			len %= AES_BLOCK_SIZE;
513 
514 			mac_do_update(&tctx->key, p, blocks, ctx->dg,
515 				      (ctx->len != 0), (len != 0));
516 
517 			p += blocks * AES_BLOCK_SIZE;
518 
519 			if (!len) {
520 				ctx->len = AES_BLOCK_SIZE;
521 				break;
522 			}
523 			ctx->len = 0;
524 		}
525 
526 		l = min(len, AES_BLOCK_SIZE - ctx->len);
527 
528 		if (l <= AES_BLOCK_SIZE) {
529 			crypto_xor(ctx->dg + ctx->len, p, l);
530 			ctx->len += l;
531 			len -= l;
532 			p += l;
533 		}
534 	}
535 
536 	return 0;
537 }
538 
cbcmac_final(struct shash_desc * desc,u8 * out)539 static int cbcmac_final(struct shash_desc *desc, u8 *out)
540 {
541 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
542 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
543 
544 	mac_do_update(&tctx->key, NULL, 0, ctx->dg, 1, 0);
545 
546 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
547 
548 	return 0;
549 }
550 
cmac_final(struct shash_desc * desc,u8 * out)551 static int cmac_final(struct shash_desc *desc, u8 *out)
552 {
553 	struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
554 	struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
555 	u8 *consts = tctx->consts;
556 
557 	if (ctx->len != AES_BLOCK_SIZE) {
558 		ctx->dg[ctx->len] ^= 0x80;
559 		consts += AES_BLOCK_SIZE;
560 	}
561 
562 	mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
563 
564 	memcpy(out, ctx->dg, AES_BLOCK_SIZE);
565 
566 	return 0;
567 }
568 
569 static struct shash_alg mac_algs[] = { {
570 	.base.cra_name		= "cmac(aes)",
571 	.base.cra_driver_name	= "cmac-aes-" MODE,
572 	.base.cra_priority	= PRIO,
573 	.base.cra_flags		= CRYPTO_ALG_TYPE_SHASH,
574 	.base.cra_blocksize	= AES_BLOCK_SIZE,
575 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
576 				  2 * AES_BLOCK_SIZE,
577 	.base.cra_module	= THIS_MODULE,
578 
579 	.digestsize		= AES_BLOCK_SIZE,
580 	.init			= mac_init,
581 	.update			= mac_update,
582 	.final			= cmac_final,
583 	.setkey			= cmac_setkey,
584 	.descsize		= sizeof(struct mac_desc_ctx),
585 }, {
586 	.base.cra_name		= "xcbc(aes)",
587 	.base.cra_driver_name	= "xcbc-aes-" MODE,
588 	.base.cra_priority	= PRIO,
589 	.base.cra_flags		= CRYPTO_ALG_TYPE_SHASH,
590 	.base.cra_blocksize	= AES_BLOCK_SIZE,
591 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx) +
592 				  2 * AES_BLOCK_SIZE,
593 	.base.cra_module	= THIS_MODULE,
594 
595 	.digestsize		= AES_BLOCK_SIZE,
596 	.init			= mac_init,
597 	.update			= mac_update,
598 	.final			= cmac_final,
599 	.setkey			= xcbc_setkey,
600 	.descsize		= sizeof(struct mac_desc_ctx),
601 }, {
602 	.base.cra_name		= "cbcmac(aes)",
603 	.base.cra_driver_name	= "cbcmac-aes-" MODE,
604 	.base.cra_priority	= PRIO,
605 	.base.cra_flags		= CRYPTO_ALG_TYPE_SHASH,
606 	.base.cra_blocksize	= 1,
607 	.base.cra_ctxsize	= sizeof(struct mac_tfm_ctx),
608 	.base.cra_module	= THIS_MODULE,
609 
610 	.digestsize		= AES_BLOCK_SIZE,
611 	.init			= mac_init,
612 	.update			= mac_update,
613 	.final			= cbcmac_final,
614 	.setkey			= cbcmac_setkey,
615 	.descsize		= sizeof(struct mac_desc_ctx),
616 } };
617 
618 static struct simd_skcipher_alg *aes_simd_algs[ARRAY_SIZE(aes_algs)];
619 
aes_exit(void)620 static void aes_exit(void)
621 {
622 	int i;
623 
624 	for (i = 0; i < ARRAY_SIZE(aes_simd_algs); i++)
625 		if (aes_simd_algs[i])
626 			simd_skcipher_free(aes_simd_algs[i]);
627 
628 	crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs));
629 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
630 }
631 
aes_init(void)632 static int __init aes_init(void)
633 {
634 	struct simd_skcipher_alg *simd;
635 	const char *basename;
636 	const char *algname;
637 	const char *drvname;
638 	int err;
639 	int i;
640 
641 	err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
642 	if (err)
643 		return err;
644 
645 	err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs));
646 	if (err)
647 		goto unregister_ciphers;
648 
649 	for (i = 0; i < ARRAY_SIZE(aes_algs); i++) {
650 		if (!(aes_algs[i].base.cra_flags & CRYPTO_ALG_INTERNAL))
651 			continue;
652 
653 		algname = aes_algs[i].base.cra_name + 2;
654 		drvname = aes_algs[i].base.cra_driver_name + 2;
655 		basename = aes_algs[i].base.cra_driver_name;
656 		simd = simd_skcipher_create_compat(algname, drvname, basename);
657 		err = PTR_ERR(simd);
658 		if (IS_ERR(simd))
659 			goto unregister_simds;
660 
661 		aes_simd_algs[i] = simd;
662 	}
663 
664 	return 0;
665 
666 unregister_simds:
667 	aes_exit();
668 unregister_ciphers:
669 	crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs));
670 	return err;
671 }
672 
673 #ifdef USE_V8_CRYPTO_EXTENSIONS
674 module_cpu_feature_match(AES, aes_init);
675 #else
676 module_init(aes_init);
677 EXPORT_SYMBOL(neon_aes_ecb_encrypt);
678 EXPORT_SYMBOL(neon_aes_cbc_encrypt);
679 #endif
680 module_exit(aes_exit);
681