• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #ifndef __ARM64_KVM_MMU_H__
19 #define __ARM64_KVM_MMU_H__
20 
21 #include <asm/page.h>
22 #include <asm/memory.h>
23 #include <asm/cpufeature.h>
24 
25 /*
26  * As ARMv8.0 only has the TTBR0_EL2 register, we cannot express
27  * "negative" addresses. This makes it impossible to directly share
28  * mappings with the kernel.
29  *
30  * Instead, give the HYP mode its own VA region at a fixed offset from
31  * the kernel by just masking the top bits (which are all ones for a
32  * kernel address). We need to find out how many bits to mask.
33  *
34  * We want to build a set of page tables that cover both parts of the
35  * idmap (the trampoline page used to initialize EL2), and our normal
36  * runtime VA space, at the same time.
37  *
38  * Given that the kernel uses VA_BITS for its entire address space,
39  * and that half of that space (VA_BITS - 1) is used for the linear
40  * mapping, we can also limit the EL2 space to (VA_BITS - 1).
41  *
42  * The main question is "Within the VA_BITS space, does EL2 use the
43  * top or the bottom half of that space to shadow the kernel's linear
44  * mapping?". As we need to idmap the trampoline page, this is
45  * determined by the range in which this page lives.
46  *
47  * If the page is in the bottom half, we have to use the top half. If
48  * the page is in the top half, we have to use the bottom half:
49  *
50  * T = __pa_symbol(__hyp_idmap_text_start)
51  * if (T & BIT(VA_BITS - 1))
52  *	HYP_VA_MIN = 0  //idmap in upper half
53  * else
54  *	HYP_VA_MIN = 1 << (VA_BITS - 1)
55  * HYP_VA_MAX = HYP_VA_MIN + (1 << (VA_BITS - 1)) - 1
56  *
57  * This of course assumes that the trampoline page exists within the
58  * VA_BITS range. If it doesn't, then it means we're in the odd case
59  * where the kernel idmap (as well as HYP) uses more levels than the
60  * kernel runtime page tables (as seen when the kernel is configured
61  * for 4k pages, 39bits VA, and yet memory lives just above that
62  * limit, forcing the idmap to use 4 levels of page tables while the
63  * kernel itself only uses 3). In this particular case, it doesn't
64  * matter which side of VA_BITS we use, as we're guaranteed not to
65  * conflict with anything.
66  *
67  * When using VHE, there are no separate hyp mappings and all KVM
68  * functionality is already mapped as part of the main kernel
69  * mappings, and none of this applies in that case.
70  */
71 
72 #define HYP_PAGE_OFFSET_HIGH_MASK	((UL(1) << VA_BITS) - 1)
73 #define HYP_PAGE_OFFSET_LOW_MASK	((UL(1) << (VA_BITS - 1)) - 1)
74 
75 #ifdef __ASSEMBLY__
76 
77 #include <asm/alternative.h>
78 #include <asm/cpufeature.h>
79 
80 /*
81  * Convert a kernel VA into a HYP VA.
82  * reg: VA to be converted.
83  *
84  * This generates the following sequences:
85  * - High mask:
86  *		and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
87  *		nop
88  * - Low mask:
89  *		and x0, x0, #HYP_PAGE_OFFSET_HIGH_MASK
90  *		and x0, x0, #HYP_PAGE_OFFSET_LOW_MASK
91  * - VHE:
92  *		nop
93  *		nop
94  *
95  * The "low mask" version works because the mask is a strict subset of
96  * the "high mask", hence performing the first mask for nothing.
97  * Should be completely invisible on any viable CPU.
98  */
99 .macro kern_hyp_va	reg
100 alternative_if_not ARM64_HAS_VIRT_HOST_EXTN
101 	and     \reg, \reg, #HYP_PAGE_OFFSET_HIGH_MASK
102 alternative_else_nop_endif
103 alternative_if ARM64_HYP_OFFSET_LOW
104 	and     \reg, \reg, #HYP_PAGE_OFFSET_LOW_MASK
105 alternative_else_nop_endif
106 .endm
107 
108 #else
109 
110 #include <asm/pgalloc.h>
111 #include <asm/cache.h>
112 #include <asm/cacheflush.h>
113 #include <asm/mmu_context.h>
114 #include <asm/pgtable.h>
115 
__kern_hyp_va(unsigned long v)116 static inline unsigned long __kern_hyp_va(unsigned long v)
117 {
118 	asm volatile(ALTERNATIVE("and %0, %0, %1",
119 				 "nop",
120 				 ARM64_HAS_VIRT_HOST_EXTN)
121 		     : "+r" (v)
122 		     : "i" (HYP_PAGE_OFFSET_HIGH_MASK));
123 	asm volatile(ALTERNATIVE("nop",
124 				 "and %0, %0, %1",
125 				 ARM64_HYP_OFFSET_LOW)
126 		     : "+r" (v)
127 		     : "i" (HYP_PAGE_OFFSET_LOW_MASK));
128 	return v;
129 }
130 
131 #define kern_hyp_va(v) 	((typeof(v))(__kern_hyp_va((unsigned long)(v))))
132 
133 /*
134  * Obtain the PC-relative address of a kernel symbol
135  * s: symbol
136  *
137  * The goal of this macro is to return a symbol's address based on a
138  * PC-relative computation, as opposed to a loading the VA from a
139  * constant pool or something similar. This works well for HYP, as an
140  * absolute VA is guaranteed to be wrong. Only use this if trying to
141  * obtain the address of a symbol (i.e. not something you obtained by
142  * following a pointer).
143  */
144 #define hyp_symbol_addr(s)						\
145 	({								\
146 		typeof(s) *addr;					\
147 		asm("adrp	%0, %1\n"				\
148 		    "add	%0, %0, :lo12:%1\n"			\
149 		    : "=r" (addr) : "S" (&s));				\
150 		addr;							\
151 	})
152 
153 /*
154  * We currently only support a 40bit IPA.
155  */
156 #define KVM_PHYS_SHIFT	(40)
157 #define KVM_PHYS_SIZE	(1UL << KVM_PHYS_SHIFT)
158 #define KVM_PHYS_MASK	(KVM_PHYS_SIZE - 1UL)
159 
160 #include <asm/stage2_pgtable.h>
161 
162 int create_hyp_mappings(void *from, void *to, pgprot_t prot);
163 int create_hyp_io_mappings(void *from, void *to, phys_addr_t);
164 void free_hyp_pgds(void);
165 
166 void stage2_unmap_vm(struct kvm *kvm);
167 int kvm_alloc_stage2_pgd(struct kvm *kvm);
168 void kvm_free_stage2_pgd(struct kvm *kvm);
169 int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
170 			  phys_addr_t pa, unsigned long size, bool writable);
171 
172 int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run);
173 
174 void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu);
175 
176 phys_addr_t kvm_mmu_get_httbr(void);
177 phys_addr_t kvm_get_idmap_vector(void);
178 int kvm_mmu_init(void);
179 void kvm_clear_hyp_idmap(void);
180 
181 #define	kvm_set_pte(ptep, pte)		set_pte(ptep, pte)
182 #define	kvm_set_pmd(pmdp, pmd)		set_pmd(pmdp, pmd)
183 
kvm_s2pte_mkwrite(pte_t pte)184 static inline pte_t kvm_s2pte_mkwrite(pte_t pte)
185 {
186 	pte_val(pte) |= PTE_S2_RDWR;
187 	return pte;
188 }
189 
kvm_s2pmd_mkwrite(pmd_t pmd)190 static inline pmd_t kvm_s2pmd_mkwrite(pmd_t pmd)
191 {
192 	pmd_val(pmd) |= PMD_S2_RDWR;
193 	return pmd;
194 }
195 
kvm_set_s2pte_readonly(pte_t * pte)196 static inline void kvm_set_s2pte_readonly(pte_t *pte)
197 {
198 	pteval_t old_pteval, pteval;
199 
200 	pteval = READ_ONCE(pte_val(*pte));
201 	do {
202 		old_pteval = pteval;
203 		pteval &= ~PTE_S2_RDWR;
204 		pteval |= PTE_S2_RDONLY;
205 		pteval = cmpxchg_relaxed(&pte_val(*pte), old_pteval, pteval);
206 	} while (pteval != old_pteval);
207 }
208 
kvm_s2pte_readonly(pte_t * pte)209 static inline bool kvm_s2pte_readonly(pte_t *pte)
210 {
211 	return (pte_val(*pte) & PTE_S2_RDWR) == PTE_S2_RDONLY;
212 }
213 
kvm_set_s2pmd_readonly(pmd_t * pmd)214 static inline void kvm_set_s2pmd_readonly(pmd_t *pmd)
215 {
216 	kvm_set_s2pte_readonly((pte_t *)pmd);
217 }
218 
kvm_s2pmd_readonly(pmd_t * pmd)219 static inline bool kvm_s2pmd_readonly(pmd_t *pmd)
220 {
221 	return kvm_s2pte_readonly((pte_t *)pmd);
222 }
223 
kvm_page_empty(void * ptr)224 static inline bool kvm_page_empty(void *ptr)
225 {
226 	struct page *ptr_page = virt_to_page(ptr);
227 	return page_count(ptr_page) == 1;
228 }
229 
230 #define hyp_pte_table_empty(ptep) kvm_page_empty(ptep)
231 
232 #ifdef __PAGETABLE_PMD_FOLDED
233 #define hyp_pmd_table_empty(pmdp) (0)
234 #else
235 #define hyp_pmd_table_empty(pmdp) kvm_page_empty(pmdp)
236 #endif
237 
238 #ifdef __PAGETABLE_PUD_FOLDED
239 #define hyp_pud_table_empty(pudp) (0)
240 #else
241 #define hyp_pud_table_empty(pudp) kvm_page_empty(pudp)
242 #endif
243 
244 struct kvm;
245 
246 #define kvm_flush_dcache_to_poc(a,l)	__flush_dcache_area((a), (l))
247 
vcpu_has_cache_enabled(struct kvm_vcpu * vcpu)248 static inline bool vcpu_has_cache_enabled(struct kvm_vcpu *vcpu)
249 {
250 	return (vcpu_sys_reg(vcpu, SCTLR_EL1) & 0b101) == 0b101;
251 }
252 
__coherent_cache_guest_page(struct kvm_vcpu * vcpu,kvm_pfn_t pfn,unsigned long size)253 static inline void __coherent_cache_guest_page(struct kvm_vcpu *vcpu,
254 					       kvm_pfn_t pfn,
255 					       unsigned long size)
256 {
257 	void *va = page_address(pfn_to_page(pfn));
258 
259 	kvm_flush_dcache_to_poc(va, size);
260 
261 	if (icache_is_aliasing()) {
262 		/* any kind of VIPT cache */
263 		__flush_icache_all();
264 	} else if (is_kernel_in_hyp_mode() || !icache_is_vpipt()) {
265 		/* PIPT or VPIPT at EL2 (see comment in __kvm_tlb_flush_vmid_ipa) */
266 		flush_icache_range((unsigned long)va,
267 				   (unsigned long)va + size);
268 	}
269 }
270 
__kvm_flush_dcache_pte(pte_t pte)271 static inline void __kvm_flush_dcache_pte(pte_t pte)
272 {
273 	struct page *page = pte_page(pte);
274 	kvm_flush_dcache_to_poc(page_address(page), PAGE_SIZE);
275 }
276 
__kvm_flush_dcache_pmd(pmd_t pmd)277 static inline void __kvm_flush_dcache_pmd(pmd_t pmd)
278 {
279 	struct page *page = pmd_page(pmd);
280 	kvm_flush_dcache_to_poc(page_address(page), PMD_SIZE);
281 }
282 
__kvm_flush_dcache_pud(pud_t pud)283 static inline void __kvm_flush_dcache_pud(pud_t pud)
284 {
285 	struct page *page = pud_page(pud);
286 	kvm_flush_dcache_to_poc(page_address(page), PUD_SIZE);
287 }
288 
289 #define kvm_virt_to_phys(x)		__pa_symbol(x)
290 
291 void kvm_set_way_flush(struct kvm_vcpu *vcpu);
292 void kvm_toggle_cache(struct kvm_vcpu *vcpu, bool was_enabled);
293 
__kvm_cpu_uses_extended_idmap(void)294 static inline bool __kvm_cpu_uses_extended_idmap(void)
295 {
296 	return __cpu_uses_extended_idmap();
297 }
298 
299 /*
300  * Can't use pgd_populate here, because the extended idmap adds an extra level
301  * above CONFIG_PGTABLE_LEVELS (which is 2 or 3 if we're using the extended
302  * idmap), and pgd_populate is only available if CONFIG_PGTABLE_LEVELS = 4.
303  */
__kvm_extend_hypmap(pgd_t * boot_hyp_pgd,pgd_t * hyp_pgd,pgd_t * merged_hyp_pgd,unsigned long hyp_idmap_start)304 static inline void __kvm_extend_hypmap(pgd_t *boot_hyp_pgd,
305 				       pgd_t *hyp_pgd,
306 				       pgd_t *merged_hyp_pgd,
307 				       unsigned long hyp_idmap_start)
308 {
309 	int idmap_idx;
310 
311 	/*
312 	 * Use the first entry to access the HYP mappings. It is
313 	 * guaranteed to be free, otherwise we wouldn't use an
314 	 * extended idmap.
315 	 */
316 	VM_BUG_ON(pgd_val(merged_hyp_pgd[0]));
317 	merged_hyp_pgd[0] = __pgd(__pa(hyp_pgd) | PMD_TYPE_TABLE);
318 
319 	/*
320 	 * Create another extended level entry that points to the boot HYP map,
321 	 * which contains an ID mapping of the HYP init code. We essentially
322 	 * merge the boot and runtime HYP maps by doing so, but they don't
323 	 * overlap anyway, so this is fine.
324 	 */
325 	idmap_idx = hyp_idmap_start >> VA_BITS;
326 	VM_BUG_ON(pgd_val(merged_hyp_pgd[idmap_idx]));
327 	merged_hyp_pgd[idmap_idx] = __pgd(__pa(boot_hyp_pgd) | PMD_TYPE_TABLE);
328 }
329 
kvm_get_vmid_bits(void)330 static inline unsigned int kvm_get_vmid_bits(void)
331 {
332 	int reg = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
333 
334 	return (cpuid_feature_extract_unsigned_field(reg, ID_AA64MMFR1_VMIDBITS_SHIFT) == 2) ? 16 : 8;
335 }
336 
337 /*
338  * We are not in the kvm->srcu critical section most of the time, so we take
339  * the SRCU read lock here. Since we copy the data from the user page, we
340  * can immediately drop the lock again.
341  */
kvm_read_guest_lock(struct kvm * kvm,gpa_t gpa,void * data,unsigned long len)342 static inline int kvm_read_guest_lock(struct kvm *kvm,
343 				      gpa_t gpa, void *data, unsigned long len)
344 {
345 	int srcu_idx = srcu_read_lock(&kvm->srcu);
346 	int ret = kvm_read_guest(kvm, gpa, data, len);
347 
348 	srcu_read_unlock(&kvm->srcu, srcu_idx);
349 
350 	return ret;
351 }
352 
353 #ifdef CONFIG_HARDEN_BRANCH_PREDICTOR
354 #include <asm/mmu.h>
355 
kvm_get_hyp_vector(void)356 static inline void *kvm_get_hyp_vector(void)
357 {
358 	struct bp_hardening_data *data = arm64_get_bp_hardening_data();
359 	void *vect = kvm_ksym_ref(__kvm_hyp_vector);
360 
361 	if (data->fn) {
362 		vect = __bp_harden_hyp_vecs_start +
363 		       data->hyp_vectors_slot * SZ_2K;
364 
365 		if (!has_vhe())
366 			vect = lm_alias(vect);
367 	}
368 
369 	return vect;
370 }
371 
kvm_map_vectors(void)372 static inline int kvm_map_vectors(void)
373 {
374 	return create_hyp_mappings(kvm_ksym_ref(__bp_harden_hyp_vecs_start),
375 				   kvm_ksym_ref(__bp_harden_hyp_vecs_end),
376 				   PAGE_HYP_EXEC);
377 }
378 
379 #else
kvm_get_hyp_vector(void)380 static inline void *kvm_get_hyp_vector(void)
381 {
382 	return kvm_ksym_ref(__kvm_hyp_vector);
383 }
384 
kvm_map_vectors(void)385 static inline int kvm_map_vectors(void)
386 {
387 	return 0;
388 }
389 #endif
390 
391 #ifdef CONFIG_ARM64_SSBD
392 DECLARE_PER_CPU_READ_MOSTLY(u64, arm64_ssbd_callback_required);
393 
hyp_map_aux_data(void)394 static inline int hyp_map_aux_data(void)
395 {
396 	int cpu, err;
397 
398 	for_each_possible_cpu(cpu) {
399 		u64 *ptr;
400 
401 		ptr = per_cpu_ptr(&arm64_ssbd_callback_required, cpu);
402 		err = create_hyp_mappings(ptr, ptr + 1, PAGE_HYP);
403 		if (err)
404 			return err;
405 	}
406 	return 0;
407 }
408 #else
hyp_map_aux_data(void)409 static inline int hyp_map_aux_data(void)
410 {
411 	return 0;
412 }
413 #endif
414 
415 #endif /* __ASSEMBLY__ */
416 #endif /* __ARM64_KVM_MMU_H__ */
417