1 /*
2 * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/elf.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/sort.h>
13
in_init(const struct module * mod,void * loc)14 static bool in_init(const struct module *mod, void *loc)
15 {
16 return (u64)loc - (u64)mod->init_layout.base < mod->init_layout.size;
17 }
18
module_emit_plt_entry(struct module * mod,void * loc,const Elf64_Rela * rela,Elf64_Sym * sym)19 u64 module_emit_plt_entry(struct module *mod, void *loc, const Elf64_Rela *rela,
20 Elf64_Sym *sym)
21 {
22 struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core :
23 &mod->arch.init;
24 struct plt_entry *plt = (struct plt_entry *)pltsec->plt->sh_addr;
25 int i = pltsec->plt_num_entries;
26 u64 val = sym->st_value + rela->r_addend;
27
28 plt[i] = get_plt_entry(val);
29
30 /*
31 * Check if the entry we just created is a duplicate. Given that the
32 * relocations are sorted, this will be the last entry we allocated.
33 * (if one exists).
34 */
35 if (i > 0 && plt_entries_equal(plt + i, plt + i - 1))
36 return (u64)&plt[i - 1];
37
38 pltsec->plt_num_entries++;
39 BUG_ON(pltsec->plt_num_entries > pltsec->plt_max_entries);
40
41 return (u64)&plt[i];
42 }
43
44 #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b))
45
cmp_rela(const void * a,const void * b)46 static int cmp_rela(const void *a, const void *b)
47 {
48 const Elf64_Rela *x = a, *y = b;
49 int i;
50
51 /* sort by type, symbol index and addend */
52 i = cmp_3way(ELF64_R_TYPE(x->r_info), ELF64_R_TYPE(y->r_info));
53 if (i == 0)
54 i = cmp_3way(ELF64_R_SYM(x->r_info), ELF64_R_SYM(y->r_info));
55 if (i == 0)
56 i = cmp_3way(x->r_addend, y->r_addend);
57 return i;
58 }
59
duplicate_rel(const Elf64_Rela * rela,int num)60 static bool duplicate_rel(const Elf64_Rela *rela, int num)
61 {
62 /*
63 * Entries are sorted by type, symbol index and addend. That means
64 * that, if a duplicate entry exists, it must be in the preceding
65 * slot.
66 */
67 return num > 0 && cmp_rela(rela + num, rela + num - 1) == 0;
68 }
69
count_plts(Elf64_Sym * syms,Elf64_Rela * rela,int num,Elf64_Word dstidx)70 static unsigned int count_plts(Elf64_Sym *syms, Elf64_Rela *rela, int num,
71 Elf64_Word dstidx)
72 {
73 unsigned int ret = 0;
74 Elf64_Sym *s;
75 int i;
76
77 for (i = 0; i < num; i++) {
78 switch (ELF64_R_TYPE(rela[i].r_info)) {
79 case R_AARCH64_JUMP26:
80 case R_AARCH64_CALL26:
81 /*
82 * We only have to consider branch targets that resolve
83 * to symbols that are defined in a different section.
84 * This is not simply a heuristic, it is a fundamental
85 * limitation, since there is no guaranteed way to emit
86 * PLT entries sufficiently close to the branch if the
87 * section size exceeds the range of a branch
88 * instruction. So ignore relocations against defined
89 * symbols if they live in the same section as the
90 * relocation target.
91 */
92 s = syms + ELF64_R_SYM(rela[i].r_info);
93 if (s->st_shndx == dstidx)
94 break;
95
96 /*
97 * Jump relocations with non-zero addends against
98 * undefined symbols are supported by the ELF spec, but
99 * do not occur in practice (e.g., 'jump n bytes past
100 * the entry point of undefined function symbol f').
101 * So we need to support them, but there is no need to
102 * take them into consideration when trying to optimize
103 * this code. So let's only check for duplicates when
104 * the addend is zero: this allows us to record the PLT
105 * entry address in the symbol table itself, rather than
106 * having to search the list for duplicates each time we
107 * emit one.
108 */
109 if (rela[i].r_addend != 0 || !duplicate_rel(rela, i))
110 ret++;
111 break;
112 }
113 }
114 return ret;
115 }
116
module_frob_arch_sections(Elf_Ehdr * ehdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)117 int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
118 char *secstrings, struct module *mod)
119 {
120 unsigned long core_plts = 0;
121 unsigned long init_plts = 0;
122 Elf64_Sym *syms = NULL;
123 Elf_Shdr *tramp = NULL;
124 int i;
125
126 /*
127 * Find the empty .plt section so we can expand it to store the PLT
128 * entries. Record the symtab address as well.
129 */
130 for (i = 0; i < ehdr->e_shnum; i++) {
131 if (!strcmp(secstrings + sechdrs[i].sh_name, ".plt"))
132 mod->arch.core.plt = sechdrs + i;
133 else if (!strcmp(secstrings + sechdrs[i].sh_name, ".init.plt"))
134 mod->arch.init.plt = sechdrs + i;
135 else if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
136 !strcmp(secstrings + sechdrs[i].sh_name,
137 ".text.ftrace_trampoline"))
138 tramp = sechdrs + i;
139 else if (sechdrs[i].sh_type == SHT_SYMTAB)
140 syms = (Elf64_Sym *)sechdrs[i].sh_addr;
141 }
142
143 if (!mod->arch.core.plt || !mod->arch.init.plt) {
144 pr_err("%s: module PLT section(s) missing\n", mod->name);
145 return -ENOEXEC;
146 }
147 if (!syms) {
148 pr_err("%s: module symtab section missing\n", mod->name);
149 return -ENOEXEC;
150 }
151
152 for (i = 0; i < ehdr->e_shnum; i++) {
153 Elf64_Rela *rels = (void *)ehdr + sechdrs[i].sh_offset;
154 int numrels = sechdrs[i].sh_size / sizeof(Elf64_Rela);
155 Elf64_Shdr *dstsec = sechdrs + sechdrs[i].sh_info;
156
157 if (sechdrs[i].sh_type != SHT_RELA)
158 continue;
159
160 /* ignore relocations that operate on non-exec sections */
161 if (!(dstsec->sh_flags & SHF_EXECINSTR))
162 continue;
163
164 /* sort by type, symbol index and addend */
165 sort(rels, numrels, sizeof(Elf64_Rela), cmp_rela, NULL);
166
167 if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0)
168 core_plts += count_plts(syms, rels, numrels,
169 sechdrs[i].sh_info);
170 else
171 init_plts += count_plts(syms, rels, numrels,
172 sechdrs[i].sh_info);
173 }
174
175 mod->arch.core.plt->sh_type = SHT_NOBITS;
176 mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
177 mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES;
178 mod->arch.core.plt->sh_size = (core_plts + 1) * sizeof(struct plt_entry);
179 mod->arch.core.plt_num_entries = 0;
180 mod->arch.core.plt_max_entries = core_plts;
181
182 mod->arch.init.plt->sh_type = SHT_NOBITS;
183 mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
184 mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES;
185 mod->arch.init.plt->sh_size = (init_plts + 1) * sizeof(struct plt_entry);
186 mod->arch.init.plt_num_entries = 0;
187 mod->arch.init.plt_max_entries = init_plts;
188
189 if (tramp) {
190 tramp->sh_type = SHT_NOBITS;
191 tramp->sh_flags = SHF_EXECINSTR | SHF_ALLOC;
192 tramp->sh_addralign = __alignof__(struct plt_entry);
193 tramp->sh_size = sizeof(struct plt_entry);
194 }
195
196 return 0;
197 }
198