1 /*
2 * Based on arch/arm/kernel/process.c
3 *
4 * Original Copyright (C) 1995 Linus Torvalds
5 * Copyright (C) 1996-2000 Russell King - Converted to ARM.
6 * Copyright (C) 2012 ARM Ltd.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <stdarg.h>
22
23 #include <linux/compat.h>
24 #include <linux/efi.h>
25 #include <linux/export.h>
26 #include <linux/sched.h>
27 #include <linux/sched/debug.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/task_stack.h>
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/stddef.h>
33 #include <linux/unistd.h>
34 #include <linux/user.h>
35 #include <linux/delay.h>
36 #include <linux/reboot.h>
37 #include <linux/interrupt.h>
38 #include <linux/kallsyms.h>
39 #include <linux/init.h>
40 #include <linux/cpu.h>
41 #include <linux/elfcore.h>
42 #include <linux/pm.h>
43 #include <linux/tick.h>
44 #include <linux/utsname.h>
45 #include <linux/uaccess.h>
46 #include <linux/random.h>
47 #include <linux/hw_breakpoint.h>
48 #include <linux/personality.h>
49 #include <linux/notifier.h>
50 #include <trace/events/power.h>
51 #include <linux/percpu.h>
52
53 #include <asm/alternative.h>
54 #include <asm/compat.h>
55 #include <asm/cacheflush.h>
56 #include <asm/exec.h>
57 #include <asm/fpsimd.h>
58 #include <asm/mmu_context.h>
59 #include <asm/processor.h>
60 #include <asm/stacktrace.h>
61
62 #ifdef CONFIG_CC_STACKPROTECTOR
63 #include <linux/stackprotector.h>
64 unsigned long __stack_chk_guard __read_mostly;
65 EXPORT_SYMBOL(__stack_chk_guard);
66 #endif
67
68 /*
69 * Function pointers to optional machine specific functions
70 */
71 void (*pm_power_off)(void);
72 EXPORT_SYMBOL_GPL(pm_power_off);
73
74 void (*arm_pm_restart)(enum reboot_mode reboot_mode, const char *cmd);
75
76 /*
77 * This is our default idle handler.
78 */
arch_cpu_idle(void)79 void arch_cpu_idle(void)
80 {
81 /*
82 * This should do all the clock switching and wait for interrupt
83 * tricks
84 */
85 trace_cpu_idle_rcuidle(1, smp_processor_id());
86 cpu_do_idle();
87 local_irq_enable();
88 trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
89 }
90
91 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)92 void arch_cpu_idle_dead(void)
93 {
94 cpu_die();
95 }
96 #endif
97
98 /*
99 * Called by kexec, immediately prior to machine_kexec().
100 *
101 * This must completely disable all secondary CPUs; simply causing those CPUs
102 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
103 * kexec'd kernel to use any and all RAM as it sees fit, without having to
104 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
105 * functionality embodied in disable_nonboot_cpus() to achieve this.
106 */
machine_shutdown(void)107 void machine_shutdown(void)
108 {
109 disable_nonboot_cpus();
110 }
111
112 /*
113 * Halting simply requires that the secondary CPUs stop performing any
114 * activity (executing tasks, handling interrupts). smp_send_stop()
115 * achieves this.
116 */
machine_halt(void)117 void machine_halt(void)
118 {
119 local_irq_disable();
120 smp_send_stop();
121 while (1);
122 }
123
124 /*
125 * Power-off simply requires that the secondary CPUs stop performing any
126 * activity (executing tasks, handling interrupts). smp_send_stop()
127 * achieves this. When the system power is turned off, it will take all CPUs
128 * with it.
129 */
machine_power_off(void)130 void machine_power_off(void)
131 {
132 local_irq_disable();
133 smp_send_stop();
134 if (pm_power_off)
135 pm_power_off();
136 }
137
138 /*
139 * Restart requires that the secondary CPUs stop performing any activity
140 * while the primary CPU resets the system. Systems with multiple CPUs must
141 * provide a HW restart implementation, to ensure that all CPUs reset at once.
142 * This is required so that any code running after reset on the primary CPU
143 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
144 * executing pre-reset code, and using RAM that the primary CPU's code wishes
145 * to use. Implementing such co-ordination would be essentially impossible.
146 */
machine_restart(char * cmd)147 void machine_restart(char *cmd)
148 {
149 /* Disable interrupts first */
150 local_irq_disable();
151 smp_send_stop();
152
153 /*
154 * UpdateCapsule() depends on the system being reset via
155 * ResetSystem().
156 */
157 if (efi_enabled(EFI_RUNTIME_SERVICES))
158 efi_reboot(reboot_mode, NULL);
159
160 /* Now call the architecture specific reboot code. */
161 if (arm_pm_restart)
162 arm_pm_restart(reboot_mode, cmd);
163 else
164 do_kernel_restart(cmd);
165
166 /*
167 * Whoops - the architecture was unable to reboot.
168 */
169 printk("Reboot failed -- System halted\n");
170 while (1);
171 }
172
173 /*
174 * dump a block of kernel memory from around the given address
175 */
show_data(unsigned long addr,int nbytes,const char * name)176 static void show_data(unsigned long addr, int nbytes, const char *name)
177 {
178 int i, j;
179 int nlines;
180 u32 *p;
181
182 /*
183 * don't attempt to dump non-kernel addresses or
184 * values that are probably just small negative numbers
185 */
186 if (addr < PAGE_OFFSET || addr > -256UL)
187 return;
188
189 printk("\n%s: %#lx:\n", name, addr);
190
191 /*
192 * round address down to a 32 bit boundary
193 * and always dump a multiple of 32 bytes
194 */
195 p = (u32 *)(addr & ~(sizeof(u32) - 1));
196 nbytes += (addr & (sizeof(u32) - 1));
197 nlines = (nbytes + 31) / 32;
198
199
200 for (i = 0; i < nlines; i++) {
201 /*
202 * just display low 16 bits of address to keep
203 * each line of the dump < 80 characters
204 */
205 printk("%04lx ", (unsigned long)p & 0xffff);
206 for (j = 0; j < 8; j++) {
207 u32 data;
208 if (probe_kernel_address(p, data)) {
209 pr_cont(" ********");
210 } else {
211 pr_cont(" %08x", data);
212 }
213 ++p;
214 }
215 pr_cont("\n");
216 }
217 }
218
show_extra_register_data(struct pt_regs * regs,int nbytes)219 static void show_extra_register_data(struct pt_regs *regs, int nbytes)
220 {
221 mm_segment_t fs;
222 unsigned int i;
223
224 fs = get_fs();
225 set_fs(KERNEL_DS);
226 show_data(regs->pc - nbytes, nbytes * 2, "PC");
227 show_data(regs->regs[30] - nbytes, nbytes * 2, "LR");
228 show_data(regs->sp - nbytes, nbytes * 2, "SP");
229 for (i = 0; i < 30; i++) {
230 char name[4];
231 snprintf(name, sizeof(name), "X%u", i);
232 show_data(regs->regs[i] - nbytes, nbytes * 2, name);
233 }
234 set_fs(fs);
235 }
236
__show_regs(struct pt_regs * regs)237 void __show_regs(struct pt_regs *regs)
238 {
239 int i, top_reg;
240 u64 lr, sp;
241
242 if (compat_user_mode(regs)) {
243 lr = regs->compat_lr;
244 sp = regs->compat_sp;
245 top_reg = 12;
246 } else {
247 lr = regs->regs[30];
248 sp = regs->sp;
249 top_reg = 29;
250 }
251
252 show_regs_print_info(KERN_DEFAULT);
253 print_symbol("PC is at %s\n", instruction_pointer(regs));
254 print_symbol("LR is at %s\n", lr);
255 printk("pc : [<%016llx>] lr : [<%016llx>] pstate: %08llx\n",
256 regs->pc, lr, regs->pstate);
257 printk("sp : %016llx\n", sp);
258
259 i = top_reg;
260
261 while (i >= 0) {
262 printk("x%-2d: %016llx ", i, regs->regs[i]);
263 i--;
264
265 if (i % 2 == 0) {
266 pr_cont("x%-2d: %016llx ", i, regs->regs[i]);
267 i--;
268 }
269
270 pr_cont("\n");
271 }
272 if (!user_mode(regs))
273 show_extra_register_data(regs, 128);
274 printk("\n");
275 }
276
show_regs(struct pt_regs * regs)277 void show_regs(struct pt_regs * regs)
278 {
279 __show_regs(regs);
280 dump_backtrace(regs, NULL);
281 }
282
tls_thread_flush(void)283 static void tls_thread_flush(void)
284 {
285 write_sysreg(0, tpidr_el0);
286
287 if (is_compat_task()) {
288 current->thread.tp_value = 0;
289
290 /*
291 * We need to ensure ordering between the shadow state and the
292 * hardware state, so that we don't corrupt the hardware state
293 * with a stale shadow state during context switch.
294 */
295 barrier();
296 write_sysreg(0, tpidrro_el0);
297 }
298 }
299
flush_thread(void)300 void flush_thread(void)
301 {
302 fpsimd_flush_thread();
303 tls_thread_flush();
304 flush_ptrace_hw_breakpoint(current);
305 }
306
release_thread(struct task_struct * dead_task)307 void release_thread(struct task_struct *dead_task)
308 {
309 }
310
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)311 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
312 {
313 if (current->mm)
314 fpsimd_preserve_current_state();
315 *dst = *src;
316 return 0;
317 }
318
319 asmlinkage void ret_from_fork(void) asm("ret_from_fork");
320
copy_thread(unsigned long clone_flags,unsigned long stack_start,unsigned long stk_sz,struct task_struct * p)321 int copy_thread(unsigned long clone_flags, unsigned long stack_start,
322 unsigned long stk_sz, struct task_struct *p)
323 {
324 struct pt_regs *childregs = task_pt_regs(p);
325
326 memset(&p->thread.cpu_context, 0, sizeof(struct cpu_context));
327
328 /*
329 * In case p was allocated the same task_struct pointer as some
330 * other recently-exited task, make sure p is disassociated from
331 * any cpu that may have run that now-exited task recently.
332 * Otherwise we could erroneously skip reloading the FPSIMD
333 * registers for p.
334 */
335 fpsimd_flush_task_state(p);
336
337 if (likely(!(p->flags & PF_KTHREAD))) {
338 *childregs = *current_pt_regs();
339 childregs->regs[0] = 0;
340
341 /*
342 * Read the current TLS pointer from tpidr_el0 as it may be
343 * out-of-sync with the saved value.
344 */
345 *task_user_tls(p) = read_sysreg(tpidr_el0);
346
347 if (stack_start) {
348 if (is_compat_thread(task_thread_info(p)))
349 childregs->compat_sp = stack_start;
350 else
351 childregs->sp = stack_start;
352 }
353
354 /*
355 * If a TLS pointer was passed to clone (4th argument), use it
356 * for the new thread.
357 */
358 if (clone_flags & CLONE_SETTLS)
359 p->thread.tp_value = childregs->regs[3];
360 } else {
361 memset(childregs, 0, sizeof(struct pt_regs));
362 childregs->pstate = PSR_MODE_EL1h;
363 if (IS_ENABLED(CONFIG_ARM64_UAO) &&
364 cpus_have_const_cap(ARM64_HAS_UAO))
365 childregs->pstate |= PSR_UAO_BIT;
366
367 if (arm64_get_ssbd_state() == ARM64_SSBD_FORCE_DISABLE)
368 set_ssbs_bit(childregs);
369
370 p->thread.cpu_context.x19 = stack_start;
371 p->thread.cpu_context.x20 = stk_sz;
372 }
373 p->thread.cpu_context.pc = (unsigned long)ret_from_fork;
374 p->thread.cpu_context.sp = (unsigned long)childregs;
375
376 ptrace_hw_copy_thread(p);
377
378 return 0;
379 }
380
tls_preserve_current_state(void)381 void tls_preserve_current_state(void)
382 {
383 *task_user_tls(current) = read_sysreg(tpidr_el0);
384 }
385
tls_thread_switch(struct task_struct * next)386 static void tls_thread_switch(struct task_struct *next)
387 {
388 tls_preserve_current_state();
389
390 if (is_compat_thread(task_thread_info(next)))
391 write_sysreg(next->thread.tp_value, tpidrro_el0);
392 else if (!arm64_kernel_unmapped_at_el0())
393 write_sysreg(0, tpidrro_el0);
394
395 write_sysreg(*task_user_tls(next), tpidr_el0);
396 }
397
398 /* Restore the UAO state depending on next's addr_limit */
uao_thread_switch(struct task_struct * next)399 void uao_thread_switch(struct task_struct *next)
400 {
401 if (IS_ENABLED(CONFIG_ARM64_UAO)) {
402 if (task_thread_info(next)->addr_limit == KERNEL_DS)
403 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(1), ARM64_HAS_UAO));
404 else
405 asm(ALTERNATIVE("nop", SET_PSTATE_UAO(0), ARM64_HAS_UAO));
406 }
407 }
408
409 /*
410 * Force SSBS state on context-switch, since it may be lost after migrating
411 * from a CPU which treats the bit as RES0 in a heterogeneous system.
412 */
ssbs_thread_switch(struct task_struct * next)413 static void ssbs_thread_switch(struct task_struct *next)
414 {
415 struct pt_regs *regs = task_pt_regs(next);
416
417 /*
418 * Nothing to do for kernel threads, but 'regs' may be junk
419 * (e.g. idle task) so check the flags and bail early.
420 */
421 if (unlikely(next->flags & PF_KTHREAD))
422 return;
423
424 /*
425 * If all CPUs implement the SSBS extension, then we just need to
426 * context-switch the PSTATE field.
427 */
428 if (cpu_have_feature(cpu_feature(SSBS)))
429 return;
430
431 /* If the mitigation is enabled, then we leave SSBS clear. */
432 if ((arm64_get_ssbd_state() == ARM64_SSBD_FORCE_ENABLE) ||
433 test_tsk_thread_flag(next, TIF_SSBD))
434 return;
435
436 if (compat_user_mode(regs))
437 set_compat_ssbs_bit(regs);
438 else if (user_mode(regs))
439 set_ssbs_bit(regs);
440 }
441
442 /*
443 * We store our current task in sp_el0, which is clobbered by userspace. Keep a
444 * shadow copy so that we can restore this upon entry from userspace.
445 *
446 * This is *only* for exception entry from EL0, and is not valid until we
447 * __switch_to() a user task.
448 */
449 DEFINE_PER_CPU(struct task_struct *, __entry_task);
450
entry_task_switch(struct task_struct * next)451 static void entry_task_switch(struct task_struct *next)
452 {
453 __this_cpu_write(__entry_task, next);
454 }
455
456 /*
457 * Thread switching.
458 */
__switch_to(struct task_struct * prev,struct task_struct * next)459 __notrace_funcgraph struct task_struct *__switch_to(struct task_struct *prev,
460 struct task_struct *next)
461 {
462 struct task_struct *last;
463
464 fpsimd_thread_switch(next);
465 tls_thread_switch(next);
466 hw_breakpoint_thread_switch(next);
467 contextidr_thread_switch(next);
468 entry_task_switch(next);
469 uao_thread_switch(next);
470 ssbs_thread_switch(next);
471
472 /*
473 * Complete any pending TLB or cache maintenance on this CPU in case
474 * the thread migrates to a different CPU.
475 * This full barrier is also required by the membarrier system
476 * call.
477 */
478 dsb(ish);
479
480 /* the actual thread switch */
481 last = cpu_switch_to(prev, next);
482
483 return last;
484 }
485
get_wchan(struct task_struct * p)486 unsigned long get_wchan(struct task_struct *p)
487 {
488 struct stackframe frame;
489 unsigned long stack_page, ret = 0;
490 int count = 0;
491 if (!p || p == current || p->state == TASK_RUNNING)
492 return 0;
493
494 stack_page = (unsigned long)try_get_task_stack(p);
495 if (!stack_page)
496 return 0;
497
498 frame.fp = thread_saved_fp(p);
499 frame.pc = thread_saved_pc(p);
500 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
501 frame.graph = p->curr_ret_stack;
502 #endif
503 do {
504 if (unwind_frame(p, &frame))
505 goto out;
506 if (!in_sched_functions(frame.pc)) {
507 ret = frame.pc;
508 goto out;
509 }
510 } while (count ++ < 16);
511
512 out:
513 put_task_stack(p);
514 return ret;
515 }
516
arch_align_stack(unsigned long sp)517 unsigned long arch_align_stack(unsigned long sp)
518 {
519 if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
520 sp -= get_random_int() & ~PAGE_MASK;
521 return sp & ~0xf;
522 }
523
arch_randomize_brk(struct mm_struct * mm)524 unsigned long arch_randomize_brk(struct mm_struct *mm)
525 {
526 if (is_compat_task())
527 return randomize_page(mm->brk, SZ_32M);
528 else
529 return randomize_page(mm->brk, SZ_1G);
530 }
531
532 /*
533 * Called from setup_new_exec() after (COMPAT_)SET_PERSONALITY.
534 */
arch_setup_new_exec(void)535 void arch_setup_new_exec(void)
536 {
537 current->mm->context.flags = is_compat_task() ? MMCF_AARCH32 : 0;
538 }
539