• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  */
17 
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22 
23 #include <kvm/arm_psci.h>
24 
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/fpsimd.h>
29 
__fpsimd_enabled_nvhe(void)30 static bool __hyp_text __fpsimd_enabled_nvhe(void)
31 {
32 	return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
33 }
34 
__fpsimd_enabled_vhe(void)35 static bool __hyp_text __fpsimd_enabled_vhe(void)
36 {
37 	return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
38 }
39 
40 static hyp_alternate_select(__fpsimd_is_enabled,
41 			    __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
42 			    ARM64_HAS_VIRT_HOST_EXTN);
43 
__fpsimd_enabled(void)44 bool __hyp_text __fpsimd_enabled(void)
45 {
46 	return __fpsimd_is_enabled()();
47 }
48 
__activate_traps_vhe(void)49 static void __hyp_text __activate_traps_vhe(void)
50 {
51 	u64 val;
52 
53 	val = read_sysreg(cpacr_el1);
54 	val |= CPACR_EL1_TTA;
55 	val &= ~CPACR_EL1_FPEN;
56 	write_sysreg(val, cpacr_el1);
57 
58 	write_sysreg(kvm_get_hyp_vector(), vbar_el1);
59 }
60 
__activate_traps_nvhe(void)61 static void __hyp_text __activate_traps_nvhe(void)
62 {
63 	u64 val;
64 
65 	val = CPTR_EL2_DEFAULT;
66 	val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
67 	write_sysreg(val, cptr_el2);
68 }
69 
70 static hyp_alternate_select(__activate_traps_arch,
71 			    __activate_traps_nvhe, __activate_traps_vhe,
72 			    ARM64_HAS_VIRT_HOST_EXTN);
73 
__activate_traps(struct kvm_vcpu * vcpu)74 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
75 {
76 	u64 val;
77 
78 	/*
79 	 * We are about to set CPTR_EL2.TFP to trap all floating point
80 	 * register accesses to EL2, however, the ARM ARM clearly states that
81 	 * traps are only taken to EL2 if the operation would not otherwise
82 	 * trap to EL1.  Therefore, always make sure that for 32-bit guests,
83 	 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
84 	 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
85 	 * it will cause an exception.
86 	 */
87 	val = vcpu->arch.hcr_el2;
88 	if (!(val & HCR_RW) && system_supports_fpsimd()) {
89 		write_sysreg(1 << 30, fpexc32_el2);
90 		isb();
91 	}
92 	write_sysreg(val, hcr_el2);
93 	/* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
94 	write_sysreg(1 << 15, hstr_el2);
95 	/*
96 	 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
97 	 * PMSELR_EL0 to make sure it never contains the cycle
98 	 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
99 	 * EL1 instead of being trapped to EL2.
100 	 */
101 	write_sysreg(0, pmselr_el0);
102 	write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
103 	write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
104 	__activate_traps_arch()();
105 }
106 
__deactivate_traps_vhe(void)107 static void __hyp_text __deactivate_traps_vhe(void)
108 {
109 	extern char vectors[];	/* kernel exception vectors */
110 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
111 
112 	mdcr_el2 &= MDCR_EL2_HPMN_MASK |
113 		    MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
114 		    MDCR_EL2_TPMS;
115 
116 	write_sysreg(mdcr_el2, mdcr_el2);
117 	write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
118 	write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
119 	write_sysreg(vectors, vbar_el1);
120 }
121 
__deactivate_traps_nvhe(void)122 static void __hyp_text __deactivate_traps_nvhe(void)
123 {
124 	u64 mdcr_el2 = read_sysreg(mdcr_el2);
125 
126 	mdcr_el2 &= MDCR_EL2_HPMN_MASK;
127 	mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
128 
129 	write_sysreg(mdcr_el2, mdcr_el2);
130 	write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
131 	write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
132 }
133 
134 static hyp_alternate_select(__deactivate_traps_arch,
135 			    __deactivate_traps_nvhe, __deactivate_traps_vhe,
136 			    ARM64_HAS_VIRT_HOST_EXTN);
137 
__deactivate_traps(struct kvm_vcpu * vcpu)138 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
139 {
140 	/*
141 	 * If we pended a virtual abort, preserve it until it gets
142 	 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
143 	 * the crucial bit is "On taking a vSError interrupt,
144 	 * HCR_EL2.VSE is cleared to 0."
145 	 */
146 	if (vcpu->arch.hcr_el2 & HCR_VSE)
147 		vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
148 
149 	__deactivate_traps_arch()();
150 	write_sysreg(0, hstr_el2);
151 	write_sysreg(0, pmuserenr_el0);
152 }
153 
__activate_vm(struct kvm_vcpu * vcpu)154 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
155 {
156 	struct kvm *kvm = kern_hyp_va(vcpu->kvm);
157 	write_sysreg(kvm->arch.vttbr, vttbr_el2);
158 }
159 
__deactivate_vm(struct kvm_vcpu * vcpu)160 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
161 {
162 	write_sysreg(0, vttbr_el2);
163 }
164 
__vgic_save_state(struct kvm_vcpu * vcpu)165 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
166 {
167 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
168 		__vgic_v3_save_state(vcpu);
169 	else
170 		__vgic_v2_save_state(vcpu);
171 
172 	write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
173 }
174 
__vgic_restore_state(struct kvm_vcpu * vcpu)175 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
176 {
177 	u64 val;
178 
179 	val = read_sysreg(hcr_el2);
180 	val |= 	HCR_INT_OVERRIDE;
181 	val |= vcpu->arch.irq_lines;
182 	write_sysreg(val, hcr_el2);
183 
184 	if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
185 		__vgic_v3_restore_state(vcpu);
186 	else
187 		__vgic_v2_restore_state(vcpu);
188 }
189 
__true_value(void)190 static bool __hyp_text __true_value(void)
191 {
192 	return true;
193 }
194 
__false_value(void)195 static bool __hyp_text __false_value(void)
196 {
197 	return false;
198 }
199 
200 static hyp_alternate_select(__check_arm_834220,
201 			    __false_value, __true_value,
202 			    ARM64_WORKAROUND_834220);
203 
__translate_far_to_hpfar(u64 far,u64 * hpfar)204 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
205 {
206 	u64 par, tmp;
207 
208 	/*
209 	 * Resolve the IPA the hard way using the guest VA.
210 	 *
211 	 * Stage-1 translation already validated the memory access
212 	 * rights. As such, we can use the EL1 translation regime, and
213 	 * don't have to distinguish between EL0 and EL1 access.
214 	 *
215 	 * We do need to save/restore PAR_EL1 though, as we haven't
216 	 * saved the guest context yet, and we may return early...
217 	 */
218 	par = read_sysreg(par_el1);
219 	asm volatile("at s1e1r, %0" : : "r" (far));
220 	isb();
221 
222 	tmp = read_sysreg(par_el1);
223 	write_sysreg(par, par_el1);
224 
225 	if (unlikely(tmp & 1))
226 		return false; /* Translation failed, back to guest */
227 
228 	/* Convert PAR to HPFAR format */
229 	*hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
230 	return true;
231 }
232 
__populate_fault_info(struct kvm_vcpu * vcpu)233 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
234 {
235 	u64 esr = read_sysreg_el2(esr);
236 	u8 ec = ESR_ELx_EC(esr);
237 	u64 hpfar, far;
238 
239 	vcpu->arch.fault.esr_el2 = esr;
240 
241 	if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
242 		return true;
243 
244 	far = read_sysreg_el2(far);
245 
246 	/*
247 	 * The HPFAR can be invalid if the stage 2 fault did not
248 	 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
249 	 * bit is clear) and one of the two following cases are true:
250 	 *   1. The fault was due to a permission fault
251 	 *   2. The processor carries errata 834220
252 	 *
253 	 * Therefore, for all non S1PTW faults where we either have a
254 	 * permission fault or the errata workaround is enabled, we
255 	 * resolve the IPA using the AT instruction.
256 	 */
257 	if (!(esr & ESR_ELx_S1PTW) &&
258 	    (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
259 		if (!__translate_far_to_hpfar(far, &hpfar))
260 			return false;
261 	} else {
262 		hpfar = read_sysreg(hpfar_el2);
263 	}
264 
265 	vcpu->arch.fault.far_el2 = far;
266 	vcpu->arch.fault.hpfar_el2 = hpfar;
267 	return true;
268 }
269 
__skip_instr(struct kvm_vcpu * vcpu)270 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
271 {
272 	*vcpu_pc(vcpu) = read_sysreg_el2(elr);
273 
274 	if (vcpu_mode_is_32bit(vcpu)) {
275 		vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
276 		kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
277 		write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
278 	} else {
279 		*vcpu_pc(vcpu) += 4;
280 	}
281 
282 	write_sysreg_el2(*vcpu_pc(vcpu), elr);
283 }
284 
__needs_ssbd_off(struct kvm_vcpu * vcpu)285 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
286 {
287 	if (!cpus_have_const_cap(ARM64_SSBD))
288 		return false;
289 
290 	return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
291 }
292 
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)293 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
294 {
295 #ifdef CONFIG_ARM64_SSBD
296 	/*
297 	 * The host runs with the workaround always present. If the
298 	 * guest wants it disabled, so be it...
299 	 */
300 	if (__needs_ssbd_off(vcpu) &&
301 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
302 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
303 #endif
304 }
305 
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)306 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
307 {
308 #ifdef CONFIG_ARM64_SSBD
309 	/*
310 	 * If the guest has disabled the workaround, bring it back on.
311 	 */
312 	if (__needs_ssbd_off(vcpu) &&
313 	    __hyp_this_cpu_read(arm64_ssbd_callback_required))
314 		arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
315 #endif
316 }
317 
__kvm_vcpu_run(struct kvm_vcpu * vcpu)318 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
319 {
320 	struct kvm_cpu_context *host_ctxt;
321 	struct kvm_cpu_context *guest_ctxt;
322 	bool fp_enabled;
323 	u64 exit_code;
324 
325 	vcpu = kern_hyp_va(vcpu);
326 
327 	host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
328 	host_ctxt->__hyp_running_vcpu = vcpu;
329 	guest_ctxt = &vcpu->arch.ctxt;
330 
331 	__sysreg_save_host_state(host_ctxt);
332 	__debug_cond_save_host_state(vcpu);
333 
334 	__activate_traps(vcpu);
335 	__activate_vm(vcpu);
336 
337 	__vgic_restore_state(vcpu);
338 	__timer_restore_state(vcpu);
339 
340 	/*
341 	 * We must restore the 32-bit state before the sysregs, thanks
342 	 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
343 	 */
344 	__sysreg32_restore_state(vcpu);
345 	__sysreg_restore_guest_state(guest_ctxt);
346 	__debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
347 
348 	__set_guest_arch_workaround_state(vcpu);
349 
350 	/* Jump in the fire! */
351 again:
352 	exit_code = __guest_enter(vcpu, host_ctxt);
353 	/* And we're baaack! */
354 
355 	/*
356 	 * We're using the raw exception code in order to only process
357 	 * the trap if no SError is pending. We will come back to the
358 	 * same PC once the SError has been injected, and replay the
359 	 * trapping instruction.
360 	 */
361 	if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
362 		goto again;
363 
364 	if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
365 	    exit_code == ARM_EXCEPTION_TRAP) {
366 		bool valid;
367 
368 		valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
369 			kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
370 			kvm_vcpu_dabt_isvalid(vcpu) &&
371 			!kvm_vcpu_dabt_isextabt(vcpu) &&
372 			!kvm_vcpu_dabt_iss1tw(vcpu);
373 
374 		if (valid) {
375 			int ret = __vgic_v2_perform_cpuif_access(vcpu);
376 
377 			if (ret == 1) {
378 				__skip_instr(vcpu);
379 				goto again;
380 			}
381 
382 			if (ret == -1) {
383 				/* Promote an illegal access to an SError */
384 				__skip_instr(vcpu);
385 				exit_code = ARM_EXCEPTION_EL1_SERROR;
386 			}
387 
388 			/* 0 falls through to be handler out of EL2 */
389 		}
390 	}
391 
392 	if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
393 	    exit_code == ARM_EXCEPTION_TRAP &&
394 	    (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
395 	     kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
396 		int ret = __vgic_v3_perform_cpuif_access(vcpu);
397 
398 		if (ret == 1) {
399 			__skip_instr(vcpu);
400 			goto again;
401 		}
402 
403 		/* 0 falls through to be handled out of EL2 */
404 	}
405 
406 	__set_host_arch_workaround_state(vcpu);
407 
408 	fp_enabled = __fpsimd_enabled();
409 
410 	__sysreg_save_guest_state(guest_ctxt);
411 	__sysreg32_save_state(vcpu);
412 	__timer_save_state(vcpu);
413 	__vgic_save_state(vcpu);
414 
415 	__deactivate_traps(vcpu);
416 	__deactivate_vm(vcpu);
417 
418 	__sysreg_restore_host_state(host_ctxt);
419 
420 	if (fp_enabled) {
421 		__fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
422 		__fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
423 	}
424 
425 	__debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
426 	/*
427 	 * This must come after restoring the host sysregs, since a non-VHE
428 	 * system may enable SPE here and make use of the TTBRs.
429 	 */
430 	__debug_cond_restore_host_state(vcpu);
431 
432 	return exit_code;
433 }
434 
435 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
436 
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_vcpu * vcpu)437 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
438 					     struct kvm_vcpu *vcpu)
439 {
440 	unsigned long str_va;
441 
442 	/*
443 	 * Force the panic string to be loaded from the literal pool,
444 	 * making sure it is a kernel address and not a PC-relative
445 	 * reference.
446 	 */
447 	asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
448 
449 	__hyp_do_panic(str_va,
450 		       spsr,  elr,
451 		       read_sysreg(esr_el2),   read_sysreg_el2(far),
452 		       read_sysreg(hpfar_el2), par, vcpu);
453 }
454 
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_vcpu * vcpu)455 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
456 					    struct kvm_vcpu *vcpu)
457 {
458 	panic(__hyp_panic_string,
459 	      spsr,  elr,
460 	      read_sysreg_el2(esr),   read_sysreg_el2(far),
461 	      read_sysreg(hpfar_el2), par, vcpu);
462 }
463 
464 static hyp_alternate_select(__hyp_call_panic,
465 			    __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
466 			    ARM64_HAS_VIRT_HOST_EXTN);
467 
hyp_panic(struct kvm_cpu_context * host_ctxt)468 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
469 {
470 	struct kvm_vcpu *vcpu = NULL;
471 
472 	u64 spsr = read_sysreg_el2(spsr);
473 	u64 elr = read_sysreg_el2(elr);
474 	u64 par = read_sysreg(par_el1);
475 
476 	if (read_sysreg(vttbr_el2)) {
477 		vcpu = host_ctxt->__hyp_running_vcpu;
478 		__timer_save_state(vcpu);
479 		__deactivate_traps(vcpu);
480 		__deactivate_vm(vcpu);
481 		__sysreg_restore_host_state(host_ctxt);
482 	}
483 
484 	/* Call panic for real */
485 	__hyp_call_panic()(spsr, elr, par, vcpu);
486 
487 	unreachable();
488 }
489