1 /*
2 * Copyright (C) 2015 - ARM Ltd
3 * Author: Marc Zyngier <marc.zyngier@arm.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program. If not, see <http://www.gnu.org/licenses/>.
16 */
17
18 #include <linux/arm-smccc.h>
19 #include <linux/types.h>
20 #include <linux/jump_label.h>
21 #include <uapi/linux/psci.h>
22
23 #include <kvm/arm_psci.h>
24
25 #include <asm/kvm_asm.h>
26 #include <asm/kvm_emulate.h>
27 #include <asm/kvm_hyp.h>
28 #include <asm/fpsimd.h>
29
__fpsimd_enabled_nvhe(void)30 static bool __hyp_text __fpsimd_enabled_nvhe(void)
31 {
32 return !(read_sysreg(cptr_el2) & CPTR_EL2_TFP);
33 }
34
__fpsimd_enabled_vhe(void)35 static bool __hyp_text __fpsimd_enabled_vhe(void)
36 {
37 return !!(read_sysreg(cpacr_el1) & CPACR_EL1_FPEN);
38 }
39
40 static hyp_alternate_select(__fpsimd_is_enabled,
41 __fpsimd_enabled_nvhe, __fpsimd_enabled_vhe,
42 ARM64_HAS_VIRT_HOST_EXTN);
43
__fpsimd_enabled(void)44 bool __hyp_text __fpsimd_enabled(void)
45 {
46 return __fpsimd_is_enabled()();
47 }
48
__activate_traps_vhe(void)49 static void __hyp_text __activate_traps_vhe(void)
50 {
51 u64 val;
52
53 val = read_sysreg(cpacr_el1);
54 val |= CPACR_EL1_TTA;
55 val &= ~CPACR_EL1_FPEN;
56 write_sysreg(val, cpacr_el1);
57
58 write_sysreg(kvm_get_hyp_vector(), vbar_el1);
59 }
60
__activate_traps_nvhe(void)61 static void __hyp_text __activate_traps_nvhe(void)
62 {
63 u64 val;
64
65 val = CPTR_EL2_DEFAULT;
66 val |= CPTR_EL2_TTA | CPTR_EL2_TFP;
67 write_sysreg(val, cptr_el2);
68 }
69
70 static hyp_alternate_select(__activate_traps_arch,
71 __activate_traps_nvhe, __activate_traps_vhe,
72 ARM64_HAS_VIRT_HOST_EXTN);
73
__activate_traps(struct kvm_vcpu * vcpu)74 static void __hyp_text __activate_traps(struct kvm_vcpu *vcpu)
75 {
76 u64 val;
77
78 /*
79 * We are about to set CPTR_EL2.TFP to trap all floating point
80 * register accesses to EL2, however, the ARM ARM clearly states that
81 * traps are only taken to EL2 if the operation would not otherwise
82 * trap to EL1. Therefore, always make sure that for 32-bit guests,
83 * we set FPEXC.EN to prevent traps to EL1, when setting the TFP bit.
84 * If FP/ASIMD is not implemented, FPEXC is UNDEFINED and any access to
85 * it will cause an exception.
86 */
87 val = vcpu->arch.hcr_el2;
88 if (!(val & HCR_RW) && system_supports_fpsimd()) {
89 write_sysreg(1 << 30, fpexc32_el2);
90 isb();
91 }
92 write_sysreg(val, hcr_el2);
93 /* Trap on AArch32 cp15 c15 accesses (EL1 or EL0) */
94 write_sysreg(1 << 15, hstr_el2);
95 /*
96 * Make sure we trap PMU access from EL0 to EL2. Also sanitize
97 * PMSELR_EL0 to make sure it never contains the cycle
98 * counter, which could make a PMXEVCNTR_EL0 access UNDEF at
99 * EL1 instead of being trapped to EL2.
100 */
101 write_sysreg(0, pmselr_el0);
102 write_sysreg(ARMV8_PMU_USERENR_MASK, pmuserenr_el0);
103 write_sysreg(vcpu->arch.mdcr_el2, mdcr_el2);
104 __activate_traps_arch()();
105 }
106
__deactivate_traps_vhe(void)107 static void __hyp_text __deactivate_traps_vhe(void)
108 {
109 extern char vectors[]; /* kernel exception vectors */
110 u64 mdcr_el2 = read_sysreg(mdcr_el2);
111
112 mdcr_el2 &= MDCR_EL2_HPMN_MASK |
113 MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT |
114 MDCR_EL2_TPMS;
115
116 write_sysreg(mdcr_el2, mdcr_el2);
117 write_sysreg(HCR_HOST_VHE_FLAGS, hcr_el2);
118 write_sysreg(CPACR_EL1_FPEN, cpacr_el1);
119 write_sysreg(vectors, vbar_el1);
120 }
121
__deactivate_traps_nvhe(void)122 static void __hyp_text __deactivate_traps_nvhe(void)
123 {
124 u64 mdcr_el2 = read_sysreg(mdcr_el2);
125
126 mdcr_el2 &= MDCR_EL2_HPMN_MASK;
127 mdcr_el2 |= MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT;
128
129 write_sysreg(mdcr_el2, mdcr_el2);
130 write_sysreg(HCR_HOST_NVHE_FLAGS, hcr_el2);
131 write_sysreg(CPTR_EL2_DEFAULT, cptr_el2);
132 }
133
134 static hyp_alternate_select(__deactivate_traps_arch,
135 __deactivate_traps_nvhe, __deactivate_traps_vhe,
136 ARM64_HAS_VIRT_HOST_EXTN);
137
__deactivate_traps(struct kvm_vcpu * vcpu)138 static void __hyp_text __deactivate_traps(struct kvm_vcpu *vcpu)
139 {
140 /*
141 * If we pended a virtual abort, preserve it until it gets
142 * cleared. See D1.14.3 (Virtual Interrupts) for details, but
143 * the crucial bit is "On taking a vSError interrupt,
144 * HCR_EL2.VSE is cleared to 0."
145 */
146 if (vcpu->arch.hcr_el2 & HCR_VSE)
147 vcpu->arch.hcr_el2 = read_sysreg(hcr_el2);
148
149 __deactivate_traps_arch()();
150 write_sysreg(0, hstr_el2);
151 write_sysreg(0, pmuserenr_el0);
152 }
153
__activate_vm(struct kvm_vcpu * vcpu)154 static void __hyp_text __activate_vm(struct kvm_vcpu *vcpu)
155 {
156 struct kvm *kvm = kern_hyp_va(vcpu->kvm);
157 write_sysreg(kvm->arch.vttbr, vttbr_el2);
158 }
159
__deactivate_vm(struct kvm_vcpu * vcpu)160 static void __hyp_text __deactivate_vm(struct kvm_vcpu *vcpu)
161 {
162 write_sysreg(0, vttbr_el2);
163 }
164
__vgic_save_state(struct kvm_vcpu * vcpu)165 static void __hyp_text __vgic_save_state(struct kvm_vcpu *vcpu)
166 {
167 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
168 __vgic_v3_save_state(vcpu);
169 else
170 __vgic_v2_save_state(vcpu);
171
172 write_sysreg(read_sysreg(hcr_el2) & ~HCR_INT_OVERRIDE, hcr_el2);
173 }
174
__vgic_restore_state(struct kvm_vcpu * vcpu)175 static void __hyp_text __vgic_restore_state(struct kvm_vcpu *vcpu)
176 {
177 u64 val;
178
179 val = read_sysreg(hcr_el2);
180 val |= HCR_INT_OVERRIDE;
181 val |= vcpu->arch.irq_lines;
182 write_sysreg(val, hcr_el2);
183
184 if (static_branch_unlikely(&kvm_vgic_global_state.gicv3_cpuif))
185 __vgic_v3_restore_state(vcpu);
186 else
187 __vgic_v2_restore_state(vcpu);
188 }
189
__true_value(void)190 static bool __hyp_text __true_value(void)
191 {
192 return true;
193 }
194
__false_value(void)195 static bool __hyp_text __false_value(void)
196 {
197 return false;
198 }
199
200 static hyp_alternate_select(__check_arm_834220,
201 __false_value, __true_value,
202 ARM64_WORKAROUND_834220);
203
__translate_far_to_hpfar(u64 far,u64 * hpfar)204 static bool __hyp_text __translate_far_to_hpfar(u64 far, u64 *hpfar)
205 {
206 u64 par, tmp;
207
208 /*
209 * Resolve the IPA the hard way using the guest VA.
210 *
211 * Stage-1 translation already validated the memory access
212 * rights. As such, we can use the EL1 translation regime, and
213 * don't have to distinguish between EL0 and EL1 access.
214 *
215 * We do need to save/restore PAR_EL1 though, as we haven't
216 * saved the guest context yet, and we may return early...
217 */
218 par = read_sysreg(par_el1);
219 asm volatile("at s1e1r, %0" : : "r" (far));
220 isb();
221
222 tmp = read_sysreg(par_el1);
223 write_sysreg(par, par_el1);
224
225 if (unlikely(tmp & 1))
226 return false; /* Translation failed, back to guest */
227
228 /* Convert PAR to HPFAR format */
229 *hpfar = ((tmp >> 12) & ((1UL << 36) - 1)) << 4;
230 return true;
231 }
232
__populate_fault_info(struct kvm_vcpu * vcpu)233 static bool __hyp_text __populate_fault_info(struct kvm_vcpu *vcpu)
234 {
235 u64 esr = read_sysreg_el2(esr);
236 u8 ec = ESR_ELx_EC(esr);
237 u64 hpfar, far;
238
239 vcpu->arch.fault.esr_el2 = esr;
240
241 if (ec != ESR_ELx_EC_DABT_LOW && ec != ESR_ELx_EC_IABT_LOW)
242 return true;
243
244 far = read_sysreg_el2(far);
245
246 /*
247 * The HPFAR can be invalid if the stage 2 fault did not
248 * happen during a stage 1 page table walk (the ESR_EL2.S1PTW
249 * bit is clear) and one of the two following cases are true:
250 * 1. The fault was due to a permission fault
251 * 2. The processor carries errata 834220
252 *
253 * Therefore, for all non S1PTW faults where we either have a
254 * permission fault or the errata workaround is enabled, we
255 * resolve the IPA using the AT instruction.
256 */
257 if (!(esr & ESR_ELx_S1PTW) &&
258 (__check_arm_834220()() || (esr & ESR_ELx_FSC_TYPE) == FSC_PERM)) {
259 if (!__translate_far_to_hpfar(far, &hpfar))
260 return false;
261 } else {
262 hpfar = read_sysreg(hpfar_el2);
263 }
264
265 vcpu->arch.fault.far_el2 = far;
266 vcpu->arch.fault.hpfar_el2 = hpfar;
267 return true;
268 }
269
__skip_instr(struct kvm_vcpu * vcpu)270 static void __hyp_text __skip_instr(struct kvm_vcpu *vcpu)
271 {
272 *vcpu_pc(vcpu) = read_sysreg_el2(elr);
273
274 if (vcpu_mode_is_32bit(vcpu)) {
275 vcpu->arch.ctxt.gp_regs.regs.pstate = read_sysreg_el2(spsr);
276 kvm_skip_instr32(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
277 write_sysreg_el2(vcpu->arch.ctxt.gp_regs.regs.pstate, spsr);
278 } else {
279 *vcpu_pc(vcpu) += 4;
280 }
281
282 write_sysreg_el2(*vcpu_pc(vcpu), elr);
283 }
284
__needs_ssbd_off(struct kvm_vcpu * vcpu)285 static inline bool __hyp_text __needs_ssbd_off(struct kvm_vcpu *vcpu)
286 {
287 if (!cpus_have_const_cap(ARM64_SSBD))
288 return false;
289
290 return !(vcpu->arch.workaround_flags & VCPU_WORKAROUND_2_FLAG);
291 }
292
__set_guest_arch_workaround_state(struct kvm_vcpu * vcpu)293 static void __hyp_text __set_guest_arch_workaround_state(struct kvm_vcpu *vcpu)
294 {
295 #ifdef CONFIG_ARM64_SSBD
296 /*
297 * The host runs with the workaround always present. If the
298 * guest wants it disabled, so be it...
299 */
300 if (__needs_ssbd_off(vcpu) &&
301 __hyp_this_cpu_read(arm64_ssbd_callback_required))
302 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 0, NULL);
303 #endif
304 }
305
__set_host_arch_workaround_state(struct kvm_vcpu * vcpu)306 static void __hyp_text __set_host_arch_workaround_state(struct kvm_vcpu *vcpu)
307 {
308 #ifdef CONFIG_ARM64_SSBD
309 /*
310 * If the guest has disabled the workaround, bring it back on.
311 */
312 if (__needs_ssbd_off(vcpu) &&
313 __hyp_this_cpu_read(arm64_ssbd_callback_required))
314 arm_smccc_1_1_smc(ARM_SMCCC_ARCH_WORKAROUND_2, 1, NULL);
315 #endif
316 }
317
__kvm_vcpu_run(struct kvm_vcpu * vcpu)318 int __hyp_text __kvm_vcpu_run(struct kvm_vcpu *vcpu)
319 {
320 struct kvm_cpu_context *host_ctxt;
321 struct kvm_cpu_context *guest_ctxt;
322 bool fp_enabled;
323 u64 exit_code;
324
325 vcpu = kern_hyp_va(vcpu);
326
327 host_ctxt = kern_hyp_va(vcpu->arch.host_cpu_context);
328 host_ctxt->__hyp_running_vcpu = vcpu;
329 guest_ctxt = &vcpu->arch.ctxt;
330
331 __sysreg_save_host_state(host_ctxt);
332 __debug_cond_save_host_state(vcpu);
333
334 __activate_traps(vcpu);
335 __activate_vm(vcpu);
336
337 __vgic_restore_state(vcpu);
338 __timer_restore_state(vcpu);
339
340 /*
341 * We must restore the 32-bit state before the sysregs, thanks
342 * to erratum #852523 (Cortex-A57) or #853709 (Cortex-A72).
343 */
344 __sysreg32_restore_state(vcpu);
345 __sysreg_restore_guest_state(guest_ctxt);
346 __debug_restore_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
347
348 __set_guest_arch_workaround_state(vcpu);
349
350 /* Jump in the fire! */
351 again:
352 exit_code = __guest_enter(vcpu, host_ctxt);
353 /* And we're baaack! */
354
355 /*
356 * We're using the raw exception code in order to only process
357 * the trap if no SError is pending. We will come back to the
358 * same PC once the SError has been injected, and replay the
359 * trapping instruction.
360 */
361 if (exit_code == ARM_EXCEPTION_TRAP && !__populate_fault_info(vcpu))
362 goto again;
363
364 if (static_branch_unlikely(&vgic_v2_cpuif_trap) &&
365 exit_code == ARM_EXCEPTION_TRAP) {
366 bool valid;
367
368 valid = kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_DABT_LOW &&
369 kvm_vcpu_trap_get_fault_type(vcpu) == FSC_FAULT &&
370 kvm_vcpu_dabt_isvalid(vcpu) &&
371 !kvm_vcpu_dabt_isextabt(vcpu) &&
372 !kvm_vcpu_dabt_iss1tw(vcpu);
373
374 if (valid) {
375 int ret = __vgic_v2_perform_cpuif_access(vcpu);
376
377 if (ret == 1) {
378 __skip_instr(vcpu);
379 goto again;
380 }
381
382 if (ret == -1) {
383 /* Promote an illegal access to an SError */
384 __skip_instr(vcpu);
385 exit_code = ARM_EXCEPTION_EL1_SERROR;
386 }
387
388 /* 0 falls through to be handler out of EL2 */
389 }
390 }
391
392 if (static_branch_unlikely(&vgic_v3_cpuif_trap) &&
393 exit_code == ARM_EXCEPTION_TRAP &&
394 (kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_SYS64 ||
395 kvm_vcpu_trap_get_class(vcpu) == ESR_ELx_EC_CP15_32)) {
396 int ret = __vgic_v3_perform_cpuif_access(vcpu);
397
398 if (ret == 1) {
399 __skip_instr(vcpu);
400 goto again;
401 }
402
403 /* 0 falls through to be handled out of EL2 */
404 }
405
406 __set_host_arch_workaround_state(vcpu);
407
408 fp_enabled = __fpsimd_enabled();
409
410 __sysreg_save_guest_state(guest_ctxt);
411 __sysreg32_save_state(vcpu);
412 __timer_save_state(vcpu);
413 __vgic_save_state(vcpu);
414
415 __deactivate_traps(vcpu);
416 __deactivate_vm(vcpu);
417
418 __sysreg_restore_host_state(host_ctxt);
419
420 if (fp_enabled) {
421 __fpsimd_save_state(&guest_ctxt->gp_regs.fp_regs);
422 __fpsimd_restore_state(&host_ctxt->gp_regs.fp_regs);
423 }
424
425 __debug_save_state(vcpu, kern_hyp_va(vcpu->arch.debug_ptr), guest_ctxt);
426 /*
427 * This must come after restoring the host sysregs, since a non-VHE
428 * system may enable SPE here and make use of the TTBRs.
429 */
430 __debug_cond_restore_host_state(vcpu);
431
432 return exit_code;
433 }
434
435 static const char __hyp_panic_string[] = "HYP panic:\nPS:%08llx PC:%016llx ESR:%08llx\nFAR:%016llx HPFAR:%016llx PAR:%016llx\nVCPU:%p\n";
436
__hyp_call_panic_nvhe(u64 spsr,u64 elr,u64 par,struct kvm_vcpu * vcpu)437 static void __hyp_text __hyp_call_panic_nvhe(u64 spsr, u64 elr, u64 par,
438 struct kvm_vcpu *vcpu)
439 {
440 unsigned long str_va;
441
442 /*
443 * Force the panic string to be loaded from the literal pool,
444 * making sure it is a kernel address and not a PC-relative
445 * reference.
446 */
447 asm volatile("ldr %0, =__hyp_panic_string" : "=r" (str_va));
448
449 __hyp_do_panic(str_va,
450 spsr, elr,
451 read_sysreg(esr_el2), read_sysreg_el2(far),
452 read_sysreg(hpfar_el2), par, vcpu);
453 }
454
__hyp_call_panic_vhe(u64 spsr,u64 elr,u64 par,struct kvm_vcpu * vcpu)455 static void __hyp_text __hyp_call_panic_vhe(u64 spsr, u64 elr, u64 par,
456 struct kvm_vcpu *vcpu)
457 {
458 panic(__hyp_panic_string,
459 spsr, elr,
460 read_sysreg_el2(esr), read_sysreg_el2(far),
461 read_sysreg(hpfar_el2), par, vcpu);
462 }
463
464 static hyp_alternate_select(__hyp_call_panic,
465 __hyp_call_panic_nvhe, __hyp_call_panic_vhe,
466 ARM64_HAS_VIRT_HOST_EXTN);
467
hyp_panic(struct kvm_cpu_context * host_ctxt)468 void __hyp_text __noreturn hyp_panic(struct kvm_cpu_context *host_ctxt)
469 {
470 struct kvm_vcpu *vcpu = NULL;
471
472 u64 spsr = read_sysreg_el2(spsr);
473 u64 elr = read_sysreg_el2(elr);
474 u64 par = read_sysreg(par_el1);
475
476 if (read_sysreg(vttbr_el2)) {
477 vcpu = host_ctxt->__hyp_running_vcpu;
478 __timer_save_state(vcpu);
479 __deactivate_traps(vcpu);
480 __deactivate_vm(vcpu);
481 __sysreg_restore_host_state(host_ctxt);
482 }
483
484 /* Call panic for real */
485 __hyp_call_panic()(spsr, elr, par, vcpu);
486
487 unreachable();
488 }
489