• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * bfin_dma.c - Blackfin DMA implementation
3  *
4  * Copyright 2004-2008 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/errno.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/param.h>
14 #include <linux/proc_fs.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/spinlock.h>
18 
19 #include <asm/blackfin.h>
20 #include <asm/cacheflush.h>
21 #include <asm/dma.h>
22 #include <linux/uaccess.h>
23 #include <asm/early_printk.h>
24 
25 /*
26  * To make sure we work around 05000119 - we always check DMA_DONE bit,
27  * never the DMA_RUN bit
28  */
29 
30 struct dma_channel dma_ch[MAX_DMA_CHANNELS];
31 EXPORT_SYMBOL(dma_ch);
32 
blackfin_dma_init(void)33 static int __init blackfin_dma_init(void)
34 {
35 	int i;
36 
37 	printk(KERN_INFO "Blackfin DMA Controller\n");
38 
39 
40 #if ANOMALY_05000480
41 	bfin_write_DMAC_TC_PER(0x0111);
42 #endif
43 
44 	for (i = 0; i < MAX_DMA_CHANNELS; i++) {
45 		atomic_set(&dma_ch[i].chan_status, 0);
46 		dma_ch[i].regs = dma_io_base_addr[i];
47 	}
48 #if defined(CH_MEM_STREAM3_SRC) && defined(CONFIG_BF60x)
49 	/* Mark MEMDMA Channel 3 as requested since we're using it internally */
50 	request_dma(CH_MEM_STREAM3_DEST, "Blackfin dma_memcpy");
51 	request_dma(CH_MEM_STREAM3_SRC, "Blackfin dma_memcpy");
52 #else
53 	/* Mark MEMDMA Channel 0 as requested since we're using it internally */
54 	request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
55 	request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
56 #endif
57 
58 #if defined(CONFIG_DEB_DMA_URGENT)
59 	bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
60 			 | DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
61 #endif
62 
63 	return 0;
64 }
65 arch_initcall(blackfin_dma_init);
66 
67 #ifdef CONFIG_PROC_FS
proc_dma_show(struct seq_file * m,void * v)68 static int proc_dma_show(struct seq_file *m, void *v)
69 {
70 	int i;
71 
72 	for (i = 0; i < MAX_DMA_CHANNELS; ++i)
73 		if (dma_channel_active(i))
74 			seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
75 
76 	return 0;
77 }
78 
proc_dma_open(struct inode * inode,struct file * file)79 static int proc_dma_open(struct inode *inode, struct file *file)
80 {
81 	return single_open(file, proc_dma_show, NULL);
82 }
83 
84 static const struct file_operations proc_dma_operations = {
85 	.open		= proc_dma_open,
86 	.read		= seq_read,
87 	.llseek		= seq_lseek,
88 	.release	= single_release,
89 };
90 
proc_dma_init(void)91 static int __init proc_dma_init(void)
92 {
93 	proc_create("dma", 0, NULL, &proc_dma_operations);
94 	return 0;
95 }
96 late_initcall(proc_dma_init);
97 #endif
98 
set_dma_peripheral_map(unsigned int channel,const char * device_id)99 static void set_dma_peripheral_map(unsigned int channel, const char *device_id)
100 {
101 #ifdef CONFIG_BF54x
102 	unsigned int per_map;
103 
104 	switch (channel) {
105 		case CH_UART2_RX: per_map = 0xC << 12; break;
106 		case CH_UART2_TX: per_map = 0xD << 12; break;
107 		case CH_UART3_RX: per_map = 0xE << 12; break;
108 		case CH_UART3_TX: per_map = 0xF << 12; break;
109 		default:          return;
110 	}
111 
112 	if (strncmp(device_id, "BFIN_UART", 9) == 0)
113 		dma_ch[channel].regs->peripheral_map = per_map;
114 #endif
115 }
116 
117 /**
118  *	request_dma - request a DMA channel
119  *
120  * Request the specific DMA channel from the system if it's available.
121  */
request_dma(unsigned int channel,const char * device_id)122 int request_dma(unsigned int channel, const char *device_id)
123 {
124 	pr_debug("request_dma() : BEGIN\n");
125 
126 	if (device_id == NULL)
127 		printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
128 
129 #if defined(CONFIG_BF561) && ANOMALY_05000182
130 	if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
131 		if (get_cclk() > 500000000) {
132 			printk(KERN_WARNING
133 			       "Request IMDMA failed due to ANOMALY 05000182\n");
134 			return -EFAULT;
135 		}
136 	}
137 #endif
138 
139 	if (atomic_cmpxchg(&dma_ch[channel].chan_status, 0, 1)) {
140 		pr_debug("DMA CHANNEL IN USE\n");
141 		return -EBUSY;
142 	}
143 
144 	set_dma_peripheral_map(channel, device_id);
145 	dma_ch[channel].device_id = device_id;
146 	dma_ch[channel].irq = 0;
147 
148 	/* This is to be enabled by putting a restriction -
149 	 * you have to request DMA, before doing any operations on
150 	 * descriptor/channel
151 	 */
152 	pr_debug("request_dma() : END\n");
153 	return 0;
154 }
155 EXPORT_SYMBOL(request_dma);
156 
set_dma_callback(unsigned int channel,irq_handler_t callback,void * data)157 int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
158 {
159 	int ret;
160 	unsigned int irq;
161 
162 	BUG_ON(channel >= MAX_DMA_CHANNELS || !callback ||
163 			!atomic_read(&dma_ch[channel].chan_status));
164 
165 	irq = channel2irq(channel);
166 	ret = request_irq(irq, callback, 0, dma_ch[channel].device_id, data);
167 	if (ret)
168 		return ret;
169 
170 	dma_ch[channel].irq = irq;
171 	dma_ch[channel].data = data;
172 
173 	return 0;
174 }
175 EXPORT_SYMBOL(set_dma_callback);
176 
177 /**
178  *	clear_dma_buffer - clear DMA fifos for specified channel
179  *
180  * Set the Buffer Clear bit in the Configuration register of specific DMA
181  * channel. This will stop the descriptor based DMA operation.
182  */
clear_dma_buffer(unsigned int channel)183 static void clear_dma_buffer(unsigned int channel)
184 {
185 	dma_ch[channel].regs->cfg |= RESTART;
186 	SSYNC();
187 	dma_ch[channel].regs->cfg &= ~RESTART;
188 }
189 
free_dma(unsigned int channel)190 void free_dma(unsigned int channel)
191 {
192 	pr_debug("freedma() : BEGIN\n");
193 	BUG_ON(channel >= MAX_DMA_CHANNELS ||
194 			!atomic_read(&dma_ch[channel].chan_status));
195 
196 	/* Halt the DMA */
197 	disable_dma(channel);
198 	clear_dma_buffer(channel);
199 
200 	if (dma_ch[channel].irq)
201 		free_irq(dma_ch[channel].irq, dma_ch[channel].data);
202 
203 	/* Clear the DMA Variable in the Channel */
204 	atomic_set(&dma_ch[channel].chan_status, 0);
205 
206 	pr_debug("freedma() : END\n");
207 }
208 EXPORT_SYMBOL(free_dma);
209 
210 #ifdef CONFIG_PM
211 # ifndef MAX_DMA_SUSPEND_CHANNELS
212 #  define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
213 # endif
214 # ifndef CONFIG_BF60x
blackfin_dma_suspend(void)215 int blackfin_dma_suspend(void)
216 {
217 	int i;
218 
219 	for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
220 		if (dma_ch[i].regs->cfg & DMAEN) {
221 			printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
222 			return -EBUSY;
223 		}
224 		if (i < MAX_DMA_SUSPEND_CHANNELS)
225 			dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
226 	}
227 
228 #if ANOMALY_05000480
229 	bfin_write_DMAC_TC_PER(0x0);
230 #endif
231 	return 0;
232 }
233 
blackfin_dma_resume(void)234 void blackfin_dma_resume(void)
235 {
236 	int i;
237 
238 	for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
239 		dma_ch[i].regs->cfg = 0;
240 		if (i < MAX_DMA_SUSPEND_CHANNELS)
241 			dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
242 	}
243 #if ANOMALY_05000480
244 	bfin_write_DMAC_TC_PER(0x0111);
245 #endif
246 }
247 # else
blackfin_dma_suspend(void)248 int blackfin_dma_suspend(void)
249 {
250 	return 0;
251 }
252 
blackfin_dma_resume(void)253 void blackfin_dma_resume(void)
254 {
255 }
256 #endif
257 #endif
258 
259 /**
260  *	blackfin_dma_early_init - minimal DMA init
261  *
262  * Setup a few DMA registers so we can safely do DMA transfers early on in
263  * the kernel booting process.  Really this just means using dma_memcpy().
264  */
blackfin_dma_early_init(void)265 void __init blackfin_dma_early_init(void)
266 {
267 	early_shadow_stamp();
268 	bfin_write_MDMA_S0_CONFIG(0);
269 	bfin_write_MDMA_S1_CONFIG(0);
270 }
271 
early_dma_memcpy(void * pdst,const void * psrc,size_t size)272 void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
273 {
274 	unsigned long dst = (unsigned long)pdst;
275 	unsigned long src = (unsigned long)psrc;
276 	struct dma_register *dst_ch, *src_ch;
277 
278 	early_shadow_stamp();
279 
280 	/* We assume that everything is 4 byte aligned, so include
281 	 * a basic sanity check
282 	 */
283 	BUG_ON(dst % 4);
284 	BUG_ON(src % 4);
285 	BUG_ON(size % 4);
286 
287 	src_ch = 0;
288 	/* Find an avalible memDMA channel */
289 	while (1) {
290 		if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
291 			dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
292 			src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
293 		} else {
294 			dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
295 			src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
296 		}
297 
298 		if (!DMA_MMR_READ(&src_ch->cfg))
299 			break;
300 		else if (DMA_MMR_READ(&dst_ch->irq_status) & DMA_DONE) {
301 			DMA_MMR_WRITE(&src_ch->cfg, 0);
302 			break;
303 		}
304 	}
305 
306 	/* Force a sync in case a previous config reset on this channel
307 	 * occurred.  This is needed so subsequent writes to DMA registers
308 	 * are not spuriously lost/corrupted.
309 	 */
310 	__builtin_bfin_ssync();
311 
312 	/* Destination */
313 	bfin_write32(&dst_ch->start_addr, dst);
314 	DMA_MMR_WRITE(&dst_ch->x_count, size >> 2);
315 	DMA_MMR_WRITE(&dst_ch->x_modify, 1 << 2);
316 	DMA_MMR_WRITE(&dst_ch->irq_status, DMA_DONE | DMA_ERR);
317 
318 	/* Source */
319 	bfin_write32(&src_ch->start_addr, src);
320 	DMA_MMR_WRITE(&src_ch->x_count, size >> 2);
321 	DMA_MMR_WRITE(&src_ch->x_modify, 1 << 2);
322 	DMA_MMR_WRITE(&src_ch->irq_status, DMA_DONE | DMA_ERR);
323 
324 	/* Enable */
325 	DMA_MMR_WRITE(&src_ch->cfg, DMAEN | WDSIZE_32);
326 	DMA_MMR_WRITE(&dst_ch->cfg, WNR | DI_EN_X | DMAEN | WDSIZE_32);
327 
328 	/* Since we are atomic now, don't use the workaround ssync */
329 	__builtin_bfin_ssync();
330 
331 #ifdef CONFIG_BF60x
332 	/* Work around a possible MDMA anomaly. Running 2 MDMA channels to
333 	 * transfer DDR data to L1 SRAM may corrupt data.
334 	 * Should be reverted after this issue is root caused.
335 	 */
336 	while (!(DMA_MMR_READ(&dst_ch->irq_status) & DMA_DONE))
337 		continue;
338 #endif
339 }
340 
early_dma_memcpy_done(void)341 void __init early_dma_memcpy_done(void)
342 {
343 	early_shadow_stamp();
344 
345 	while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ||
346 	       (bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE)))
347 		continue;
348 
349 	bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
350 	bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE | DMA_ERR);
351 	/*
352 	 * Now that DMA is done, we would normally flush cache, but
353 	 * i/d cache isn't running this early, so we don't bother,
354 	 * and just clear out the DMA channel for next time
355 	 */
356 	bfin_write_MDMA_S0_CONFIG(0);
357 	bfin_write_MDMA_S1_CONFIG(0);
358 	bfin_write_MDMA_D0_CONFIG(0);
359 	bfin_write_MDMA_D1_CONFIG(0);
360 
361 	__builtin_bfin_ssync();
362 }
363 
364 #if defined(CH_MEM_STREAM3_SRC) && defined(CONFIG_BF60x)
365 #define bfin_read_MDMA_S_CONFIG bfin_read_MDMA_S3_CONFIG
366 #define bfin_write_MDMA_S_CONFIG bfin_write_MDMA_S3_CONFIG
367 #define bfin_write_MDMA_S_START_ADDR bfin_write_MDMA_S3_START_ADDR
368 #define bfin_write_MDMA_S_IRQ_STATUS bfin_write_MDMA_S3_IRQ_STATUS
369 #define bfin_write_MDMA_S_X_COUNT bfin_write_MDMA_S3_X_COUNT
370 #define bfin_write_MDMA_S_X_MODIFY bfin_write_MDMA_S3_X_MODIFY
371 #define bfin_write_MDMA_S_Y_COUNT bfin_write_MDMA_S3_Y_COUNT
372 #define bfin_write_MDMA_S_Y_MODIFY bfin_write_MDMA_S3_Y_MODIFY
373 #define bfin_write_MDMA_D_CONFIG bfin_write_MDMA_D3_CONFIG
374 #define bfin_write_MDMA_D_START_ADDR bfin_write_MDMA_D3_START_ADDR
375 #define bfin_read_MDMA_D_IRQ_STATUS bfin_read_MDMA_D3_IRQ_STATUS
376 #define bfin_write_MDMA_D_IRQ_STATUS bfin_write_MDMA_D3_IRQ_STATUS
377 #define bfin_write_MDMA_D_X_COUNT bfin_write_MDMA_D3_X_COUNT
378 #define bfin_write_MDMA_D_X_MODIFY bfin_write_MDMA_D3_X_MODIFY
379 #define bfin_write_MDMA_D_Y_COUNT bfin_write_MDMA_D3_Y_COUNT
380 #define bfin_write_MDMA_D_Y_MODIFY bfin_write_MDMA_D3_Y_MODIFY
381 #else
382 #define bfin_read_MDMA_S_CONFIG bfin_read_MDMA_S0_CONFIG
383 #define bfin_write_MDMA_S_CONFIG bfin_write_MDMA_S0_CONFIG
384 #define bfin_write_MDMA_S_START_ADDR bfin_write_MDMA_S0_START_ADDR
385 #define bfin_write_MDMA_S_IRQ_STATUS bfin_write_MDMA_S0_IRQ_STATUS
386 #define bfin_write_MDMA_S_X_COUNT bfin_write_MDMA_S0_X_COUNT
387 #define bfin_write_MDMA_S_X_MODIFY bfin_write_MDMA_S0_X_MODIFY
388 #define bfin_write_MDMA_S_Y_COUNT bfin_write_MDMA_S0_Y_COUNT
389 #define bfin_write_MDMA_S_Y_MODIFY bfin_write_MDMA_S0_Y_MODIFY
390 #define bfin_write_MDMA_D_CONFIG bfin_write_MDMA_D0_CONFIG
391 #define bfin_write_MDMA_D_START_ADDR bfin_write_MDMA_D0_START_ADDR
392 #define bfin_read_MDMA_D_IRQ_STATUS bfin_read_MDMA_D0_IRQ_STATUS
393 #define bfin_write_MDMA_D_IRQ_STATUS bfin_write_MDMA_D0_IRQ_STATUS
394 #define bfin_write_MDMA_D_X_COUNT bfin_write_MDMA_D0_X_COUNT
395 #define bfin_write_MDMA_D_X_MODIFY bfin_write_MDMA_D0_X_MODIFY
396 #define bfin_write_MDMA_D_Y_COUNT bfin_write_MDMA_D0_Y_COUNT
397 #define bfin_write_MDMA_D_Y_MODIFY bfin_write_MDMA_D0_Y_MODIFY
398 #endif
399 
400 /**
401  *	__dma_memcpy - program the MDMA registers
402  *
403  * Actually program MDMA0 and wait for the transfer to finish.  Disable IRQs
404  * while programming registers so that everything is fully configured.  Wait
405  * for DMA to finish with IRQs enabled.  If interrupted, the initial DMA_DONE
406  * check will make sure we don't clobber any existing transfer.
407  */
__dma_memcpy(u32 daddr,s16 dmod,u32 saddr,s16 smod,size_t cnt,u32 conf)408 static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
409 {
410 	static DEFINE_SPINLOCK(mdma_lock);
411 	unsigned long flags;
412 
413 	spin_lock_irqsave(&mdma_lock, flags);
414 
415 	/* Force a sync in case a previous config reset on this channel
416 	 * occurred.  This is needed so subsequent writes to DMA registers
417 	 * are not spuriously lost/corrupted.  Do it under irq lock and
418 	 * without the anomaly version (because we are atomic already).
419 	 */
420 	__builtin_bfin_ssync();
421 
422 	if (bfin_read_MDMA_S_CONFIG())
423 		while (!(bfin_read_MDMA_D_IRQ_STATUS() & DMA_DONE))
424 			continue;
425 
426 	if (conf & DMA2D) {
427 		/* For larger bit sizes, we've already divided down cnt so it
428 		 * is no longer a multiple of 64k.  So we have to break down
429 		 * the limit here so it is a multiple of the incoming size.
430 		 * There is no limitation here in terms of total size other
431 		 * than the hardware though as the bits lost in the shift are
432 		 * made up by MODIFY (== we can hit the whole address space).
433 		 * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
434 		 */
435 		u32 shift = abs(dmod) >> 1;
436 		size_t ycnt = cnt >> (16 - shift);
437 		cnt = 1 << (16 - shift);
438 		bfin_write_MDMA_D_Y_COUNT(ycnt);
439 		bfin_write_MDMA_S_Y_COUNT(ycnt);
440 		bfin_write_MDMA_D_Y_MODIFY(dmod);
441 		bfin_write_MDMA_S_Y_MODIFY(smod);
442 	}
443 
444 	bfin_write_MDMA_D_START_ADDR(daddr);
445 	bfin_write_MDMA_D_X_COUNT(cnt);
446 	bfin_write_MDMA_D_X_MODIFY(dmod);
447 	bfin_write_MDMA_D_IRQ_STATUS(DMA_DONE | DMA_ERR);
448 
449 	bfin_write_MDMA_S_START_ADDR(saddr);
450 	bfin_write_MDMA_S_X_COUNT(cnt);
451 	bfin_write_MDMA_S_X_MODIFY(smod);
452 	bfin_write_MDMA_S_IRQ_STATUS(DMA_DONE | DMA_ERR);
453 
454 	bfin_write_MDMA_S_CONFIG(DMAEN | conf);
455 	if (conf & DMA2D)
456 		bfin_write_MDMA_D_CONFIG(WNR | DI_EN_Y | DMAEN | conf);
457 	else
458 		bfin_write_MDMA_D_CONFIG(WNR | DI_EN_X | DMAEN | conf);
459 
460 	spin_unlock_irqrestore(&mdma_lock, flags);
461 
462 	SSYNC();
463 
464 	while (!(bfin_read_MDMA_D_IRQ_STATUS() & DMA_DONE))
465 		if (bfin_read_MDMA_S_CONFIG())
466 			continue;
467 		else
468 			return;
469 
470 	bfin_write_MDMA_D_IRQ_STATUS(DMA_DONE | DMA_ERR);
471 
472 	bfin_write_MDMA_S_CONFIG(0);
473 	bfin_write_MDMA_D_CONFIG(0);
474 }
475 
476 /**
477  *	_dma_memcpy - translate C memcpy settings into MDMA settings
478  *
479  * Handle all the high level steps before we touch the MDMA registers.  So
480  * handle direction, tweaking of sizes, and formatting of addresses.
481  */
_dma_memcpy(void * pdst,const void * psrc,size_t size)482 static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
483 {
484 	u32 conf, shift;
485 	s16 mod;
486 	unsigned long dst = (unsigned long)pdst;
487 	unsigned long src = (unsigned long)psrc;
488 
489 	if (size == 0)
490 		return NULL;
491 
492 	if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
493 		conf = WDSIZE_32;
494 		shift = 2;
495 	} else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
496 		conf = WDSIZE_16;
497 		shift = 1;
498 	} else {
499 		conf = WDSIZE_8;
500 		shift = 0;
501 	}
502 
503 	/* If the two memory regions have a chance of overlapping, make
504 	 * sure the memcpy still works as expected.  Do this by having the
505 	 * copy run backwards instead.
506 	 */
507 	mod = 1 << shift;
508 	if (src < dst) {
509 		mod *= -1;
510 		dst += size + mod;
511 		src += size + mod;
512 	}
513 	size >>= shift;
514 
515 #ifndef DMA_MMR_SIZE_32
516 	if (size > 0x10000)
517 		conf |= DMA2D;
518 #endif
519 
520 	__dma_memcpy(dst, mod, src, mod, size, conf);
521 
522 	return pdst;
523 }
524 
525 /**
526  *	dma_memcpy - DMA memcpy under mutex lock
527  *
528  * Do not check arguments before starting the DMA memcpy.  Break the transfer
529  * up into two pieces.  The first transfer is in multiples of 64k and the
530  * second transfer is the piece smaller than 64k.
531  */
dma_memcpy(void * pdst,const void * psrc,size_t size)532 void *dma_memcpy(void *pdst, const void *psrc, size_t size)
533 {
534 	unsigned long dst = (unsigned long)pdst;
535 	unsigned long src = (unsigned long)psrc;
536 
537 	if (bfin_addr_dcacheable(src))
538 		blackfin_dcache_flush_range(src, src + size);
539 
540 	if (bfin_addr_dcacheable(dst))
541 		blackfin_dcache_invalidate_range(dst, dst + size);
542 
543 	return dma_memcpy_nocache(pdst, psrc, size);
544 }
545 EXPORT_SYMBOL(dma_memcpy);
546 
547 /**
548  *	dma_memcpy_nocache - DMA memcpy under mutex lock
549  *	- No cache flush/invalidate
550  *
551  * Do not check arguments before starting the DMA memcpy.  Break the transfer
552  * up into two pieces.  The first transfer is in multiples of 64k and the
553  * second transfer is the piece smaller than 64k.
554  */
dma_memcpy_nocache(void * pdst,const void * psrc,size_t size)555 void *dma_memcpy_nocache(void *pdst, const void *psrc, size_t size)
556 {
557 #ifdef DMA_MMR_SIZE_32
558 	_dma_memcpy(pdst, psrc, size);
559 #else
560 	size_t bulk, rest;
561 
562 	bulk = size & ~0xffff;
563 	rest = size - bulk;
564 	if (bulk)
565 		_dma_memcpy(pdst, psrc, bulk);
566 	_dma_memcpy(pdst + bulk, psrc + bulk, rest);
567 #endif
568 	return pdst;
569 }
570 EXPORT_SYMBOL(dma_memcpy_nocache);
571 
572 /**
573  *	safe_dma_memcpy - DMA memcpy w/argument checking
574  *
575  * Verify arguments are safe before heading to dma_memcpy().
576  */
safe_dma_memcpy(void * dst,const void * src,size_t size)577 void *safe_dma_memcpy(void *dst, const void *src, size_t size)
578 {
579 	if (!access_ok(VERIFY_WRITE, dst, size))
580 		return NULL;
581 	if (!access_ok(VERIFY_READ, src, size))
582 		return NULL;
583 	return dma_memcpy(dst, src, size);
584 }
585 EXPORT_SYMBOL(safe_dma_memcpy);
586 
_dma_out(unsigned long addr,unsigned long buf,unsigned DMA_MMR_SIZE_TYPE len,u16 size,u16 dma_size)587 static void _dma_out(unsigned long addr, unsigned long buf, unsigned DMA_MMR_SIZE_TYPE len,
588                      u16 size, u16 dma_size)
589 {
590 	blackfin_dcache_flush_range(buf, buf + len * size);
591 	__dma_memcpy(addr, 0, buf, size, len, dma_size);
592 }
593 
_dma_in(unsigned long addr,unsigned long buf,unsigned DMA_MMR_SIZE_TYPE len,u16 size,u16 dma_size)594 static void _dma_in(unsigned long addr, unsigned long buf, unsigned DMA_MMR_SIZE_TYPE len,
595                     u16 size, u16 dma_size)
596 {
597 	blackfin_dcache_invalidate_range(buf, buf + len * size);
598 	__dma_memcpy(buf, size, addr, 0, len, dma_size);
599 }
600 
601 #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
602 void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned DMA_MMR_SIZE_TYPE len) \
603 { \
604 	_dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
605 } \
606 EXPORT_SYMBOL(dma_##io##s##bwl)
607 MAKE_DMA_IO(out, b, 1,  8, const);
608 MAKE_DMA_IO(in,  b, 1,  8, );
609 MAKE_DMA_IO(out, w, 2, 16, const);
610 MAKE_DMA_IO(in,  w, 2, 16, );
611 MAKE_DMA_IO(out, l, 4, 32, const);
612 MAKE_DMA_IO(in,  l, 4, 32, );
613