1 /*
2 * bfin_dma.c - Blackfin DMA implementation
3 *
4 * Copyright 2004-2008 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later.
7 */
8
9 #include <linux/errno.h>
10 #include <linux/interrupt.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/param.h>
14 #include <linux/proc_fs.h>
15 #include <linux/sched.h>
16 #include <linux/seq_file.h>
17 #include <linux/spinlock.h>
18
19 #include <asm/blackfin.h>
20 #include <asm/cacheflush.h>
21 #include <asm/dma.h>
22 #include <linux/uaccess.h>
23 #include <asm/early_printk.h>
24
25 /*
26 * To make sure we work around 05000119 - we always check DMA_DONE bit,
27 * never the DMA_RUN bit
28 */
29
30 struct dma_channel dma_ch[MAX_DMA_CHANNELS];
31 EXPORT_SYMBOL(dma_ch);
32
blackfin_dma_init(void)33 static int __init blackfin_dma_init(void)
34 {
35 int i;
36
37 printk(KERN_INFO "Blackfin DMA Controller\n");
38
39
40 #if ANOMALY_05000480
41 bfin_write_DMAC_TC_PER(0x0111);
42 #endif
43
44 for (i = 0; i < MAX_DMA_CHANNELS; i++) {
45 atomic_set(&dma_ch[i].chan_status, 0);
46 dma_ch[i].regs = dma_io_base_addr[i];
47 }
48 #if defined(CH_MEM_STREAM3_SRC) && defined(CONFIG_BF60x)
49 /* Mark MEMDMA Channel 3 as requested since we're using it internally */
50 request_dma(CH_MEM_STREAM3_DEST, "Blackfin dma_memcpy");
51 request_dma(CH_MEM_STREAM3_SRC, "Blackfin dma_memcpy");
52 #else
53 /* Mark MEMDMA Channel 0 as requested since we're using it internally */
54 request_dma(CH_MEM_STREAM0_DEST, "Blackfin dma_memcpy");
55 request_dma(CH_MEM_STREAM0_SRC, "Blackfin dma_memcpy");
56 #endif
57
58 #if defined(CONFIG_DEB_DMA_URGENT)
59 bfin_write_EBIU_DDRQUE(bfin_read_EBIU_DDRQUE()
60 | DEB1_URGENT | DEB2_URGENT | DEB3_URGENT);
61 #endif
62
63 return 0;
64 }
65 arch_initcall(blackfin_dma_init);
66
67 #ifdef CONFIG_PROC_FS
proc_dma_show(struct seq_file * m,void * v)68 static int proc_dma_show(struct seq_file *m, void *v)
69 {
70 int i;
71
72 for (i = 0; i < MAX_DMA_CHANNELS; ++i)
73 if (dma_channel_active(i))
74 seq_printf(m, "%2d: %s\n", i, dma_ch[i].device_id);
75
76 return 0;
77 }
78
proc_dma_open(struct inode * inode,struct file * file)79 static int proc_dma_open(struct inode *inode, struct file *file)
80 {
81 return single_open(file, proc_dma_show, NULL);
82 }
83
84 static const struct file_operations proc_dma_operations = {
85 .open = proc_dma_open,
86 .read = seq_read,
87 .llseek = seq_lseek,
88 .release = single_release,
89 };
90
proc_dma_init(void)91 static int __init proc_dma_init(void)
92 {
93 proc_create("dma", 0, NULL, &proc_dma_operations);
94 return 0;
95 }
96 late_initcall(proc_dma_init);
97 #endif
98
set_dma_peripheral_map(unsigned int channel,const char * device_id)99 static void set_dma_peripheral_map(unsigned int channel, const char *device_id)
100 {
101 #ifdef CONFIG_BF54x
102 unsigned int per_map;
103
104 switch (channel) {
105 case CH_UART2_RX: per_map = 0xC << 12; break;
106 case CH_UART2_TX: per_map = 0xD << 12; break;
107 case CH_UART3_RX: per_map = 0xE << 12; break;
108 case CH_UART3_TX: per_map = 0xF << 12; break;
109 default: return;
110 }
111
112 if (strncmp(device_id, "BFIN_UART", 9) == 0)
113 dma_ch[channel].regs->peripheral_map = per_map;
114 #endif
115 }
116
117 /**
118 * request_dma - request a DMA channel
119 *
120 * Request the specific DMA channel from the system if it's available.
121 */
request_dma(unsigned int channel,const char * device_id)122 int request_dma(unsigned int channel, const char *device_id)
123 {
124 pr_debug("request_dma() : BEGIN\n");
125
126 if (device_id == NULL)
127 printk(KERN_WARNING "request_dma(%u): no device_id given\n", channel);
128
129 #if defined(CONFIG_BF561) && ANOMALY_05000182
130 if (channel >= CH_IMEM_STREAM0_DEST && channel <= CH_IMEM_STREAM1_DEST) {
131 if (get_cclk() > 500000000) {
132 printk(KERN_WARNING
133 "Request IMDMA failed due to ANOMALY 05000182\n");
134 return -EFAULT;
135 }
136 }
137 #endif
138
139 if (atomic_cmpxchg(&dma_ch[channel].chan_status, 0, 1)) {
140 pr_debug("DMA CHANNEL IN USE\n");
141 return -EBUSY;
142 }
143
144 set_dma_peripheral_map(channel, device_id);
145 dma_ch[channel].device_id = device_id;
146 dma_ch[channel].irq = 0;
147
148 /* This is to be enabled by putting a restriction -
149 * you have to request DMA, before doing any operations on
150 * descriptor/channel
151 */
152 pr_debug("request_dma() : END\n");
153 return 0;
154 }
155 EXPORT_SYMBOL(request_dma);
156
set_dma_callback(unsigned int channel,irq_handler_t callback,void * data)157 int set_dma_callback(unsigned int channel, irq_handler_t callback, void *data)
158 {
159 int ret;
160 unsigned int irq;
161
162 BUG_ON(channel >= MAX_DMA_CHANNELS || !callback ||
163 !atomic_read(&dma_ch[channel].chan_status));
164
165 irq = channel2irq(channel);
166 ret = request_irq(irq, callback, 0, dma_ch[channel].device_id, data);
167 if (ret)
168 return ret;
169
170 dma_ch[channel].irq = irq;
171 dma_ch[channel].data = data;
172
173 return 0;
174 }
175 EXPORT_SYMBOL(set_dma_callback);
176
177 /**
178 * clear_dma_buffer - clear DMA fifos for specified channel
179 *
180 * Set the Buffer Clear bit in the Configuration register of specific DMA
181 * channel. This will stop the descriptor based DMA operation.
182 */
clear_dma_buffer(unsigned int channel)183 static void clear_dma_buffer(unsigned int channel)
184 {
185 dma_ch[channel].regs->cfg |= RESTART;
186 SSYNC();
187 dma_ch[channel].regs->cfg &= ~RESTART;
188 }
189
free_dma(unsigned int channel)190 void free_dma(unsigned int channel)
191 {
192 pr_debug("freedma() : BEGIN\n");
193 BUG_ON(channel >= MAX_DMA_CHANNELS ||
194 !atomic_read(&dma_ch[channel].chan_status));
195
196 /* Halt the DMA */
197 disable_dma(channel);
198 clear_dma_buffer(channel);
199
200 if (dma_ch[channel].irq)
201 free_irq(dma_ch[channel].irq, dma_ch[channel].data);
202
203 /* Clear the DMA Variable in the Channel */
204 atomic_set(&dma_ch[channel].chan_status, 0);
205
206 pr_debug("freedma() : END\n");
207 }
208 EXPORT_SYMBOL(free_dma);
209
210 #ifdef CONFIG_PM
211 # ifndef MAX_DMA_SUSPEND_CHANNELS
212 # define MAX_DMA_SUSPEND_CHANNELS MAX_DMA_CHANNELS
213 # endif
214 # ifndef CONFIG_BF60x
blackfin_dma_suspend(void)215 int blackfin_dma_suspend(void)
216 {
217 int i;
218
219 for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
220 if (dma_ch[i].regs->cfg & DMAEN) {
221 printk(KERN_ERR "DMA Channel %d failed to suspend\n", i);
222 return -EBUSY;
223 }
224 if (i < MAX_DMA_SUSPEND_CHANNELS)
225 dma_ch[i].saved_peripheral_map = dma_ch[i].regs->peripheral_map;
226 }
227
228 #if ANOMALY_05000480
229 bfin_write_DMAC_TC_PER(0x0);
230 #endif
231 return 0;
232 }
233
blackfin_dma_resume(void)234 void blackfin_dma_resume(void)
235 {
236 int i;
237
238 for (i = 0; i < MAX_DMA_CHANNELS; ++i) {
239 dma_ch[i].regs->cfg = 0;
240 if (i < MAX_DMA_SUSPEND_CHANNELS)
241 dma_ch[i].regs->peripheral_map = dma_ch[i].saved_peripheral_map;
242 }
243 #if ANOMALY_05000480
244 bfin_write_DMAC_TC_PER(0x0111);
245 #endif
246 }
247 # else
blackfin_dma_suspend(void)248 int blackfin_dma_suspend(void)
249 {
250 return 0;
251 }
252
blackfin_dma_resume(void)253 void blackfin_dma_resume(void)
254 {
255 }
256 #endif
257 #endif
258
259 /**
260 * blackfin_dma_early_init - minimal DMA init
261 *
262 * Setup a few DMA registers so we can safely do DMA transfers early on in
263 * the kernel booting process. Really this just means using dma_memcpy().
264 */
blackfin_dma_early_init(void)265 void __init blackfin_dma_early_init(void)
266 {
267 early_shadow_stamp();
268 bfin_write_MDMA_S0_CONFIG(0);
269 bfin_write_MDMA_S1_CONFIG(0);
270 }
271
early_dma_memcpy(void * pdst,const void * psrc,size_t size)272 void __init early_dma_memcpy(void *pdst, const void *psrc, size_t size)
273 {
274 unsigned long dst = (unsigned long)pdst;
275 unsigned long src = (unsigned long)psrc;
276 struct dma_register *dst_ch, *src_ch;
277
278 early_shadow_stamp();
279
280 /* We assume that everything is 4 byte aligned, so include
281 * a basic sanity check
282 */
283 BUG_ON(dst % 4);
284 BUG_ON(src % 4);
285 BUG_ON(size % 4);
286
287 src_ch = 0;
288 /* Find an avalible memDMA channel */
289 while (1) {
290 if (src_ch == (struct dma_register *)MDMA_S0_NEXT_DESC_PTR) {
291 dst_ch = (struct dma_register *)MDMA_D1_NEXT_DESC_PTR;
292 src_ch = (struct dma_register *)MDMA_S1_NEXT_DESC_PTR;
293 } else {
294 dst_ch = (struct dma_register *)MDMA_D0_NEXT_DESC_PTR;
295 src_ch = (struct dma_register *)MDMA_S0_NEXT_DESC_PTR;
296 }
297
298 if (!DMA_MMR_READ(&src_ch->cfg))
299 break;
300 else if (DMA_MMR_READ(&dst_ch->irq_status) & DMA_DONE) {
301 DMA_MMR_WRITE(&src_ch->cfg, 0);
302 break;
303 }
304 }
305
306 /* Force a sync in case a previous config reset on this channel
307 * occurred. This is needed so subsequent writes to DMA registers
308 * are not spuriously lost/corrupted.
309 */
310 __builtin_bfin_ssync();
311
312 /* Destination */
313 bfin_write32(&dst_ch->start_addr, dst);
314 DMA_MMR_WRITE(&dst_ch->x_count, size >> 2);
315 DMA_MMR_WRITE(&dst_ch->x_modify, 1 << 2);
316 DMA_MMR_WRITE(&dst_ch->irq_status, DMA_DONE | DMA_ERR);
317
318 /* Source */
319 bfin_write32(&src_ch->start_addr, src);
320 DMA_MMR_WRITE(&src_ch->x_count, size >> 2);
321 DMA_MMR_WRITE(&src_ch->x_modify, 1 << 2);
322 DMA_MMR_WRITE(&src_ch->irq_status, DMA_DONE | DMA_ERR);
323
324 /* Enable */
325 DMA_MMR_WRITE(&src_ch->cfg, DMAEN | WDSIZE_32);
326 DMA_MMR_WRITE(&dst_ch->cfg, WNR | DI_EN_X | DMAEN | WDSIZE_32);
327
328 /* Since we are atomic now, don't use the workaround ssync */
329 __builtin_bfin_ssync();
330
331 #ifdef CONFIG_BF60x
332 /* Work around a possible MDMA anomaly. Running 2 MDMA channels to
333 * transfer DDR data to L1 SRAM may corrupt data.
334 * Should be reverted after this issue is root caused.
335 */
336 while (!(DMA_MMR_READ(&dst_ch->irq_status) & DMA_DONE))
337 continue;
338 #endif
339 }
340
early_dma_memcpy_done(void)341 void __init early_dma_memcpy_done(void)
342 {
343 early_shadow_stamp();
344
345 while ((bfin_read_MDMA_S0_CONFIG() && !(bfin_read_MDMA_D0_IRQ_STATUS() & DMA_DONE)) ||
346 (bfin_read_MDMA_S1_CONFIG() && !(bfin_read_MDMA_D1_IRQ_STATUS() & DMA_DONE)))
347 continue;
348
349 bfin_write_MDMA_D0_IRQ_STATUS(DMA_DONE | DMA_ERR);
350 bfin_write_MDMA_D1_IRQ_STATUS(DMA_DONE | DMA_ERR);
351 /*
352 * Now that DMA is done, we would normally flush cache, but
353 * i/d cache isn't running this early, so we don't bother,
354 * and just clear out the DMA channel for next time
355 */
356 bfin_write_MDMA_S0_CONFIG(0);
357 bfin_write_MDMA_S1_CONFIG(0);
358 bfin_write_MDMA_D0_CONFIG(0);
359 bfin_write_MDMA_D1_CONFIG(0);
360
361 __builtin_bfin_ssync();
362 }
363
364 #if defined(CH_MEM_STREAM3_SRC) && defined(CONFIG_BF60x)
365 #define bfin_read_MDMA_S_CONFIG bfin_read_MDMA_S3_CONFIG
366 #define bfin_write_MDMA_S_CONFIG bfin_write_MDMA_S3_CONFIG
367 #define bfin_write_MDMA_S_START_ADDR bfin_write_MDMA_S3_START_ADDR
368 #define bfin_write_MDMA_S_IRQ_STATUS bfin_write_MDMA_S3_IRQ_STATUS
369 #define bfin_write_MDMA_S_X_COUNT bfin_write_MDMA_S3_X_COUNT
370 #define bfin_write_MDMA_S_X_MODIFY bfin_write_MDMA_S3_X_MODIFY
371 #define bfin_write_MDMA_S_Y_COUNT bfin_write_MDMA_S3_Y_COUNT
372 #define bfin_write_MDMA_S_Y_MODIFY bfin_write_MDMA_S3_Y_MODIFY
373 #define bfin_write_MDMA_D_CONFIG bfin_write_MDMA_D3_CONFIG
374 #define bfin_write_MDMA_D_START_ADDR bfin_write_MDMA_D3_START_ADDR
375 #define bfin_read_MDMA_D_IRQ_STATUS bfin_read_MDMA_D3_IRQ_STATUS
376 #define bfin_write_MDMA_D_IRQ_STATUS bfin_write_MDMA_D3_IRQ_STATUS
377 #define bfin_write_MDMA_D_X_COUNT bfin_write_MDMA_D3_X_COUNT
378 #define bfin_write_MDMA_D_X_MODIFY bfin_write_MDMA_D3_X_MODIFY
379 #define bfin_write_MDMA_D_Y_COUNT bfin_write_MDMA_D3_Y_COUNT
380 #define bfin_write_MDMA_D_Y_MODIFY bfin_write_MDMA_D3_Y_MODIFY
381 #else
382 #define bfin_read_MDMA_S_CONFIG bfin_read_MDMA_S0_CONFIG
383 #define bfin_write_MDMA_S_CONFIG bfin_write_MDMA_S0_CONFIG
384 #define bfin_write_MDMA_S_START_ADDR bfin_write_MDMA_S0_START_ADDR
385 #define bfin_write_MDMA_S_IRQ_STATUS bfin_write_MDMA_S0_IRQ_STATUS
386 #define bfin_write_MDMA_S_X_COUNT bfin_write_MDMA_S0_X_COUNT
387 #define bfin_write_MDMA_S_X_MODIFY bfin_write_MDMA_S0_X_MODIFY
388 #define bfin_write_MDMA_S_Y_COUNT bfin_write_MDMA_S0_Y_COUNT
389 #define bfin_write_MDMA_S_Y_MODIFY bfin_write_MDMA_S0_Y_MODIFY
390 #define bfin_write_MDMA_D_CONFIG bfin_write_MDMA_D0_CONFIG
391 #define bfin_write_MDMA_D_START_ADDR bfin_write_MDMA_D0_START_ADDR
392 #define bfin_read_MDMA_D_IRQ_STATUS bfin_read_MDMA_D0_IRQ_STATUS
393 #define bfin_write_MDMA_D_IRQ_STATUS bfin_write_MDMA_D0_IRQ_STATUS
394 #define bfin_write_MDMA_D_X_COUNT bfin_write_MDMA_D0_X_COUNT
395 #define bfin_write_MDMA_D_X_MODIFY bfin_write_MDMA_D0_X_MODIFY
396 #define bfin_write_MDMA_D_Y_COUNT bfin_write_MDMA_D0_Y_COUNT
397 #define bfin_write_MDMA_D_Y_MODIFY bfin_write_MDMA_D0_Y_MODIFY
398 #endif
399
400 /**
401 * __dma_memcpy - program the MDMA registers
402 *
403 * Actually program MDMA0 and wait for the transfer to finish. Disable IRQs
404 * while programming registers so that everything is fully configured. Wait
405 * for DMA to finish with IRQs enabled. If interrupted, the initial DMA_DONE
406 * check will make sure we don't clobber any existing transfer.
407 */
__dma_memcpy(u32 daddr,s16 dmod,u32 saddr,s16 smod,size_t cnt,u32 conf)408 static void __dma_memcpy(u32 daddr, s16 dmod, u32 saddr, s16 smod, size_t cnt, u32 conf)
409 {
410 static DEFINE_SPINLOCK(mdma_lock);
411 unsigned long flags;
412
413 spin_lock_irqsave(&mdma_lock, flags);
414
415 /* Force a sync in case a previous config reset on this channel
416 * occurred. This is needed so subsequent writes to DMA registers
417 * are not spuriously lost/corrupted. Do it under irq lock and
418 * without the anomaly version (because we are atomic already).
419 */
420 __builtin_bfin_ssync();
421
422 if (bfin_read_MDMA_S_CONFIG())
423 while (!(bfin_read_MDMA_D_IRQ_STATUS() & DMA_DONE))
424 continue;
425
426 if (conf & DMA2D) {
427 /* For larger bit sizes, we've already divided down cnt so it
428 * is no longer a multiple of 64k. So we have to break down
429 * the limit here so it is a multiple of the incoming size.
430 * There is no limitation here in terms of total size other
431 * than the hardware though as the bits lost in the shift are
432 * made up by MODIFY (== we can hit the whole address space).
433 * X: (2^(16 - 0)) * 1 == (2^(16 - 1)) * 2 == (2^(16 - 2)) * 4
434 */
435 u32 shift = abs(dmod) >> 1;
436 size_t ycnt = cnt >> (16 - shift);
437 cnt = 1 << (16 - shift);
438 bfin_write_MDMA_D_Y_COUNT(ycnt);
439 bfin_write_MDMA_S_Y_COUNT(ycnt);
440 bfin_write_MDMA_D_Y_MODIFY(dmod);
441 bfin_write_MDMA_S_Y_MODIFY(smod);
442 }
443
444 bfin_write_MDMA_D_START_ADDR(daddr);
445 bfin_write_MDMA_D_X_COUNT(cnt);
446 bfin_write_MDMA_D_X_MODIFY(dmod);
447 bfin_write_MDMA_D_IRQ_STATUS(DMA_DONE | DMA_ERR);
448
449 bfin_write_MDMA_S_START_ADDR(saddr);
450 bfin_write_MDMA_S_X_COUNT(cnt);
451 bfin_write_MDMA_S_X_MODIFY(smod);
452 bfin_write_MDMA_S_IRQ_STATUS(DMA_DONE | DMA_ERR);
453
454 bfin_write_MDMA_S_CONFIG(DMAEN | conf);
455 if (conf & DMA2D)
456 bfin_write_MDMA_D_CONFIG(WNR | DI_EN_Y | DMAEN | conf);
457 else
458 bfin_write_MDMA_D_CONFIG(WNR | DI_EN_X | DMAEN | conf);
459
460 spin_unlock_irqrestore(&mdma_lock, flags);
461
462 SSYNC();
463
464 while (!(bfin_read_MDMA_D_IRQ_STATUS() & DMA_DONE))
465 if (bfin_read_MDMA_S_CONFIG())
466 continue;
467 else
468 return;
469
470 bfin_write_MDMA_D_IRQ_STATUS(DMA_DONE | DMA_ERR);
471
472 bfin_write_MDMA_S_CONFIG(0);
473 bfin_write_MDMA_D_CONFIG(0);
474 }
475
476 /**
477 * _dma_memcpy - translate C memcpy settings into MDMA settings
478 *
479 * Handle all the high level steps before we touch the MDMA registers. So
480 * handle direction, tweaking of sizes, and formatting of addresses.
481 */
_dma_memcpy(void * pdst,const void * psrc,size_t size)482 static void *_dma_memcpy(void *pdst, const void *psrc, size_t size)
483 {
484 u32 conf, shift;
485 s16 mod;
486 unsigned long dst = (unsigned long)pdst;
487 unsigned long src = (unsigned long)psrc;
488
489 if (size == 0)
490 return NULL;
491
492 if (dst % 4 == 0 && src % 4 == 0 && size % 4 == 0) {
493 conf = WDSIZE_32;
494 shift = 2;
495 } else if (dst % 2 == 0 && src % 2 == 0 && size % 2 == 0) {
496 conf = WDSIZE_16;
497 shift = 1;
498 } else {
499 conf = WDSIZE_8;
500 shift = 0;
501 }
502
503 /* If the two memory regions have a chance of overlapping, make
504 * sure the memcpy still works as expected. Do this by having the
505 * copy run backwards instead.
506 */
507 mod = 1 << shift;
508 if (src < dst) {
509 mod *= -1;
510 dst += size + mod;
511 src += size + mod;
512 }
513 size >>= shift;
514
515 #ifndef DMA_MMR_SIZE_32
516 if (size > 0x10000)
517 conf |= DMA2D;
518 #endif
519
520 __dma_memcpy(dst, mod, src, mod, size, conf);
521
522 return pdst;
523 }
524
525 /**
526 * dma_memcpy - DMA memcpy under mutex lock
527 *
528 * Do not check arguments before starting the DMA memcpy. Break the transfer
529 * up into two pieces. The first transfer is in multiples of 64k and the
530 * second transfer is the piece smaller than 64k.
531 */
dma_memcpy(void * pdst,const void * psrc,size_t size)532 void *dma_memcpy(void *pdst, const void *psrc, size_t size)
533 {
534 unsigned long dst = (unsigned long)pdst;
535 unsigned long src = (unsigned long)psrc;
536
537 if (bfin_addr_dcacheable(src))
538 blackfin_dcache_flush_range(src, src + size);
539
540 if (bfin_addr_dcacheable(dst))
541 blackfin_dcache_invalidate_range(dst, dst + size);
542
543 return dma_memcpy_nocache(pdst, psrc, size);
544 }
545 EXPORT_SYMBOL(dma_memcpy);
546
547 /**
548 * dma_memcpy_nocache - DMA memcpy under mutex lock
549 * - No cache flush/invalidate
550 *
551 * Do not check arguments before starting the DMA memcpy. Break the transfer
552 * up into two pieces. The first transfer is in multiples of 64k and the
553 * second transfer is the piece smaller than 64k.
554 */
dma_memcpy_nocache(void * pdst,const void * psrc,size_t size)555 void *dma_memcpy_nocache(void *pdst, const void *psrc, size_t size)
556 {
557 #ifdef DMA_MMR_SIZE_32
558 _dma_memcpy(pdst, psrc, size);
559 #else
560 size_t bulk, rest;
561
562 bulk = size & ~0xffff;
563 rest = size - bulk;
564 if (bulk)
565 _dma_memcpy(pdst, psrc, bulk);
566 _dma_memcpy(pdst + bulk, psrc + bulk, rest);
567 #endif
568 return pdst;
569 }
570 EXPORT_SYMBOL(dma_memcpy_nocache);
571
572 /**
573 * safe_dma_memcpy - DMA memcpy w/argument checking
574 *
575 * Verify arguments are safe before heading to dma_memcpy().
576 */
safe_dma_memcpy(void * dst,const void * src,size_t size)577 void *safe_dma_memcpy(void *dst, const void *src, size_t size)
578 {
579 if (!access_ok(VERIFY_WRITE, dst, size))
580 return NULL;
581 if (!access_ok(VERIFY_READ, src, size))
582 return NULL;
583 return dma_memcpy(dst, src, size);
584 }
585 EXPORT_SYMBOL(safe_dma_memcpy);
586
_dma_out(unsigned long addr,unsigned long buf,unsigned DMA_MMR_SIZE_TYPE len,u16 size,u16 dma_size)587 static void _dma_out(unsigned long addr, unsigned long buf, unsigned DMA_MMR_SIZE_TYPE len,
588 u16 size, u16 dma_size)
589 {
590 blackfin_dcache_flush_range(buf, buf + len * size);
591 __dma_memcpy(addr, 0, buf, size, len, dma_size);
592 }
593
_dma_in(unsigned long addr,unsigned long buf,unsigned DMA_MMR_SIZE_TYPE len,u16 size,u16 dma_size)594 static void _dma_in(unsigned long addr, unsigned long buf, unsigned DMA_MMR_SIZE_TYPE len,
595 u16 size, u16 dma_size)
596 {
597 blackfin_dcache_invalidate_range(buf, buf + len * size);
598 __dma_memcpy(buf, size, addr, 0, len, dma_size);
599 }
600
601 #define MAKE_DMA_IO(io, bwl, isize, dmasize, cnst) \
602 void dma_##io##s##bwl(unsigned long addr, cnst void *buf, unsigned DMA_MMR_SIZE_TYPE len) \
603 { \
604 _dma_##io(addr, (unsigned long)buf, len, isize, WDSIZE_##dmasize); \
605 } \
606 EXPORT_SYMBOL(dma_##io##s##bwl)
607 MAKE_DMA_IO(out, b, 1, 8, const);
608 MAKE_DMA_IO(in, b, 1, 8, );
609 MAKE_DMA_IO(out, w, 2, 16, const);
610 MAKE_DMA_IO(in, w, 2, 16, );
611 MAKE_DMA_IO(out, l, 4, 32, const);
612 MAKE_DMA_IO(in, l, 4, 32, );
613