1 /* provide some functions which dump the trace buffer, in a nice way for people
2 * to read it, and understand what is going on
3 *
4 * Copyright 2004-2010 Analog Devices Inc.
5 *
6 * Licensed under the GPL-2 or later
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/hardirq.h>
11 #include <linux/thread_info.h>
12 #include <linux/mm.h>
13 #include <linux/oom.h>
14 #include <linux/sched/signal.h>
15 #include <linux/sched/debug.h>
16 #include <linux/sched/task.h>
17 #include <linux/uaccess.h>
18 #include <linux/module.h>
19 #include <linux/kallsyms.h>
20 #include <linux/err.h>
21 #include <linux/fs.h>
22 #include <linux/irq.h>
23 #include <asm/dma.h>
24 #include <asm/trace.h>
25 #include <asm/fixed_code.h>
26 #include <asm/traps.h>
27 #include <asm/irq_handler.h>
28 #include <asm/pda.h>
29
decode_address(char * buf,unsigned long address)30 void decode_address(char *buf, unsigned long address)
31 {
32 struct task_struct *p;
33 struct mm_struct *mm;
34 unsigned long offset;
35 struct rb_node *n;
36
37 #ifdef CONFIG_KALLSYMS
38 unsigned long symsize;
39 const char *symname;
40 char *modname;
41 char *delim = ":";
42 char namebuf[128];
43 #endif
44
45 buf += sprintf(buf, "<0x%08lx> ", address);
46
47 #ifdef CONFIG_KALLSYMS
48 /* look up the address and see if we are in kernel space */
49 symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
50
51 if (symname) {
52 /* yeah! kernel space! */
53 if (!modname)
54 modname = delim = "";
55 sprintf(buf, "{ %s%s%s%s + 0x%lx }",
56 delim, modname, delim, symname,
57 (unsigned long)offset);
58 return;
59 }
60 #endif
61
62 if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
63 /* Problem in fixed code section? */
64 strcat(buf, "/* Maybe fixed code section */");
65 return;
66
67 } else if (address < CONFIG_BOOT_LOAD) {
68 /* Problem somewhere before the kernel start address */
69 strcat(buf, "/* Maybe null pointer? */");
70 return;
71
72 } else if (address >= COREMMR_BASE) {
73 strcat(buf, "/* core mmrs */");
74 return;
75
76 } else if (address >= SYSMMR_BASE) {
77 strcat(buf, "/* system mmrs */");
78 return;
79
80 } else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) {
81 strcat(buf, "/* on-chip L1 ROM */");
82 return;
83
84 } else if (address >= L1_SCRATCH_START && address < L1_SCRATCH_START + L1_SCRATCH_LENGTH) {
85 strcat(buf, "/* on-chip scratchpad */");
86 return;
87
88 } else if (address >= physical_mem_end && address < ASYNC_BANK0_BASE) {
89 strcat(buf, "/* unconnected memory */");
90 return;
91
92 } else if (address >= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE && address < BOOT_ROM_START) {
93 strcat(buf, "/* reserved memory */");
94 return;
95
96 } else if (address >= L1_DATA_A_START && address < L1_DATA_A_START + L1_DATA_A_LENGTH) {
97 strcat(buf, "/* on-chip Data Bank A */");
98 return;
99
100 } else if (address >= L1_DATA_B_START && address < L1_DATA_B_START + L1_DATA_B_LENGTH) {
101 strcat(buf, "/* on-chip Data Bank B */");
102 return;
103 }
104
105 /*
106 * Don't walk any of the vmas if we are oopsing, it has been known
107 * to cause problems - corrupt vmas (kernel crashes) cause double faults
108 */
109 if (oops_in_progress) {
110 strcat(buf, "/* kernel dynamic memory (maybe user-space) */");
111 return;
112 }
113
114 /* looks like we're off in user-land, so let's walk all the
115 * mappings of all our processes and see if we can't be a whee
116 * bit more specific
117 */
118 read_lock(&tasklist_lock);
119 for_each_process(p) {
120 struct task_struct *t;
121
122 t = find_lock_task_mm(p);
123 if (!t)
124 continue;
125
126 mm = t->mm;
127 if (!down_read_trylock(&mm->mmap_sem))
128 goto __continue;
129
130 for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
131 struct vm_area_struct *vma;
132
133 vma = rb_entry(n, struct vm_area_struct, vm_rb);
134
135 if (address >= vma->vm_start && address < vma->vm_end) {
136 char _tmpbuf[256];
137 char *name = t->comm;
138 struct file *file = vma->vm_file;
139
140 if (file) {
141 char *d_name = file_path(file, _tmpbuf,
142 sizeof(_tmpbuf));
143 if (!IS_ERR(d_name))
144 name = d_name;
145 }
146
147 /* FLAT does not have its text aligned to the start of
148 * the map while FDPIC ELF does ...
149 */
150
151 /* before we can check flat/fdpic, we need to
152 * make sure current is valid
153 */
154 if ((unsigned long)current >= FIXED_CODE_START &&
155 !((unsigned long)current & 0x3)) {
156 if (current->mm &&
157 (address > current->mm->start_code) &&
158 (address < current->mm->end_code))
159 offset = address - current->mm->start_code;
160 else
161 offset = (address - vma->vm_start) +
162 (vma->vm_pgoff << PAGE_SHIFT);
163
164 sprintf(buf, "[ %s + 0x%lx ]", name, offset);
165 } else
166 sprintf(buf, "[ %s vma:0x%lx-0x%lx]",
167 name, vma->vm_start, vma->vm_end);
168
169 up_read(&mm->mmap_sem);
170 task_unlock(t);
171
172 if (buf[0] == '\0')
173 sprintf(buf, "[ %s ] dynamic memory", name);
174
175 goto done;
176 }
177 }
178
179 up_read(&mm->mmap_sem);
180 __continue:
181 task_unlock(t);
182 }
183
184 /*
185 * we were unable to find this address anywhere,
186 * or some MMs were skipped because they were in use.
187 */
188 sprintf(buf, "/* kernel dynamic memory */");
189
190 done:
191 read_unlock(&tasklist_lock);
192 }
193
194 #define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
195
196 /*
197 * Similar to get_user, do some address checking, then dereference
198 * Return true on success, false on bad address
199 */
get_mem16(unsigned short * val,unsigned short * address)200 bool get_mem16(unsigned short *val, unsigned short *address)
201 {
202 unsigned long addr = (unsigned long)address;
203
204 /* Check for odd addresses */
205 if (addr & 0x1)
206 return false;
207
208 switch (bfin_mem_access_type(addr, 2)) {
209 case BFIN_MEM_ACCESS_CORE:
210 case BFIN_MEM_ACCESS_CORE_ONLY:
211 *val = *address;
212 return true;
213 case BFIN_MEM_ACCESS_DMA:
214 dma_memcpy(val, address, 2);
215 return true;
216 case BFIN_MEM_ACCESS_ITEST:
217 isram_memcpy(val, address, 2);
218 return true;
219 default: /* invalid access */
220 return false;
221 }
222 }
223
get_instruction(unsigned int * val,unsigned short * address)224 bool get_instruction(unsigned int *val, unsigned short *address)
225 {
226 unsigned long addr = (unsigned long)address;
227 unsigned short opcode0, opcode1;
228
229 /* Check for odd addresses */
230 if (addr & 0x1)
231 return false;
232
233 /* MMR region will never have instructions */
234 if (addr >= SYSMMR_BASE)
235 return false;
236
237 /* Scratchpad will never have instructions */
238 if (addr >= L1_SCRATCH_START && addr < L1_SCRATCH_START + L1_SCRATCH_LENGTH)
239 return false;
240
241 /* Data banks will never have instructions */
242 if (addr >= BOOT_ROM_START + BOOT_ROM_LENGTH && addr < L1_CODE_START)
243 return false;
244
245 if (!get_mem16(&opcode0, address))
246 return false;
247
248 /* was this a 32-bit instruction? If so, get the next 16 bits */
249 if ((opcode0 & 0xc000) == 0xc000) {
250 if (!get_mem16(&opcode1, address + 1))
251 return false;
252 *val = (opcode0 << 16) + opcode1;
253 } else
254 *val = opcode0;
255
256 return true;
257 }
258
259 #if defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
260 /*
261 * decode the instruction if we are printing out the trace, as it
262 * makes things easier to follow, without running it through objdump
263 * Decode the change of flow, and the common load/store instructions
264 * which are the main cause for faults, and discontinuities in the trace
265 * buffer.
266 */
267
268 #define ProgCtrl_opcode 0x0000
269 #define ProgCtrl_poprnd_bits 0
270 #define ProgCtrl_poprnd_mask 0xf
271 #define ProgCtrl_prgfunc_bits 4
272 #define ProgCtrl_prgfunc_mask 0xf
273 #define ProgCtrl_code_bits 8
274 #define ProgCtrl_code_mask 0xff
275
decode_ProgCtrl_0(unsigned int opcode)276 static void decode_ProgCtrl_0(unsigned int opcode)
277 {
278 int poprnd = ((opcode >> ProgCtrl_poprnd_bits) & ProgCtrl_poprnd_mask);
279 int prgfunc = ((opcode >> ProgCtrl_prgfunc_bits) & ProgCtrl_prgfunc_mask);
280
281 if (prgfunc == 0 && poprnd == 0)
282 pr_cont("NOP");
283 else if (prgfunc == 1 && poprnd == 0)
284 pr_cont("RTS");
285 else if (prgfunc == 1 && poprnd == 1)
286 pr_cont("RTI");
287 else if (prgfunc == 1 && poprnd == 2)
288 pr_cont("RTX");
289 else if (prgfunc == 1 && poprnd == 3)
290 pr_cont("RTN");
291 else if (prgfunc == 1 && poprnd == 4)
292 pr_cont("RTE");
293 else if (prgfunc == 2 && poprnd == 0)
294 pr_cont("IDLE");
295 else if (prgfunc == 2 && poprnd == 3)
296 pr_cont("CSYNC");
297 else if (prgfunc == 2 && poprnd == 4)
298 pr_cont("SSYNC");
299 else if (prgfunc == 2 && poprnd == 5)
300 pr_cont("EMUEXCPT");
301 else if (prgfunc == 3)
302 pr_cont("CLI R%i", poprnd);
303 else if (prgfunc == 4)
304 pr_cont("STI R%i", poprnd);
305 else if (prgfunc == 5)
306 pr_cont("JUMP (P%i)", poprnd);
307 else if (prgfunc == 6)
308 pr_cont("CALL (P%i)", poprnd);
309 else if (prgfunc == 7)
310 pr_cont("CALL (PC + P%i)", poprnd);
311 else if (prgfunc == 8)
312 pr_cont("JUMP (PC + P%i", poprnd);
313 else if (prgfunc == 9)
314 pr_cont("RAISE %i", poprnd);
315 else if (prgfunc == 10)
316 pr_cont("EXCPT %i", poprnd);
317 else
318 pr_cont("0x%04x", opcode);
319
320 }
321
322 #define BRCC_opcode 0x1000
323 #define BRCC_offset_bits 0
324 #define BRCC_offset_mask 0x3ff
325 #define BRCC_B_bits 10
326 #define BRCC_B_mask 0x1
327 #define BRCC_T_bits 11
328 #define BRCC_T_mask 0x1
329 #define BRCC_code_bits 12
330 #define BRCC_code_mask 0xf
331
decode_BRCC_0(unsigned int opcode)332 static void decode_BRCC_0(unsigned int opcode)
333 {
334 int B = ((opcode >> BRCC_B_bits) & BRCC_B_mask);
335 int T = ((opcode >> BRCC_T_bits) & BRCC_T_mask);
336
337 pr_cont("IF %sCC JUMP pcrel %s", T ? "" : "!", B ? "(BP)" : "");
338 }
339
340 #define CALLa_opcode 0xe2000000
341 #define CALLa_addr_bits 0
342 #define CALLa_addr_mask 0xffffff
343 #define CALLa_S_bits 24
344 #define CALLa_S_mask 0x1
345 #define CALLa_code_bits 25
346 #define CALLa_code_mask 0x7f
347
decode_CALLa_0(unsigned int opcode)348 static void decode_CALLa_0(unsigned int opcode)
349 {
350 int S = ((opcode >> (CALLa_S_bits - 16)) & CALLa_S_mask);
351
352 if (S)
353 pr_cont("CALL pcrel");
354 else
355 pr_cont("JUMP.L");
356 }
357
358 #define LoopSetup_opcode 0xe0800000
359 #define LoopSetup_eoffset_bits 0
360 #define LoopSetup_eoffset_mask 0x3ff
361 #define LoopSetup_dontcare_bits 10
362 #define LoopSetup_dontcare_mask 0x3
363 #define LoopSetup_reg_bits 12
364 #define LoopSetup_reg_mask 0xf
365 #define LoopSetup_soffset_bits 16
366 #define LoopSetup_soffset_mask 0xf
367 #define LoopSetup_c_bits 20
368 #define LoopSetup_c_mask 0x1
369 #define LoopSetup_rop_bits 21
370 #define LoopSetup_rop_mask 0x3
371 #define LoopSetup_code_bits 23
372 #define LoopSetup_code_mask 0x1ff
373
decode_LoopSetup_0(unsigned int opcode)374 static void decode_LoopSetup_0(unsigned int opcode)
375 {
376 int c = ((opcode >> LoopSetup_c_bits) & LoopSetup_c_mask);
377 int reg = ((opcode >> LoopSetup_reg_bits) & LoopSetup_reg_mask);
378 int rop = ((opcode >> LoopSetup_rop_bits) & LoopSetup_rop_mask);
379
380 pr_cont("LSETUP <> LC%i", c);
381 if ((rop & 1) == 1)
382 pr_cont("= P%i", reg);
383 if ((rop & 2) == 2)
384 pr_cont(" >> 0x1");
385 }
386
387 #define DspLDST_opcode 0x9c00
388 #define DspLDST_reg_bits 0
389 #define DspLDST_reg_mask 0x7
390 #define DspLDST_i_bits 3
391 #define DspLDST_i_mask 0x3
392 #define DspLDST_m_bits 5
393 #define DspLDST_m_mask 0x3
394 #define DspLDST_aop_bits 7
395 #define DspLDST_aop_mask 0x3
396 #define DspLDST_W_bits 9
397 #define DspLDST_W_mask 0x1
398 #define DspLDST_code_bits 10
399 #define DspLDST_code_mask 0x3f
400
decode_dspLDST_0(unsigned int opcode)401 static void decode_dspLDST_0(unsigned int opcode)
402 {
403 int i = ((opcode >> DspLDST_i_bits) & DspLDST_i_mask);
404 int m = ((opcode >> DspLDST_m_bits) & DspLDST_m_mask);
405 int W = ((opcode >> DspLDST_W_bits) & DspLDST_W_mask);
406 int aop = ((opcode >> DspLDST_aop_bits) & DspLDST_aop_mask);
407 int reg = ((opcode >> DspLDST_reg_bits) & DspLDST_reg_mask);
408
409 if (W == 0) {
410 pr_cont("R%i", reg);
411 switch (m) {
412 case 0:
413 pr_cont(" = ");
414 break;
415 case 1:
416 pr_cont(".L = ");
417 break;
418 case 2:
419 pr_cont(".W = ");
420 break;
421 }
422 }
423
424 pr_cont("[ I%i", i);
425
426 switch (aop) {
427 case 0:
428 pr_cont("++ ]");
429 break;
430 case 1:
431 pr_cont("-- ]");
432 break;
433 }
434
435 if (W == 1) {
436 pr_cont(" = R%i", reg);
437 switch (m) {
438 case 1:
439 pr_cont(".L = ");
440 break;
441 case 2:
442 pr_cont(".W = ");
443 break;
444 }
445 }
446 }
447
448 #define LDST_opcode 0x9000
449 #define LDST_reg_bits 0
450 #define LDST_reg_mask 0x7
451 #define LDST_ptr_bits 3
452 #define LDST_ptr_mask 0x7
453 #define LDST_Z_bits 6
454 #define LDST_Z_mask 0x1
455 #define LDST_aop_bits 7
456 #define LDST_aop_mask 0x3
457 #define LDST_W_bits 9
458 #define LDST_W_mask 0x1
459 #define LDST_sz_bits 10
460 #define LDST_sz_mask 0x3
461 #define LDST_code_bits 12
462 #define LDST_code_mask 0xf
463
decode_LDST_0(unsigned int opcode)464 static void decode_LDST_0(unsigned int opcode)
465 {
466 int Z = ((opcode >> LDST_Z_bits) & LDST_Z_mask);
467 int W = ((opcode >> LDST_W_bits) & LDST_W_mask);
468 int sz = ((opcode >> LDST_sz_bits) & LDST_sz_mask);
469 int aop = ((opcode >> LDST_aop_bits) & LDST_aop_mask);
470 int reg = ((opcode >> LDST_reg_bits) & LDST_reg_mask);
471 int ptr = ((opcode >> LDST_ptr_bits) & LDST_ptr_mask);
472
473 if (W == 0)
474 pr_cont("%s%i = ", (sz == 0 && Z == 1) ? "P" : "R", reg);
475
476 switch (sz) {
477 case 1:
478 pr_cont("W");
479 break;
480 case 2:
481 pr_cont("B");
482 break;
483 }
484
485 pr_cont("[P%i", ptr);
486
487 switch (aop) {
488 case 0:
489 pr_cont("++");
490 break;
491 case 1:
492 pr_cont("--");
493 break;
494 }
495 pr_cont("]");
496
497 if (W == 1)
498 pr_cont(" = %s%i ", (sz == 0 && Z == 1) ? "P" : "R", reg);
499
500 if (sz) {
501 if (Z)
502 pr_cont(" (X)");
503 else
504 pr_cont(" (Z)");
505 }
506 }
507
508 #define LDSTii_opcode 0xa000
509 #define LDSTii_reg_bit 0
510 #define LDSTii_reg_mask 0x7
511 #define LDSTii_ptr_bit 3
512 #define LDSTii_ptr_mask 0x7
513 #define LDSTii_offset_bit 6
514 #define LDSTii_offset_mask 0xf
515 #define LDSTii_op_bit 10
516 #define LDSTii_op_mask 0x3
517 #define LDSTii_W_bit 12
518 #define LDSTii_W_mask 0x1
519 #define LDSTii_code_bit 13
520 #define LDSTii_code_mask 0x7
521
decode_LDSTii_0(unsigned int opcode)522 static void decode_LDSTii_0(unsigned int opcode)
523 {
524 int reg = ((opcode >> LDSTii_reg_bit) & LDSTii_reg_mask);
525 int ptr = ((opcode >> LDSTii_ptr_bit) & LDSTii_ptr_mask);
526 int offset = ((opcode >> LDSTii_offset_bit) & LDSTii_offset_mask);
527 int op = ((opcode >> LDSTii_op_bit) & LDSTii_op_mask);
528 int W = ((opcode >> LDSTii_W_bit) & LDSTii_W_mask);
529
530 if (W == 0) {
531 pr_cont("%s%i = %s[P%i + %i]", op == 3 ? "R" : "P", reg,
532 op == 1 || op == 2 ? "" : "W", ptr, offset);
533 if (op == 2)
534 pr_cont("(Z)");
535 if (op == 3)
536 pr_cont("(X)");
537 } else {
538 pr_cont("%s[P%i + %i] = %s%i", op == 0 ? "" : "W", ptr,
539 offset, op == 3 ? "P" : "R", reg);
540 }
541 }
542
543 #define LDSTidxI_opcode 0xe4000000
544 #define LDSTidxI_offset_bits 0
545 #define LDSTidxI_offset_mask 0xffff
546 #define LDSTidxI_reg_bits 16
547 #define LDSTidxI_reg_mask 0x7
548 #define LDSTidxI_ptr_bits 19
549 #define LDSTidxI_ptr_mask 0x7
550 #define LDSTidxI_sz_bits 22
551 #define LDSTidxI_sz_mask 0x3
552 #define LDSTidxI_Z_bits 24
553 #define LDSTidxI_Z_mask 0x1
554 #define LDSTidxI_W_bits 25
555 #define LDSTidxI_W_mask 0x1
556 #define LDSTidxI_code_bits 26
557 #define LDSTidxI_code_mask 0x3f
558
decode_LDSTidxI_0(unsigned int opcode)559 static void decode_LDSTidxI_0(unsigned int opcode)
560 {
561 int Z = ((opcode >> LDSTidxI_Z_bits) & LDSTidxI_Z_mask);
562 int W = ((opcode >> LDSTidxI_W_bits) & LDSTidxI_W_mask);
563 int sz = ((opcode >> LDSTidxI_sz_bits) & LDSTidxI_sz_mask);
564 int reg = ((opcode >> LDSTidxI_reg_bits) & LDSTidxI_reg_mask);
565 int ptr = ((opcode >> LDSTidxI_ptr_bits) & LDSTidxI_ptr_mask);
566 int offset = ((opcode >> LDSTidxI_offset_bits) & LDSTidxI_offset_mask);
567
568 if (W == 0)
569 pr_cont("%s%i = ", sz == 0 && Z == 1 ? "P" : "R", reg);
570
571 if (sz == 1)
572 pr_cont("W");
573 if (sz == 2)
574 pr_cont("B");
575
576 pr_cont("[P%i + %s0x%x]", ptr, offset & 0x20 ? "-" : "",
577 (offset & 0x1f) << 2);
578
579 if (W == 0 && sz != 0) {
580 if (Z)
581 pr_cont("(X)");
582 else
583 pr_cont("(Z)");
584 }
585
586 if (W == 1)
587 pr_cont("= %s%i", (sz == 0 && Z == 1) ? "P" : "R", reg);
588
589 }
590
decode_opcode(unsigned int opcode)591 static void decode_opcode(unsigned int opcode)
592 {
593 #ifdef CONFIG_BUG
594 if (opcode == BFIN_BUG_OPCODE)
595 pr_cont("BUG");
596 else
597 #endif
598 if ((opcode & 0xffffff00) == ProgCtrl_opcode)
599 decode_ProgCtrl_0(opcode);
600 else if ((opcode & 0xfffff000) == BRCC_opcode)
601 decode_BRCC_0(opcode);
602 else if ((opcode & 0xfffff000) == 0x2000)
603 pr_cont("JUMP.S");
604 else if ((opcode & 0xfe000000) == CALLa_opcode)
605 decode_CALLa_0(opcode);
606 else if ((opcode & 0xff8000C0) == LoopSetup_opcode)
607 decode_LoopSetup_0(opcode);
608 else if ((opcode & 0xfffffc00) == DspLDST_opcode)
609 decode_dspLDST_0(opcode);
610 else if ((opcode & 0xfffff000) == LDST_opcode)
611 decode_LDST_0(opcode);
612 else if ((opcode & 0xffffe000) == LDSTii_opcode)
613 decode_LDSTii_0(opcode);
614 else if ((opcode & 0xfc000000) == LDSTidxI_opcode)
615 decode_LDSTidxI_0(opcode);
616 else if (opcode & 0xffff0000)
617 pr_cont("0x%08x", opcode);
618 else
619 pr_cont("0x%04x", opcode);
620 }
621
622 #define BIT_MULTI_INS 0x08000000
decode_instruction(unsigned short * address)623 static void decode_instruction(unsigned short *address)
624 {
625 unsigned int opcode;
626
627 if (!get_instruction(&opcode, address))
628 return;
629
630 decode_opcode(opcode);
631
632 /* If things are a 32-bit instruction, it has the possibility of being
633 * a multi-issue instruction (a 32-bit, and 2 16 bit instrucitions)
634 * This test collidates with the unlink instruction, so disallow that
635 */
636 if ((opcode & 0xc0000000) == 0xc0000000 &&
637 (opcode & BIT_MULTI_INS) &&
638 (opcode & 0xe8000000) != 0xe8000000) {
639 pr_cont(" || ");
640 if (!get_instruction(&opcode, address + 2))
641 return;
642 decode_opcode(opcode);
643 pr_cont(" || ");
644 if (!get_instruction(&opcode, address + 3))
645 return;
646 decode_opcode(opcode);
647 }
648 }
649 #endif
650
dump_bfin_trace_buffer(void)651 void dump_bfin_trace_buffer(void)
652 {
653 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
654 int tflags, i = 0, fault = 0;
655 char buf[150];
656 unsigned short *addr;
657 unsigned int cpu = raw_smp_processor_id();
658 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
659 int j, index;
660 #endif
661
662 trace_buffer_save(tflags);
663
664 pr_notice("Hardware Trace:\n");
665
666 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
667 pr_notice("WARNING: Expanded trace turned on - can not trace exceptions\n");
668 #endif
669
670 if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
671 for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
672 addr = (unsigned short *)bfin_read_TBUF();
673 decode_address(buf, (unsigned long)addr);
674 pr_notice("%4i Target : %s\n", i, buf);
675 /* Normally, the faulting instruction doesn't go into
676 * the trace buffer, (since it doesn't commit), so
677 * we print out the fault address here
678 */
679 if (!fault && addr == ((unsigned short *)evt_ivhw)) {
680 addr = (unsigned short *)bfin_read_TBUF();
681 decode_address(buf, (unsigned long)addr);
682 pr_notice(" FAULT : %s ", buf);
683 decode_instruction(addr);
684 pr_cont("\n");
685 fault = 1;
686 continue;
687 }
688 if (!fault && addr == (unsigned short *)trap &&
689 (cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE) > VEC_EXCPT15) {
690 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
691 pr_notice(" FAULT : %s ", buf);
692 decode_instruction((unsigned short *)cpu_pda[cpu].icplb_fault_addr);
693 pr_cont("\n");
694 fault = 1;
695 }
696 addr = (unsigned short *)bfin_read_TBUF();
697 decode_address(buf, (unsigned long)addr);
698 pr_notice(" Source : %s ", buf);
699 decode_instruction(addr);
700 pr_cont("\n");
701 }
702 }
703
704 #ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
705 if (trace_buff_offset)
706 index = trace_buff_offset / 4;
707 else
708 index = EXPAND_LEN;
709
710 j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
711 while (j) {
712 decode_address(buf, software_trace_buff[index]);
713 pr_notice("%4i Target : %s\n", i, buf);
714 index -= 1;
715 if (index < 0)
716 index = EXPAND_LEN;
717 decode_address(buf, software_trace_buff[index]);
718 pr_notice(" Source : %s ", buf);
719 decode_instruction((unsigned short *)software_trace_buff[index]);
720 pr_cont("\n");
721 index -= 1;
722 if (index < 0)
723 index = EXPAND_LEN;
724 j--;
725 i++;
726 }
727 #endif
728
729 trace_buffer_restore(tflags);
730 #endif
731 }
732 EXPORT_SYMBOL(dump_bfin_trace_buffer);
733
dump_bfin_process(struct pt_regs * fp)734 void dump_bfin_process(struct pt_regs *fp)
735 {
736 /* We should be able to look at fp->ipend, but we don't push it on the
737 * stack all the time, so do this until we fix that */
738 unsigned int context = bfin_read_IPEND();
739
740 if (oops_in_progress)
741 pr_emerg("Kernel OOPS in progress\n");
742
743 if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
744 pr_notice("HW Error context\n");
745 else if (context & 0x0020)
746 pr_notice("Deferred Exception context\n");
747 else if (context & 0x3FC0)
748 pr_notice("Interrupt context\n");
749 else if (context & 0x4000)
750 pr_notice("Deferred Interrupt context\n");
751 else if (context & 0x8000)
752 pr_notice("Kernel process context\n");
753
754 /* Because we are crashing, and pointers could be bad, we check things
755 * pretty closely before we use them
756 */
757 if ((unsigned long)current >= FIXED_CODE_START &&
758 !((unsigned long)current & 0x3) && current->pid) {
759 pr_notice("CURRENT PROCESS:\n");
760 if (current->comm >= (char *)FIXED_CODE_START)
761 pr_notice("COMM=%s PID=%d",
762 current->comm, current->pid);
763 else
764 pr_notice("COMM= invalid");
765
766 pr_cont(" CPU=%d\n", current_thread_info()->cpu);
767 if (!((unsigned long)current->mm & 0x3) &&
768 (unsigned long)current->mm >= FIXED_CODE_START) {
769 pr_notice("TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n",
770 (void *)current->mm->start_code,
771 (void *)current->mm->end_code,
772 (void *)current->mm->start_data,
773 (void *)current->mm->end_data);
774 pr_notice(" BSS = 0x%p-0x%p USER-STACK = 0x%p\n\n",
775 (void *)current->mm->end_data,
776 (void *)current->mm->brk,
777 (void *)current->mm->start_stack);
778 } else
779 pr_notice("invalid mm\n");
780 } else
781 pr_notice("No Valid process in current context\n");
782 }
783
dump_bfin_mem(struct pt_regs * fp)784 void dump_bfin_mem(struct pt_regs *fp)
785 {
786 unsigned short *addr, *erraddr, val = 0, err = 0;
787 char sti = 0, buf[6];
788
789 erraddr = (void *)fp->pc;
790
791 pr_notice("return address: [0x%p]; contents of:", erraddr);
792
793 for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
794 addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
795 addr++) {
796 if (!((unsigned long)addr & 0xF))
797 pr_notice("0x%p: ", addr);
798
799 if (!get_mem16(&val, addr)) {
800 val = 0;
801 sprintf(buf, "????");
802 } else
803 sprintf(buf, "%04x", val);
804
805 if (addr == erraddr) {
806 pr_cont("[%s]", buf);
807 err = val;
808 } else
809 pr_cont(" %s ", buf);
810
811 /* Do any previous instructions turn on interrupts? */
812 if (addr <= erraddr && /* in the past */
813 ((val >= 0x0040 && val <= 0x0047) || /* STI instruction */
814 val == 0x017b)) /* [SP++] = RETI */
815 sti = 1;
816 }
817
818 pr_cont("\n");
819
820 /* Hardware error interrupts can be deferred */
821 if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
822 oops_in_progress)){
823 pr_notice("Looks like this was a deferred error - sorry\n");
824 #ifndef CONFIG_DEBUG_HWERR
825 pr_notice("The remaining message may be meaningless\n");
826 pr_notice("You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n");
827 #else
828 /* If we are handling only one peripheral interrupt
829 * and current mm and pid are valid, and the last error
830 * was in that user space process's text area
831 * print it out - because that is where the problem exists
832 */
833 if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
834 (current->pid && current->mm)) {
835 /* And the last RETI points to the current userspace context */
836 if ((fp + 1)->pc >= current->mm->start_code &&
837 (fp + 1)->pc <= current->mm->end_code) {
838 pr_notice("It might be better to look around here :\n");
839 pr_notice("-------------------------------------------\n");
840 show_regs(fp + 1);
841 pr_notice("-------------------------------------------\n");
842 }
843 }
844 #endif
845 }
846 }
847
show_regs(struct pt_regs * fp)848 void show_regs(struct pt_regs *fp)
849 {
850 char buf[150];
851 struct irqaction *action;
852 unsigned int i;
853 unsigned long flags = 0;
854 unsigned int cpu = raw_smp_processor_id();
855 unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
856
857 pr_notice("\n");
858 show_regs_print_info(KERN_NOTICE);
859
860 if (CPUID != bfin_cpuid())
861 pr_notice("Compiled for cpu family 0x%04x (Rev %d), "
862 "but running on:0x%04x (Rev %d)\n",
863 CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid());
864
865 pr_notice("ADSP-%s-0.%d",
866 CPU, bfin_compiled_revid());
867
868 if (bfin_compiled_revid() != bfin_revid())
869 pr_cont("(Detected 0.%d)", bfin_revid());
870
871 pr_cont(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n",
872 get_cclk()/1000000, get_sclk()/1000000,
873 #ifdef CONFIG_MPU
874 "mpu on"
875 #else
876 "mpu off"
877 #endif
878 );
879
880 pr_notice("%s", linux_banner);
881
882 pr_notice("\nSEQUENCER STATUS:\t\t%s\n", print_tainted());
883 pr_notice(" SEQSTAT: %08lx IPEND: %04lx IMASK: %04lx SYSCFG: %04lx\n",
884 (long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg);
885 if (fp->ipend & EVT_IRPTEN)
886 pr_notice(" Global Interrupts Disabled (IPEND[4])\n");
887 if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 |
888 EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR)))
889 pr_notice(" Peripheral interrupts masked off\n");
890 if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14)))
891 pr_notice(" Kernel interrupts masked off\n");
892 if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
893 pr_notice(" HWERRCAUSE: 0x%lx\n",
894 (fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
895 #ifdef EBIU_ERRMST
896 /* If the error was from the EBIU, print it out */
897 if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
898 pr_notice(" EBIU Error Reason : 0x%04x\n",
899 bfin_read_EBIU_ERRMST());
900 pr_notice(" EBIU Error Address : 0x%08x\n",
901 bfin_read_EBIU_ERRADD());
902 }
903 #endif
904 }
905 pr_notice(" EXCAUSE : 0x%lx\n",
906 fp->seqstat & SEQSTAT_EXCAUSE);
907 for (i = 2; i <= 15 ; i++) {
908 if (fp->ipend & (1 << i)) {
909 if (i != 4) {
910 decode_address(buf, bfin_read32(EVT0 + 4*i));
911 pr_notice(" physical IVG%i asserted : %s\n", i, buf);
912 } else
913 pr_notice(" interrupts disabled\n");
914 }
915 }
916
917 /* if no interrupts are going off, don't print this out */
918 if (fp->ipend & ~0x3F) {
919 for (i = 0; i < (NR_IRQS - 1); i++) {
920 struct irq_desc *desc = irq_to_desc(i);
921 if (!in_atomic)
922 raw_spin_lock_irqsave(&desc->lock, flags);
923
924 action = desc->action;
925 if (!action)
926 goto unlock;
927
928 decode_address(buf, (unsigned int)action->handler);
929 pr_notice(" logical irq %3d mapped : %s", i, buf);
930 for (action = action->next; action; action = action->next) {
931 decode_address(buf, (unsigned int)action->handler);
932 pr_cont(", %s", buf);
933 }
934 pr_cont("\n");
935 unlock:
936 if (!in_atomic)
937 raw_spin_unlock_irqrestore(&desc->lock, flags);
938 }
939 }
940
941 decode_address(buf, fp->rete);
942 pr_notice(" RETE: %s\n", buf);
943 decode_address(buf, fp->retn);
944 pr_notice(" RETN: %s\n", buf);
945 decode_address(buf, fp->retx);
946 pr_notice(" RETX: %s\n", buf);
947 decode_address(buf, fp->rets);
948 pr_notice(" RETS: %s\n", buf);
949 decode_address(buf, fp->pc);
950 pr_notice(" PC : %s\n", buf);
951
952 if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
953 (((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
954 decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
955 pr_notice("DCPLB_FAULT_ADDR: %s\n", buf);
956 decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
957 pr_notice("ICPLB_FAULT_ADDR: %s\n", buf);
958 }
959
960 pr_notice("PROCESSOR STATE:\n");
961 pr_notice(" R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
962 fp->r0, fp->r1, fp->r2, fp->r3);
963 pr_notice(" R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
964 fp->r4, fp->r5, fp->r6, fp->r7);
965 pr_notice(" P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n",
966 fp->p0, fp->p1, fp->p2, fp->p3);
967 pr_notice(" P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n",
968 fp->p4, fp->p5, fp->fp, (long)fp);
969 pr_notice(" LB0: %08lx LT0: %08lx LC0: %08lx\n",
970 fp->lb0, fp->lt0, fp->lc0);
971 pr_notice(" LB1: %08lx LT1: %08lx LC1: %08lx\n",
972 fp->lb1, fp->lt1, fp->lc1);
973 pr_notice(" B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n",
974 fp->b0, fp->l0, fp->m0, fp->i0);
975 pr_notice(" B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n",
976 fp->b1, fp->l1, fp->m1, fp->i1);
977 pr_notice(" B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n",
978 fp->b2, fp->l2, fp->m2, fp->i2);
979 pr_notice(" B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n",
980 fp->b3, fp->l3, fp->m3, fp->i3);
981 pr_notice("A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n",
982 fp->a0w, fp->a0x, fp->a1w, fp->a1x);
983
984 pr_notice("USP : %08lx ASTAT: %08lx\n",
985 rdusp(), fp->astat);
986
987 pr_notice("\n");
988 }
989