• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * SRAM allocator for Blackfin on-chip memory
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/rtc.h>
21 #include <linux/slab.h>
22 #include <linux/mm_types.h>
23 
24 #include <asm/blackfin.h>
25 #include <asm/mem_map.h>
26 #include "blackfin_sram.h"
27 
28 /* the data structure for L1 scratchpad and DATA SRAM */
29 struct sram_piece {
30 	void *paddr;
31 	int size;
32 	pid_t pid;
33 	struct sram_piece *next;
34 };
35 
36 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
37 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
38 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
39 
40 #if L1_DATA_A_LENGTH != 0
41 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
42 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
43 #endif
44 
45 #if L1_DATA_B_LENGTH != 0
46 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
47 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
48 #endif
49 
50 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
51 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
52 #endif
53 
54 #if L1_CODE_LENGTH != 0
55 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
56 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
57 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
58 #endif
59 
60 #if L2_LENGTH != 0
61 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
62 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
63 #endif
64 
65 static struct kmem_cache *sram_piece_cache;
66 
67 /* L1 Scratchpad SRAM initialization function */
l1sram_init(void)68 static void __init l1sram_init(void)
69 {
70 	unsigned int cpu;
71 	unsigned long reserve;
72 
73 #ifdef CONFIG_SMP
74 	reserve = 0;
75 #else
76 	reserve = sizeof(struct l1_scratch_task_info);
77 #endif
78 
79 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
80 		per_cpu(free_l1_ssram_head, cpu).next =
81 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
82 		if (!per_cpu(free_l1_ssram_head, cpu).next) {
83 			printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
84 			return;
85 		}
86 
87 		per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
88 		per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
89 		per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
90 		per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
91 
92 		per_cpu(used_l1_ssram_head, cpu).next = NULL;
93 
94 		/* mutex initialize */
95 		spin_lock_init(&per_cpu(l1sram_lock, cpu));
96 		printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
97 			L1_SCRATCH_LENGTH >> 10);
98 	}
99 }
100 
l1_data_sram_init(void)101 static void __init l1_data_sram_init(void)
102 {
103 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
104 	unsigned int cpu;
105 #endif
106 #if L1_DATA_A_LENGTH != 0
107 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
108 		per_cpu(free_l1_data_A_sram_head, cpu).next =
109 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
110 		if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
111 			printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
112 			return;
113 		}
114 
115 		per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
116 			(void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
117 		per_cpu(free_l1_data_A_sram_head, cpu).next->size =
118 			L1_DATA_A_LENGTH - (_ebss_l1 - _sdata_l1);
119 		per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
120 		per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
121 
122 		per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
123 
124 		printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
125 			L1_DATA_A_LENGTH >> 10,
126 			per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
127 	}
128 #endif
129 #if L1_DATA_B_LENGTH != 0
130 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
131 		per_cpu(free_l1_data_B_sram_head, cpu).next =
132 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
133 		if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
134 			printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
135 			return;
136 		}
137 
138 		per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
139 			(void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
140 		per_cpu(free_l1_data_B_sram_head, cpu).next->size =
141 			L1_DATA_B_LENGTH - (_ebss_b_l1 - _sdata_b_l1);
142 		per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
143 		per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
144 
145 		per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
146 
147 		printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
148 			L1_DATA_B_LENGTH >> 10,
149 			per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
150 		/* mutex initialize */
151 	}
152 #endif
153 
154 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
155 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
156 		spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
157 #endif
158 }
159 
l1_inst_sram_init(void)160 static void __init l1_inst_sram_init(void)
161 {
162 #if L1_CODE_LENGTH != 0
163 	unsigned int cpu;
164 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
165 		per_cpu(free_l1_inst_sram_head, cpu).next =
166 			kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
167 		if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
168 			printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
169 			return;
170 		}
171 
172 		per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
173 			(void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
174 		per_cpu(free_l1_inst_sram_head, cpu).next->size =
175 			L1_CODE_LENGTH - (_etext_l1 - _stext_l1);
176 		per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
177 		per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
178 
179 		per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
180 
181 		printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
182 			L1_CODE_LENGTH >> 10,
183 			per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
184 
185 		/* mutex initialize */
186 		spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
187 	}
188 #endif
189 }
190 
191 #ifdef __ADSPBF60x__
l2_ecc_err(int irq,void * dev_id)192 static irqreturn_t l2_ecc_err(int irq, void *dev_id)
193 {
194 	int status;
195 
196 	printk(KERN_ERR "L2 ecc error happened\n");
197 	status = bfin_read32(L2CTL0_STAT);
198 	if (status & 0x1)
199 		printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
200 			bfin_read32(L2CTL0_ET0), bfin_read32(L2CTL0_EADDR0));
201 	if (status & 0x2)
202 		printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
203 			bfin_read32(L2CTL0_ET1), bfin_read32(L2CTL0_EADDR1));
204 
205 	status = status >> 8;
206 	if (status)
207 		printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
208 			status, bfin_read32(L2CTL0_ERRADDR0 + status));
209 
210 	panic("L2 Ecc error");
211 	return IRQ_HANDLED;
212 }
213 #endif
214 
l2_sram_init(void)215 static void __init l2_sram_init(void)
216 {
217 #if L2_LENGTH != 0
218 
219 #ifdef __ADSPBF60x__
220 	int ret;
221 
222 	ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
223 			NULL);
224 	if (unlikely(ret < 0)) {
225 		printk(KERN_INFO "Fail to request l2 ecc error interrupt");
226 		return;
227 	}
228 #endif
229 
230 	free_l2_sram_head.next =
231 		kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
232 	if (!free_l2_sram_head.next) {
233 		printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
234 		return;
235 	}
236 
237 	free_l2_sram_head.next->paddr =
238 		(void *)L2_START + (_ebss_l2 - _stext_l2);
239 	free_l2_sram_head.next->size =
240 		L2_LENGTH - (_ebss_l2 - _stext_l2);
241 	free_l2_sram_head.next->pid = 0;
242 	free_l2_sram_head.next->next = NULL;
243 
244 	used_l2_sram_head.next = NULL;
245 
246 	printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
247 		L2_LENGTH >> 10,
248 		free_l2_sram_head.next->size >> 10);
249 
250 	/* mutex initialize */
251 	spin_lock_init(&l2_sram_lock);
252 #endif
253 }
254 
bfin_sram_init(void)255 static int __init bfin_sram_init(void)
256 {
257 	sram_piece_cache = kmem_cache_create("sram_piece_cache",
258 				sizeof(struct sram_piece),
259 				0, SLAB_PANIC, NULL);
260 
261 	l1sram_init();
262 	l1_data_sram_init();
263 	l1_inst_sram_init();
264 	l2_sram_init();
265 
266 	return 0;
267 }
268 pure_initcall(bfin_sram_init);
269 
270 /* SRAM allocate function */
_sram_alloc(size_t size,struct sram_piece * pfree_head,struct sram_piece * pused_head)271 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
272 		struct sram_piece *pused_head)
273 {
274 	struct sram_piece *pslot, *plast, *pavail;
275 
276 	if (size <= 0 || !pfree_head || !pused_head)
277 		return NULL;
278 
279 	/* Align the size */
280 	size = (size + 3) & ~3;
281 
282 	pslot = pfree_head->next;
283 	plast = pfree_head;
284 
285 	/* search an available piece slot */
286 	while (pslot != NULL && size > pslot->size) {
287 		plast = pslot;
288 		pslot = pslot->next;
289 	}
290 
291 	if (!pslot)
292 		return NULL;
293 
294 	if (pslot->size == size) {
295 		plast->next = pslot->next;
296 		pavail = pslot;
297 	} else {
298 		/* use atomic so our L1 allocator can be used atomically */
299 		pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
300 
301 		if (!pavail)
302 			return NULL;
303 
304 		pavail->paddr = pslot->paddr;
305 		pavail->size = size;
306 		pslot->paddr += size;
307 		pslot->size -= size;
308 	}
309 
310 	pavail->pid = current->pid;
311 
312 	pslot = pused_head->next;
313 	plast = pused_head;
314 
315 	/* insert new piece into used piece list !!! */
316 	while (pslot != NULL && pavail->paddr < pslot->paddr) {
317 		plast = pslot;
318 		pslot = pslot->next;
319 	}
320 
321 	pavail->next = pslot;
322 	plast->next = pavail;
323 
324 	return pavail->paddr;
325 }
326 
327 /* Allocate the largest available block.  */
_sram_alloc_max(struct sram_piece * pfree_head,struct sram_piece * pused_head,unsigned long * psize)328 static void *_sram_alloc_max(struct sram_piece *pfree_head,
329 				struct sram_piece *pused_head,
330 				unsigned long *psize)
331 {
332 	struct sram_piece *pslot, *pmax;
333 
334 	if (!pfree_head || !pused_head)
335 		return NULL;
336 
337 	pmax = pslot = pfree_head->next;
338 
339 	/* search an available piece slot */
340 	while (pslot != NULL) {
341 		if (pslot->size > pmax->size)
342 			pmax = pslot;
343 		pslot = pslot->next;
344 	}
345 
346 	if (!pmax)
347 		return NULL;
348 
349 	*psize = pmax->size;
350 
351 	return _sram_alloc(*psize, pfree_head, pused_head);
352 }
353 
354 /* SRAM free function */
_sram_free(const void * addr,struct sram_piece * pfree_head,struct sram_piece * pused_head)355 static int _sram_free(const void *addr,
356 			struct sram_piece *pfree_head,
357 			struct sram_piece *pused_head)
358 {
359 	struct sram_piece *pslot, *plast, *pavail;
360 
361 	if (!pfree_head || !pused_head)
362 		return -1;
363 
364 	/* search the relevant memory slot */
365 	pslot = pused_head->next;
366 	plast = pused_head;
367 
368 	/* search an available piece slot */
369 	while (pslot != NULL && pslot->paddr != addr) {
370 		plast = pslot;
371 		pslot = pslot->next;
372 	}
373 
374 	if (!pslot)
375 		return -1;
376 
377 	plast->next = pslot->next;
378 	pavail = pslot;
379 	pavail->pid = 0;
380 
381 	/* insert free pieces back to the free list */
382 	pslot = pfree_head->next;
383 	plast = pfree_head;
384 
385 	while (pslot != NULL && addr > pslot->paddr) {
386 		plast = pslot;
387 		pslot = pslot->next;
388 	}
389 
390 	if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
391 		plast->size += pavail->size;
392 		kmem_cache_free(sram_piece_cache, pavail);
393 	} else {
394 		pavail->next = plast->next;
395 		plast->next = pavail;
396 		plast = pavail;
397 	}
398 
399 	if (pslot && plast->paddr + plast->size == pslot->paddr) {
400 		plast->size += pslot->size;
401 		plast->next = pslot->next;
402 		kmem_cache_free(sram_piece_cache, pslot);
403 	}
404 
405 	return 0;
406 }
407 
sram_free(const void * addr)408 int sram_free(const void *addr)
409 {
410 
411 #if L1_CODE_LENGTH != 0
412 	if (addr >= (void *)get_l1_code_start()
413 		 && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
414 		return l1_inst_sram_free(addr);
415 	else
416 #endif
417 #if L1_DATA_A_LENGTH != 0
418 	if (addr >= (void *)get_l1_data_a_start()
419 		 && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
420 		return l1_data_A_sram_free(addr);
421 	else
422 #endif
423 #if L1_DATA_B_LENGTH != 0
424 	if (addr >= (void *)get_l1_data_b_start()
425 		 && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
426 		return l1_data_B_sram_free(addr);
427 	else
428 #endif
429 #if L2_LENGTH != 0
430 	if (addr >= (void *)L2_START
431 		 && addr < (void *)(L2_START + L2_LENGTH))
432 		return l2_sram_free(addr);
433 	else
434 #endif
435 		return -1;
436 }
437 EXPORT_SYMBOL(sram_free);
438 
l1_data_A_sram_alloc(size_t size)439 void *l1_data_A_sram_alloc(size_t size)
440 {
441 #if L1_DATA_A_LENGTH != 0
442 	unsigned long flags;
443 	void *addr;
444 	unsigned int cpu;
445 
446 	cpu = smp_processor_id();
447 	/* add mutex operation */
448 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
449 
450 	addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
451 			&per_cpu(used_l1_data_A_sram_head, cpu));
452 
453 	/* add mutex operation */
454 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
455 
456 	pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
457 		 (long unsigned int)addr, size);
458 
459 	return addr;
460 #else
461 	return NULL;
462 #endif
463 }
464 EXPORT_SYMBOL(l1_data_A_sram_alloc);
465 
l1_data_A_sram_free(const void * addr)466 int l1_data_A_sram_free(const void *addr)
467 {
468 #if L1_DATA_A_LENGTH != 0
469 	unsigned long flags;
470 	int ret;
471 	unsigned int cpu;
472 
473 	cpu = smp_processor_id();
474 	/* add mutex operation */
475 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
476 
477 	ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
478 			&per_cpu(used_l1_data_A_sram_head, cpu));
479 
480 	/* add mutex operation */
481 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
482 
483 	return ret;
484 #else
485 	return -1;
486 #endif
487 }
488 EXPORT_SYMBOL(l1_data_A_sram_free);
489 
l1_data_B_sram_alloc(size_t size)490 void *l1_data_B_sram_alloc(size_t size)
491 {
492 #if L1_DATA_B_LENGTH != 0
493 	unsigned long flags;
494 	void *addr;
495 	unsigned int cpu;
496 
497 	cpu = smp_processor_id();
498 	/* add mutex operation */
499 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
500 
501 	addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
502 			&per_cpu(used_l1_data_B_sram_head, cpu));
503 
504 	/* add mutex operation */
505 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
506 
507 	pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
508 		 (long unsigned int)addr, size);
509 
510 	return addr;
511 #else
512 	return NULL;
513 #endif
514 }
515 EXPORT_SYMBOL(l1_data_B_sram_alloc);
516 
l1_data_B_sram_free(const void * addr)517 int l1_data_B_sram_free(const void *addr)
518 {
519 #if L1_DATA_B_LENGTH != 0
520 	unsigned long flags;
521 	int ret;
522 	unsigned int cpu;
523 
524 	cpu = smp_processor_id();
525 	/* add mutex operation */
526 	spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
527 
528 	ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
529 			&per_cpu(used_l1_data_B_sram_head, cpu));
530 
531 	/* add mutex operation */
532 	spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
533 
534 	return ret;
535 #else
536 	return -1;
537 #endif
538 }
539 EXPORT_SYMBOL(l1_data_B_sram_free);
540 
l1_data_sram_alloc(size_t size)541 void *l1_data_sram_alloc(size_t size)
542 {
543 	void *addr = l1_data_A_sram_alloc(size);
544 
545 	if (!addr)
546 		addr = l1_data_B_sram_alloc(size);
547 
548 	return addr;
549 }
550 EXPORT_SYMBOL(l1_data_sram_alloc);
551 
l1_data_sram_zalloc(size_t size)552 void *l1_data_sram_zalloc(size_t size)
553 {
554 	void *addr = l1_data_sram_alloc(size);
555 
556 	if (addr)
557 		memset(addr, 0x00, size);
558 
559 	return addr;
560 }
561 EXPORT_SYMBOL(l1_data_sram_zalloc);
562 
l1_data_sram_free(const void * addr)563 int l1_data_sram_free(const void *addr)
564 {
565 	int ret;
566 	ret = l1_data_A_sram_free(addr);
567 	if (ret == -1)
568 		ret = l1_data_B_sram_free(addr);
569 	return ret;
570 }
571 EXPORT_SYMBOL(l1_data_sram_free);
572 
l1_inst_sram_alloc(size_t size)573 void *l1_inst_sram_alloc(size_t size)
574 {
575 #if L1_CODE_LENGTH != 0
576 	unsigned long flags;
577 	void *addr;
578 	unsigned int cpu;
579 
580 	cpu = smp_processor_id();
581 	/* add mutex operation */
582 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
583 
584 	addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
585 			&per_cpu(used_l1_inst_sram_head, cpu));
586 
587 	/* add mutex operation */
588 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
589 
590 	pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
591 		 (long unsigned int)addr, size);
592 
593 	return addr;
594 #else
595 	return NULL;
596 #endif
597 }
598 EXPORT_SYMBOL(l1_inst_sram_alloc);
599 
l1_inst_sram_free(const void * addr)600 int l1_inst_sram_free(const void *addr)
601 {
602 #if L1_CODE_LENGTH != 0
603 	unsigned long flags;
604 	int ret;
605 	unsigned int cpu;
606 
607 	cpu = smp_processor_id();
608 	/* add mutex operation */
609 	spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
610 
611 	ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
612 			&per_cpu(used_l1_inst_sram_head, cpu));
613 
614 	/* add mutex operation */
615 	spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
616 
617 	return ret;
618 #else
619 	return -1;
620 #endif
621 }
622 EXPORT_SYMBOL(l1_inst_sram_free);
623 
624 /* L1 Scratchpad memory allocate function */
l1sram_alloc(size_t size)625 void *l1sram_alloc(size_t size)
626 {
627 	unsigned long flags;
628 	void *addr;
629 	unsigned int cpu;
630 
631 	cpu = smp_processor_id();
632 	/* add mutex operation */
633 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
634 
635 	addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
636 			&per_cpu(used_l1_ssram_head, cpu));
637 
638 	/* add mutex operation */
639 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
640 
641 	return addr;
642 }
643 
644 /* L1 Scratchpad memory allocate function */
l1sram_alloc_max(size_t * psize)645 void *l1sram_alloc_max(size_t *psize)
646 {
647 	unsigned long flags;
648 	void *addr;
649 	unsigned int cpu;
650 
651 	cpu = smp_processor_id();
652 	/* add mutex operation */
653 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
654 
655 	addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
656 			&per_cpu(used_l1_ssram_head, cpu), psize);
657 
658 	/* add mutex operation */
659 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
660 
661 	return addr;
662 }
663 
664 /* L1 Scratchpad memory free function */
l1sram_free(const void * addr)665 int l1sram_free(const void *addr)
666 {
667 	unsigned long flags;
668 	int ret;
669 	unsigned int cpu;
670 
671 	cpu = smp_processor_id();
672 	/* add mutex operation */
673 	spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
674 
675 	ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
676 			&per_cpu(used_l1_ssram_head, cpu));
677 
678 	/* add mutex operation */
679 	spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
680 
681 	return ret;
682 }
683 
l2_sram_alloc(size_t size)684 void *l2_sram_alloc(size_t size)
685 {
686 #if L2_LENGTH != 0
687 	unsigned long flags;
688 	void *addr;
689 
690 	/* add mutex operation */
691 	spin_lock_irqsave(&l2_sram_lock, flags);
692 
693 	addr = _sram_alloc(size, &free_l2_sram_head,
694 			&used_l2_sram_head);
695 
696 	/* add mutex operation */
697 	spin_unlock_irqrestore(&l2_sram_lock, flags);
698 
699 	pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
700 		 (long unsigned int)addr, size);
701 
702 	return addr;
703 #else
704 	return NULL;
705 #endif
706 }
707 EXPORT_SYMBOL(l2_sram_alloc);
708 
l2_sram_zalloc(size_t size)709 void *l2_sram_zalloc(size_t size)
710 {
711 	void *addr = l2_sram_alloc(size);
712 
713 	if (addr)
714 		memset(addr, 0x00, size);
715 
716 	return addr;
717 }
718 EXPORT_SYMBOL(l2_sram_zalloc);
719 
l2_sram_free(const void * addr)720 int l2_sram_free(const void *addr)
721 {
722 #if L2_LENGTH != 0
723 	unsigned long flags;
724 	int ret;
725 
726 	/* add mutex operation */
727 	spin_lock_irqsave(&l2_sram_lock, flags);
728 
729 	ret = _sram_free(addr, &free_l2_sram_head,
730 			&used_l2_sram_head);
731 
732 	/* add mutex operation */
733 	spin_unlock_irqrestore(&l2_sram_lock, flags);
734 
735 	return ret;
736 #else
737 	return -1;
738 #endif
739 }
740 EXPORT_SYMBOL(l2_sram_free);
741 
sram_free_with_lsl(const void * addr)742 int sram_free_with_lsl(const void *addr)
743 {
744 	struct sram_list_struct *lsl, **tmp;
745 	struct mm_struct *mm = current->mm;
746 	int ret = -1;
747 
748 	for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
749 		if ((*tmp)->addr == addr) {
750 			lsl = *tmp;
751 			ret = sram_free(addr);
752 			*tmp = lsl->next;
753 			kfree(lsl);
754 			break;
755 		}
756 
757 	return ret;
758 }
759 EXPORT_SYMBOL(sram_free_with_lsl);
760 
761 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
762  * tracked.  These are designed for userspace so that when a process exits,
763  * we can safely reap their resources.
764  */
sram_alloc_with_lsl(size_t size,unsigned long flags)765 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
766 {
767 	void *addr = NULL;
768 	struct sram_list_struct *lsl = NULL;
769 	struct mm_struct *mm = current->mm;
770 
771 	lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
772 	if (!lsl)
773 		return NULL;
774 
775 	if (flags & L1_INST_SRAM)
776 		addr = l1_inst_sram_alloc(size);
777 
778 	if (addr == NULL && (flags & L1_DATA_A_SRAM))
779 		addr = l1_data_A_sram_alloc(size);
780 
781 	if (addr == NULL && (flags & L1_DATA_B_SRAM))
782 		addr = l1_data_B_sram_alloc(size);
783 
784 	if (addr == NULL && (flags & L2_SRAM))
785 		addr = l2_sram_alloc(size);
786 
787 	if (addr == NULL) {
788 		kfree(lsl);
789 		return NULL;
790 	}
791 	lsl->addr = addr;
792 	lsl->length = size;
793 	lsl->next = mm->context.sram_list;
794 	mm->context.sram_list = lsl;
795 	return addr;
796 }
797 EXPORT_SYMBOL(sram_alloc_with_lsl);
798 
799 #ifdef CONFIG_PROC_FS
800 /* Once we get a real allocator, we'll throw all of this away.
801  * Until then, we need some sort of visibility into the L1 alloc.
802  */
803 /* Need to keep line of output the same.  Currently, that is 44 bytes
804  * (including newline).
805  */
_sram_proc_show(struct seq_file * m,const char * desc,struct sram_piece * pfree_head,struct sram_piece * pused_head)806 static int _sram_proc_show(struct seq_file *m, const char *desc,
807 		struct sram_piece *pfree_head,
808 		struct sram_piece *pused_head)
809 {
810 	struct sram_piece *pslot;
811 
812 	if (!pfree_head || !pused_head)
813 		return -1;
814 
815 	seq_printf(m, "--- SRAM %-14s Size   PID State     \n", desc);
816 
817 	/* search the relevant memory slot */
818 	pslot = pused_head->next;
819 
820 	while (pslot != NULL) {
821 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
822 			pslot->paddr, pslot->paddr + pslot->size,
823 			pslot->size, pslot->pid, "ALLOCATED");
824 
825 		pslot = pslot->next;
826 	}
827 
828 	pslot = pfree_head->next;
829 
830 	while (pslot != NULL) {
831 		seq_printf(m, "%p-%p %10i %5i %-10s\n",
832 			pslot->paddr, pslot->paddr + pslot->size,
833 			pslot->size, pslot->pid, "FREE");
834 
835 		pslot = pslot->next;
836 	}
837 
838 	return 0;
839 }
sram_proc_show(struct seq_file * m,void * v)840 static int sram_proc_show(struct seq_file *m, void *v)
841 {
842 	unsigned int cpu;
843 
844 	for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
845 		if (_sram_proc_show(m, "Scratchpad",
846 			&per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
847 			goto not_done;
848 #if L1_DATA_A_LENGTH != 0
849 		if (_sram_proc_show(m, "L1 Data A",
850 			&per_cpu(free_l1_data_A_sram_head, cpu),
851 			&per_cpu(used_l1_data_A_sram_head, cpu)))
852 			goto not_done;
853 #endif
854 #if L1_DATA_B_LENGTH != 0
855 		if (_sram_proc_show(m, "L1 Data B",
856 			&per_cpu(free_l1_data_B_sram_head, cpu),
857 			&per_cpu(used_l1_data_B_sram_head, cpu)))
858 			goto not_done;
859 #endif
860 #if L1_CODE_LENGTH != 0
861 		if (_sram_proc_show(m, "L1 Instruction",
862 			&per_cpu(free_l1_inst_sram_head, cpu),
863 			&per_cpu(used_l1_inst_sram_head, cpu)))
864 			goto not_done;
865 #endif
866 	}
867 #if L2_LENGTH != 0
868 	if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
869 		goto not_done;
870 #endif
871  not_done:
872 	return 0;
873 }
874 
sram_proc_open(struct inode * inode,struct file * file)875 static int sram_proc_open(struct inode *inode, struct file *file)
876 {
877 	return single_open(file, sram_proc_show, NULL);
878 }
879 
880 static const struct file_operations sram_proc_ops = {
881 	.open		= sram_proc_open,
882 	.read		= seq_read,
883 	.llseek		= seq_lseek,
884 	.release	= single_release,
885 };
886 
sram_proc_init(void)887 static int __init sram_proc_init(void)
888 {
889 	struct proc_dir_entry *ptr;
890 
891 	ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
892 	if (!ptr) {
893 		printk(KERN_WARNING "unable to create /proc/sram\n");
894 		return -1;
895 	}
896 	return 0;
897 }
898 late_initcall(sram_proc_init);
899 #endif
900