• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/arch/cris/arch-v10/kernel/time.c
4  *
5  *  Copyright (C) 1991, 1992, 1995  Linus Torvalds
6  *  Copyright (C) 1999-2002 Axis Communications AB
7  *
8  */
9 
10 #include <linux/timex.h>
11 #include <linux/time.h>
12 #include <linux/jiffies.h>
13 #include <linux/interrupt.h>
14 #include <linux/swap.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 #include <linux/mm.h>
18 #include <asm/types.h>
19 #include <asm/signal.h>
20 #include <asm/io.h>
21 #include <asm/delay.h>
22 #include <asm/irq_regs.h>
23 
24 /* define this if you need to use print_timestamp */
25 /* it will make jiffies at 96 hz instead of 100 hz though */
26 #undef USE_CASCADE_TIMERS
27 
get_ns_in_jiffie(void)28 unsigned long get_ns_in_jiffie(void)
29 {
30 	unsigned char timer_count, t1;
31 	unsigned short presc_count;
32 	unsigned long ns;
33 	unsigned long flags;
34 
35 	local_irq_save(flags);
36 	timer_count = *R_TIMER0_DATA;
37 	presc_count = *R_TIM_PRESC_STATUS;
38 	/* presc_count might be wrapped */
39 	t1 = *R_TIMER0_DATA;
40 
41 	if (timer_count != t1){
42 		/* it wrapped, read prescaler again...  */
43 		presc_count = *R_TIM_PRESC_STATUS;
44 		timer_count = t1;
45 	}
46 	local_irq_restore(flags);
47 	if (presc_count >= PRESCALE_VALUE/2 ){
48 		presc_count =  PRESCALE_VALUE - presc_count + PRESCALE_VALUE/2;
49 	} else {
50 		presc_count =  PRESCALE_VALUE - presc_count - PRESCALE_VALUE/2;
51 	}
52 
53 	ns = ( (TIMER0_DIV - timer_count) * ((1000000000/HZ)/TIMER0_DIV )) +
54 	     ( (presc_count) * (1000000000/PRESCALE_FREQ));
55 	return ns;
56 }
57 
cris_v10_gettimeoffset(void)58 static u32 cris_v10_gettimeoffset(void)
59 {
60 	u32 count;
61 
62 	/* The timer interrupt comes from Etrax timer 0. In order to get
63 	 * better precision, we check the current value. It might have
64 	 * underflowed already though.
65 	 */
66 	count = *R_TIMER0_DATA;
67 
68 	/* Convert timer value to nsec */
69 	return (TIMER0_DIV - count) * (NSEC_PER_SEC/HZ)/TIMER0_DIV;
70 }
71 
72 /* Excerpt from the Etrax100 HSDD about the built-in watchdog:
73  *
74  * 3.10.4 Watchdog timer
75 
76  * When the watchdog timer is started, it generates an NMI if the watchdog
77  * isn't restarted or stopped within 0.1 s. If it still isn't restarted or
78  * stopped after an additional 3.3 ms, the watchdog resets the chip.
79  * The watchdog timer is stopped after reset. The watchdog timer is controlled
80  * by the R_WATCHDOG register. The R_WATCHDOG register contains an enable bit
81  * and a 3-bit key value. The effect of writing to the R_WATCHDOG register is
82  * described in the table below:
83  *
84  *   Watchdog    Value written:
85  *   state:      To enable:  To key:      Operation:
86  *   --------    ----------  -------      ----------
87  *   stopped         0         X          No effect.
88  *   stopped         1       key_val      Start watchdog with key = key_val.
89  *   started         0       ~key         Stop watchdog
90  *   started         1       ~key         Restart watchdog with key = ~key.
91  *   started         X       new_key_val  Change key to new_key_val.
92  *
93  * Note: '~' is the bitwise NOT operator.
94  *
95  */
96 
97 /* right now, starting the watchdog is the same as resetting it */
98 #define start_watchdog reset_watchdog
99 
100 #ifdef CONFIG_ETRAX_WATCHDOG
101 static int watchdog_key = 0;  /* arbitrary number */
102 #endif
103 
104 /* number of pages to consider "out of memory". it is normal that the memory
105  * is used though, so put this really low.
106  */
107 
108 #define WATCHDOG_MIN_FREE_PAGES 8
109 
reset_watchdog(void)110 void reset_watchdog(void)
111 {
112 #if defined(CONFIG_ETRAX_WATCHDOG)
113 	/* only keep watchdog happy as long as we have memory left! */
114 	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
115 		/* reset the watchdog with the inverse of the old key */
116 		watchdog_key ^= 0x7; /* invert key, which is 3 bits */
117 		*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
118 			IO_STATE(R_WATCHDOG, enable, start);
119 	}
120 #endif
121 }
122 
123 /* stop the watchdog - we still need the correct key */
124 
stop_watchdog(void)125 void stop_watchdog(void)
126 {
127 #ifdef CONFIG_ETRAX_WATCHDOG
128 	watchdog_key ^= 0x7; /* invert key, which is 3 bits */
129 	*R_WATCHDOG = IO_FIELD(R_WATCHDOG, key, watchdog_key) |
130 		IO_STATE(R_WATCHDOG, enable, stop);
131 #endif
132 }
133 
134 
135 extern void cris_do_profile(struct pt_regs *regs);
136 
137 /*
138  * timer_interrupt() needs to keep up the real-time clock,
139  * as well as call the "xtime_update()" routine every clocktick
140  */
timer_interrupt(int irq,void * dev_id)141 static inline irqreturn_t timer_interrupt(int irq, void *dev_id)
142 {
143 	struct pt_regs *regs = get_irq_regs();
144 	/* acknowledge the timer irq */
145 
146 #ifdef USE_CASCADE_TIMERS
147 	*R_TIMER_CTRL =
148 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
149 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
150 		IO_STATE( R_TIMER_CTRL, i1, clr) |
151 		IO_STATE( R_TIMER_CTRL, tm1, run) |
152 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
153 		IO_STATE( R_TIMER_CTRL, i0, clr) |
154 		IO_STATE( R_TIMER_CTRL, tm0, run) |
155 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
156 #else
157 	*R_TIMER_CTRL = r_timer_ctrl_shadow | IO_STATE(R_TIMER_CTRL, i0, clr);
158 #endif
159 
160 	/* reset watchdog otherwise it resets us! */
161 	reset_watchdog();
162 
163 	/* Update statistics. */
164 	update_process_times(user_mode(regs));
165 
166 	/* call the real timer interrupt handler */
167 	xtime_update(1);
168 
169         cris_do_profile(regs); /* Save profiling information */
170         return IRQ_HANDLED;
171 }
172 
173 /* timer is IRQF_SHARED so drivers can add stuff to the timer irq chain */
174 
175 static struct irqaction irq2  = {
176 	.handler = timer_interrupt,
177 	.flags = IRQF_SHARED,
178 	.name = "timer",
179 };
180 
time_init(void)181 void __init time_init(void)
182 {
183 	arch_gettimeoffset = cris_v10_gettimeoffset;
184 
185 	/* probe for the RTC and read it if it exists
186 	 * Before the RTC can be probed the loops_per_usec variable needs
187 	 * to be initialized to make usleep work. A better value for
188 	 * loops_per_usec is calculated by the kernel later once the
189 	 * clock has started.
190 	 */
191 	loops_per_usec = 50;
192 
193 	/* Setup the etrax timers
194 	 * Base frequency is 25000 hz, divider 250 -> 100 HZ
195 	 * In normal mode, we use timer0, so timer1 is free. In cascade
196 	 * mode (which we sometimes use for debugging) both timers are used.
197 	 * Remember that linux/timex.h contains #defines that rely on the
198 	 * timer settings below (hz and divide factor) !!!
199 	 */
200 
201 #ifdef USE_CASCADE_TIMERS
202 	*R_TIMER_CTRL =
203 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
204 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
205 		IO_STATE( R_TIMER_CTRL, i1, nop) |
206 		IO_STATE( R_TIMER_CTRL, tm1, stop_ld) |
207 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
208 		IO_STATE( R_TIMER_CTRL, i0, nop) |
209 		IO_STATE( R_TIMER_CTRL, tm0, stop_ld) |
210 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
211 
212 	*R_TIMER_CTRL = r_timer_ctrl_shadow =
213 		IO_FIELD( R_TIMER_CTRL, timerdiv1, 0) |
214 		IO_FIELD( R_TIMER_CTRL, timerdiv0, 0) |
215 		IO_STATE( R_TIMER_CTRL, i1, nop) |
216 		IO_STATE( R_TIMER_CTRL, tm1, run) |
217 		IO_STATE( R_TIMER_CTRL, clksel1, cascade0) |
218 		IO_STATE( R_TIMER_CTRL, i0, nop) |
219 		IO_STATE( R_TIMER_CTRL, tm0, run) |
220 		IO_STATE( R_TIMER_CTRL, clksel0, c6250kHz);
221 #else
222 	*R_TIMER_CTRL =
223 		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
224 		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
225 		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
226 		IO_STATE(R_TIMER_CTRL, tm1,       stop_ld)  |
227 		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
228 		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
229 		IO_STATE(R_TIMER_CTRL, tm0,       stop_ld)  |
230 		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
231 
232 	*R_TIMER_CTRL = r_timer_ctrl_shadow =
233 		IO_FIELD(R_TIMER_CTRL, timerdiv1, 192)      |
234 		IO_FIELD(R_TIMER_CTRL, timerdiv0, TIMER0_DIV)      |
235 		IO_STATE(R_TIMER_CTRL, i1,        nop)      |
236 		IO_STATE(R_TIMER_CTRL, tm1,       run)      |
237 		IO_STATE(R_TIMER_CTRL, clksel1,   c19k2Hz)  |
238 		IO_STATE(R_TIMER_CTRL, i0,        nop)      |
239 		IO_STATE(R_TIMER_CTRL, tm0,       run)      |
240 		IO_STATE(R_TIMER_CTRL, clksel0,   flexible);
241 
242 	*R_TIMER_PRESCALE = PRESCALE_VALUE;
243 #endif
244 
245 	/* unmask the timer irq */
246 	*R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, timer0, set);
247 
248 	/* now actually register the irq handler that calls timer_interrupt() */
249 	setup_irq(2, &irq2); /* irq 2 is the timer0 irq in etrax */
250 
251 	/* enable watchdog if we should use one */
252 #if defined(CONFIG_ETRAX_WATCHDOG)
253 	printk("Enabling watchdog...\n");
254 	start_watchdog();
255 
256 	/* If we use the hardware watchdog, we want to trap it as an NMI
257 	   and dump registers before it resets us.  For this to happen, we
258 	   must set the "m" NMI enable flag (which once set, is unset only
259 	   when an NMI is taken).
260 
261 	   The same goes for the external NMI, but that doesn't have any
262 	   driver or infrastructure support yet.  */
263 	asm ("setf m");
264 
265 	*R_IRQ_MASK0_SET = IO_STATE(R_IRQ_MASK0_SET, watchdog_nmi, set);
266 	*R_VECT_MASK_SET = IO_STATE(R_VECT_MASK_SET, nmi, set);
267 #endif
268 }
269